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ABSTRACT

We present the first provable Least-Squares Value Iteration (LSVI) algorithm that
achieves runtime complexity sublinear in the number of actions. We formulate
the value function estimation procedure in value iteration as an approximate max-
imum inner product search problem and propose a locality sensitive hashing (LSH)
type data structure to solve this problem with sublinear time complexity. More-
over, we build the connections between the theory of approximate maximum inner
product search and the regret analysis of reinforcement learning. We prove that,
with our choice of approximation factor, our Sublinear LSVI algorithms maintain
the same regret as the original LSVI algorithms while reducing the runtime com-
plexity to sublinear in the number of actions. To the best of our knowledge, this
is the first work that combines LSH with reinforcement learning that resulting in
provable improvements. We hope that our novel way of combining data structures
and iterative algorithm will open the door for further study into the cost reduction
in optimization.

1 INTRODUCTION

Reinforcement learning (RL) is an essential problem in machine learning that targets maximizing
the cumulative reward when an agent is taking actions within an unknown environment Sutton &
Barto (2018). RL is a trending topic over the last few years. We have seen a remarkable growth
of RL applications in Go Silver et al. (2016), robotics Kober et al. (2013), dialogue systems Li
et al. (2016) and recommendation Zheng et al. (2018). In practical RL, most approaches Watkins &
Dayan (1992); Silver et al. (2014); Jin et al. (2018) perform iterative-type algorithms that modify the
choice of actions at each step based on the agent iteration with the environment. This iterative nature
causes the training of RL algorithms to be expensive. For instance, it takes around three weeks to
train the agent in AlphaGo Silver et al. (2016). Moreover, the training is conducted on 50 GPUs,
which means the training of RL on limited computational resources is almost infeasible.

Given the efficiency bottleneck of RL algorithms, it is natural to ask the following question.

Are there some TCS techniques that could apply to iterative-type RL algorithms and improve their
running time efficiency?

The practical success of a typical TCS technique, Locality sensitive hashing (LSH), shed lights on
answering the question. LSH is a randomized data structure with provable efficiency in approxi-
mate nearest neighbor search (ANN) Indyk & Motwani (1998); Charikar (2002); Datar et al. (2004);
Shakhnarovich et al. (2005); Andoni & Indyk (2008); Andoni (2009); Andoni et al. (2014); An-
doni & Razenshteyn (2015); Andoni et al. (2015; 2017b); Christiani (2017); Razenshteyn (2017);
Andoni et al. (2018); Wei (2019); Dong et al. (2020). Meanwhile, LSH could also be extended to
maximum inner product search (Max-IP) Shrivastava & Li (2014). Moreover, in practical machine
learning (ML), LSH has been widely used in many fundamental learning problems to improve the
practical running time of iterative-type algorithms such as gradient descents Chen et al. (2019), back-
propagation Chen et al. (2020); Daghaghi et al. (2021); Chen et al. (2021) and MCMC sampling Luo
& Shrivastava (2019). However, the current empirical combination of LSH with iterative-type algo-
rithms does not have theoretical support. It is unknown to give a provable guarantee for the impact
of LSH over the total number of iterations and per cost iteration of iterative-type algorithms.
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Inspired by a large number of successes about using LSH to tackle efficiency bottlenecks in practice,
it is natural to ask the following question.

Is there an interesting regime (e.g., some iterative-type algorithms) where we can apply LSH to give
provable improvement?

In this work, we answer both questions by proposing a theoretical framework that combines LSH
with RL. We focus on Q-learning Watkins & Dayan (1992), a simple and flexible type of RL frame-
work that directly optimizes the maximum expected reward based on the outcome of actions that the
agent taken at each step. Theoretical analysis also suggests that Q-learning is proved to be sample ef-
ficient Jin et al. (2018). However, the running time efficiency of Q-learning requires improvement in
practical scenarios. We identify that the runtime complexity of Q-learning is dominated by the value
function estimation procedure. Value function estimation requires a linear scan over all the actions
at each step, which is unscalable in real RL tasks. For instance, in news recommendation systems,
the action of an RL agent is recommending an article to the users. The iterative-type Q-learning al-
gorithm scan over all articles at each iteration to find the action that maximizes the expected reward.
In practice, this search space is too large so that linear scan is prohibitive. Therefore, reducing the
enormous overhead in value function estimation over the large action space becomes a significant
research problem in Q-learning.

We focus on applying LSH techniques to reduce this value function estimation overhead in the
iterative-type Q-learning algorithm. However, combing LSH with any iterative-type algorithm in
Q-learning is challenging due to four major reasons: (1) It remains unknown whether the linear scan
over all possible actions in Q-learning could be formulated as an ANN or Max-IP problem (2) LSH
accelerate this linear scan by introducing an error in estimating value function. This approximation
error would accumulate in the value iteration and break the current upper bound for regret. (3)
Although LSH has demonstrated success in practical ML, its theoretical efficiency guarantee in RL
remains unknown. (4) The Q-learning algorithm would query LSH at each step. As the query in
each step depends on the previous step, the total failure probability of LSH over this adaptive query
sequence could not be union bounded due to correlations.

In this work, we solve these challenges affirmatively by presenting a Q-learning algorithm that
uses LSH type approximate Max-IP data structure. We focus on the Least-Squares Value Iteration
(LSVI) Bradtke & Barto (1996) and its extensions with UCB exploration (LSVI-UCB Jin et al.
(2020)). We also discuss LSVI-UCB under policy switch limitation Gao et al. (2021) or model-
free setting Wang et al. (2020a). We connect the theory of Max-IP with reinforcement learning by
formulating the value function estimation in LSVI and LSVI-UCB as an approximate Max-IP prob-
lem. Then, we propose Sublinear LSVI and Sublinear LSVI-UCB, two algorithms with LSH that
have value iteration running time sublinear in the number of actions. For LSVI-UCB, we extend
the LSH type Max-IP data structure to approximate maximum matrix norm search so that Sublinear
LSVI-UCB could also enjoy the sublinear value iteration complexity over actions. Moreover, we
theoretically prove that, with our choice of approximation factor, both Sublinear LSVI and Sublinear
LSVI-UCB achieve the same regret with their original versions. Furthermore, we identify the po-
tential risks of LSH type approximate Max-IP data structure in iterative-type algorithm and propose
a series of techniques to reduce them.

2 RELATED WORK

Approximate Maximum Inner Product Search Maximum Inner Product Search (Max-IP) is a
fundamental yet challenging problem in theoretical computer science Williams (2005); Abboud et al.
(2017); Chen (2018); Chen & Williams (2019); Williams (2018). Given a query x ∈ Rd and a dataset
Y ⊂ Rd with n vectors, the goal of Max-IP is to retrieve a z ∈ Y so that x>z = arg maxz∈Y x

>y.
The brute-force algorithm solves Max-IP in O(dn) time for x by linear scanning over all elements
in Y . To improve the Max-IP efficiency in practice, approximation methods are proposed to achieve
sublinear query time complexity by returning point with a multiplicative approximation ratio to the
Max-IP solution.

Chen Chen (2018) show that for bichromatic Max-IPi with two sets of n vectors from {0, 1}d, there
is a n2−Ω(1) time algorithm with (d/ log n)Ω(1) approximation ratio. Moreover, Chen Chen (2018)

iGiven two n-point setA ∈ Rd andB ∈ Rd, the goal of bichromatic Max-IP is to find b ∈ B that maximize
inner product for every a ∈ A.

2



Under review as a conference paper at ICLR 2022

show that this algorithm is conditional optimal as such a (d/ log n)o(1) approximation algorithm
would refute Strong Exponential Time Hypothesis (SETH) Impagliazzo & Paturi (2001)ii.

Most previous approximate Max-IP approaches reduce the Max-IP to nearest neighbor (NN) search
problem and apply approximate nearest neighbor (ANN) data structures such as locality sensitive
hashing (LSH) Shrivastava & Li (2014; 2015a); Neyshabur & Srebro (2015); Shrivastava & Li
(2015b); Yan et al. (2018). Given a query x ∈ Rd and a dataset Y ⊂ Rd with n vectors, the goal of
(c, r)-ANN with c > 1 is to retrieve a z ∈ Y so that ‖x− z‖2 ≤ c · r if there miny∈Y ‖x− y‖2 ≤ r.
The LSH solves this problem with query time inO(d·nρ+o(1)). Here, ρ < 1 and it depends on c. For
randomized LSH that is independent of data, Antoni, Indyk and Razenshteyn Andoni et al. (2018)
show that ρ ≥ 1/c2. To further reduce ρ, Antoni and Razenshteyn Andoni & Razenshteyn (2015)
proposes a data-dependent LSH that achieves ρ = 1/(2c2 − 1) with preprocessing time and space
in O(n1+ρ + dn). Andoni, Laarhoven, Razenshteyn and Waingarten Andoni et al. (2017a) propose
a improved proposes a data-dependent LSH that solves (c, r)-ANN with query time O(d ·nρq+o(1)),
space O(n1+ρu+o(1) + dn) and preprocessing time O(dn1+ρu+o(1)). Andoni, Laarhoven, Razen-
shteyn and Waingarten Andoni et al. (2017a) also states that for c > 1, r > 0, ρu ≥ 0 and ρq ≥ 0,
we have c2√ρq + (c2 − 1)

√
ρu ≥

√
2c2 − 1. Moreover, if we achieve ρu = 0, we could reduce the

preprocessing overhead to O(n1+o(1) + dn) while achieving ρq = 2
c2
− 1

c4
. These LSH approaches

have concise theoretical guarantees on the trade-off between search quality and query time. Thus,
they could solve approximate Max-IP efficiently.

Meanwhile, other non-reduction approximate Max-IP approaches build efficient data structures such
as quantization codebooks Guo et al. (2016; 2020), trees Yu et al. (2017), alias tables Ding et al.
(2019) and graphs Morozov & Babenko (2018); Zhou et al. (2019); Tan et al. (2019). However,
there exists no theoretical guarantee on these non-reduction approaches so that their evaluation is
totally empirical.

Locality Sensitive Hashing Applications In practice, well-implemented LSH algorithms are de-
veloped Lv et al. (2007); Andoni et al. (2015) and have demonstrated their superiority in tackling
efficiency bottlenecks in practical applications. In optimization, Chen et al. (2019) proposes a LSH
based approach to estimate gradients in large scale linear models. Moreover, this idea has been
extended to neural network training Chen et al. (2020; 2021). Further more, Besides deep learning,
Luo & Shrivastava (2019) also proposes a LSH method for efficient MCMC sampling. Charikar &
Siminelakis (2017); Backurs et al. (2018); Siminelakis et al. (2019); Backurs et al. (2019); Charikar
et al. (2020) use LSH for efficient kernel density estimation. Zandieh et al. (2020) proposes a LSH
based approach for kernel ridge regression. Yang et al. (2021) proposes an LSH algorithm for effi-
cient linear bandits.

Provable Efficient Reinforcement Learning The theoretical analysis on the efficiency of modern
reinforcement learning (RL) approaches has drawn a lot of attention recently Jin et al. (2018); Bai
et al. (2019); Song & Sun (2019); Jin et al. (2020); Yang & Wang (2020); Cai et al. (2020); Wang
et al. (2020b); Zhang et al. (2020); Wang et al. (2020a); Du et al. (2020); Feng et al. (2020); Du
et al. (2021); Xiong et al. (2021). Jin et al. (2018) presents the first Q-learning with UCB explo-
ration algorithm with provable sublinear regret. Jin et al. (2020) proposes a provable RL algorithm
with linear function approximation that achieves both polynomial runtime and polynomial sample
complexity. There also exist other works that benefit the community with theoretical analysis on
efficient RL Du et al. (2020); Yang & Wang (2020); Cai et al. (2020).

Speedup Cost Per Iteration Recently, there have been many works discussing how to improve
the cost per iteration for optimization problems (e.g., linear programming, cutting plane method,
maximum matching, training neural networks) while maintaining the total number of iterations in
achieving the same final error guarantees. However, most of these algorithms are built on sketching
Lee et al. (2019); Jiang et al. (2020; 2021); Song & Yu (2021); Brand et al. (2021), sampling Cohen
et al. (2019); Brand et al. (2020b); Dong et al. (2021), vector-maintenance Brand (2020); Jiang et al.
(2021), sparse recovery Brand et al. (2020b;a) techniques, none of them have used LSH. We hope
that our novel combination of data structures and iterative algorithms will open the door for further
study into cost reduction in optimization.

iiSETH (Strong Exponential Time Hypothesis) states that for every ε > 0 there is a k such that k-SAT
cannot be solved in O((2− ε)n) time.
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3 BACKGROUND

3.1 LOCALITY SENSITIVE HASHING

We present a well-known data structure called locality sensitive hashing Indyk & Motwani (1998)
for approximate nearest neighbor search and approximate maximum inner produce search.

Definition 3.1 (Locality Sensitive Hashing). Let c denote a parameter such that c > 1. Let r denote
a parameter. Let p1, p2 denote two parameters such that 0 < p2 < p1 < 1. A function family H is
(r, c · r, p1, p2)-sensitive if and only if, for any two vector x, y ∈ Rd, a function h chosen uniformly
from family H has the following properties: (1) if ‖x − y‖2 ≤ r, then Prh∼H[h(x) = h(y)] ≥ p1,
(2) if ‖x− y‖2 ≥ c · r, then Prh∼H[h(x) = h(y)] ≤ p2.

We want to remark that the original LSH definition supports more general distance function than
`2 distance. In our application, `2 distance is sufficient, therefore we only define LSH based on `2
distance. It is well-known that an efficient LSH family implies data structure (c, r)-ANN which can
be defined as

Definition 3.2 (Approximate Near Neighbor (ANN)). Let c > 1. Let r ∈ (0, 2). Given an n-
vector dataset P ⊂ Sd−1 on the sphere, (c, r)-Approximate Near Neighbor Search (ANN) aims at
constructing a data structure such that, for a query q ∈ Sd−1 with the promise that there exists a
data vector p ∈ P with ‖p− q‖2 ≤ r, the data structure reports a data vector p′ ∈ P with distance
less than c · r from q.

In the iterative-type reinforcement learning algorithm, we care about the dual version of the problem
(Definition 3.3),

Definition 3.3 (Approximate Max-IP). Let c ∈ (0, 1). Let τ ∈ (0, 1). Given an n-vector dataset
P ⊂ Sd−1 on the sphere, the (c, τ)-Maximum Inner Product Search (Max-IP) aims at building a
data structure such that, for a query q ∈ Sd−1 with the promise that there exists a datapoint p ∈ P
with 〈p, q〉 ≥ τ , the data structure reports a datapoint p′ ∈ P with similarity 〈p′, q〉 ≥ c · τ .

We briefly discuss the connection. Let us consider the distance function as Euclidean distance and
similarity function as inner product. We also assume all the points are from unit sphere. In this
setting, the relationship between two problems are primal vs dual. For any two points x, y with
‖x‖2 = ‖y‖2 = 1, we have ‖x − y‖22 = 2 − 2〈x, y〉. This implies that r2 = 2 − 2τ . Further, if
we have a data structure for (c, r)-ANN, it automatically becomes a data structure for (c, τ)-Max-IP
with parameters τ = 1− 0.5r2 and c = 1−0.5c2r2

1−0.5r2 . This implies that c2 = 1−c(1−0.5r2)
0.5r2 = 1−cτ

1−τ .

Our algorithmic result is mainly built on this data structure.

Theorem 3.4 (Andoni and Razenshteyn Andoni & Razenshteyn (2015)). Let c > 1. Let r ∈ (0, 2).
Let ρ = 1

2c2−1
+ o(1). The (c, r)-ANN (see Definition 3.2) on the unit sphere Sd−1 can be solved

by a data structure using O(d · nρ) query time and O(n1+ρ + dn) space.

Using the standard reduction, we can derive the following.

Corollary 3.5. Let c ∈ (0, 1). Let τ ∈ (0, 1). The (c, τ)-Max-IP (see Definition 3.3) on a unit
sphere Sd−1 can be solved in preprocessing time/space O(n1+ρ + dn) and query time O(d · nρ),
where ρ = 1−τ

1−2cτ+τ + o(1).

Using Andoni et al. (2017a), we can improve the preprocessing time and space to n1+o(1)+dnwhile
having a slightly weaker ρ in query. We provide a detailed and formal version of Corollary 3.5 in
Theorem B.2. We present our main result based on that. Moreover, it is reasonable for us to regard
d = no(1) using Johnson-Lindenstrauss Lemma Johnson & Lindenstrauss (1984).

Finally, to combine the maximum inner product search with reinforcement learning algorithm to get
sublinear time cost per iteration, we still need to deal with many issues, such as the inner product
can be negative, τ is arbitrarily close to 0, and τ can arbitrarily close to 1. We will explain how to
handle these challenges in later section.
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3.2 REINFORCEMENT LEARNING

In this section, we introduce some backgrounds about reinforcement learning. We start with defining
the episodic Markov decision process. Let MDP(S,A, H,P, r) denote the episodic Markov decision
process, where S denotes the set of available states, A denotes the set of available actions, H ∈
N denotes the total number of steps in each episode, P = {Ph}Hh=1 with Ph[s′|s, a] denotes the
probability of transition from state s ∈ S to state s′ ∈ S when take actions a ∈ A at step h,
r = {rh}Hh=1 denotes the reward obtained at each step. Here the reward rh is a function that maps
S ×A to [0.55, 1]iii In practice, we build an agent in MDP(S,A, H,P, r) and play K episodes.

In this work, we focus on the linear Markov decision process (linear MDP). In this setting, each
pair of state and action is represented as an embedding vector φ(s, a), where φ : S × A → Rd.
Moreover, the probability Ph[s′|s, a] for state transition and function rh for reward are linear in this
embedding vector.

In the MDP framework, a policy π = {π1, · · · , πH} is defined as sequence such that πh : S → A
for each step h. πh(s) = a represents the action taken when we are at step h and state s. Next, we
represent the Bellman equation with policy π as

Qπh(s, a) = [rh + PhV πh+1](s, a), V πh (s) = Qπh(s, πh(s)), V πH+1(s) = 0.

where Qπ(s, a) denotes the Q function for policy π when taking action a at state s and step h and
V π(s) denotes the value function of state s at step h. We use [PhVh+1](s, a) to represent the expect
value functions when taking action a at state s at step h. For more detailed definitions, please refer
to Section A.

4 OUR RESULTS

We present the results in this section. We start with summarizing all of our main results in Table 1.
According to Table 1, we reduce the value iteration complexity of LSVI Bradtke & Barto (1996),
LSVI-UCB Jin et al. (2020), LSVI-UCB under policy switch limitation Gao et al. (2021) and model-
free version of LSVI-UCB Wang et al. (2020a) from linear to sublinear in action space. Meanwhile,
the total regret is preserved as same as before. To achieve this, we pay tolerable time to preprocess
pairs of state-action into LSH type approximate Max-IP data structure. In the following section, we
would elaborate on the details for these main results.

