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Abstract

Recent work has argued that Transformers are inherently low-pass filters
that gradually oversmooth the inputs, limiting generalization, especially
as model depth increases. How can Transformers achieve these successes
given this shortcoming? In this work we show that in fact Transformers are
not inherently low-pass filters. Instead, whether Transformers oversmooth
or not depends on the eigenspectrum of their update equations. Further,
depending on the task, smoothing does not harm generalization as model
depth increases.

1 Introduction

The performance of transformer models Vaswani et al. (2023) can quickly saturate as model
depth increases Kaplan et al. (2020); Wang et al. (2022). Recent work argues that it is
because they are inherently low-pass filters Wang et al. (2022); Park & Kim (2022); Guo
et al. (2023); Ali et al. (2023). In this work we show that in fact, Transformer models are
not inherently low-pass filters. We make the following contributions: 1. we characterize the
eigenspectrum of the Transformer update and its effect on oversmoothing as depth increases,
generalising prior work Wang et al. (2022); Ali et al. (2023). 2. we detail how ‘rank-collapse’
Dong et al. (2021); Noci et al. (2022) will occur except in extremely rare cases, answering
an open question about the role of the residual connection on rank-collapse. 3. we describe
a simple way to reparameterize the Transformer to control the filtering behavior of the
update. 4. we find that for certain tasks (e.g., image classification) smoothing does not
harm generalization, but improves it. For other tasks (e.g., text generation) enforcing either
smoothing or sharpening can hurt generalization. We derive a simple way to parameterize
the weights of the Transformer update equations that allows for control over its spectrum

2 Background

The Transformer Update. At their core, Transformers are a linear combination of a
set of ‘heads’. Each head includes a self-attention function on the input X ∈ Rn×d, A :=

Softmax
(

1√
k
XWQW

⊤
KX⊤

)
, where the Softmax(·) function is applied to each row individually.

Further, WQ,WK ∈ Rd×k are learned query and key weight matrices. This ‘attention map’
A then transforms the input to produce the output of a single head AXWV Wproj, where
WV ,Wproj ∈ Rd×d are learned value and projection weights. A residual connection is added
to produce the output Xℓ of any layer ℓ: Xℓ := Xℓ−1 +AℓXℓ−1WV,ℓWproj,ℓ, It is possible
to introduce further complexity by learning additional heads (i.e., additional A,WV ) and
summing all head outputs. For simplicity we will describe properties of the single-head
Transformer.
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Figure 1: Transformers can oversmooth, or not. Evolution of the system Xℓ =
Xℓ−1 +AXℓ−1WV Wproj.

Oversmoothing via Low-Pass Filtering. There are many ways to measure oversmooth-
ing, we opt here for the definition described in Wang et al. (2022) based on filtering, which
we found the most intuitive. The overall idea is that we can view the layers of a deep learning
model as a filtering operation that is applied repeatedly to X. If the filtering operation is
low-pass, it amplifies only the lowest frequency of X, smoothing X. On the other hand, a
high-pass filter will amplify all other frequencies.

Specifically, let F : Rn×d → Cn×d be the Discrete Fourier Transform (DFT). The DFT of
X can be computed via matrix multiplication: F(X) := FX, where F ∈ Cn×n is equal
to Fk,l := e2πi(k−1)(l−1) for all k, l ∈ {2, . . . , n} (where i :=

√
−1), and is 1 otherwise (i.e.,

in the first row and column). Define the Low Frequency Component (LFC), also called
the Direct Current, of X as LFC[X] := F−1diag([1, 0, . . . , 0])FX = (1/n)11⊤X. Further,
define the High Frequency Component (HFC), also called the Alternating Current, of X as
HFC[X] := F−1diag([0, 1, . . . , 1])FX = (I− (1/n)11⊤)X.
Definition 2.1 (Wang et al. (2022)). Given an endomorphism f : Rn → Rn where fL

denotes applying f repeatedly L times, f is a low-pass filter if and only if for all X ∈ Rn×d

lim
L→∞

∥HFC[fL(X)]∥2
∥LFC[fL(X)]∥2

= 0.