4.1 SUBLINEAR LEAST-SQUARES VALUE ITERATION

In LSVI Bradtke & Barto (1996) with large action space, the runtime in each value iteration step is
dominated by computing the estimated value function as below:

V̂h(s) = max
a∈Acore

〈ŵh, φ(s, a)〉 (1)

where ŵh is computed by solving the least-squares problem, Acore is the core action set and φ(s, a)
is the embedding for state-action pair. Eq. (1) is a standard Max-IP problem and thus, takes O(Ad)
to obtain the exact solution. In this work, we relax Eq. (1) into an (c, τ)-Max-IP problem, where
c ∈ (0, 1) is the approximation parameter and τ is close to the maxa∈Acore〈ŵh, φ(s, a)〉. Then, we
apply LSH type data structure to retrieve V̂h(s) ≥ c ·maxa∈Acore

〈ŵh, φ(s, a)〉 in o(A) · O(d) time
complexity.

Next, we present our main theorem for Sublinear LSVI in Theorem 4.1, which gives the same
O(LH2

√
ι/n) regret as LSVI Bradtke & Barto (1996) and reduce the value iteration complexity

from O(HSdA) to O(HSd) · o(A).
Theorem 4.1 (Main result, convergence result of Sublinear Least-Squares Value Iteration (Sublinear
LSVI), an informal version of Theorem C.2). Let MDP(S,A, H,P, r) denote a linear MDP. Let p
denote a fixed probability. Let ι = log(Hd/p). If we set approximate Max-IP parameter c =

1−Θ(
√
ι/n), then Sublinear LSVI has regret at most O(H2

√
ι/n) with probability at least 1− p.

Moreover, with SA1+o(1) + SdA preprocessing time and space, the value iteration complexity of
Sublinear LSVI is O(HSdAρ) where ρ = 1−Θ(ι/n).

iiiNote that in standard reinforcement learning, we assume reward is [0, 1], but it is completely reasonable to
do a shift. We will provide more discussion in Section 5.1.

5



Under review as a conference paper at ICLR 2022

Note that we could improve the value iteration complexity to with ρ = 1−Θ(
√
ι/n) by increasing

the preprocessing time and space to O(SA1+ρ + SdA) using Theorem A.14. We provide a detailed
and formal version of Theorem 4.1 in Theorem C.2.

Statement Preprocess #Regret V. Iter. C.
LSVI Bradtke & Barto (1996) 0 H2

√
ι/n HSdA

Ours Theorem 4.1 SA1+o(1) + SdA H2
√
ι/n HSdAρ

LSVI-UCB Jin et al. (2020) 0
√
H4Kd3ι2 HKd2A

Ours Theorem 4.3 KA1+o(1) +Kd2A
√
H4Kd3ι2 HKd2Aρ

LGSC Gao et al. (2021) 0
√
H4Kd3ι2 HKd2A

Ours Corollary 4.4 KA1+o(1) +Kd2A
√
H4Kd3ι2 HKd2Aρ

MF Wang et al. (2020a) 0
√
H4Kd3ι2 HKd2A

Ours Corollary 4.4 KA1+o(1) +Kd2A
√
H4Kd3ι2 HKd2Aρ

Table 1: Comparison between our algorithms with previous results such as LSVI, LSVI-UCB, LGSC and MF.
We compare our algorithm with: (1) LSVI denotes the Least-Square Value Iteration algorithm Bradtke & Barto
(1996) (2) LSVI-UCB denotes the Least-Square Value Iteration algorithm with UCB in Jin et al. (2020). (3)
LGSC denotes the LSVI-UCB with low global switching cost Gao et al. (2021). (4) MF denotes the model free
LSVI-UCB presented in Wang et al. (2020a). Note that “V. Iter. C.” denotes the Value iteration complexity.
Let S denote the number of available states. Let A denote the number of available actions. Let d denote the
dimension of φ(s, a). LetH denote the number of steps per episode. LetK denote the total number of episodes.
Let n be the quantity of times played for each core pair of state-action. Let ι = log(Hd/p) and p is the failure
probability. We ignore the big-Oh notation “O” in the table. Let ρ ∈ (0, 1) denote a parameter determined
by data structure. In fact, the preprocessing time for Sublinear LSVI-UCB is O(SA1+o(1) + Sd2A). Since
K > S, we write the preprocessing time asO(KA1+o(1)+Kd2A). This table is a union of simplified version
of Table 3 (both our algorithm and LSVI have the exact dependence on another L, we omit here and discuss
this dependence in Section C.), Table 4 and Table 5.

4.2 SUBLINEAR LEAST-SQUARES VALUE ITERATION WITH UCB
We extend the Sublinear LSVI with UCB exploration in this section. In LSVI-UCB Jin et al. (2020)
with large action space, the runtime in each value iteration step is dominated by computing the
estimated value function as below:

V̂h(sτh+1) = max
a∈A

min{〈wkh, φ(sτh+1, a)〉+ β · ‖φ(sτh+1, a)‖Λ−1
h
, H} (2)

where wkh is computed by solving the least-squares problem, φ(sτh+1, a) is the embedding for state-
action pair and Λh =

∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)> + λ · Id. The complexity for Eq. (2) is O(Ad2)

The key challenge of Sublinear LSVI-UCB here is that Eq. (2) cannot be formulated as a Max-IP
problem. First, to deal with this issue, we propose a value function estimation approach as below:

V̂h(sτh+1) = max
a∈A

min{‖φ(sτh+1, a)‖2β2Λ−1
h +2wk

hw
k>
h
, H} (3)

where ‖φ(sτh+1, a)‖2β2Λ−1
h +2wk

hw
k>
h

is the upper bound of 〈wkh, φ(sτh+1, a)〉+ β · ‖φ(sτh+1, a)‖Λ−1
h

.

Next, we relax this maximum matrix norm search as a (c, τ)-Max-IP problem, where c ∈ (0, 1) is
the approximation parameter and τ is the maximum inner product for Eq. (3). Then, we apply LSH

type data structure to retrieve V̂h(sτh+1) ≥ c · maxa∈A min{‖φ(sτh+1, a)‖2β2Λ−1
h +2wk

hw
k>
h
, H} in

o(A) ·O(d2) time complexity.

Using LSH data structure for maximum matrix norm search, we present our main theorem for Sub-
linear LSVI-UCB in Theorem 4.3, which gives the same O(

√
d3H4Kι2) regret as LSVI-UCB Jin

et al. (2020) and reduce the value iteration complexity from O(HKd2A) to O(HKd2A) ·o(A). We
start with the setting up the parameters for our algorithm.
Definition 4.2 (Sublinear LSVI-UCB Parameteres). Let MDP(S,A, H,P, r) denote a linear MDP.
For this MDP, we set LSVI-UCB parameter λ = 1. Let c = 1− 1√

K
denote the approximate Max-IP

parameter. Let p denote a fixed probability. Let ι = log(2dT/p).
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Then, we present the Theorem.
Theorem 4.3 (Main result, convergence result of Sublinear Least-Squares Value Iteration with UCB
(Sublinear LSVI-UCB), an informal version of Theorem D.12). With parameters defined in Defini-
tion 4.2, Sublinear LSVI-UCB (Algorithm 4) has total regret at most O(

√
d3H4Kι2) with probabil-

ity at least 1 − p. Moreover, with O(KA1+o(1) + Kd2A) preprocessing time and space, the value
iteration complexity of Sublinear LSVI-UCB is O(HKd2Aρ), where ρ = 1− 1/K.

Similarly, we could improve the value iteration complexity to with ρ = 1 − 1√
K

by increasing the
preprocessing time and space to O(KA1+ρ + KdA) using Theorem A.14. We provide a detailed
and formal version of Theorem 4.3 in Theorem D.12.

Next, we extend the results in Theorem 4.3 to two LSVI-UCB variations. The first algorithm is the
LSVI-UCB under constraints on the switch of the policy Gao et al. (2021). We denote this algorithm
as LGSC. The second algorithm is the model-free version of LSVI-UCB Wang et al. (2020a). We
denote this algorithm as MFiv. We propose sublinear version of two algorithms with statement as:
Corollary 4.4 (Main result, informal versions of Corollary E.2 and Corollary E.1). With parameters
defined in Definition 4.2, LGSC and MF have total regret at most O(

√
d3H4Kι2) with probability

at least 1− p. Further more, with O(KA1+o(1) +Kd2A) preprocessing time and space, the value
iteration complexity of LGSC and MF is O(HKd2Aρ), where ρ = 1− 1/K.

5 OUR TECHNIQUES

As mentioned in Section 3.1, we need to tackle five major issues to use LSH based approximate
Max-IP algorithm for sublinear runtime time LSVI and LSVI-UCB in RL.

• How to prevent the maximum inner product between query and data from being negative
or arbitrary close to 0? If the maximum inner product is negative, Max-IP data structures
cannot be applied to solve this problem with theoretical guarantee. If the maximum inner
product is arbitrary close to 0, the query time of (c, τ)-Max-IP would be close to O(dn).

• How to prevent the maximum inner product between query and data from being close to
one? If τ is close to one, the time cost would also be O(dn) so that (c, τ)-Max-IP cannot
reduce the time cost from linear to sublinear.

• How to apply (c, τ)-Max-IP for LSVI with UCB exploration? The estimated value function
with an additional UCB bonus term could not be written as an inner product, which prevents
Max-IP techniques from accelerating the runtime efficiency.

• How to generalize the Max-IP data structure to support maximum matrix norm search? Is
Max-IP equivalent to maximum matrix norm search?

• How to improve the running time while preserving the regret? Although approximate
Max-IP could accelerate the computation for estimated value function, it brings errors to
the value function estimation and thus, affects the total regret. Therefore, a key challenge
is quantifying the relationship between regret and the approximation factor c in (c, τ)-
Max-IP.

• How to handle the adaptive queries? The weight ŵh in Eq. (1) and wkh in Eq. (2) are
dependent to h−1 step. Therefore, the queries for (c, τ)-Max-IP during the Q-learning are
adaptive but not arbitrary. Thus, we could not union bound the failure probability of LSH
for (c, τ)-Max-IP.

Next, we provide details on how we handle these problems.

5.1 AVOID NEGATIVE INNER PRODUCT OR INNER PRODUCT CLOSE TO 0

In our setting, we assume the reward function r lies in [0.55, 1]v. This shift on the reward function
would not affect the convergence results of our Sublinear LSVI and Sublinear LSVI-UCB. More-
over, it would benefits the Max-IP by generating acceptable maximum inner product. For Sublinear

ivWe discuss the policy switch cost of LGSC in Section E.1 and number of explorations of MF in Section E.2
vNote that for any reward range [a, b], there exists a shift c and scaling α so that (a + c)/α = 0.55 and

(b+ c)/α = 1.
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LSVI, as rh(s, a) ∈ [0.55, 1], the optimal value function V ∗h (s) ≥ 0.55. Then according to Theo-
rem 4.1 the estimated V̂h(s) = maxa∈A〈wh, ψ(s, a)〉 satisfies |V ∗h (s)− V̂h(s)| ≤ ε if we query each
pair of state-action from span matrix for n = O(ε−2L2H4ι) times. In this way, we could assure
the maximum inner product is greater than 0.5 if we set ε ≤ 0.05. For Sublinear LSVI-UCB, the
Max-IP is applied on V̂h(s) = maxa∈AQ

k
h(s, a), where Qkh(s, a) is a Q function with additional

UCB term. From Jin et al. (2020), we know that for all pair of state-action ,Qkh(s, a) ≥ Q∗h(s, a).
Therefore, the maximum inner product for Sublinear LSVI-UCB is always greater than 0.5.

5.2 AVOID INNER PRODUCT CLOSE TO 1

In the optimization problem that could be accelerated by Max-IP, the query and data vectors are
usually not unit vectors. To apply results in Section 3.1, we demonstrate how to transform both
query and data vectors into unit vectors. Moreover, we also modify the transformation to avoid the
inner product from being too close to 1.

Given two vector x, y ∈ Rd with ‖y‖2 ≤ 1 and ‖x‖2 ≤ Dx, we apply the following transformations

P (y) =
[
y>

√
1− ‖y‖22 0

]>
Q(x) =

[
0.8·x>
Dx

0
√

1− 0.64·‖x‖22
D2

x

]>
(4)

Using this transformations, we transform x, y into unit vectors P (y) and Q(x). Therefore,
the Max-IP of Q(x) with respect to P (Y ) is equivalent to the ANN problem of Q(x) with
respect to P (Y ), which could be solved via LSH. Moreover, we show that Q(x)>P (y) =
0.8x>y
Dx

≤ 0.8·‖x‖2‖y‖2
Dx

= 0.8. Further more, it is sufficient to show that arg maxy Q(x)>P (y) =

arg maxy
0.8·x>y
Dx

= arg maxy x
>y.

If we perform maximum inner product search on Q(x) and P (y) using the LSH data structures
described in Section 3.1, we have τ = maxy Q(x)>P (y) ≤ 0.8. In this way, we could assure τ
is not close to 1 so that we could reduce the runtime complexity of value function estimation to be
sublinear over actions.

5.3 APPROXIMATE Max-IP DATA STRUCTURE FOR LSVI-UCB

As shown in Section 4.2, Eq. (2) cannot be formulated as a Max-IP problem. To overcome this
barrier, we bound the term Qh(sτh+1, a) = {w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1

h
, H} by matrix

norms. Then, we perform the maximum matrix norm search for value function estimation.

We start with the upper bound of w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1
h

. As both 〈wkh, φ(sτh+1, a)〉
and ‖φ(sτh+1, a)‖Λ−1

h
are non-negative, we have

〈wkh, φ(sτh+1, a)〉+ β · ‖φ(sτh+1, a)‖Λ−1
h
≤
√

2(w>h φ(sτh+1, a))2 + 2β2 · ‖φ(sτh+1, a)‖2
Λ−1

h

= ‖φ(sτh+1, a)‖2β2Λ−1
h +2wk

h(wk
h)>

where the first step follows from a+ b ≤
√

2a2 + 2b2.

Next, we lower bound the w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1
h

as

w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1
h
≥
√

(w>h φ(sτh+1, a))2 + β2 · ‖φ(sτh+1, a)‖2
Λ−1

h

= ‖φ(sτh+1, a)‖β2Λ−1
h +wk

h(wk
h)>

where the first step follows from the fact that both w>h φ(sτh+1, a) and ‖φ(sτh+1, a)‖Λ−1
h

are non-

negative and a+ b ≥
√
a2 + b2 if a, b ≥ 0, the second step is an reorganization.

After we lower and upper bound w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1
h

, we could also lower bound
the term {w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1

h
, H} with min{‖φ(sτh+1, a)‖β2Λ−1

h +wk
h(wk

h)> , H}
and upper bound it with min{‖φ(sτh+1, a)‖2β2Λ−1

h +2wk
h(wk

h)> , H}.
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Next we use this lower and upper bound and propose a modified value function estimation shown in
Eq. (3). Therefore, our problem becomes designing an approximate maximum matrix norm search
data structure. We will discuss this in the following section and propose our Sublinear LSVI-UCB
algorithm.

5.4 GENERALIZE THE APPROXIMATE Max-IP DATA STRUCTURE FOR Max-MatNorm

We demonstrate how to extend Max-IP to maximum matrix norm search for Sublinear LSVI-UCB in
this section. We first define the approximate Maximum Matrix Norm. Let c ∈ (0, 1) and τ ∈ (0, 1).
Given an n-point dataset Y ⊂ Rd, the goal of the (c, τ)-Maximum Matrix Norm (Max-MatNorm)
is to construct a data structure that, given a query matrix x ∈ Rd×d with the promise that there exists
a datapoint y ∈ Y with ‖y‖x ≥ τ , it reports a datapoint z ∈ Y with ‖z‖x ≥ c · τ .

We solve the approximate maximum matrix norm by transform it into a Max-IP problem. We start
with showing the relationship between Max-MatNorm and Max-IP as

Max-MatNorm(X,Y )2 = max
y∈Y

y>xy = max
y∈Y
〈vec(x), vec(yy>)

where vec vectorizes d× d matrix x into a d2 vector.

Next, we show that if we obtain z ∈ Y by (c2, τ2)-Max-IP so that 〈vec(x), vec(zz>)〉 ≥ c2τ2,
we use z and obtain ‖z‖x =

√
〈vec(x), vec(zz>)〉 ≥ cτ . In other words, z is the candidate for

(c, τ)-Max-MatNorm. In this way, we could build an efficient data-structure for (c2, τ2)-Max-IP to
solve (c, τ)-Max-MatNorm. In this way, we summarize our approach for Max-MatNorm as three
steps: (1) transform matrix x into vec(x) and y into vec(yy>), (2) transform vec(x) and vec(yy>)
into unit vectors following Eq. (4), (3) use LSH to solve the Max-IP with respect to dataset on the
unit sphere.

5.5 PRESERVING REGRET WHILE REDUCING THE RUNTIME

In our work, we maintain the same regret with LSVI Bradtke & Barto (1996) and LSVI-UCB Jin
et al. (2020) by carefully setting the approximation parameter c ∈ (0, 1) in Max-IP. For Sublinear
LSVI, we set c = 1−Θ(

√
ι/n) so that the final regret is as same as LSVI Bradtke & Barto (1996).

In Sublinear LSVI-UCB, we set c = 1 − 1√
K

so that the final regret is as same as LSVI-UCB Jin
et al. (2020). Because K, ι and n are global parameter, we could set c in the preprocessing step
before value iteration. In this way, we show that our two algorithms are novel demonstration of
combining LSH with reinforcement learning without losing on the regret.

5.6 HANDLE ADAPTIVE QUERIES IN (c, τ)-Max-IP

We use a quantization method to handle adaptive queries. We denote Q as the convex hull of all
queries for (c, τ)-Max-IP. Our method contains two steps: (1) Preprocessing: we quantize Q to
a lattice Q̂ with quantization error λ/d. In this way, each coordinate would be quantized into the
multiples of λ/d. (2) Query: given a query q in the adaptive sequence X ⊂ Q, we first quantize it to
the nearest q̂ ∈ Q̂ and perform (c, τ)-Max-IP. As each q̂ ∈ Q̂ is independent, we could union bound
the failure probability of adaptive queries. On the other hand, this would generate an λ additive
error in the returned inner product. Our analysis indicates that the additive error λ could be handled
without breaking the regret.

6 CONCLUSION

In this paper, we propose the first provable Least-Squares Value Iteration (LSVI) algorithms with
runtime complexity sublinear in the number of actions. By formulating the value function estimation
procedure in LSVI as an approximate maximum inner product search problem, we bridge the gap
between the regret analysis in reinforcement learning and the theory of locality sensitive hashing
(LSH) type data structure. The theoretical analysis indicates that with our choice of approximation
factor, there exists a LSVI algorithm that has the same order of regret as the original LSVI algorithm
while reducing runtime complexity to sublinear in the number of actions. Moreover, we show that
our techniques could be extended to different LSVI variants. We hope our novel combination of data
structures and the iterative algorithm will inspire further study into cost reduction in optimization.
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CONTENTS

Roadmap. Section A introduces the preliminaries of this work, including notations and defini-
tions, Section B introduces the LSH data structure in detail, Section C presents the results for Sublin-
ear LSVI, Section D presents the results for Sublinear LSVI-UCB, Section E presents the extension
of Sublinear LSVI-UCB to different RL settings, Section F shows how to process adaptive queries
in Max-IP.

A PRELIMINARIES

This section introduces the preliminaries for our work.

• In Section A.1, we present the basic notations used in our work.

• In Section A.2, we introduce several reinforcement learning.

• In Section A.3, we list the standard properties of linear MDP.

• In Section A.4, we introduces the definitions of locality sensitive hashing data structures
and their applications in nearest neighbor search.

• In Section A.5, we list the probabilistic tools used in our work.

• In Section A.6, we list the inequalities to help the proof.

A.1 BASIC NOTATIONS

We use Pr[] to denote probability and E[] to denote expectation if it exists.

For a matrixA, we use ‖A‖F := (
∑
i,j A

2
i,j)

1/2 to denote the Frobenius norm ofA, we use ‖A‖1 :=∑
i,j |Ai,j | to denote the entry-wise `1 norm of A, we use ‖A‖ to denote the spectral norm of A. We

say matrix A ∈ Rd×d is a positive semidefinite matrix if for all x ∈ Rd, x>Ax ≥ 0. We say matrix
A ∈ Rd×d is a positive definite matrix if for all x ∈ Rd, x>Ax > 0.

For a vector x, we use ‖x‖2 := (
∑
i x

2
i )

1/2 to denote the `2 norm of x, we use ‖x‖1 :=
∑
i |xi| to

denote the `1 norm of x, we use ‖x‖∞ to denote the `∞ norm.

For a vector x ∈ Rd and a psd matrix A ∈ Rd×d, we use ‖x‖A := (x>Ax)1/2 to denote the matrix
norm of x over A.

We use Sd−1 to denote the unit sphere.

A.2 NOTATIONS AND DEFINITIONS

In this section, we present the notation and definitions for reinforcement learning. We summarize
our notations in Table 2.

We start with the definition of the Episodic Markov decision process.

Definition A.1 (Episodic Markov decision process (episodic MDP)). Let MDP(S,A, H,P, r) de-
note the episodic Markov decision process, where S denotes the set of available states, A denotes
the set of available actions, H ∈ N denotes the total number of steps in each episode, P = {Ph}Hh=1
with Ph[s′|s, a] denotes the probability of transition from state s ∈ S to state s′ ∈ S when take
actions a ∈ A at step h, r = {rh}Hh=1 denotes the reward obtained at each step. Here the reward rh
is a function that maps S ×A to [0.55, 1]vi

Note that for any reward range [a, b], there exists a shift c and scaling α so that (a + c)/α = 0.55
and (b+ c)/α = 1 The shift in reward is designed for sublinear runtime in maximum inner product
search. We will provide more discussion in Section B.5.

viNote that in standard reinforcement learning, we assume reward is [0, 1], but it is completely reasonable to
do a shift. We will provide more discussion in Section 5.1.
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In this work, we focus on linear Markov decision process (linear MDP). In this setting, each pair of
state-action is represented as an embedding vector. Moreover, the transition probability Ph[s′|s, a]
and reward function rh are linear in this embedding vector.

Notation Meaning
S states space
A action space
Score core state set
Acore core action set
S # states
A # actions
H number of steps per episode
K number of episodes
s′ next state of state s
P state transition probability
Ph[s′|s, a] transition probability when we take action a ∈ A at step h ∈ [H] from state s ∈ S.
rh(s, a) reward at step h given state s and action a
r {rh}Hh=1

φ(s, a) feature map φ(s, a) ∈ Rd
µh(s) unknown measure that Ph[s′|s, a] = 〈φ(s, a), µh(s′)〉
θh unknown measure that rh(s, a) = 〈φ(s, a), θh〉
Φ Φ ∈ Rd×M
n number of samples played given from each φj .

Table 2: Notations related to reinforcement learning.

Definition A.2 (Linear MDP Bradtke & Barto (1996); Melo & Ribeiro (2007)). The
MDP(S,A, H,P, r) becomes a linear MDP if there exists a function φ : S × A → Rd

and an unknown signed measure set µh = (µ
(1)
h , . . . , µ

(d)
h ) over S such that the transi-

tion probability Ph[s′|s, a] = 〈φ(s, a), µh(s′)〉 at any step any h ∈ [H]. Here we assume
max(s,a)∈S×A ‖φ(s, a)‖2 ≤ 1. Moreover, there exists a hidden vector θh ∈ Rd so that rh(s, a) =

〈φ(s, a), θh〉. Here we assume maxh∈[H]{‖µh(S)‖2, ‖θh‖2} ≤
√
d.

In the MDP framework, we define the policy π as a sequence of functions that map state to actions.
Definition A.3 (Policy). Given a MDP with form MDP(S,A, H,P, r), a policy π = {π1, · · · , πH}
is defined as sequence such that πh : S → A for each step h. πh(s) = a represents the action taken
when we are at state s and step h.

Moreover, we use V πh (s) : S → R to define the value of cumulative rewards in expectation if the
agent follows received under a given policy π when the start state is s and the start step is h.
Definition A.4 (Value function). Given a MDP with form MDP(S,A, H,P, r), we let the value
function be:

V πh (s) := E

[
H∑

h′=h

rh(s′h, πh(s′h))

∣∣∣∣ sh = s

]
, ∀s ∈ S, h ∈ [H].

Further more, we define the Q function Qπh(s, a) : S × A → R as the expected cumulative rewards
if a agent follows policy π and starts from takeing action a at state s and step h. This representation
of Qπh(s, a) is also associated with the well-known Bellman equation Sutton & Barto (2018).
Definition A.5 (Q-Learning). Let MDP(S,A, H,P, r) denote an episodic MDP. We use a simplified
notation [PhVh+1](s, a) := Es′∼Ph[s′|s,a][Vh+1(s′)]. Then, we represent the Bellman equation with
policy π as

Qπh(s, a) = [rh + PhV πh+1](s, a), V πh (s) = Qπh(s, πh(s)), V πH+1(s) = 0.

Similarly, for optimal policy π∗, we have

Q∗h(s, a) = [rh + PhV ∗h+1](s, a), V ∗h (s) = max
a∈A

Q∗h(s, a), V ∗H+1(s) = 0. (5)
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Note that as rh ∈ [0, 1]. All Qπh and V πh are upper bounded by H + 1− h.

After formulate the MDP and its value functions, we start listing conditions on the space of state
and action for the convenience of our Sublinear LSVI and Sublinear LSVI-UCB. We first present
the definition for the convex hull.
Definition A.6 (Convex hull). Given a set {x1, x2, · · · , xn} ⊂ Rd that denotes as a matrix A ∈
Rd×n, we define its convex hull B(A) to be the collection of all finite linear combinations y that
satisfies y =

∑n
i=1 ai · xi, where ai ∈ [0, 1] for all i ∈ [n] and

∑
i∈[n] ai = 1.

In this work, we focus on the Sublinear LSVI under continuous state and action space. Given the
action space A and state space S, we formulate φ((S ×A)) as the convex hull of φ(Score ×Acore),
where Score is core state set and Acore is core action set.
Definition A.7 (Core state and core action sets). Given a linear MDP with form
MDP(S,A, H,P, r), we define set Score ⊂ S as the core states set and Acore ⊂ A as the
core action set. We denote cardinality of Score and Acore as S and A. Specifically, we have
B(φ(Score ×Acore)) = φ(S ×A). Without loss of generality, we let A ≥ d.

In LSVI Bradtke & Barto (1996), the value iteration procedure requires a span matrix that contains
state-action embeddings. Moreover, there also exists a series of assumptions on the span matrix. We
provide these assumptions as below:
Definition A.8 (Span matrix). Given a linear MDP with form MDP(S,A, H,P, r), we define the
span matrix Φ ∈ Rd×M as follows: in total M ≤ d columns, the jth column is denoted as φj =
φ(sj , aj), where (sj , aj) ∈ S × A. Moreover, {φ1, φ2, · · · , φM} is the linear span of φ(S × A).
Specifically, Φ satisfies:

• φ(s, a) =
∑M
j=1 wjφj , wj ∈ R for all (s, a) ∈ S ×A,

• rank(Φ) = M ,

• max(s,a)∈S×A ‖Φ−1φ(s, a)‖1 ≤ L.

Next, we follow Jin et al. (2020) and making assumptions for Sublinear LSVI-UCB. Given a linear
MDP with form MDP(S,A, H,P, r), we assume S is finite with cardinally S and A is finite with
cardinally A.

A.3 STANDARD PROPERTIES OF LINEAR MDP

We list the tools for analyzing linear MDPs properties from Jiang et al. (2021) in this section.
Lemma A.9 (Proposition 2.3 Jin et al. (2020)). The Q function with form Qπh(s, a) in linear MDP
could be represented it as a inner product Qπh(s, a) = 〈φ(s, a), wπh〉, where wπh ∈ Rd is a weight
vector.

Next, we show the upper bound of weight wπh for any policy π.
Lemma A.10 (Lemma B.2 Jin et al. (2020)). Given a linear MDP, let wπh denote the weight that
achieves Qπh(s, a) = 〈φ(s, a), wπh〉 for all (s, a) ∈ S × A at step h ∈ [H]. We show that for
‖wπh‖2 ≤ 2H

√
d for any h ∈ [H],

A.4 LOCALITY SENSITIVE HASHING

We define locality sensitive hashing (LSH). These definitions are very standard, e.g., see Indyk and
Motwani Indyk & Motwani (1998).
Definition A.11 (Locality Sensitive Hashing). Let dist denote a metric distance. Let c denote a
parameter such that c > 1. Let p1, p2 denote two parameters such that 0 < p2 < p1 < 1. A family
H is called (r, c · r, p1, p2)-sensitive if and only if, for any two point x, y ∈ Rd, a function h chosen
uniformly from the familyH has the following properties:

• if dist(x, y) ≤ r, then Prh∼H[h(x) = h(y)] ≥ p1,
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• if dist(x, y) ≥ c · r, then Prh∼H[h(x) = h(y)] ≤ p2.

We focus on situations where dist is `2 or cosine distance.

LSH is designed to accelerate the runtime of the Approximate Nearest Neighbor (ANN) problem.
We start with define the exact NN problem as:

Definition A.12 (Exact Nearest Neighbor (NN)). Given an n-point dataset Y ⊂ Sd−1 on the sphere,
the goal of the Nearest Neighbor (NN) problem is to find a datapoint y ∈ Y for a query x ∈ Sd−1

such that

NN(x, Y ) := min
y∈Y
‖x− y‖2.

Indyk & Motwani (1998) relax the NN problem in Definition A.12 as with approximation and define
the Approximate Nearest Neighbor (ANN) problem.

Definition A.13 (Approximate Nearest Neighbor (ANN)). Let c > 1. Let r ∈ (0, 2). Given an
n-point dataset P ⊂ Sd−1 on the sphere, the (c, r)-Approximate Near Neighbor Search (ANN) aims
at developing a data structure that, given a query q ∈ Sd−1 with the promise that there exists a
datapoint p ∈ P with ‖p− q‖2 ≤ r, the data structure reports a datapoint p′ ∈ P with distance less
than c · r from q.

Then, the query complexity of ANN is reduced to sublinear by LSH following Theorem A.14 and
Theorem A.15. Note that here we write O(1/

√
log n) as o(1).

Theorem A.14 (Andoni and Razenshteyn Andoni & Razenshteyn (2015)). Let c > 1 and r ∈ (0, 2).
The (c, r)-ANN on a unit sphere Sd−1 can be solved by a data structure with query time O(d · nρ),
space O(n1+ρ + dn) and preprocessing time O(dn1+ρ), where ρ = 1

2c2−1
+ o(1).

Theorem A.15 (Andoni, Laarhoven, Razenshteyn and Waingarten Andoni et al. (2017a)). Let c >
1. Let r ∈ (0, 2). There exists a data structure that solves (c, r)-ANN on the unit sphere Sd−1

with query time O(d · nρ), space O(n1+o(1) + dn) and preprocessing time O(dn1+o(1)), where
ρ = 2

c2
− 1

c4
+ o(1).

In this work, we focus on the Max-IP, which is a well-known problem in the field of computational
complexity, we follow the standard notation in this work Chen (2018). We define the exact and
approximate Max-IP problem as follows:

Definition A.16 (Exact Max-IP). Given a data set Y ⊆ Rd, we define Max-IP for a query point
x ∈ Rd with respect to Y as follows:

Max-IP(x, Y ) := max
y∈Y
〈x, y〉.

Definition A.17 (Approximate Max-IP). Let c ∈ (0, 1) and τ ∈ (0, 1). Given an n-point dataset
Y ⊂ Sd−1, the (c, τ)-Max-IP aims at building a data structure that, given a query x ∈ Sd−1 with the
promise that there exists a datapoint y ∈ Y with 〈x, y〉 ≥ τ , the data structure reports a datapoint
z ∈ Y with similarity 〈x, z〉 greater than c ·Max-IP(x, Y ).

To solve (c, τ)-Max-IP, we define a dual version of LSH data structure (Shrivastava and Li Shrivas-
tava & Li (2014) call it asymmetric LSH):

Definition A.18 (Locality Sensitive Hashing for similarity). Let c denote a parameter such that
c ∈ (0, 1). Let τ denote a parameter such that τ > 0. Let p1, p2 denote two parameters such that
0 < p2 < p1 < 1. Let sim(x, y) denote a binary similarity function between x, y ∈ Rd. A family
H is called (τ, c · τ, p1, p2)-sensitive if and only if, for any query point x ∈ Rd and a data point
y ∈ Rd, h chosen uniformly fromH has the following properties:

• if sim(x, y) ≥ τ then Prh∼H[h(x) = h(y)] ≥ p1,

• if sim(x, y) ≤ c · τ then Prh∼H[h(x) = h(y)] ≤ p2.

It is shown from Shrivastava & Li (2014) that LSH type data structure with asymmetric transforma-
tions could achieve sublinear runtime complexity of (c, τ)-Max-IP.
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A.5 PROBABILISTIC TOOLS

Lemma A.19 (Hoeffding bound Hoeffding (1963)). Let x1, · · · , xn be n independent bounded vari-
ables in [ai, bi]. Let , then we show the Hoeffding bound over x =

∑n
i=1 xi as:

Pr[|x− E[x]| ≥ t] ≤ 2 exp
(
− 2t2∑n

i=1(bi − ai)2

)
.

A.6 INEQUALITIES

In this sections, we present the supporting inequalities for our work.

Fact A.20 (Lemma D.1 in Jin et al. (2020)). Given a matrix Λt = λId +
∑t
i=1 φiφ

>
i with φi ∈ Rd

and λ > 0, we show that:
t∑
i=1

φ>i (Λt)
−1φi ≤ d.

Lemma A.21 (Lemma D.4 in Jin et al. (2020)). Let V denote a function family that
maxV ∈V,x∈S |V (x)| ≤ H . Let G denote the ε-covering number of V . Let S denote a state space.
Let {Fτ}∞τ=0 denote the filtration of S. Let {xτ}∞τ=1 denote a random process defined on S. Let
{φτ}∞τ=0 denote a real valued random process in Rd. Moreover, φτ ∈ Fτ−1 and we have upper
bound ‖φτ‖2 ≤ 1. Given a matrix Λk ∈ Rd×d so that Λk = λId +

∑k
τ=1 φτφ

>
τ , for any δ > 0, for

any k ≥ 0, for any V ∈ V , we have

∥∥∥ k∑
τ=1

φτ (V (xτ )− E[V (xτ ) | Fτ−1])
∥∥∥2

Λ−1
k

≤ 4H2
(
d log(1 + k/λ) + log(Gε/δ)

)
+ 8k2ε2/λ,

B DATA STRUCTURES

This section presents the data Structures for our work.

• In Section B.1, we introduce the transformations that build primal-dual connections be-
tween approximate Max-IP and ANN.

• In Section B.2, we present our data structure that achieves sublinear query time in approx-
imate Max-IP.

• In Section B.3, we show how to perform approximate Max-MatNorm via approximate
Max-IP data structure.

• In Section B.4, we present our efficient transformations for Max-IP in optimization.
• In Section B.5, we formally provide the theoretical results of sublinear approximate Max-IP

using one LSH data structure.
• In Section B.6, we provide the theoretical results of sublinear approximate Max-IP using

another LSH data structure.

B.1 EXISTING TRANSFORMATION FROM PRIMAL TO DUAL

In this section, we show a transformation that builds the connection between Max-IP and NN. Under
this asymmetric transformation, NN is formulated as a dual problem of Max-IP.

We start with presenting the asymmetric transformation.
Definition B.1 (Asymmetric transformation Neyshabur & Srebro (2015)). Let Y ∈ Rd and ‖y‖2 ≤
1 for all y ∈ Y . Let x ∈ Rd and ‖x‖2 ≤ Dx. We define the following asymmetric transform:

P (y) =
[
y>

√
1− ‖y‖22 0

]>
(6)

Q(x) =
[
(xD−1

x )> 0
√

1− ‖xD−1
x ‖22

]>
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Therefore, we have

‖Q(x)− P (y)‖22 = 2− 2D−1
x 〈x, y〉, arg max

y∈Y
〈x, y〉 = arg min

y∈Y
‖Q(x)− P (y)‖2.

In this way, we regard Max-IP as the primal problem and NN as a dual problem.

B.2 SUBLINEAR Max-IP DATA STRUCTURE

In this section, we show the theorem that provides sublinear query time for Max-IP problem using
LSH type data structure.
Theorem B.2 (Formal statement of Corollary 3.5). Let c ∈ (0, 1) and τ ∈ (0, 1). Given a set of
n-points Y ⊂ Sd−1 on the sphere, one can build a data structure with preprocessing time Tinit and
space Sspace so that for any query x ∈ Sd−1, we take O(d · nρ) query time:

• if Max-IP(x, Y ) ≥ τ , then we output a vector in Y which is a (c, τ)-Max-IP with respect
to (x, Y ) with probability at least 0.9vii, where ρ := f(c, τ) + o(1).

• otherwise, we output fail.

Further,

• If Tinit = O(dn1+ρ) and Sspace = O(n1+ρ + dn), then f(c, τ) = 1−τ
1−2cτ+τ .

• If Tinit = O(dn1+o(1)) and Sspace = O(n1+o(1) + dn), then f(c, τ) = 2(1−τ)2

(1−cτ)2 −
(1−τ)4

(1−cτ)4 .

Proof. We start with showing that for any two points x, y with ‖x‖2 = ‖y‖2 = 1, we have ‖x −
y‖22 = 2− 2〈x, y〉. This implies that r2 = 2− 2τ for a (c, r)-ANN and a (c, τ)-Max-IP on x, Y .

Further, if we have a data structure for (c, r)-ANN, it automatically becomes a data structure for
(c, τ)-Max-IP with parameters τ = 1− 0.5r2 and c = 1−0.5c2r2

1−0.5r2 . This implies that

c2 =
1− c(1− 0.5r2)

0.5r2
=

1− cτ
1− τ

.

Next, we show how to solve (c, τ)-Max-IP by solving (c, r)-ANN using two different data structures.