3 Do Transformers Always Oversmooth?

Preliminaries

We start by rewriting eq. (2) to simplify the analysis. Define the vec(M) operator as
converting any matrix M to a vector m by stacking its columns. We can rewrite eq. (2)
vectorized as follows

vec(Xℓ) = (I+W⊤
projW

⊤
V︸ ︷︷ ︸

:=H

⊗A)vec(Xℓ−1). (1)

This formulation is especially useful because vec(XL) = (I + H ⊗ A)Lvec(X). We now
introduce an assumption on A that is also used in Wang et al. (2022).
Assumption 3.1 (Wang et al. (2022)). The attention matrix is positive, i.e., A > 0, and
invertible.

Note A is also right-stochastic, i.e.,
∑

j ai,j = 1. This combined with Assumption 3.1
immediately implies the following proposition.
Proposition 3.2 (Meyer & Stewart (2023)). Given Assumption 3.1, all eigenvalues of A lie
within (−1, 1]. There is one largest eigenvalue that is equal to 1, with corresponding unique
eigenvector 1. No eigenvectors of A are equal to 0.
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The Eigenvalues

Consider the Transformer update with fixed A > 0,H := W⊤
projW

⊤
V , as described in eq. (1).

Let {λA
i ,v

A
i }ni=1 and {λH

j ,vH
j }dj=1 be the eigenvalue and eigenvectors of A and H. Let

the eigenvalues (and associated eigenvectors) be sorted as follows, λA
1 ≤ · · · ≤ λA

n and
|1 + λH

1 | ≤ · · · ≤ |1 + λH
d |. Let φH

1 , . . . , φH
d be the phases of λH

1 , . . . , λH
d . As the number of

layers L in the Transformer update eq. (1) increases, one eigenvalue of (I+H⊗A)L will
dominate the rest. Which eigenvalue(s) dominate will control the smoothing behavior of the
Transformer.
Definition 3.3. At least one of the eigenvalues of (I+H⊗A), i.e., (1 + λH

j λA
i ) has a larger

magnitude than all others, i.e., there exists j∗, i∗ (which may be a set of indices if there are
ties) such that |1 + λH

j∗λ
A
i∗ | > |1 + λH

j′λ
A
i′ | for all j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗.

These eigenvalues are called dominating.

The Features

Theorem 3.4. As the number of total layers L → ∞, the feature representation XL

converges. Which representation it converges to depends on the dominating eigenvalue,
as given in Theorem B.6. If a single eigenvalue dominates, there are two cases: (1) If
(1 + λH

j λA
n ) dominates then, XL → (1 + λH

j λA
n )

Lsj,n1v
H
j

⊤
, (2) If (1 + λH

j λA
1 ) dominates

then, XL → (1+λH
j λA

1 )
Lsj,1v

A
1 v

H
j

⊤ where sj,i := ⟨vQ−1
j,i , vec(X)⟩ and vQ−1

j,i is row ji in the
matrix Q−1 (here Q is the matrix of eigenvectors of (I+H⊗A)). If multiple eigenvalues
have the same dominating magnitude, the final representation XL converges to the sum of
the dominating terms.

Filtering

Theorem 3.5. For all X ∈ Rn×d, as the number of total layers L → ∞, if (1) (1 + λH
j λA

n )

dominates, limL→∞
∥HFC[XL]∥2

∥LFC[XL]∥2
= 0, and so (I + H ⊗ A) acts as a low-pass filter, as in

Definition 2.1. If (2) (1 + λH
j λA

1 ) dominates, limL→∞
∥HFC[XL]∥2

∥LFC[XL]∥2
̸= 0, and so (I+H⊗A)

does not act as a low-pass filter. If (3) multiple eigenvalues have the same dominating
magnitude, and there is at least one dominating eigenvalue (1 + λH

j λA
i ) where λA

i ̸= λA
n , then

eq. 7 holds and (I+H⊗A) does not act as a low-pass filter.

The proof is left to the Appendix. Wang et al. (2022) showed that if we just apply the
self-attention matrix A alone to produce XL, i.e., XL = ALX, then this model is always a
low-pass filter, as defined in Definition 2.1. Theorem 3.5 shows that the residual connection
and weights H can counteract this, so long as condition (2) or (3) holds.

4 A Reparameterization that Controls Filtering

Corollary 4.1. If the eigenvalues of H fall within [−1, 0), then at least one of {(1 + λH
d λA

1 ),
(1+λH

1 λA
1 )} dominates. If the eigenvalues of H fall within (0,∞), then (1+λH

d λA
n ) dominates.