Part 1. If we initialize the data-structure following Theorem A.14, we show that the (c, τ)-Max-IP
on a unit sphere Sd−1 can be solved by solving (c, r)-ANN with query time O(d · nρ), space
O(n1+ρ + dn) and preprocessing time O(dn1+ρ), where

ρ =
1

2c2 − 1
+ o(1) =

1

2 1−cτ
1−τ − 1

+ o(1) =
1− τ

1− 2cτ + τ
+ o(1).

Thus, f(c, τ) = 1−τ
1−2cτ+τ .

Part 2. If we initialize the data-structure following Theorem A.15, we show that the (c, τ)-Max-IP
on a unit sphere Sd−1 can be solved by solving (c, r)-ANN with query time O(d · nρ), space
O(n1+o(1) + dn) and preprocessing time O(dn1+o(1)), where

ρ =
2

c2
− 1

c4
+ o(1) =

2(1− τ)2

(1− cτ)2
− (1− τ)4

(1− cτ)4
+ o(1).

Thus, f(c, τ) = 2(1−τ)2

(1−cτ)2 −
(1−τ)4

(1−cτ)4 .

In practice, we tune parameter τ close to Max-IP(x, Y ) to achieve higher c. Moreover, Theorem B.2
could be applied to general Max-IP problem. To do this, we first apply asymmetric transformation

viiIt is obvious to boost probability from constant to δ by repeating the data structure log(1/δ) times.
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in Definition B.1 and transfer it to a (c, τ)-Max-IP problem over Q(x) and Q(Y ). Then, we solve
this (c, τ)-Max-IP problem by solving its dual problem, which is (c, r)-ANN. Finally, the solution
to the (c, r)-ANN would be the approximate solution to the original Max-IP(x, Y ). Meanwhile, it is
reasonable for us to regard d = no(1) using Johnson-Lindenstrauss Lemma Johnson & Lindenstrauss
(1984).

B.3 SUBLINEAR Max-IP DATA STRUCTURE FOR MAXIMUM MATRIX NORM SEARCH

In this section, we extend LSH type Max-IP data structure for maximum matrix norm search.
Definition B.3 (Exact Maximum Matrix Norm (Max-MatNorm)). Given a data set Y ⊆ Rd and a
query matrix x ∈ Rd×d, we define Maximum Matrix Norm as follows:

Max-MatNorm(x, Y ) := max
y∈Y
‖y‖x.

Next, we define the approximate version of the Maximum Matrix Norm.
Definition B.4 (Approximate Max-MatNorm). Let c ∈ (0, 1) and τ ∈ (0, 1). Let vec denote the
vectorization of d× d matrix into a d2 vector. Given an n-point dataset Y ⊂ Rd and yy> ∈ Sd2−1

for all y ∈ Y , the goal of the (c, τ)-Max-MatNorm is to cosntruct a data structure that, given a
query matrix x ∈ Rd×d and vec(x) ∈ Sd2−1 with the promise that there exists a datapoint y ∈ Y
with ‖y‖x ≥ τ , it reports a datapoint z ∈ Y with ‖z‖x ≥ c ·Max-MatNorm(x, Y ).

Next, we show the relationship between Max-MatNorm and Max-IP
Lemma B.5 (Relation between Max-MatNorm and Max-IP). We show that

Max-MatNorm(X,Y )2 = max
y∈Y
〈vec(x), vec(yy>)

where vec vectorizes d× d matrix x into a d2 vector.

Proof. We show that

Max-MatNorm(x, Y )2 = max
y∈Y
‖y‖2x

= max
y∈Y

y>xy

= max
y∈Y
〈vec(x), vec(yy>)〉

where the first step follows the definition of Max-MatNorm, the second step follows from the defi-
nition of ‖y‖2x, the third step decomposes the quadratic form into a inner product.

Next, we present our main theorem for Max-MatNorm(x, Y ).
Theorem B.6. Let c denote a parameter such that c ∈ (0, 1). Let τ denote a parameter such that
τ ∈ (0, 1). Let vec denote the vectorization of d× d matrix into a d2 vector. Given a n-points set
Y ⊆ Rd and yy> ∈ Sd2−1 for all y ∈ Y , one can construct a data structure with Tinit preprocessing
time and Sspace so that for any query matrix x ∈ Rd×d with vec(x) ∈ Sd2−1, we take query time
complexity O(d2nρ · log(1/δ)):

• if Max-MatNorm(x, Y ) ≥ τ , then we output a vector in Y which is a (c, τ)-Max-MatNorm
with respect to (x, Y ) with probability at least 1− δ, where ρ := f(c, τ) + o(1).

• otherwise, we output fail.

Further,

• If Tinit = O(d2n1+ρ · log(1/δ)) and Sspace = O((n1+ρ + d2n) · log(1/δ)), then f(c, τ) =
1−τ2

1−c2τ2+τ2 .
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• If Tinit = O(d2n1+o(1) · log(1/δ)) and Sspace = O((n1+o(1) + d2n) · log(1/δ)), then

f(c, τ) = 2(1−τ2)2

(1−c2τ2)2 −
(1−τ2)4

(1−c2τ2)4 .

Proof. We start with showing that if we have a (c2, τ2)-Max-IP data structure over vec(x) and every
vec(yy>), y ∈ Y , we would obtain a z ∈ Y such that

〈vec(x), vec(zz>)〉 ≥ c2 max
y∈Y
〈vec(x), vec(yy>)〉, (7)

we could use it and derive the following propriety for z:

‖z‖x =
√
〈vec(x), vec(zz>)〉

≥
√
c2 max

y∈Y
〈vec(x), vec(yy>)〉

= cmax
y∈Y

√
〈vec(x), vec(yy>)〉

= cmax
y∈Y
‖y‖x

where the second step follows from Eq. (7).

Therefore, z is the solution for (c, τ)-Max-MatNorm(x, Y ).

Next, we show how to retrieve z via two data structures used for (c, τ)-Max-IP(x, Y ) in Theo-
rem B.2.

Part 1. If we initialize the data structure following Theorem A.14, we can construct a data structure
withO((n1+ρ+d2n)·log(1/δ)) preprocessing time andO((n1+ρ+d2n)·log(1/δ)) space so that for
any query matrix x ∈ Rd×d with vec(x) ∈ Sd2−1, we take query time complexityO(d2nρ·log(1/δ))

to retrieve z. Here ρ = 1−τ2

1−c2τ2+τ2 + o(1) and we are able to improve the failure probability to δ by
repeating the LSH for log(1/δ) times.

Part 2. If we initialize the data structure following Theorem A.15, we can construct a data structure
with O((n1+o(1) + d2n) · log(1/δ)) preprocessing time and O((n1+o(1) + dn) · log(1/δ)) space
so that for any query matrix x ∈ Rd×d with vec(x) ∈ Sd2−1, we take query time complexity
O(d2nρ · log(1/δ)) to retrieve z. Here ρ = 2(1−τ2)2

(1−c2τ2)2 −
(1−τ2)4

(1−c2τ2)4 + o(1) and we also improve the
failure probability to δ by repeating the LSH for log(1/δ) times.

Moreover, Theorem B.6 could be applied to general Max-MatNorm problem. To do this, we first
apply transform (c, τ)-Max-MatNorm problem into a (c2, τ2)-Max-IP problem using Lemma B.5.
Next, we apply transformations in Definition B.1 and transfer the (c2, τ2)-Max-IP problem to a
(c2, τ2)-Max-IP problem over Q(x) and Q(Y ). Then, we solve this (c2, τ2)-Max-IP problem by
solving its dual problem, which is (c, r)-ANN. Finally, the solution to the (c, r)-ANN would be the
approximate solution to the original Max-MatNorm(x, Y ).

B.4 TRANSFORMATION FOR EFFICIENT QUERY

In the optimization problem that could be accelerated by (c, τ)-Max-IP, the query and data vectors
are usually not unit vectors so that we apply transformations in Definition B.1 to map both query
and data vectors into unit vectors. However, if the mapped inner product is too close to 1. The
formulation of ρ would break and the time complexity would be linear. To avoid this, we propose a
new set of asymmetric transformations:
Definition B.7 (Efficient asymmetric transformation). Let Y ∈ Rd and ‖y‖2 ≤ 1 for all y ∈ Y . Let
x ∈ Rd and ‖x‖2 ≤ Dx. We define the following asymmetric transform:

P (y) =
[
y>

√
1− ‖y‖22 0

]>
, Q(x) =

[
0.8·x>
Dx

0
√

1− 0.64·‖x‖22
D2

x

]>
.
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Next, we use Lemma B.8 to show how to enforce τ to be away from 1 via our efficient asymmetric
transformation.
Lemma B.8. Given the transformation P and Q defined in Definition B.7, we show that both
Max-IP(Q(x), P (Y )) and NN(Q(x), P (Y )) are equivalent to Max-IP(x, Y ). Moreover,

Max-IP(Q(x), P (Y )) ≤ 0.8.

Proof. Using transformations in Definition B.7, for all y ∈ Y , we have

Q(x)>P (y) =
0.8 · x>y
Dx

≤ 0.8 · ‖x‖2‖y‖2
Dx

≤ 0.8

where the third step follows from ‖x‖2 ≤ Dx and ‖y‖2 ≤ 1.

Next, we show that Max-IP(Q(x), P (Y )) is equivalent to Max-IP(x, Y ).

arg max
y∈Y

Q(x)>P (y) = arg max
y∈Y

0.8 · 〈x, y〉
Dx

= arg max
y∈Y
〈x, y〉.

Further more, NN(Q(x), P (Y )) (see Definition A.12) is equivalent to Max-IP(x, Y ).

‖Q(x)− P (y)‖22 = 2− 1.6D−1
x 〈x, y〉, arg min

y∈Y
‖Q(x)− P (y)‖2 = arg max

y∈Y
〈x, y〉.

B.5 SUBLINEAR QUERY TIME: PART 1

In this section, we show that ρ is strictly less than 1 using LSH in Andoni & Razenshteyn (2015).
Lemma B.9. If LSH data structure’s parameters c and τ satisfy that c ∈ [0.5, 1) and τ ∈ [0.5, 1)
then, we could upper bound ρ as:

ρ < 1− γ

2
+O(1/

√
log n)

where γ = 1− c.

Proof. We can upper bound ρ as follows:

ρ =
1− τ

1− 2cτ + τ
+O(1/

√
log n)

= 1− 2τ − 2cτ

1− 2cτ + τ
+O(1/

√
log n)

= 1− (1− c) · 2τ

1− 2cτ + τ
+O(1/

√
log n)

≤ 1− (1− c) · 1

1− 2cτ + τ
+O(1/

√
log n) by τ ≥ 0.5

< 1− (1− c) · 1

2
+O(1/

√
log n) by τ < 1

= 1− γ

2
+O(1/

√
log n)

where the second and third steps are reorganizations, the forth step follows from τ ≥ 0.5, the fifth
step follows from τ < 1 and c ≥ 0.5, the last step is a reorganization.

Therefore, we complete the proof.

For Sublinear LSVI, we set c = 1− C0L
√
ι/n and and τ ≥ 0.5 by shifting the reward function. In

this way, we have

ρ < 1−
C0L

√
ι/n

2
+O(

1√
logA

) < 1− 1

4
C0L

√
ι/n (8)
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where the first step follows from γ = 1 − c = C0L
√
ι/n, the second step follows from

1
4C0L

√
ι/n > Ω( 1√

logA
).

For Sublinear LSVI-UCB, we set c = 1− 1√
K

and τ ≥ 0.5 by shifting the reward function. In this
way, we have

ρ < 1− 1

2
√
K

+O(
1√

logA
) < 1− 1

4
√
K

(9)

where the first step follows from γ = 1−c = 1√
K

, the second step follows from 1
4
√
K
> Ω( 1√

logA
).

Therefore, we show that sublinear value iteration can be achieved while preserving the same regret.

B.6 SUBLINEAR QUERY TIME: PART 2

In this section, we show that ρ is strictly less than 1 using LSH in Andoni et al. (2017a).

Using Andoni et al. (2017a), the ρ for LSH based Max-IP data structure with parameters c and τ
becomes

ρ =
2(1− τ)2

(1− cτ)2
− (1− τ)4

(1− cτ)4
+ o(1)

where is a function over c and τ .

To upper bound the ρ, we start with showing that it is decreasing as τ increase when c ∈ [0.5, 1) and
τ ∈ [0.5, 1).
Lemma B.10. Let c ∈ [0.5, 1) and τ ∈ [0.5, 1). We show that function

f(c, τ) :=
2(1− τ)2

(1− cτ)2
− (1− τ)4

(1− cτ)4

is decreasing as τ increase.

Proof. We take the derivative of f(c, τ) in τ and get

∂

∂τ
f(c, τ) = −4(c− 1)2(τ − 1)τ(cτ + τ − 2)

(1− cτ)5
< 0

where the second step follows from c ∈ [0.5, 1) and τ ∈ [0.5, 1).

Thus, f(c, τ) is decreasing as τ increase when c ∈ [0.5, 1) and τ ∈ [0.5, 1).

Next, we have our results in upper bounding ρ.
Lemma B.11. If LSH data structure’s parameters c and τ satisfy that c ∈ [0.5, 1) and τ ∈ [0.5, 1)
then, we could upper bound ρ as:

ρ < 1− γ2

4
+O(1/

√
log n)

where γ = 1− c.

Proof. Let γ = 1− c, we have

ρ =
2

c2
− 1

c4
+O(1/

√
log n)

=
2(1− τ)2

(1− cτ)2
− (1− τ)4

(1− cτ)4
+O(1/

√
log n)

≤ 0.5

(1− 0.5c)2
− 0.0625

(1− 0.5c)4
+O(1/

√
log n)
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=
0.5

(0.5 + 0.5γ)2
− 0.0625

(0.5 + 0.5γ)4
+O(1/

√
log n)

=
2

(1 + γ)2
− 1

(1 + γ)4
+O(1/

√
log n)

=
2 + 4γ + 2γ2 − 1

(1 + γ)4
+O(1/

√
log n)

=
1 + 4γ + 2γ2

(1 + γ)4
+O(1/

√
log n)

= 1− 4γ2 + 4γ3 + γ4

(1 + γ)4
+O(1/

√
log n)

< 1− 4γ2

(1 + γ)4
+O(1/

√
log n) by γ > 0

< 1− γ2

4
+O(1/

√
log n) by γ < 1

where the second step follows from c2 = 1−cτ
1−τ , the third step follows from that ρ is monotonic

decrease as τ increase and τ ≥ 0.5, the forth to eighth steps are reorganizations, the ninth step
follows from γ = 1− c > 0, the tenth step follows from γ = 1− c < 1.

For Sublinear LSVI, we set c = 1− C0L
√
ι/n and and τ ≥ 0.5 by shifting the reward function. In

this way, we have

ρ < 1− C2
0L

2ι

4n
+O(

1√
logA

) < 1− 1

8
C2

0L
2ι/n (10)

where the first step follows from γ = 1−c = C0L
√
ι/n, the second step follows from 1

8C
2
0L

2ι/n >

Ω( 1√
logA

).

For Sublinear LSVI-UCB, we set c = 1− 1√
K

and τ ≥ 0.5 by shifting the reward function. In this
way, we have

ρ < 1− 1

4K
+O(

1√
logA

) < 1− 1

8K
(11)

where the first step follows from γ = 1− c = 1√
K

, the second step follows from 1
8K > Ω( 1√

logA
).

Therefore, we show that sublinear value iteration can be achieved while preserving the same regret.
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C SUBLINEAR LEAST-SQUARES VALUE ITERATION

This section presents the Sublinear Least-Squares Value Iteration (Sublinear LSVI)

• In Section C.1, we introduce the Sublinear LSVI algorithm.

• In Section C.2, we provide the upper bound of the difference between the optimal value
function and the estimated value function.

• In Section C.3, we present the regret analysis of Sublinear LSVI.

• In Section C.4, we perform a runtime analysis on the building blocks of Sublinear LSVI to
analyze its efficiency.

• In Section C.5, we compare Sublinear LSVI with LSVI Bradtke & Barto (1996) in regret
and value iteration complexity.

C.1 ALGORITHM

We present our Sublinear LSVI algorithm in Algorithm 1. We summarize our algorithm as several
steps: (1) sample collection: we query a pair of state and action in the span matrix for n times at
each step and observe its reward and next state, (2) data structure construction, we preprocess the
embeddings for state and action pairs and build a nearest neighbor data structure, (3) we perform
least-squares solver to estimate the weight in the linear MDP model, (4) we use LSH for value
function estimation, (5) we construct policy based on the estimated value function.

C.2 VALUE DIFFERENCE

In this section, we provide the tools for regret analysis. The goal of this section is to prove
Lemma C.1.

Lemma C.1. Let MDP(S,A, H,P, r) denote a linear MDP. Let V ∗1 (s) be the optimal value function
defined in Definition A.5. Let V̂1(s) be the estimated value function defined in Definition A.5. We
show that via Algorithm 1, the difference V ∗1 (s)− V̂1(s) is upper bounded by:

V ∗1 (s)− V̂1(s) ≤ E
π∗

[ H∑
h=1

[(Ph − P̂h)V̂h+1](sh, ah)|s1 = s
]

+
1− c

2
·H(H + 1) (12)

where c is the parameter for Max-IP.

Proof. We start with lower bounding V̂h(s) as

V̂h(s) ≥ c · max
a∈Acore

〈ŵh, φ(s, a)〉

= cmax
a∈A

Q̂h(s, a) (13)

where the first step follows from Theorem B.2, the second step follows from the definition of
Q̂h(s, a) in Definition A.5 and the definition of convex hull.