Corollary 4.1 states that so long as we can ensure the eigenvalues of H lie in [−1, 0), the
ratio of high frequencies over low frequencies (Definition 2.1) increases. See the Appendix
for a proof. To ensure that the eigenvalues of H fall in these ranges, we propose to directly
parameterize its eigendecomposition. Specifically, define H as H = VHΛHV−1

H , where VH

is a full-rank matrix and ΛH is diagonal. We learn parameters VH by taking gradients
in the standard way (i.e., directly and through the inversion). To learn the diagonal of
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ΛH , i.e., diag(ΛH), we parameterize the sharpening model as diag(ΛH) := clip(ψ, [−1, 0])
(which we refer to in the following section using the superscript −), where ψ are tunable
parameters and clip(ψ, [l, u]) := min(max(ψ, l), u) forces all of ψ to lie in [l, u]. Similarly
we parameterize the smoothing model as diag(ΛH) := clip(ψ, [0, 1]) (referred to with the
superscript +).1 We also introduce a model that is neither dominated by smoothing nor
sharpening dynamic, targeted at natural language tasks. This is done to allow the model’s
filtering behaviour to be dictated solely by the attention matrix. For this model, the diagonal
matrix is diag(ΛH) := [|ψ|,−|ψ|,max(|ψ|),−max(|ψ|) − ϵ] where ϵ is a small learnable
parameter. The addition of ϵ is done to balance out the fact that the eigenvalue with the
largest norm of attention matrix is always 1 (we refer to this model with the superscript ∼).

5 Results

We base our image classification experiments on the efficient ViT-Ti model Touvron et al.
(2021a) our NLP experiments on Geiping & Goldstein (2023). We evaluate the vision models
on CIFAR100 and the language models are pretrained on the Pile dataset Gao et al. (2020)
and evaluated on SuperGLUE Wang et al. (2020). We then investigate (a) the distribution
of dominating eigenvalues and (b) the filtering properties of both existing Transformer
models and our proposed parameterizations (for all tasks: sharpening − and smoothing
+, and additionally for NLP: band-pass ∼). We compare the image classification and text
generation performance of these parameterizations and competing approaches. Crucially,
even though our theoretical analysis applies for fixed attention A and weights H, we use
existing model architectures throughout, i.e., including different attention/weights
each layer, multi-head attention, layer normalization (arranged in the pre-LN format Xiong
et al. (2020)), and fully-connected layers.2

Existing models do not converge to low-pass filters. We investigate which eigenvalues
dominate the Transformer updates of pre-trained and newly trained models in Table 1. To
compute this we average over all heads and all layers for H and A, and also over all batches
for A. We notice that even existing models (ViT-Ti Touvron et al. (2021a), and Crammed
Bert Geiping & Goldstein (2023)) have a mixture of eigenvalues that lead to both sharpening
and smoothing. Both FeatScale Wang et al. (2022) and Centered Attention Ali et al. (2023)
seem to increase the proportion of eigenvalues that lead to oversmoothing. To further
measure how much a model acts as a low-pass filter we compute the ratio of high frequencies
over low frequencies (Definition 2.1), i.e., ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
for each layer ℓ (and averaged over all

batches) in vision Transformer models, in Figure 5. We observe that the average value of
∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
for ViT-Ti decreases as layers are increased but does not approach 0, instead

roughly halving in value. This indicates

Reparameterization gives control over Transformer filtering behavior. We see
that ViT-Ti− further sharpens while ViT-Ti+ further smooths. This shows that even though
our theory only applies to repeated attention A and weight H matrices, and even though
we are only parameterizing H we can still control the sharpening/smoothing behavior of a
model that includes different A,H every layer, as well as multiple heads, layer normalization
and fully-connected layers. For text generation, we see in Figure 6 that we have less control
over filtering as the fully-connected layers seem to more strongly drive the filtering behavior.

Image classification. Figure 2 shows the train and test error of image classification on
CIFAR100 for all models. We see that the smoothing model ViT-Ti+ matches or outperforms
the other models in test error. Parameterizing models to smooth improves generalization.

1While we could have allowed the smoothing model to use the space of positive reals via
diag(ΛH) := |ψ| , we found that restricting the space of allowed eigenvalues stabilized training.

2If a model has multiple heads we will define WV = VH and Wproj = ΛHV⊤
H).
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ViT-Ti [Touvron et al., 2021]
ViT-Ti + FeatScale [Wang et al., 2022]
ViT-Ti + Centered Attention [Ali et al., 2023]
ViT-Ti-

ViT-Ti+

Figure 2: Image classification. The train and test error results on CIFAR100 for models
with {12, 24, 48} layers.
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Figure 3: Text generation. The test performance results on SuperGlue tasks for models
with {16, 32} layers.

Text generation. Figure 6 details the performance (the higher the better) of Crammed
Bert models on SuperGlue tasks (following the literature we report test F1 for the CB and
MultiRC benchmarks, and test accuracy for the rest). We observe that both Crammed Bert−
and Crammed Bert+ largely harm the performance of the original model. Whereas the
Crammed Bert∼ model can match or improve the performance in some cases by balancing
sharpening and smoothing. Different from image classification, text generation seems to
need a more complex filter.

6 Related Work

Oversmoothing is a concept that has been widely discussed in the graph neural network
literature Rusch et al. (2023). Giovanni et al. (2023) prove that graph convolutions can
enhance high frequencies. Their analysis inspires our work. For transformers, Zhou et al.
(2021), Gong et al. (2021) and Raghu et al. (2021) found that feature similarity in vision
Transformers increased with depth and Dong et al. (2021) show that self-attention layers
converge doubly exponentially to a rank 1 matrix. Many works around this time found
that it was possible to improve vision Transformers by replacing self-attention layers with
convolutional layers (Han et al., 2021; Liu et al., 2021; Jiang et al., 2021; Touvron et al.,
2021b; Yuan et al., 2021; Park & Kim, 2022). Other works introduced new layers to avoid
oversmoothing (Wang et al., 2022; Guo et al., 2023; Ali et al., 2023; Choi et al., 2023).
Oversmoothing also occurs in Transformer architectures for NLP Shi et al. (2022).

7 Discussion

In this paper, we presented a new analysis detailing how the eigenspectrum of attention and
weight matrices impacts the final representation produced by the Transformer update, as
depth is increased. Contrary to prior work, this analysis revealed that Transformers are not
inherently low-pass filters. Empirically we show that existing Transformer models already
have properties that partially prevent oversmoothing. We introduce a new parameterization
for the Transformer weights that is guaranteed to avoid oversmoothing. This parameterization
is prone to overfitting, while the the smoothing parameterization scales better with depth.

5



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

References

Ali, A., Galanti, T., and Wolf, L. Centered self-attention layers. arXiv preprint
arXiv:2306.01610, 2023.

Brualdi, R. A. and Mellendorf, S. Regions in the complex plane containing the eigenvalues
of a matrix. The American mathematical monthly, 101(10):975–985, 1994.

Choi, J., Wi, H., Kim, J., Shin, Y., Lee, K., Trask, N., and Park, N. Graph convolutions
enrich the self-attention in transformers! arXiv preprint arXiv:2312.04234, 2023.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Randaugment: Practical automated data
augmentation with a reduced search space, 2019.

Dong, Y., Cordonnier, J.-B., and Loukas, A. Attention is not all you need: Pure attention
loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pp. 2793–2803. PMLR, 2021.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H.,
Thite, A., Nabeshima, N., et al. The Pile: An 800GB dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027, 2020.

Geiping, J. and Goldstein, T. Cramming: Training a language model on a single gpu in one
day. In International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Giovanni, F. D., Rowbottom, J., Chamberlain, B. P., Markovich, T., and Bronstein, M. M.
Understanding convolution on graphs via energies. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=v5ew3FPTgb.

Gong, C., Wang, D., Li, M., Chandra, V., and Liu, Q. Vision transformers with patch
diversification. arXiv preprint arXiv:2104.12753, 2021.

Guo, X., Wang, Y., Du, T., and Wang, Y. Contranorm: A contrastive learning perspective
on oversmoothing and beyond. arXiv preprint arXiv:2303.06562, 2023.

Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., and Wang, Y. Transformer in transformer.
Advances in Neural Information Processing Systems, 34:15908–15919, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification, 2015.

Jiang, Z., Hou, Q., Yuan, L., Zhou, D., Jin, X., Wang, A., and Feng, J. Token labeling:
Training a 85.5% top-1 accuracy vision transformer with 56m parameters on imagenet.
arXiv preprint arXiv:2104.10858, 3(6):7, 2021.

Kaddour, J., Key, O., Nawrot, P., Minervini, P., and Kusner, M. J. No train no gain:
Revisiting efficient training algorithms for transformer-based language models, 2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization, 2019.