Next, we upper bound V ∗h (s)− V̂h(s) as

V ∗h (s)− V̂h(s) = max
a∈A

Q∗h(s, a)− V̂h(s)

≤ max
a∈A

Q∗h(s, a)− cmax
a∈A

Q̂h(s, a)

≤ Q∗h(s, π∗(s))− cmax
a∈A

Q̂h(s, a)

≤ Q∗h(s, π∗(s))− cQ̂h(s, π∗(s))

= c
(
Q∗h(s, π∗(s))− Q̂h(s, π∗(s))

)
+ (1− c)Q∗h(s, π∗(s))
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Algorithm 1 Sublinear LSVI

1: data structure LSH . Theorem B.2
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ [0.5, 0.8), τ ∈ [0.5, 0.8))
3: . |S| = n, c, τ is the approximate Max-IP parameter and d is the dimension of data
4: QUERY(x ∈ Rd)
5: end data structure
6:
7: procedure SUBLINEARLSVI(Score, Acore, N ∈ N, H ∈ N, cLSH ∈ [0.5, 0.8], τLSH ∈

[0.5, 0.8])
8: . Score and Acore are in Definition A.7
9: /*Collect Samples*/

10: for step h ∈ [H] do
11: Dh ← ∅
12: for j = 1, · · · ,M do . For each column in the span matrix defined in Definition A.8
13: for l = 1, · · · , n do . Play n times
14: Query (sj , aj) at step h, observe the next state s′jl.
15: . sj , aj defined in Definition A.8
16: Dh ← Dh ∪ {(sj , aj , s′jl)} . |Dh| = Mn
17: end for
18: end for
19: end for
20: /*Preprocess data and build a nearest neighbor data structure*/
21: . This step takes O(S · (A1+ρ + dA))
22: for s ∈ Score do
23: Φs ← {φ(s, a)| ∀a ∈ Acore}
24: static LSH LSHs
25: LSHs.INIT(Φs, A, d, cLSH, τLSH)
26: end for
27: /*Precompute Λ matrix*/ . This step takes O(Md2 + dω)

28: Λ← n
∑M
j=1 φ(sj , aj)φ(sj , aj)

>

29: Compute Λ−1
h

30: /*Update value function*/ . This step takes O(H(d2 +Md+Mn+ SdAρ))
31: for step h = H, . . . , 1 do
32: ŵh ← Λ−1

∑
(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
rh(ṡ, ȧ) + V̂h+1(ṡl

′)
)

33: for all s ∈ Score do
34: a← LSHs.QUERY(ŵh)

35: V̂h(s)← 〈ŵh, φ(s, a)〉
36: end for
37: end for
38: /*Construct policy*/ . This step takes O(HSdA)
39: policy π̂ ← ∅
40: for step h = 1, . . . ,H do
41: π̂h(s)← arg maxa∈Acore

〈ŵh, φ(s, a)〉 for all s ∈ Score

42: end for
43: return π̂
44: end procedure

≤ c
(
Q∗h(s, π∗(s))− Q̂h(s, π∗(s))

)
+ (1− c)(H + 1− h)

≤
(
Q∗h(s, π∗(s))− Q̂h(s, π∗(s))

)
+ (1− c)(H + 1− h) (14)

where the first step follows from V ∗h (s) = maxa∈AQ
∗
h(s, a), the second step follows from Eq. (13),

the third step follows from maxa∈AQ
∗
h(s, a) = Q∗h(s, π∗(s)) and the forth step follows from

maxa∈A Q̂h(s, a) ≥ Q̂h(s, π∗(s)), the fifth step is an reorganization, the sixth step follows the
upper bound for Q∗h in Definition A.5, the seventh step follows from c ∈ (0, 1) and c is close to 1.
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Next, we can write the difference Q∗h(s, a)− Q̂h(s, a) as,

Q∗h(s, a)− Q̂h(s, a) = [rh + PhV ∗h+1](s, a)− [rh + P̂hV̂h+1](s, a)

= [PhV ∗h+1](s, a)− [P̂hV̂h+1](s, a)

= [PhV ∗h+1](s, a)− [PhV̂h+1](s, a) + [PhV̂h+1](s, a)− [P̂hV̂h+1](s, a)

= [Ph(V ∗h+1 − V̂h+1)](s, a) + [(Ph − P̂h)V̂h+1](s, a) (15)

where the first step follows from the definition ofQh(s, a) in Definition A.5, the second step follows
from eliminating the common term rh(s, a), the third step follows from inserting an additional term
[PhV̂h+1](s, a), and the last step is a reorganization.

Combining Eq. (14) and Eq. (15), we have

V ∗h (s)− V̂h(s)

≤
(
Q∗h(s, π∗(s))− Q̂h(s, π∗(s))

)
+ (1− c)(H + 1− h)

= [Ph(V ∗h+1 − V̂h+1)](s, π∗(s)) + [(Ph − P̂h)V̂h+1](s, π∗(s)) + (1− c)(H + 1− h)

= E
π∗

[
(V ∗h+1 − V̂h+1)(sh+1)

∣∣∣ sh = s
]

+ E
π∗

[
[(Ph − P̂h)V̂h+1](sh, ah)

∣∣∣ sh = s
]

+ (1− c)(H + 1− h)

= (V ∗h+1 − V̂h+1) + E
π∗

[
[(Ph − P̂h)V̂h+1](sh, ah)

∣∣∣ sh = s
]

+ (1− c)(H + 1− h)

where the first step follows the Eq. (14), the second step follows the Eq. (15), the third step rewrites
both terms into an expectation over π∗, and the last step follows the definition of V ∗h+1 and V̂h+1.

Using induction from 1 to H , we have

V ∗1 (s)− V̂1(s) ≤ E
π∗

[ H∑
h=1

[(Ph − P̂h)V̂h+1](sh, ah)
∣∣∣ s1 = s

]
+ (1− c)

H∑
h=1

(H + 1− h)

= E
π∗

[ H∑
h=1

[(Ph − P̂h)V̂h+1](sh, ah)
∣∣∣ s1 = s

]
+

1− c
2
·H(H + 1)

where the second step is a reorganization.

C.3 REGRET ANALYSIS

The goal of this section is to prove Theorem C.2.

Theorem C.2 (Convergence Result of Sublinear Least-Squares Value Iteration (Sublinear LSVI), a
formal version of Theorem 4.1). Given a linear MDP with form MDP(S,A, H,P, r) with core sets
Score, Acore defined in Definition A.7, if we chose n = O(C2

0 · ε−2L2H4ι), where ι = log(Hd/p)
and C0 is a constant, the Sublinear LSVI (Algorithm 1) with approximate Max-IP parameter c =

1−Θ(L ·
√
ι/n) has regret at most O(LH2

√
ι/n) with probability at least 1− p.

Proof. We have two definitions for Q̂h(s, a). The first definition is given by Definition A.1, it says

Q̂h(s, a) = rh(s, a) + [P̂h · V̂h+1](s, a). (16)

The second definition is given by Definition A.2, it says

Q̂h(s, a) = φ(s, a)>ŵh. (17)

Given the second definition, our goal is to derive P̂h.

31



Under review as a conference paper at ICLR 2022

To do this, we write Q̂h(s, a) as

Q̂h(s, a)

= φ(s, a)>ŵh

= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
rh(ṡ, ȧ) + V̂h+1(ṡl

′)
)

= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
φ(ṡ, ȧ)>θh + V̂h+1(ṡl

′)
)

= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)φ(ṡ, ȧ)>θh + φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)V̂h+1(ṡl
′)

= φ(s, a)>θh + φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)V̂h+1(ṡl
′)

= φ(s, a)>θh +

∫ (
φ(s, a)>Λ−1

∑
(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)δ(s′, ṡl
′)
)
V̂h+1(s′)ds′

= rh(s, a) +

∫ (
φ(s, a)>Λ−1

∑
(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)δ(s′, ṡl
′)
)
V̂h+1(s′)ds′ (18)

where the first step follows the definition of Q̂h(s, a) in Definition A.5, the second step follows the
definition of ŵh in Algorithm 4, the third step follows the definition of reward rh in Definition A.2,
the forth step is an reorganization, the fifth step follows from Λ−1

∑
(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)φ(ṡ, ȧ)> =

Id, the sixth step rewrites the second term in a integral format, where δ(x, y) is a Dirichlet function,
the last step follows the definition of reward rh in Definition A.2.

By comparing Eq. (18) with Eq. (16), we should define P̂h(s′|s, a) as

P̂h(s′|s, a) = φ(s, a)Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)δ(s′, ṡl
′). (19)

Combining Eq. (19) with the definition of [P̂hV̂h+1](s, a) in Definition A.5.

[P̂hV̂h+1](s, a) = φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)V̂h+1(ṡl
′). (20)

In the next a few paragraphs, we will explain how to rewrite [(Ph − P̂h)V̂h+1](s, a).

[(Ph − P̂h)V̂h+1](s, a)

= φ(s, a)>
∫
V̂h+1(s′)dµ(s′)− [P̂hV̂h+1](s, a)

= φ(s, a)>
∫
V̂h+1(s′)dµ(s′)− φ(s, a)>Λ−1

∑
(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)V̂h+1(ṡl
′)

= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)φ(ṡ, ȧ)>
∫
V̂h+1(s′)dµ(s′)

− φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)V̂h+1(ṡl
′)

= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
φ(ṡ, ȧ)>

∫
V̂h+1(s′)dµ(s′)− V̂h+1(ṡl

′)
)

= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(∫

V̂h+1(s′)φ(ṡ, ȧ)>dµ(s′)− V̂h+1(ṡl
′)
)

= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(∫

V̂h+1(s′)Ph[s′|ṡ, ȧ]ds′ − V̂h+1(ṡl
′)
)
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= φ(s, a)>Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
E[V̂h+1(s′)|ṡ, ȧ]− V̂h+1(s′i)

)
(21)

where the first step follows the definition of Ph[s′|si, ai] = φ(si, ai)µh(s′), the second step follows
Eq. (20), the third step adds the Λ−1

∑
(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)φ(ṡ, ȧ)> = Id to the left term, the forth
and fifth steps are reorganizations, the sixth step follows the definition of Ph in Definition A.2, the
last step follows the definition of expectation.

Next, we rewrite
∑

(ṡ,ȧ,ṡl′)∈Dh
φ(ṡ, ȧ) as∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ) = n

M∑
j=1

φ(sj , aj) = n

M∑
j=1

φj (22)

where the first steps follows from Algorithm 1 that for each φ(sj , aj), we query it n times and put all
{(sj , aj , s′j1), · · · , (sj , aj , s′jn)} inDh, the second step follows by φj = φ(sj , aj) in Definition A.7.

Next, we rewrite Λ as

Λ =
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)φ(ṡ, ȧ)>

= n

M∑
j=1

φ(sj , aj)φ(sj , aj)
>

= nΦΦ> (23)

where the first steps follows by the definition of Λ in Algorithm 1,the second steps follows from
Algorithm 1 that for each φ(sj , aj), we query it n times and put all {(sj , aj , s′j1), · · · , (sj , aj , s′jn)}
in Dh, the third step follows from the definition of Φ in Definition A.7.

Combining Eq. (23) with Eq. (21), we get

[(Ph − P̂h)V̂h+1](s, a) = φ(s, a)>(nΦΦ>)−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
E[V̂h+1(s′)|ṡ, ȧ]− V̂h+1(s′i)

)
(24)

Next, we further bound [(Ph − P̂h)V̂h+1](s, a) as:

[(Ph − P̂h)V̂h+1](s, a)

= φ(s, a)>(nΦΦ>)−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
E[V̂h+1(s′)|ṡ, ȧ]− V̂h+1(s′i)

)

= φ(s, a)>(nΦΦ>)−1n

M∑
j=1

φ(sj , aj)

n∑
l=1

(
E[V̂h+1(s′)|sj , aj ]− V̂h+1(s′jl)

)

= φ(s, a)>(ΦΦ>)−1
M∑
j=1

φ(sj , aj)
(
E[V̂h+1(s′)|sj , aj ]−

1

n

n∑
l=1

V̂h+1(s′jl)
)

= φ(s, a)>(ΦΦ>)−1
M∑
j=1

φj

(
E[V̂h+1(s′)|sj , aj ]−

1

n

n∑
l=1

V̂h+1(s′jl)
)

where the first step follows from Eq. (24), the second steps follows from Algorithm 1 that for each
φ(sj , aj), we query it n times and put all {(sj , aj , s′j1), · · · , (sj , aj , s′jn)} in Dh, the third step is
an reorganization, the last step follows the definition of φj in Definition A.7.

For each j ∈ [M ], we define random variable

zj := E[V̂h+1(s′)|φj ]−
1

n

n∑
l=1

V̂h+1(s′jl)
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By Hoefding Inequality in Lemma A.19, we can show

|zj | ≤ C0 ·H ·
√
ι/n

For convenient, we define vector z ∈ RM to be z := [z1, · · · , zM ].

Now, we can upper bound [(Ph − P̂h)V̂h+1](s, a) as follows:

[(Ph − P̂h)V̂h+1](s, a) = φ(s, a)>(ΦΦ>)−1Φz

= φ(s, a)>(Φ†)>z

=
(

Φ†φ(s, a)
)>
z

≤ ‖Φ†φ(s, a)‖1 · ‖z‖∞
≤ L · C0 ·H ·

√
ι/n (25)

where the first step follows the
∑M
j=1 φjzj = Φz, the second step is an reorganization, the third step

follows the holders inequality, the last step uses the bound for ‖Φ−1φ(s, a)‖1 in Definition A.7 and
‖zj‖2.

Combining Eq. (25) with Lemma C.1, we could upper bound V ∗1 (s)− V̂1(s)

V ∗1 (s)− V̂1(s) ≤ E
π∗

[ H∑
h=1

[(Ph − P̂h)V̂h+1](sh, ah)|s1 = s
]

+
1− c

2
·H(H + 1)

≤ H · L · C0 ·H ·
√
ι/n+

1− c
2
·H(H + 1)

= L · C0 ·H2 ·
√
ι/n+

1− c
2
·H(H + 1)

≤ L · C0 ·H2 ·
√
ι/n+ (1− c)H2

≤ 2C0LH
2
√
ι/n

≤ ε

where the first step follows from Lemma C.1, the second step follows the upper bound of [(Ph −
P̂h)V̂h+1](s, a) in Eq. 25, the third step is an reorganization, the forth step follows from H ≥ 1

so that H2 ≥ H , the fifth step follows from 1 − c = C0L
√
ι/n, the sixth step follows from

n = O(C2
0 · ε−2L2H4ι).

C.4 RUNNING TIME ANALYSIS

Lemma C.3. The running time of pre-computing Λ−1 takes

O(Md2 + dω)

Proof. It takes O(Md2) to sum up every φ(sj , aj)φ(sj , aj)
>. It takes O(d) constant to multiply

the sum results by n. Computing the inverse matrix of Λ takes O(dω). Combining the complexity
together, we obtain the pre-computing complexity O(Md2 + dω).

Lemma C.4. The running time of updating value takes

O(H · (d2 +Md+Mn+ SdAρ))

Further more,

• If initialize the LSH data-structure using Theorem A.14, ρ = 1− 1
4C0L

√
ι/n.
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Algorithm 2 LSVI Bradtke & Barto (1996)

1: procedure LSVI(S, A, N ∈ N, H ∈ N) . S and A are in Definition A.2
2: /*Collect Samples*/
3: for h ∈ [H] do
4: Dh ← ∅
5: for j = 1, · · · ,M do . For each element in the span set defined in Definition A.8
6: for l = 1, · · · , n do . Play n times
7: Query (sj , aj) at step h, observe the next state s′jl.
8: . sj , aj defined in Definition A.8
9: Dh ← Dh ∪ {(sj , aj , s′jl)} . |Dh| = Mn

10: end for
11: end for
12: end for
13: /*Precompute Λ matrix*/ . This step takes O(Md2 + dω)

14: Λ← n
∑M
j=1 φ(sj , aj)φ(sj , aj)

> . Λ ∈ Rd×d

15: Compute Λ−1

16: /*Update value function*/ . This step takes O(H(d2 +Md+Mn+ SAd))
17: for h = H, . . . , 1 do
18: ŵh ← Λ−1

∑
(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
rh(ṡ, ȧ) + V̂h+1(ṡl

′)
)

19: for all s ∈ Score do
20: V̂h(s)← maxa∈Acore

〈ŵh, φ(s, a)〉
21: end for
22: end for
23: /*Construct policy*/ . This step takes O(HSAd)
24: policy π̂ ← ∅
25: for h = 1, . . . ,H do
26: π̂h(s)← arg maxa∈Acore

〈ŵh, φ(s, a)〉 for all s ∈ S
27: end for
28: return π̂
29: end procedure

• If initialize the LSH data-structure using Theorem A.15, ρ = 1− 1
8C

2
0L

2ι/n.

Proof. We can rewrite ŵh as follows:

ŵh = Λ−1
∑

(ṡ,ȧ,ṡl′)∈Dh

φ(ṡ, ȧ)
(
rh(ṡ, ȧ) + V̂h+1(ṡl

′)
)

= Λ−1n

M∑
j=1

φ(sj , aj)(rh(sj , aj) +
1

n

n∑
l=1

V̂h+1(s′jl))

where the second step follows the definition of Dh.

For each of the H step,

• It takes O(SdAρ) to compute V̂h(s′jl) for each state sj ∈ Score. If we initialize the
LSH data-structure using Theorem A.14, we determine ρ = 1 − 1

4C0L
√
ι/n using

Lemma B.9. If we initialize the LSH data-structure using Theorem A.15, we determine
ρ = 1− 1

8C
2
0L

2ι/n using Lemma B.10.

• It takes O(Mn) to compute rh(sj , aj) + 1
n

∑n
l=1 V̂h+1(s′jl) for the total n number of s′jl

observed by (sj , aj).

• It takes O(Md) to sum up the M dimensional vector φ(sj , aj)(rh(sj , aj) +
1
n

∑n
l=1 V̂h+1(s′jl)).
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• It takes O(d2) to multiply Λ with the sum of vectors.

• All other operations take O(d).

Combining the complexity together and multiply by H steps, we finish the proof.

Lemma C.5. The running time of constructing policy takes

O(HSdA)

Proof. For each step, it takes O(SdA) to find the optimal action. Thus, it takes O(HSdA) for
inference.

C.5 COMPARISON

In this section, we show the comparison between our Sublinear LSVI with LSVI Bradtke & Barto
(1996).

We start with presenting the LSVI algorithm in Algorithm 2.

Next, we show the comparison results in Table 3.

Algorithm Preprocess #Value Iteration Regret
Ours O(SdA1+ρ1) O(HSdAρ1) O(C0LH

2
√
ι/n)

Ours O(SdA1+o(1)) O(HSdAρ2) O(C0LH
2
√
ι/n)

LSVI 0 O(HSdA) O(C0LH
2
√
ι/n)

Table 3: Comparison between Our Sublinear LSVI with LSVI. Let S and A denote the cardinality
of Score and Acore. Let d denote the dimension of φ(s, a). Let H be the number of steps played
in each episode. Let n denote the quantity of times played for each pair of core state-action. Let
L denote the constant in Definition A.8. Let ι = log(Hd/p) and p is the failure probability. Let
ρ1 = 1− 1

4C0L
√
ι/n be the parameter of data structures in Theorem A.14 and ρ2 = 1− 1

8C
2
0L

2ι/n
be the parameter of data structure Theorem A.15. This table is a detailed version of corresponding
part of Table 1.
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D SUBLINEAR LEAST-SQUARES VALUE ITERATION WITH UCB

This section extend the Sublinear LSVI with UCB exploration.

• In Section D.1, we present the Sublinear LSVI-UCB algorithm.

• In Section D.2, we define several simplified notations for the convenience of proof.

• In Section D.3, we provide the upper bound of weight estimated by Sublinear LSVI-UCB.

• In Section D.4, we introduce a modified version of net argument for Sublinear LSVI-UCB.

• In Section D.5, we upper bound the fluctuation on the value function when performing
Sublinear LSVI-UCB Algorithm.

• In Section D.6, we provide the upper bound on the difference between the estimated Q
function and the actual Q function.

• In Section D.7, we given the upper bound on the difference between the estimated Q func-
tion and the actual Q function at the first step using induction.

• In Section D.8, we introduce the recursion formula for the regret analysis.

• In Section D.9, we formally provide the regret analysis of LSVI-UCB.

• In Section D.10, we analyze the runtime Sublinear LSVI-UCB by calculating the time
complexity for each block.

• In Section D.11, we compare Sublinear LSVI-UCB with LSVI-UCB Jin et al. (2020) in
terms of regret and value iteration complexity.

In the following sections we show how to tackle the problem and provide our Sublinear LSVI-UCB.
Moreover, we provide the regret analysis of our Sublinear LSVI-UCB.