Meyer, C. D. and Stewart, I. Matrix analysis and applied linear algebra. SIAM, 2023.

Noci, L., Anagnostidis, S., Biggio, L., Orvieto, A., Singh, S. P., and Lucchi, A. Signal
propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

6

https://openreview.net/forum?id=v5ew3FPTgb


Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Park, N. and Kim, S. How do vision transformers work? In International Conference on
Learning Representations, 2022.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and Dosovitskiy, A. Do vision
transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34:12116–12128, 2021.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on oversmoothing in graph neural
networks, 2023.

Schacke, K. On the kronecker product. Master’s thesis, University of Waterloo, 2004.

Shi, H., Gao, J., Xu, H., Liang, X., Li, Z., Kong, L., Lee, S., and Kwok, J. T. Revisiting
over-smoothing in bert from the perspective of graph. arXiv preprint arXiv:2202.08625,
2022.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. Training
data-efficient image transformers & distillation through attention, 2021a.

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and Jégou, H. Going deeper with
image transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 32–42, 2021b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. Attention is all you need, 2023.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O.,
and Bowman, S. R. Superglue: A stickier benchmark for general-purpose language
understanding systems, 2020.

Wang, P., Zheng, W., Chen, T., and Wang, Z. Anti-oversmoothing in deep vision transformers
via the fourier domain analysis: From theory to practice. In International Conference on
Learning Representations, 2022.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang,
L., and Liu, T. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay, F. E., Feng, J., and Yan, S.
Tokens-to-token vit: Training vision transformers from scratch on imagenet. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 558–567, 2021.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. Cutmix: Regularization strategy
to train strong classifiers with localizable features, 2019.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical risk
minimization, 2018.

Zhou, D., Kang, B., Jin, X., Yang, L., Lian, X., Jiang, Z., Hou, Q., and Feng, J. Deepvit:
Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

7



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Appendix

A Implementation Details

Initialization. We initialize H = VHΛHV−1
H to avoid too strong filtering behaviors and to

mimic the initializations used in the ViT-Ti and Bert baselines. The baselines are initialized
using He initialization He et al. (2015). We also initialize VH with the same method.
Randomly inialized matrices will typically have normally distributed eigenvalues centered at
0, so we initialize ΛH using a normal distribution. Corollary 4.1 tells us that eigenvalues
within the range [-1,0) avoid oversmoothing, however we observe that large eigenvalues lead
to unstable training. To stabilize training, we initialize ΛH with a normal distribution with
mean 0 and standard deviation 0.1.

Image Classification: Training & Architecture Details. We base our image classifi-
cation experiments on the ViT-Ti model Touvron et al. (2021a). Specifically, we train all
models on CIFAR100 for 300 epochs using the cross-entropy loss and the AdamW optimizer
Loshchilov & Hutter (2019). Our setup is the one used in Park & Kim (2022) which itself
follows the DeiT training recipe Touvron et al. (2021a). We use a cosine annealing schedule
with an initial learning rate of 1.25× 10−4 and weight decay of 5× 10−2. We use a batch
size of 96. We use data augmentation including RandAugment Cubuk et al. (2019), CutMix
Yun et al. (2019), Mixup Zhang et al. (2018), and label smoothing Touvron et al. (2021a).
The models were trained on two Nvidia RTX 2080 Ti GPUs.

Text Generation: Training & Architecture Details. We base our NLP experiments
on Geiping & Goldstein (2023), using their code-base. Following this work we pre-train
encoder-only ‘Crammed’ Bert models with a maximum budget of 24 hours. We use a masked
language modeling objective and train on the Pile dataset Gao et al. (2020). The batch size
is 8192 and the sequence length is 128. We evaluate models on SuperGLUE Wang et al.
(2020) after fine-tuning for each task. In order to ensure a fair comparison, all models are
trained on a reference system with an RTX 4090 GPU. We use mixed precision training with
bfloat16 as we found it to be the most stable Kaddour et al. (2023).

B Proofs

Proposition B.1 (Meyer & Stewart (2023)). Given Assumption 3.1, all eigenvalues of
A lie within (−1, 1]. There is one largest eigenvalue that is equal to 1, with corresponding
unique eigenvector 1. No eigenvectors of A are equal to 0.