D.1 ALGORITHM

In LSVI-UCB Jin et al. (2020) with large action space, the runtime in each value iteration step is
dominated by by computing the estimated value function as below:

V̂h(sτh+1) = max
a∈A

min{〈wkh, φ(sτh+1, a)〉+ β · ‖φ(sτh+1, a)‖Λ−1
h
, H} (26)

where wkh is computed by solving the least-squares problem and φ(sτh+1, a) is the embedding for a
pair of state-action. The complexity for Eq. (26) is O(d2A)

The key challenge of Sublinear LSVI-UCB here is that Eq. (2) cannot be formulated as a Max-IP
problem.

To handle this, we demonstrate how to develop Sublinear LSVI-UCB algorithm. We start with
bounding the Q function in Jin et al. (2020) as

Lemma D.1. We show that

min{‖φ(sτh+1, a)‖β2Λ−1
h +wk

h(wk
h)> , H} ≤ Qh(sτh+1, a) ≤ min{‖φ(sτh+1, a)‖2β2Λ−1

h +2wk
h(wk

h)> , H}.

Proof. We start with rewriting Qh(sτh+1, a),

Qh(sτh+1, a) = min{w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1
h
, H}.

Next, we show that

w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1
h
≤
√

2(w>h φ(sτh+1, a))2 + 2β2 · ‖φ(sτh+1, a)‖2
Λ−1

h

= ‖φ(sτh+1, a)‖2β2Λ−1
h +2wk

h(wk
h)>
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where the first step follows from Cauchy-Schwartz inequality, the second step is an reorganization.

Next, we show that

w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1
h
≥
√

(w>h φ(sτh+1, a))2 + β2 · ‖φ(sτh+1, a)‖2
Λ−1

h

= ‖φ(sτh+1, a)‖β2Λ−1
h +wk

h(wk
h)>

where the first step follows from the fact that both w>h φ(sτh+1, a) and ‖φ(sτh+1, a)‖Λ−1
h

are non-
negative, the second step is an reorganization.

Finally, consider the propriety of min function, we finish the proof of the lemma.

Algorithm 3 Modified LSVI-UCB

1: for k = 1, . . . ,K do
2: Initialize the state to sk1 .
3: for h = H, . . . , 1 do
4: /*Compute Λ−1

h */ . This step takes O(Kd2 + dω)

5: Λh ←
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)> + λ · Id.

6: Compute Λ−1
h

7: /* Value Iteration*/ . This takes O(AKd2)

8: wkh ← Λ−1
h

∑k−1
τ=1 φ(sτh, a

τ
h) · (rh(sτh, a

τ
h) + V̂h+1(sτh+1))

9: for τ = 1, · · · , k − 1 do
10: for a ∈ A do
11: Qh(sτh+1, a)← min{‖φ(sτh+1, a)‖2β2Λ−1

h +2wk
hw

k>
h
, H}.

12: end for
13: V̂h(sτh)← maxa∈AQh(sτh, a)
14: aτh ← arg maxa∈AQh(s, a) . aτh is the maximum value action taken at state sτh.
15: end for
16: end for
17: /* Construct Policy*/
18: for h = 1, . . . ,H do
19: Given state skh, take action akh, and observe skh+1.
20: end for
21: end for

Next, we present a modified version of LSVI-UCB in Algorithm 3. The major difference between
our modified version of LSVI-UCB and Jin et al. (2020) lies in in Line 11 of Algorithm 3. Here
we choose Qh(sτh+1, a) ← min{‖φ(sτh+1, a)‖2β2Λ−1

h +2wk
h(wk

h)> , H}, which is the upper bound of
min{w>h φ(sτh+1, a) + β · ‖φ(sτh+1, a)‖Λ−1

h
, H} according to Lemma D.1.

Based on Algorithm 3, we propose our Sublinear LSVI-UCB in Algorithm 4, which reduce the value
iteration complexity to sublinear in actions. Note that to let ρ strict less than 1, we set c2 ∈ [0.5, 0.8]
and τ2 ∈ [0.5, 0.8]) following Lemma B.9.

D.2 NOTATIONS FOR PROOF OF CONVERGENCE

Next, we start the regret analysis of our Sublinear LSVI-UCB. We first define a series of notations.
At episode k, we first estimate the weight wkh and matrix Λkh. Next, we use them to estimate Q
function Qkh. Then, using our LSH data structures, we obtain the value function V kh (s) following
line 13 of Algorithm 1. We also obtain the corresponding action associated with the value function
and form the polity πk following Line 14 of Algorithm 1. We also simplify φ(skh, a

k
h) as φkh.
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Algorithm 4 Sublinear LSVI-UCB

1: data structure MATRIXLSH . Theorem B.6
2: INIT(S ⊂ Rd, n ∈ N, d ∈ N, c ∈ (0.72, 0.9), τ ∈ (0.72, 0.9))
3: . |S| = n, c, τ is the approximate Max-MatNorm parameter and d is the dimension of data
4: QUERY(x ∈ Rd)
5: end data structure
6:
7: procedure SUBLINEARLSVI-UCB(S , A, N ∈ N, H ∈ N, cMatLSH ∈ (0.72, 0.9), τMatLSH ∈

(0.72, 0.9))
8: /*Preprocess φ(s, a) and build a LSH data structure*/ . This step takes
O(S · (A1+ρ + d2A))

9: for s ∈ S do
10: Φs ← {φ(s, a)| ∀a ∈ A}
11: static MATRIXLSH MATLSHs
12: MATLSHs.INIT(Φs, A, d, cMatLSH, τMatLSH)
13: end for
14:
15: for k = 1, . . . ,K do
16: Initialize state to sk1 .
17: for h = H, . . . , 1 do
18: /*Compute Λ−1

h */ . This step takes O(Kd2 + dω)

19: Λh ←
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)> + λ · Id.

20: Compute Λ−1
h

21: /* Value Iteration*/ . This takes O(Kd2Aρ)

22: wkh ← Λ−1
h

∑k−1
τ=1 φ(sτh, a

τ
h) · (rh(sτh, a

τ
h) + V̂h+1(sτh+1))

23: for τ = 1, · · · , k − 1 do
24: aτh ← MATLSHs.QUERY(2β2Λ−1

h + 2wkhw
k>
h )

25: V̂h(sτh)← min{‖φ(sτh+1, a
τ
h)‖2β2Λ−1

h +2wk
hw

k>
h
, H}

26: end for
27: end for
28: /* Construct Policy*/
29: for step h = 1, . . . ,H do
30: Take action akh at skh, and observe skh+1.
31: end for
32: end for
33: end procedure

D.3 UPPER BOUND ON WEIGHTS IN SUBLINEAR LSVI-UCB

In this section, we show how to bound the weightswkh in Algorithm 4 using Lemma D.2. The weight
we would like to bound is different from Jin et al. (2020). But the bound inequalities is very standard
and similar to the proof in Jin et al. (2020).
Lemma D.2. The weight wkh in Algorithm 4 at episode k ∈ [K] and step h ∈ [H] satisfies:

‖wkh‖2 ≤ 2H
√
dk/λ.

Proof. If we perform v>wkh where v ∈ Rd could be any vector in Rd, we could bound |v>wkh| as

|v>wkh| =
∣∣∣v>(Λkh)−1

k−1∑
τ=1

φτh

(
r(sτh, a

τ
h) + V̂h+1(sτh+1)

)∣∣∣
≤
∣∣∣v>(Λkh)−1

k−1∑
τ=1

φτh

(
r(sτh, a

τ
h) + max

a∈A
Qh+1(sτh+1, a)

)∣∣∣
≤ 2H ·

∣∣∣v>(Λkh)−1
k−1∑
τ=1

φτh

∣∣∣
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= 2H ·
k−1∑
τ=1

∣∣∣v>(Λkh)−1φτh

∣∣∣
≤ 2H ·

(( k−1∑
τ=1

v>(Λkh)−1v
)
·
( k−1∑
τ=1

(φτh)>(Λkh)−1φτh
))1/2

≤ 2H‖v‖2
√
dk/λ,

where the first step follows from the definition of wkh in Algorithm 4, the second step follows from
the definition of V̂h+1 in Algorithm 4, the third step follows from Definition A.2 that r(s, a) +

V̂h+1(s) ≤ 2H for all s ∈ S and a ∈ A, the forth step is a reorganization, the fifth step follows
Cauchy–Schwarz inequality, the last step follows from Lemma A.20.

Next, we rewrite ‖wkh‖2 = maxv:‖v‖2=1 |v>wkh|, in this way,

‖wkh‖2 = max
v:‖v‖2=1

|v>wkh| ≤ 2H
√
dk/λ

where the last step follows from |v>wkh| ≤ 2H
√
dk/λ.

D.4 OUR NET ARGUMENT

We present our net argument to support the proof in the this section. We start with defining the
covering number of euclidean ball.
Lemma D.3. Let B denote a Euclidean ball in Rd. B has radius greater than 0. For any ε > 0, we
upper bound the ε-covering number of B by (1 + 2R/ε)d.

This is a standard statement. We reder readers to Vershynin (2010) for more details.

Next, we upper bound the covering number of a function V(s) = min
{
‖φ(s, a)‖β2Λ−1+ww> , H

}
.

The V we would like to bound is different from Jin et al. (2020). But the net argument is very
standard and similar to proof in Jin et al. (2020).
Lemma D.4 (Our Net Argument). Let Λ ∈ Rd×d denote a invertible matrix whose minimum eigen-
value is greater than a constant λ. Let w denote a vector such that ‖w‖2 ≤ L. Let β ∈ [0, B]. Let
max(s,a)∈S×A ‖φ(s, a)‖2 ≤ 1. Let V denote a famility of functions such that V : S → R for any
V ∈ V Let Nε denote the ε-covering number of V . The ε-covering number is defined on distance
dist(V, V ′) = maxs∈S |V (s)− V ′(s)|. If for any V ∈ V , we have the form

V (s) = min
{
‖φ(s, a)‖β2Λ−1+ww> , H

}
(27)

Then we have

logNε ≤ d log(1 + 4L/ε) + d2 log
(

1 + 8d1/2B2/(λε2)
)
.

Proof. For given two arbitrary functions V1, V2 ∈ V , we have

dist(V1, V2) ≤ sup
s,a

(
‖φ(s, a)‖β2

1Λ−1
1 w1w>1

− ‖φ(s, a)‖β2
2Λ−1

2 +w2w>2

)
≤ sup

φ:‖φ‖2≤1

(
‖φ‖β2

1Λ−1
1 +w1w>1

− ‖φ‖β2
2Λ−1

2 +w2w>2

)
≤ sup
φ:‖φ‖2≤1

√
|φ>(β2

1Λ−1
1 + w1w>1 − β2

2Λ−1
2 − w2w2)φ|

≤ sup
φ:‖φ‖2≤1

(
(w1 − w2)>φ

)
+ sup
φ:‖φ‖2≤1

√
|φ>(β2

1Λ−1
1 − β2

2Λ−1
2 )φ|
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= ‖w1 − w2‖+

√
‖β2

1Λ−1
1 − β2

2Λ−1
2 ‖2

≤ ‖w1 − w2‖+

√
‖β2

1Λ−1
1 − β2

2Λ−1
2 ‖F , (28)

where the first step follows the definition of V1 and V2 in Eq. (27), the second step follows from
the fact that ‖φ(s, a)‖2 ≤ 1 in Definition A.2, the third step step follows from the fact that for any
x, y ≥ 0, we have |

√
x−√y| ≤

√
|x− y|, the forth step follows from

√
x+ y ≤

√
x+
√
y for any

x, y ≥ 0, the fifth step follows from the fact that the Frobenius norm of matrix is greater than the `2
norm.

Next, we denote Cw as the (ε/2)-cover of a ball {w ∈ Rd | ‖w‖2 ≤ L}. Using Lemma D.3, we
show that it can be upper bound as: |Cw| ≤ (1 + 4L/ε)d.

Similarly, we denote CΛ as the (ε2/4)-cover of a ball {β2Λ−1 ∈ Rd×d | ‖β2Λ−1‖F ≤ d1/2B2λ−1}.
Here we define the ball in ‖ · ‖F . Using Lemma D.3, we show that it can be upper bound as:
|CΛ| ≤ (1 + 8d1/2B2/(λε2))d

2

.

Using, Eq. (28), we know that given any V1 ∈ V , we could find a V2 ∈ V with form V2(s) =

min
{
‖φ(s, a)‖β2

2Λ−1
2 +w2w>2

, H
}

where w2 ∈ Cw and β2
2Λ−1

2 ∈ CΛ, such that dist(V1, V2) ≤ ε.
Therefore, Nε ≤ |Cw| · |CA|. Using this inequality, we have

logNε ≤ log |CA|+ log |Cw|
≤ d log(1 + 4L/ε) + d2 log(1 + 8d1/2B2/(λε2)).

Thus, we conclude the proof.

D.5 UPPER BOUND ON FLUCTUATIONS

We present a concentration lemma so that the fluctuations in LSVI-UCB is upper bounded in this
section. The analysis is very standard and similar to proof in Jin et al. (2020). However, we improve
the proof of Jin et al. (2020) with more detailed constant dependence.
Lemma D.5. Let Cβ > 1 denote a fixed constant. Let β = Cβ · dH

√
ι. Let ι = log(2dT/p). We

show that for any probability p ∈ [0, 1] that is fixed, if we have an ξ event satisfying that for all
k ∈ [K] and h ∈ [H]:∥∥∥ k−1∑

τ=1

φτh
(
V kh+1(sτh+1)− [PhV kh+1](sτh, a

τ
h)
)∥∥∥

(Λk
h)−1

≤ 30 · dH
√
ι+ log(5Cβ),

Then, we have
Pr[ξ] ≥ 1− p/2.

Proof. We show that any fixed ε > 0, we have

∥∥∥ k−1∑
τ=1

φτh
(
V kh+1(sτh+1)− [PhV kh+1](sτh, a

τ
h)
)∥∥∥2

(Λk
h)−1

≤ 4H2

(
d log(1 + k/λ) + d log

(
1 +

8H
√
dk

ε
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ε2λ

)
+ log(2/p)

)
+

8k2ε2

λ

≤ 4H2(d log(1 + k) + d log(1 + 8
√
k3/d) + d2 log(1 + 8C2

βd
0.5K2ι) + log(2/p)) + 8d2H2

≤ 30 · d2H2 log(10CβdT/p)

= 30 · d2H2(ι+ log(5Cβ)), (29)
where the first step follows from combining Lemmas A.21 and D.4,the second step follows from
λ = 1, ε = dH/K, and β = Cβ · dH

√
ι, the third step follows from Cβ ≥ 1 and ι = log(2dT/p),

the last step follows from ι = log(2dT/p).

Thus, we complete the proof.
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D.6 UPPER BOUND OF DIFFERENCE OF Q FUNCTION

In this section, we bound like to bound the difference between the Q function Qkh (see Section A.1)
selected by Algorithm 4 and the value function Qπh (see Definition A.4) of any policy π. We bound
the their difference by bounding 〈φ(s, a), wkh〉−Qπh(s, a). The analysis is very standard and similar
to proof in Jin et al. (2020). However, we improve the proof of Jin et al. (2020) with more detailed
constant dependence.

Lemma D.6. Let λ = 1 in Algorithm 4. Let ι = log(2dT/p). We show that for any policy π that is
fixed, for all s ∈ S , a ∈ A, h ∈ [H] and k ∈ [K], on the event ξ defined in Lemma D.5, we show
that exists an absolute constant Cβ ≥ 100 such that

〈φ(s, a), wkh〉 −Qπh(s, a)− [Ph(V kh+1 − V πh+1)](s, a) ≤ CβdH
√
ι · ‖φ(s, a)‖(Λk

h)−1

Proof. We start with rewriting Qπh(s, a) as

Qπh(s, a) := 〈φ(s, a), wπh〉 = rh(s, a) + [PhV πh+1](s, a).

where the first step follows from Proposition A.9, and the second step follows from Eq. (5).

Next, we show that

wkh − wπh = (Λkh)−1
k−1∑
τ=1

φτh(rτh + V kh+1(sτh+1))− wπh

= (Λkh)−1
(
− λwπh +

k−1∑
τ=1

φτh
(
V kh+1(sτh+1)− [PhV h+1

π ](sτh, a
τ
h)
))

= p1 + p2 + p3.

where the first step follows from the definition of wkh, the second step follows from the definition of
wπh . the last step follows from

p1 := − λ(Λkh)−1wπh

p2 := (Λkh)−1
k−1∑
τ=1

φτh
(
V kh+1(sτh+1)− [PhV kh+1](sτh, a

τ
h)
)

p3 := (Λkh)−1
k−1∑
τ=1

φτh[Ph(V kh+1 − V πh+1)](sτh, a
τ
h)

Next, we upper bound p1, p2 and p3 separately.

We upper bound p1 as,

|〈φ(s, a), q1〉| = λ · |〈φ(s, a), (Λkh)−1wπh〉|
≤ λ · ‖wπh‖2 · ‖φ(s, a)‖(Λk

h)−1

≤ 2H
√
dλ · ‖φ(s, a)‖(Λk

h)−1

≤ 2H
√
d · ‖φ(s, a)‖(Λk

h)−1 , (30)

where the second step follows from |〈a, b〉| ≤ ‖a‖2 · ‖b‖2, and the third step follows from ‖wπh‖2 ≤
2H
√
d/λ (see Lemma D.2), and the last step follows from λ = 1.

We upper bound p2 as,

|〈φ(s, a), q2〉| ≤ 30 · dH
√
ι+ log(5Cβ)‖φ(s, a)‖(Λk

h)−1 (31)

where the first step follows from Lemma D.5 on the event ξ.
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We upper bound q3 as,

〈φ(s, a), p3〉 =

〈
φ(s, a), (Λkh)−1

k−1∑
τ=1

φτh[Ph(V kh+1 − V πh+1)](sτh, a
τ
h)

〉

=

〈
φ(s, a), (Λkh)−1

k−1∑
τ=1

φτh(φτh)>
∫

(V kh+1 − V πh+1)(s′)dµh(s′)

〉
= q1 + q2

where the first step is a reorganization, the second step decomposes the right hand side as:

q1 :=

〈
φ(s, a),

∫
(V kh+1 − V πh+1)(s′)dµh(s′)

〉
q2 := − λ

〈
φ(s, a), (Λkh)−1

∫
(V kh+1 − V πh+1)(s′)dµh(s′)

〉
Then, we rewrite q1 = Ph(V kh+1 − V πh+1)(s, a) following Definition A.2.

Next, we upper bound q2 as

|q2| ≤ 2H
√
d‖φ(s, a)‖(Λk

h)−1 (32)

where the first step follows from Lemma D.2.

Finally, because 〈φ(s, a), wkh〉 −Qπh(s, a) = 〈φ(s, a), p1 + p2 + p3〉, we have

|〈φ(s, a), wkh〉 −Qπh(s, a)− Ph(V kh+1 − V πh+1)(s, a)|
= 〈φ(s, a), p1 + p2 + q2〉

≤ (2H
√
d+ 30 · dH

√
ι+ log(5Cβ) + 2H

√
d) · ‖φ(s, a)‖(Λk

h)−1

≤ dH(30
√
ι+ log(5Cβ) + 4) · ‖φ(s, a)‖(Λk

h)−1 ,

where the second step follows from combining Eq. (30), Eq. (31) and Eq. (32), the third step follows
from d ≥ 1, H ≥ 1.