Proof. First, because A is positive, by the Perron-Frobenius Theorem Meyer & Stewart
(2023) all eigenvalues of A are in R (and so there exist associated eigenvectors that are also
in R). Next, recall the definition of an eigenvalue λ and eigenvector v: Av = λv. Let us
write the equation for any row i ∈ {1, . . . , n} explicitly:

ai1v1 + · · ·+ ainvn = λvi.

Further let,
vmax := max{|v1|, . . . , |vn|} (2)

Note that vmax > 0, otherwise it is not a valid eigenvector. Further let kmax be the index of
v corresponding to vmax. Then we have,

|λ|vmax = |akmax1v1 + · · ·+ akmaxnvn|
≤ akmax1|v1|+ · · ·+ akmaxn|vn|
≤ akmax1|vkmax

|+ · · ·+ akmaxn|vkmax
|

= (akmax1 + · · ·+ akmaxn)|vkmax
| = |vmax|
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The first inequality is given by the triangle inequality and because aij > 0. The second is
given by the definition of vmax as the maximal element in v. The final inequality is given by
the definition of A in eq. (2) as right stochastic (i.e., all rows of A sum to 1) and because
|vkmax

| = |vmax|. Next, note that because vmax > 0, it must be that λ ≤ 1. Finally, to show
that the one largest eigenvalue is equal to 1, recall by the definition of A in eq. (2) that
A1 = 1, where 1 is the vector of all ones. So 1 is an eigenvector of A, with eigenvalue
λ∗ = 1. Because aij > 0, and we showed above that all eigenvalues must lie in in [−1, 1],
by the Perron-Frobenius theorem Meyer & Stewart (2023) λ∗ = 1 is the Perron root. This
means that all other eigenvalues λi satisfy the following inequality |λi| < λ∗. Further 1 is
the Perron eigenvector, and all other eigenvectors have at least one negative component,
making 1 unique. Finally, because A is invertible, it cannot have any 0 eigenvalues Brualdi
& Mellendorf (1994).

Theorem B.2. Consider the Transformer update with fixed A > 0,H := W⊤
projW

⊤
V , as

described in eq. (1). Let {λA
i ,v

A
i }ni=1 and {λH

j ,vH
j }dj=1 be the eigenvalue and eigenvectors of A

and H. Let the eigenvalues (and associated eigenvectors) be sorted as follows, λA
1 ≤ · · · ≤ λA

n
and |1 + λH

1 | ≤ · · · ≤ |1 + λH
d |. Let φH

1 , . . . , φH
d be the phases of λH

1 , . . . , λH
d . As the number

of layers L → ∞, one eigenvalue dominates the rest (multiple dominate if there are ties):

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

1 λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 > 0

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
k λA

1 |
(1 + λH

k λA
1 ) if |1 + λH

d λA
n | < |1 + λH

k λA
1 |

}
if λA

1 < 0, φH
d ∈ [−π

2 ,
π
2 ]

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

d λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 < 0, φH
d ∈ (π2 , π] ∪ [−π,−π

2 )

where λH
k is the eigenvalue with the largest index k such that φH

k ∈ (π/2, π] ∪ [−π,−π/2).

Proof. First, note that given the eigendecompositions of H := W⊤
projW

⊤
V and A > 0, as

{λA
i ,v

A
i }ni=1 and {λH

j ,vH
j }dj=1, the eigenvalues and eigenvectors of (I+H⊗A) are equal to

(1 + λH
j λA

i ) and vH
j ⊗ vA

i for all j ∈ {1, ..., d} and i ∈ {1, . . . , n} Schacke (2004) (Theorem
2.3). Recall that eigenvalues (and associated eigenvectors) are sorted in the following order
λA
1 ≤ · · · ≤ λA

n and |1 + λH
1 | ≤ · · · ≤ |1 + λH

d |. Now at least one of the eigenvalues of
(I+H⊗A), i.e., (1 + λH

j λA
i ) has a larger magnitude than all others, i.e., there exists j∗, i∗

(which may be a set of indices if there are ties) such that |1 + λH
j∗λ

A
i∗ | > |1 + λH

j′λ
A
i′ | for all

j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗. As L → ∞ the expression (1 + λH
j∗λ

A
i∗)

L will
dominate all eigenvalue expressions (1 + λH

j′λ
A
i′ )

L (again multiple will if there are ties). Our
goal is to understand the identity of λH

j∗λ
A
i∗ for all possible values of λH , λA. For simplicity

we will assume there are no ties, i.e., j∗, i∗ each denote a single index. In this case we only
need to consider strict inequalities of λH , λA (as equalities indicate that multiple eigenvalues
dominate).