Finally, we choose an absolute constant Cβ that satisfies:

30(
√
ι+ log(5Cβ) + 4) ≤ Cβ

√
ι, (33)

Note that ι = log(2dT/p) ≥ 4, as long as Cβ ≥ 100 the above inequality holds

Finally, with this choice of Cβ , we finish the proof.

D.7 Q FUNCTION DIFFERENCE BY INDUCTION

In this section, we build a connection between Qk1(s, a) selected by Algorithm 4 and Q∗1(s, a). We
show in Lemma D.7 that Q∗1(s, a) is upper bounded by Qk1(s, a) plus an error term related to the
parameter c for approximate Max-MatNorm in Algorithm 4.
Lemma D.7. Let Qk1(s, a) denote the estimated Q function for state s when taking action a at the
first step. Let Q∗1(s, a) denote the optimal Q function for state s when taking action a at the first
step. Let H denote the total steps. Let c is the parameter for approximate Max-MatNorm. We show
that using Sublinear LSVI-UCB (see Algorithm 4), we have

Q∗1(s, a)−Qk1(s, a) ≤ H − c1− cH

1− c

Proof. We start with bounding on the relationship between Qkh(s, a) and Q∗h(s, a).

〈φ(s, a), wkh〉+ β‖φ(s, a)‖(Λk
h)−1 ≥ Q∗h(s, a) + [Ph(V kh+1 − V ∗h+1)](s, a) (34)
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where the first step follows Lemma D.5.

Next, when h = H , as the value functions are all zero in H + 1 step, we have

QkH(s, a) ≥ 〈φ(s, a), wkH〉+ β‖φ(s, a)‖(Λk
H)−1

≥ Q∗H(s, a) (35)

where the first step follows from Lemma D.1, the second step follows from Lemma D.6.

Next, we have

max
a∈A

QkH(s, a) ≥ max
a∈A

Q∗H(s, a)

≥ V ∗H(s) (36)

where the first step follows from Eq. (35), the second step follows from the definition of V ∗H(s) in
Definition A.4.

Next, when h = H − 1, we bound [Ph(V kH − V ∗H)](s, a) as

[Ph(V kH − V ∗H)](s, a) ≥ [Ph(cmax
a∈A

QkH(s, a)− V ∗H)](s, a)

≥ c[Ph(max
a∈A

QkH(s, a)− V ∗H)](s, a)− (1− c)[PhV ∗H ](s, a)

≥ c[Ph(max
a∈A

QkH(s, a)− V ∗H)](s, a)− (1− c) · 1

≥ − (1− c) · 1 (37)

where the first step comes from the property of data structure MATRIXLSH in Algorithm 4, the
second step is an reorganization, the third step follows the definition of V ∗H(s) in Definition A.4, the
last step follows the Eq. (36).

Next, we have

QkH−1(s, a) ≥ 〈φ(s, a), wkH−1〉+ β‖φ(s, a)‖(Λk
H−1)−1

≥ Q∗H−1(s, a) + [Ph(V kH − V ∗H)](s, a)

≥ Q∗H−1(s, a)− (1− c) · 1 (38)

where the first step follows from the Lemma D.1, the second step follows from Eq. (34) ,and the
third step follows Eq. (37).

Next, we have

max
a∈A

QkH−1(s, a) ≥ max
a∈A

Q∗H−1(s, a)− (1− c) · 1

≥ V ∗H−1(s)− (1− c) · 1 (39)

where the first step follows from Eq. (38), and the second step follows the definition of Q∗H−1(s, a)
in section A.1.

Next, when h = H − 2, we lower bound [Ph(V k̂H−1 − V ∗H−1)](s, a) as

[Ph(V kH−1 − V ∗H−1)](s, a) ≥ [Ph(cmax
a∈A

QkH−1(s, a)− V ∗H−1)](s, a)

≥ c[Ph(max
a∈A

QkH−1(s, a)− V ∗H−1)](s, a)− (1− c) · [PhV ∗H−1)](s, a)

≥ c[Ph(max
a∈A

QkH−1(s, a)− V ∗H−1)](s, a)− (1− c) · 2

≥ − c(1− c) · 1− (1− c) · 2 (40)

where the first step comes from the MATRIXLSH in Algoritm 4, the second step is an reorganization,
the third step follows the definition of V ∗H(s) in section A.1, the last step follows the Eq. (39).
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Next, we have

QkH−2(s, a) ≥ 〈φ(s, a), wkH−2〉+ β‖φ(s, a)‖(Λk
H−2)−1

≥ Q∗H−2(s, a) + [Ph(V kH−1 − V ∗H−1)](s, a)

≥ Q∗H−2(s, a)− c(1− c) · 1− (1− c) · 2 (41)

where the first step follows from the Lemma D.1, the second step follows from Eq. (34) ,and the
third step follows Eq. (40).

using induction from H to 1, we have

Qk1(s, a) ≥ Q∗1(s, a)− (1− c)
H∑
h=1

ch−1(H + 1− h)

= Q∗1(s, a)− (1− c)H − cH − c+ cH+1

(1− c)2

= Q∗1(s, a)− H − cH − c+ cH+1

1− c

= Q∗1(s, a)− H − cH
1− c

+
−c+ cH+1

1− c

= Q∗1(s, a)− (H − c− cH+1

1− c
)

= Q∗1(s, a)− (H − c1− cH

1− c
) (42)

where the first step follows the induction rule, the remain steps are reorganizations.

We notice from Lemma D.7 that there exists a term H− c 1−cH
1−c . Here we use Fact D.8 to bound this

term.
Fact D.8. Let H ∈ N. Let c = 1− γ, for any γ ∈ (0, 1/(10H)), then we have

H − c1− cH

1− c
≤ 2γH2.

Proof. First, by definition γ = 1− c ∈ (0, 1), then we can rewrite LHS as

H − c1− cH

1− c
= H − (1− γ)(1− (1− γ)H)/γ

≤ H − (1− γ)(1− e−Hγ)/γ

≤ H − (1− γ)(H − 0.5(H2γ))

= H(1− (1− γ)(1− 0.5(Hγ)))

≤ H · (2Hγ) = 2γH2

where the second step follows from (1 − γ)1/γ ≤ e−1, the third step follows from 1 − e−x ≥
x− 0.5x2, ∀x ∈ [0, 1/10].

D.8 RECURSIVE FORMULA

In this section, we bound the difference between Qkh(skh, a) and Qπk

h (skh, a) in a recursive formula.

Lemma D.9 (Recursion). Let δkh denote the difference Qkh(skh, a) − Qπk

h (skh, a). Let ζkh+1 =

E[δkh+1|skh, a] − δkh+1 denote the error between expectation and observed difference. Let β =
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CβdH
√
ι. Given the event ξ defined in Lemma D.5, we bound δkh − δkh+1 for any k ∈ [K] and

h ∈ [H] as

δkh − δkh+1 ≤ ζkh+1 + 2β‖φ(skh, a)‖(Λk
h)−1 .

Proof. We bound the δkh as

δkh = Qkh(s, a)−Qπk

h (s, a)

≤ [Ph(V kh+1 − V
πk

h+1)](s, a) + 2CβdH
√
ι‖φ(s, a)‖(Λk

h)−1 .

= ζkh+1 + δkh+1 + 2β‖φ(s, a)‖(Λk
h)−1

where the second step follows from Lemma D.6, the third step follows from [Ph(V kh+1 −
V πk

h+1)](s, a) = ζkh+1 + δkh+1.

Thus, we finish the proof.

As our algorithm have the same upper bound on recursion with Jin et al. (2020), the upper bound on
ζkh+1 in Jin et al. (2020) could also be used in our analysis. We state the bound as

Lemma D.10 (Jin et al. (2020)). Let ζkh+1 = E[δkh+1|skh, a]−δkh+1. With probability at least 1−p/2,
we show that

K∑
k=1

H∑
h=1

ζkh ≤ 2H
√
Tι,

We could also upper bound
∑K
k=1

∑H
h=1 ‖φ(sk1 , a

k∗
1 )‖(Λk

h)−1 following Jin et al. (2020).

Lemma D.11 (Jin et al. (2020)). Let ak∗1 ∈ A denote the optimal action at state sk1 ∈ S. Given, Λkh
estimated in each step, we have

K∑
k=1

H∑
h=1

‖φ(sk1 , a
k∗
1 )‖(Λk

h)−1 ≤ H ·
√

2dKι

D.9 REGRET ANALYSIS

In this section, we prove main theorem in Theorem D.12.

Theorem D.12 (Convergence Result of Sublinear Least-Squares Value Iteration with UCB (Sublin-
ear LSVI-UCB), a formal version of Theorem 4.3). In a linear MDP in Definition A.2, we set λ = 1.
Let Cβ ≥ 100 denote a fixed constant and ι = log(2dT/p). If we set approximate Max-MatNorm
parameter c = 1 − ι√

K
, then for any p ∈ (0, 1) that is fixed, with probability 1 − p, Sublinear

LSVI-UCB (Algorithm 4) has the cumulative regret at most O(Cβ ·
√
d3H3Tι2).

Proof. We start with upper bounding the regret as:

Regret(K) =

K∑
k=1

(
V ∗1 (sk1)− V πk

1 (sk1)
)

=

K∑
k=1

(
max
a∈A

Q∗1(sk1 , a)−max
a∈A

Qπk
1 (sk1 , a)

)

≤
K∑
k=1

(
max
a∈A

Q∗1(sk1 , a
k∗
1 )−Qπk

1 (sk1 , a
k∗
1 )

)
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≤
K∑
k=1

(Qk1(sk1 , a
k∗
1 )−Qπk

1 (sk1 , a
k∗
1 ) + 2γH2)

= 2γKH2 +

K∑
k=1

δk1

≤ 2γKH2 +

K∑
k=1

H∑
h=1

ζkh + 2β

K∑
k=1

H∑
h=1

‖φ(sk1 , a
k∗
1 )‖(Λk

h)−1 (43)

where the first step follows the definition of regret, the second steps follows from the defini-
tion of value function in Definition A.4, the third step follows from that maxa∈AQ

πk
1 (sk1 , a) ≥

Qπk
1 (sk1 , a

k∗
1 ), where ak∗1 is the optimal action chosen at state sk1 , the forth step follows from

Lemma D.7, the fifth step is a follows the definition of δkh and ζkh as in Lemma D.9, the sixth
step follows from Lemma D.9.

Next, with probability 1− p, we show that

Regret(K) ≤ 2γKH2 +

K∑
k=1

H∑
h=1

ζkh + 2β
K∑
k=1

H∑
h=1

‖φ(sk1 , a
k∗
1 )‖(Λk

h)−1

≤ 2γKH2 + 2H
√
Tι+ 2β

K∑
k=1

H∑
h=1

‖φ(sk1 , a
k∗
1 )‖(Λk

h)−1

≤ 2KγH2 + 2H
√
Tι+ βH

√
2dKι

= 2KγH2 + 2H
√
Tι+ Cβ ·

√
2d3H4Kι2

≤ 2
√
H4Kι2 + 2

√
H3Kι+ Cβ ·

√
2d3H4Kι2

≤ 2Cβ
√
d3H4Kι2 (44)

where the second step follows from Lemma D.10, the third step follows from Lemma D.11, the forth
step from β = Cβ · dH

√
ι, the fifth step follows from γ = 1√

K
, the sixth step is a reorganizationm

the seventh step follows from Cβ ≥ 100.

Thus, we finish our proof.

D.10 RUNNING TIME ANALYSIS

We present the running time analysis of our Sublinear LSVI-UCB. We first introduce the running
time of each procedure of LSVI-UCB in Section D.10.1. Next, we introduce the running time of
Sublinear LSVI-UCB in Section D.10.2. Therefore, we could compare their efficiency in the next
section.

D.10.1 LSVI-UCB

First, we show the LSVI-UCB algorithm in Algorithm 5
Lemma D.13. The running time of pre-computing Λ−1 in Algorithm 5 takes time

O(Kd2 + dω)

where ω ≈ 2.373 is the exponent of matrix multiplication Williams (2012); Le Gall (2014).

Proof. It takes O(Kd2) to compute and sum up every φ(sτh, a
τ
h)φ(sτh, a

τ
h)>. Computing the inverse

matrix of Λ takes O(dω). All other operations take O(d). Combining the complexity together, we
obtain the pre-computing complexity O(Kd2 + dω).

Lemma D.14. The running time of value iteration in Algorithm 5 takes

O(HKd2A)

47



Under review as a conference paper at ICLR 2022

Algorithm 5 LSVI-UCB Jin et al. (2020)

1: for k = 1, . . . ,K do
2: Initialize the state sk1 .
3: for h = H, . . . , 1 do
4: /*Compute Λ−1

h */ . This step takes O(Kd2 + dω)

5: Λh ←
∑k−1
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)> + λ · Id.

6: Compute Λ−1
h

7: /* Value Iteration*/ . This step takes O(Kd2A)

8: wkh ← Λ−1
h

∑k−1
τ=1 φ(sτh, a

τ
h) · (rh(sτh, a

τ
h) + V̂h+1(sτh+1))

9: for τ = 1, · · · , k − 1 do
10: for a ∈ A do
11: Qh(sτh+1, a)← min{〈wkh, φ(sτh+1, a)〉+ β · ‖φ(sτh+1, a)‖Λk−1

h
, H}.

12: end for
13: V̂h(sτh)← maxaQh(sτh, a)
14: aτh ← arg maxaQh(s, a) . aτh is the maximum value action taken at state sτh.
15: end for
16: end for
17: /* Construct Policy*/
18: for h = 1, . . . ,H do
19: Take action akh, and observe skh+1.
20: end for
21: end for

Proof. For each of the H step,

• It takes O(Kd2A) to compute V̂h+1(sτh+1) for each state sτh+1.

• It takes O(Kd) to sum up φ(sτh, a
τ
h) · (rh(sτh, a

τ
h) + V̂h+1(sτh+1)).

• It takes O(d2) to multiply Λ with the sum of vectors.

• All other operations take O(d).

Combining them together, we have O(HKd2A).

D.10.2 SUBLINEAR LSVI-UCB

In this section, we show the runtime analysis of our Sublinear LSVI-UCB in Algorithm 4.

Lemma D.15. The running time of pre-computing Λ−1 in Algorithm 4 takes

O(Kd2 + dω)

where ω ≈ 2.373 is the exponent of matrix multiplication Williams (2012); Le Gall (2014).

Proof. It takes O(Kd2) to compute and sum up every φ(sτh, a
τ
h)φ(sτh, a

τ
h)>. Computing the inverse

matrix of Λ takes O(dω). All other operations take O(d). Combining the complexity together, we
obtain the pre-computing complexity O(Kd2 + dω).

Lemma D.16. The running time of value iteration in Algorithm 4 takes

O(HKd2Aρ)

Further more,

• If initialize the LSH data-structure using Theorem A.14, ρ = 1− 1
4
√
K

.

• If initialize the LSH data-structure using Theorem A.15, ρ = 1− 1
8K .
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Proof. For each of the H step,

• It takes O(Kd2Aρ) to compute V̂h+1(sτh+1) for each state sτh+1. If we initialize the LSH

data-structure using Theorem A.14, we determine ρ = 1 − 1
4
√
K

using Lemma B.9. If we
initialize the LSH data-structure using Theorem A.15, we determine ρ = 1 − 1

8K using
Lemma B.10.

• It takes O(Kd) to sum up φ(sτh, a
τ
h) · (rh(sτh, a

τ
h) + V̂h+1(sτh+1)).

• It takes O(d2) to multiply Λ with the sum of vectors.

• All other operations take O(d).

D.11 COMPARISON

In this section, we show the comparison between our Sublinear LSVI-UCB with LSVI-UCB Jin
et al. (2020). We show the comparison results in Table 4.

Algorithm Preprocess #Value Iteration Regret
Ours O(Kd2A1+ρ1) O(HKd2Aρ1) O(Cβ

√
d3H4Kι2)

Ours O(Kd2A1+o(1)) O(HKd2Aρ2) O(Cβ
√
d3H4Kι2)

LSVI 0 O(HKd2A) O(Cβ
√
d3H4Kι2)

Table 4: Comparison between Our Sublinear LSVI-UCB with LSVI-UCB Jin et al. (2020). Let S
denote the quantity of available states and A denote the quantity of available actions. Let d denote
the dimension of φ(s, a). Let H denote the number of steps per episode. Let K denote the total
number of episodes. Let ι = log(2Hd/p) and p is the failure probability. Let ρ1 = 1 − 1

4
√
K

be
the parameter determined by data structure in Theorem A.14 and ρ2 = 1 − 1

8K be the parameter
determined by data structure Theorem A.15. Since K > S, we write the preprocessing time as
O(Kd2A1+o(1)). This table is a detailed version of corresponding part of Table 1.

E EXTENSION OF SUBLINEAR LSVI-UCB

This section extends the Sublinear LSVI-UCB with different settings.

• In Section E.1, we introduce our Sublinear LSVI-UCB algorithm in the setting that the
policy switch is limited.

• In Section E.2, we present the model-free version of Sublinear LSVI-UCB algorithm.

• In Section E.3, we show that comparison of our algorithm with two LSVI-UCB extensions
in terms of regret and value iteration complexity.

E.1 LSVI-UCB UNDER SWITCH LIMITATION

In the limited switch setting, the number of modifications on the policy in reinforcment learning
should not exceed a certain threshold. Therefore, we are required to bound the number of switches
to achieve the optimal policy. Gao et al. (2021) proposes an approach to do it via LSVI-UCB. We
denote this variantion as LGSC. The only different between the LGSC algorithm in Gao et al. (2021)
and the LSVI-UCB algorithm in Jin et al. (2020) is that is rejects the updated policy if the change Λkh
is below a threshold. Therefore, we could directly modify LGSC using the same way in Algorithm 4
and propose Sublinear LGSC. Moreover, we obtain the statement as follows:
Corollary E.1 (Convergence result of Sublinear LSVI-UCB-LGSC, an formal version of Corol-
lary 4.4). Let MDP(S,A, H,P, r) denote a linear MDP. Given a fixed probability p ∈ (0, 1), if we
set LSVI-UCB parameter λ = 1, approximate Max-IP parameter c = 1− 1√

K
and ι = log(2dT/p),
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Sublinear LGSC cost has regret at most O(
√
d3H3Tι2) in total then with probability at least 1− p.

Moreover, withO(KA1+o(1) +Kd2A) preprocessing time and space, the value iteration complexity
of Sublinear LGSC is O(HKd2Aρ), where ρ = 1 − 1/K. Moreover, the cost of global switching
is at most O(dH logK).

Proof. As the limitation on the policy switch does not affect the upper bound of regret, Sublinear
LGSC have the same upper bound of regret as Sublinear LSVI-UCB. We write the regret of LGSC
following Eq. (44) in O(

√
d3H4Kι2). Meanwhile, the upper bound the cost of global switching

is independent of the LSH based Max-IP data structure. Therefore, Sublinear LGSC have the same
upper bound in the cost of global switching, which isO(dH logK). Moreover, as the value iteration
of Sublinear LGSC is indentical to Sublinear LSVI-UCB, the query time, preprocessing time and
space complexity could be determined.

E.2 MODEL-FREE LSVI-UCB

The major difference of model-free LSVI-UCB and model based LSVI-UCB is that the reward
function r remains to be estimated. We denote this method as MF. Therefore, MF in Wang
et al. (2020a) contains two procedures. In the first procedure, MF performs the similar algo-
rithm as Algorithm 5 except the reward function at each step of each episode is estimated by
min{‖φ(sτh+1, a)‖(λk

h)−1 , H}. Then, in the second procedure, the MF performs the same algorithm
as LSVI-UCB based on the estimated reward. Accordingly, we could also propose a Sublinear MF.
The Sublinear MF alternates the LSVI-UCB algorithm in the second procedure with the Sublinear
LSVI-UCB. Threfore, we have the following statement.
Corollary E.2 (Main result, convergence result of Model-free Sublinear LSVI-UCB (MF), an formal
version of Corollary 4.4). Let MDP(S,A, H,P, r) denote a linear MDP. Given a fixed probability
p ∈ (0, 1), if we set LSVI-UCB parameter λ = 1, approximate Max-IP parameter c = 1 − 1√

K

and β = Θ(dH
√
ι) with ι = log(2dT/p), then using O(KH2 log(

√
d−3H−4K)/ι2) episodes for

exploration, MF has regret at most O(
√
d3H4Kι2) in total with probability at least 1 − p. Further

more, with O(KA1+o(1) +Kd2A) preprocessing time and space, the value iteration complexity of
MF is O(HKd2Aρ), where ρ = 1− 1/K.

Proof. We start with several definitions. We denote r∗ : S×A → R as the original reward function.
We denote r1 : S × A → R as the reward function estimated by the in the exploration phase of
MF. Let V ∗1 (s1, r

∗) denote the optimal value function π using reward r∗. Let V ∗1 (s1, r
1) denote the

optimal value functionπ using reward r1. From Wang et al. (2020a), we know that for any error
ε > 0, with O(d3H6 log(dHp−1ε−1)/ε2) episodes in exploration, V ∗1 (sk1 , r

∗) − V ∗1 (sk1 , r
1) ≤ ε

for any episode k. Therefore if we pay O(KH2 log(
√
d−3H−4K)/ι2) episodes, the would have

ε ≤ Cβ
√
d3H4ι2/

√
K, where Cβ ≥ 100.

Next, we upper bound the regret as:

Regret(K) =

K∑
k=1

(
V ∗1 (sk1)− V πk

1 (sk1)
)

=

K∑
k=1

(
V ∗1 (sk1 , r

∗)− V ∗1 (sk1 , r
1) + V ∗1 (sk1 , r

1)− V πk
1 (sk1)

)
=

K∑
k=1

(
V ∗1 (sk1 , r

1)− V πk
1 (sk1)

)
+

K∑
k=1

(
V ∗1 (sk1 , r

∗)− V ∗1 (sk1 , r
1)
)

= 2Cβ
√
d3H4Kι2 +

K∑
k=1

(
V ∗1 (sk1 , r

∗)− V ∗1 (sk1 , r
1)
)

= 2Cβ
√
d3H4Kι2 +Kε

= 3Cβ
√
d3H4Kι2

(45)
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where the second and third step are reorganizations, the forth step follows from Eq. (44), the fifth
step follows from V ∗1 (sk1 , r

∗)− V ∗1 (sk1 , r
1) ≤ ε, the last step follows from ε ≤ Cβ

√
d3H4ι2/

√
K.

Therefore, we show that Sublinear MF achieves the same regret as LSVI-UCB and MF. Moreover,
the preprocessing time, space and value iteration complexity of MF is as same as LSVI-UCB.

E.3 COMPARISON

In this section, we show the comparison between our Sublinear LSVI-UCB with LGSC Gao et al.
(2021) and MF Wang et al. (2020a). We show the comparison results in Table 5.

Algorithm Preprocess #Value Iteration Regret
Ours O(Kd2A1+ρ1) O(HKd2Aρ1) O(Cβ

√
d3H4Kι2)

Ours O(Kd2A1+o(1)) O(HKd2Aρ2) O(Cβ
√
d3H4Kι2)

LGSC 0 O(HKd2A) O(Cβ
√
d3H4Kι2)

Ours O(Kd2A1+ρ1) O(HKd2Aρ1) O(Cβ
√
d3H4Kι2)

Ours O(Kd2A1+o(1)) O(HKd2Aρ2) O(Cβ
√
d3H4Kι2)

MF 0 O(HKd2A) O(Cβ
√
d3H4Kι2)

Table 5: Comparison between Our Sublinear LSVI-UCB with LGSC Gao et al. (2021) and MF Wang
et al. (2020a). Let S denote the quantity of available states and A denote the quantity of available
actions. Let d denote the dimension of φ(s, a). Let H denote the number of steps per episode. Let
K denote the total number of episodes. Let ι = log(2Hd/p) and p is the failure probability. Let
ρ1 = 1− 1

4
√
K

be the parameter determined by data structure in Theorem A.14 and ρ2 = 1− 1
8K be

the parameter determined by data structure Theorem A.15. SinceK > S, we write the preprocessing
time as O(Kd2A1+o(1)). This table is a detailed version of corresponding part of Table 1.

F MORE DATA STRUCTURES: ADAPTIVE Max-IP QUERIES

In this section, we show how to tackle the adaptive Max-IP queries in RL. In both Sublinear LSVI
and Sublinear LSVI-UCB, the queries for (c, τ)-Max-IP during the value iteration are adaptive but
not arbitrary. Thus, we could not union bound the failure probability of LSH for (c, τ)-Max-IP.
In this work, we present a quantization method to union bound the failure probability of adaptive
Max-IP queries. This section is organized as:

• In Section F.1, we introduce the LSH data structure for adaptive Max-IP queries and theo-
retical guarantee of Sublinear LSVI with this data structure.

• In Section F.2, we present the LSH data structure for adaptive Max-MatNorm queries and
theoretical guarantee of Sublinear LSVI-UCB with this data structure.

F.1 SUBLINEAR LSVI WITH ADAPTIVE Max-IP QUERIES

In this section, we show how to tackle adaptive Max-IP queries in Sublinear LSVI. We start with
defining the quantized approximate Max-IP.
Definition F.1 (Quantized approximate Max-IP). Let c ∈ (0, 1) and τ ∈ (0, 1). Let λ ≥ 0. Given
an n-point dataset Y ⊂ Sd−1, the goal of the (c, τ, λ)-Max-IP is to build a data structure that, given
a query x ∈ Sd−1 with the promise that there exists a datapoint y ∈ Y with 〈x, y〉 ≥ τ , it reports a
datapoint z ∈ Y with similarity 〈x, z〉 ≥ c ·Max-IP(x, Y )− λ.

Next, we show a standard way of performing approximate Max-IP via LSH. We denote Q as the
convex hull of all queries for (c, τ)-Max-IP and denote its maximum diameter in `2 distance as DX .
Our quantization methodviii contains two steps: (1) Preprocessing: we quantize Q to a lattice Q̂ with

viiiThis is a standard trick in the field of sketching and streaming Nakos et al. (2019); Ben-Eliezer et al. (2020).
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quantization error λ/d. In this way, each coordinate would be quantized into the multiples of λ/d.
(2) Query: given a query x ∈ Q, we first quantize it to the nearest q̂ ∈ Q̂ and perform (c, τ)-Max-IP.
As each q̂ ∈ Q̂ is independent, we could union bound the failure probability of adaptive queries. On
the other hand, this would generate an λ additive error in the returned inner product.

Next, we show our theorem for (c, τ, λ)-Max-IP over adaptive queries in Theorem F.2.
Theorem F.2 (A modified version of Theorem B.2). Let c ∈ (0, 1), τ ∈ (0, 1) and λ ∈ (0, 1). Given
a set of n-points Y ⊂ Sd−1 on the sphere, one can construct a data structure with preprocessing
time Tinit · κ and space Sspace · κ so that for every x ∈ Sd−1 in an adaptive query sequence X =
{x1, x2, · · · , xT }, we take O(dnρ · κ) query time:

• if Max-IP(x, Y ) ≥ τ , then we output a vector in Y which is a (c, τ, λ)-Max-IP with respect
to (x, Y ) with probability at least 1− δ, where ρ = f(c, τ) + o(1).

• otherwise, we output fail.

where κ := d log(ndDX/(λδ)) and ρ ∈ (0, 1). We use DX to represent maximum diameter in `2
distance of all queries in X .

Further more,

• If Tinit = O(dn1+ρ) and Sspace = O(n1+ρ + dn), then f(c, τ) = 1−τ
1−2cτ+τ .

• If Tinit = O(dn1+o(1)) and Sspace = O(n1+o(1) + dn), then f(c, τ) = 2(1−τ)2

(1−cτ)2 −
(1−τ)4

(1−cτ)4 .

Proof. The failure probability for an adaptive sequenceX is equivalent to the probability that at least
one query q̂ ∈ Q̂ fail in solving all κ number of (c, τ)-Max-IP. We bound this failure probability as

Pr[∃q̂ ∈ Q̂ s.t all (c, τ)-Max-IP fail] = n · (dDX

λ
)d · ( 1

10
)κ ≤ δ

where the last step follows from κ := d log(ndDX

λδ /).

For the success queries, it introduces a λ error in the inner product. Thus, the results is (c, τ, λ)-
Max-IP. Then, following Theorem B.2, we finish the proof.

Next, we show a modified Version of Theorem C.2 with (c, τ, λ)-Max-IP.
Theorem F.3 (Modified Version of Theorem C.2). Let MDP(S,A, H,P, r) denote a linear MDP
with core sets Score, Acore (see Definition A.7) and span matrix Φ (see Definition A.8). If we
query each φ(sj , aj) in the jth row of Φ for n = O(ε−2L2H4ι) times, where ι = log(Hd/p),
the output policy of Sublinear LSVI with (c, τ, λ)-Max-IP parameter c = 1 − C0L ·

√
ι/n and

λ = C0LH ·
√
ι/n would be ε-optimal with probability at least 1 − p. In other words, the regret

of Sublinear LSVI is at most O(C0LH
2
√
ι/n). Moreover, with Tinit · κ preprocessing time and

Sspace · κ space, the value iteration complexity of Sublinear LSVI is O(HSdAρ · κ), where κ :=
d log(ndDX/(λδ)), DX is the maximum diameter of weight.

Further more,

• If Tinit = O(SdA1+ρ) and Sspace = O(SA1+ρ + SdA), then ρ = 1− C0L
√
ι/n

4 .

• If Tinit = O(SdA1+o(1)) and Sspace = O(SA1+o(1) + SdA), then ρ = 1− C2
0L

2ι
8n .

Proof. We start with showing the modified version of value difference. Because the quantization
transforms (c, τ)-Max-IP into a (c, τ, λ)-Max-IP with a λ additive error, we rewrite the value differ-
ence as:

V ∗1 (s)− V̂1(s) ≤ E
π∗

[ H∑
h=1

[(Ph − P̂h)V̂h+1](sh, ah)
∣∣∣ s1 = s

]
+ (1− c)

H∑
h=1

(H + 1− h) + λ ·H
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= E
π∗

[ H∑
h=1

[(Ph − P̂h)V̂h+1](sh, ah)
∣∣∣ s1 = s

]
+

1− c
2
·H(H + 1) + λ ·H (46)

where the first step adds λ error over each step based on Lemma C.1, and the second step is a
reorganization.

Next, we bound the V ∗1 (s)− V̂1(s) as:

V ∗1 (s)− V̂1(s) ≤ E
π∗

[ H∑
h=1

[(Ph − P̂h)V̂h+1](sh, ah)|s1 = s
]

+
1− c

2
·H(H + 1) + λ ·H

≤ H · L · C0 ·H ·
√
ι/n+

1− c
2
·H(H + 1) + λ ·H

= L · C0 ·H2 ·
√
ι/n+

1− c
2
·H(H + 1) + λ ·H

≤ L · C0 ·H2 ·
√
ι/n+ (1− c)H2 + λ ·H

≤ 2C0LH
2
√
ι/n+ λ ·H

≤ 3C0LH
2
√
ι/n

≤ ε

where the first step follows from Eq. (46), the second step follows the upper bound of [(Ph −
P̂h)V̂h+1](s, a) in Eq. (25), the third step is an reorganization, the forth step follows from H ≥ 1

so that H2 ≥ H , the fifth step follows from 1 − c = C0L
√
ι/n, the sixth step follows from

λ = C0LH ·
√
ι/n, the seventh step follows from n = O(C2

0 · ε−2L2H4ι).

Using Theorem F.2, we derive the preprocessing time, space and query time for value iteration in
Sublinear LSVI. Because the value iteration complexity dominates Sublinear LSVI, the final runtime
complexity is O(HSdAρ · κ) with ρ strictly smaller than 1.

F.2 SUBLINEAR LSVI-UCB WITH ADAPTIVE Max-MatNorm QUERIES

In this section, we show how to tackle adaptive Max-MatNorm queries in sublinear LSVI-UCB.

We start with defining the quantized approximate Max-MatNorm.

Definition F.4 (Quantized Approximate Max-MatNorm). Let c ∈ (0, 1) and τ ∈ (0, 1). Let λ ≥ 0.
Given an n-point dataset Y ⊂ Sd−1, the goal of the (c, τ, λ)-Max-MatNorm is to build a data
structure that, given a query x ∈ Sd−1 with the promise that there exists a datapoint y ∈ Y with
〈x, y〉 ≥ τ , it reports a datapoint z ∈ Y with similarity 〈x, z〉 ≥ c ·Max-MatNorm(x, Y )− λ.

Next, we present how to extend quantized approximate Max-IP to approximate Max-MatNorm.

Theorem F.5 (A modified version of Theorem B.6). Let c ∈ (0, 1), τ ∈ (0, 1) and λ ∈ (0, 1).
Let vec denote the vectorization of d× d matrix into a d2 vector. Given a set of n-points Y and
yy> ∈ Sd2−1 for all y ∈ Y , one can construct a data structure with with Tinit · κ preprocessing time
and Sspace · κ space so that for every query x ∈ Rd×d with vec(x) ∈ Sd2−1 in an adaptive sequence
X = {x1, x2, · · · , xT }, we take query time O(d2nρ · κ):

• if Max-MatNorm(x, Y ) ≥ τ , then we output a vector in Y which is a (c, τ, λ)-
Max-MatNorm with respect to (x, Y ) with probability at least δ, where ρ := f(c, τ)+o(1).

• otherwise, we output fail.

where κ := d log(ndDX/(λδ)) and ρ ∈ (0, 1). We use DX to represent maximum diameter in `2
distance of all queries in X after vectorization.

Further more,

• If Tinit = O(d2n1+ρ) and Sspace = O(n1+ρ + d2n), then f(c, τ) = 1−τ2

1−c2τ2+τ2 .
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• If Tinit = O(d2n1+o(1)) and Sspace = O(n1+o(1) + d2n), then f(c, τ) = 2(1−τ2)2

(1−c2τ2)2 −
(1−τ2)4

(1−c2τ2)4 .

Proof. We start with applying (c2, τ2, λ)-Max-IP data structure over vec(x) and vec(Y Y >). Then,
we would obtain a z ∈ Y that

〈vec(x), vec(zz>)〉 ≥ c2 max
y∈Y
〈vec(x), vec(yy>)− λ〉 (47)

we could use it and derive the following propriety for z:

‖z‖x =
√
〈vec(x), vec(zz>)〉

≥
√
c2 max

y∈Y
〈vec(x), vec(yy>)〉 − λ

≥
√
c2 max

y∈Y
〈vec(x), vec(yy>)〉 −

√
λ

≥ cmax
y∈Y

√
〈vec(x), vec(yy>)〉 − λ

= cmax
y∈Y
‖y‖x − λ

where the second step follows from Eq. (47), the third step follows from Cauchy-Schwartz inequal-
ity, the forth follows from λ ∈ (0, 1), the last step is a reorganization.

Thus, z is the solution for (c, τ, λ)-Max-MatNorm(x, Y ). Next, applying Theorem F.2 , we finish
the proof.

Theorem F.6 (Modified Version of Theorem D.12). Let MDP(S,A, H,P, r) denote a linear MDP.
For any probability p ∈ (0, 1) that is fixed, if we set approximate Max-MatNorm parameter c = 1−
ι√
K

, quantization error λ ≤
√
H2K and Sublinear LSVI-UCB parameter β = Θ(dH

√
ι) with ι =

log(2dT/p), then the Sublinear LSVI-UCB (Algorithm 4) has regret at most O(Cβ ·
√
d3H4Kι2)

with probability 1 − p. Moreover, with Tinit · κ preprocessing time and Sspace · κ space, the value
iteration complexity of Sublinear LSVI-UCB is O(HKd2Aρ · κ), where κ := d log(ndDX/(λδ)),
DX is the maximum diameter of weight.

Further more

• If Tinit = O(Kd2A1+ρ) and Sspace = O(KA1+ρ +Kd2A), then ρ = 1− 1
4
√
K

.

• If Tinit = O(Kd2A1+o(1)) and Sspace = O(KA1+o(1) +Kd2A), then ρ = 1− 1
8K .

Proof. We start with showing the modified version of Q-function difference Q∗1(s, a) − Qk1(s, a).
Because the quantization transforms (c, τ)-Max-IP into a (c, τ, λ)-Max-IP with a λ additive error,
we rewrite the Q∗1(s, a)−Qk1(s, a) as:

Q∗1(s, a)−Qk1(s, a) ≤ (H − c1− cH

1− c
) +Hλ

Next, we could upper bound the regret with probability 1− p as:

Regret(K) ≤ 2KγH2 + 2H
√
Tι+ βH

√
2dKι+Hλ

= 2KγH2 + 2H
√
Tι+ Cβ ·

√
2d3H4Kι2 +Hλ

= 2
√
H4Kι2 + 2

√
H3Kι+ Cβ ·

√
2d3H4Kι2 +Hλ
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= 3
√
H4K + 2

√
H3Kι+ Cβ ·

√
2d3H4Kι2

≤ 2Cβ
√
d3H4Kι2

where the first step follows from Eq. (44), the second step follows from β = Cβ · dH
√
ι, the third

step follows from γ = 1√
K

, the forth step is a reorganization follows from λ ≤
√
H2K, the last step

follows from Cβ ≥ 100.

Using Theorem F.5, we derive the preprocessing time, space and query time for value iteration
in Sublinear LSVI-UCB. Because the value iteration complexity dominates LSVI-UCB, the final
runtime complexity is O(HKd2Aρ · κ) with ρ strictly smaller than 1. We alternate the S in prepro-
cessing and space by K since K > S. Note that to let ρ strict less than 1. We set c2 ∈ [0.5, 1) and
τ2 ∈ [0.5, 1).
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