First recall that λA
i ∈ (−1, 1] and λA

n = 1. A useful way to view selecting λH
j λA

i to maximize
|1 + λH

j λA
i | is as maximizing distance to −1. If (i), λA

1 > 0 then λA
1 always shrinks λH

j

to the origin. If φH
j ∈ [−π/2, π/2] then this shrinking will always bring λH

j closer to −1.
If instead φH

j ∈ (π/2, π] ∪ [−π,−π/2) then this shrinking can bring λH
j farther from −1.

The eigenvalue it can bring farthest from −1 is λH
1 (as λH

1 is already farthest from −1
given that |1 + λH

1 | ≤ · · · ≤ |1 + λH
d |). If this point is farther from −1 than λH

d λA
n , i.e., if

|1 + λH
1 λA

1 | > |1 + λH
d λA

n | then (1 + λH
1 λA

1 ) dominates. Otherwise, (1 + λH
d λA

n ) dominates. If
instead (ii), λA

1 < 0 then it is possible to ‘flip’ λH
j across the origin, and so the maximizer

depends on φH
d . If a) φH

d ∈ [−π/2, π/2] then let λH
k be the eigenvalue with the largest index

k such that φH
k ∈ (π/2, π]∪ [−π,−π/2). It is possible that ‘flipping’ this eigenvalue across the

origin makes it farther away than λH
d , i.e., |1+λH

k λA
1 | > |1+λH

d λA
n |. In this case (1+λH

k λA
1 )

dominates, otherwise (1 + λH
d λA

n ) dominates. If instead b) φH
d ∈ (π/2, π] ∪ [−π,−π/2) then

9
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either |1 + λH
d λA

n | > |1 + λH
j′λ

A
i′ | for all j′ ≠ d and i′ ≠ n, and so (1 + λH

d λA
n ) dominates, or

‘flipping’ λH
d increases its distance from −1, and so |1 + λH

d λA
1 | > |1 + λH

j′λ
A
i′ | for all j′ ̸= d

and i′ ̸= n, and so (1 + λH
d λA

1 ) dominates.

Theorem B.3. As the number of total layers L → ∞, the feature representation XL

converges. Which representation it converges to depends on the dominating eigenvalue,
as given in Theorem B.6. If a single eigenvalue dominates, there are two cases: (1) If
(1 + λH

j λA
n ) dominates then,

XL → (1 + λH
j λA

n )
Lsj,n1v

H
j

⊤
, (3)

(2) If (1 + λH
j λA

1 ) dominates then,

XL → (1 + λH
j λA

1 )
Lsj,1v

A
1 v

H
j

⊤
(4)

where sj,i := ⟨vQ−1
j,i , vec(X)⟩ and vQ−1

j,i is row ji in the matrix Q−1 (here Q is the matrix of
eigenvectors of (I+H⊗A)). If multiple eigenvalues have the same dominating magnitude,
the final representation XL converges to the sum of the dominating terms.

Proof. Recall that the eigenvalues and eigenvectors of (I+H⊗A) are equal to (1 + λH
j λA

i )

and vH
j ⊗ vA

i for all j ∈ {1, ..., d} and i ∈ {1, . . . , n}. This means,

vec(XL) =
∑
i,j

(1 + λH
j λA

i )
L⟨vQ−1

j,i , vec(X)⟩(vH
j ⊗ vA

i ). (5)

Recall that vQ−1
j,i is row ji in the matrix Q−1, where Q is the matrix of eigenvectors vH

j ⊗vA
i .

Further recall that vA
i = 1. As described in Theorem B.6, as L → ∞ at least one of the

eigenvalues pairs λH
j λA

i will dominate the expression (1 + λH
j λA

i )
L, which causes vec(XL) to

converge to the dominating term. Finally, we can rewrite, v1 ⊗ v2 as vec(v2v
⊤
1 ). Now all

non-scalar terms have vec(·) applied, so we can remove this function everywhere to give the
matrix form given in eq. (3) and eq. (4).

Corollary B.4. Let E be the set of pairs of indices (j, i) such that |1 + λH
j λA

i | is equal
to the dominating eigenvalue magnitude. Define a unique pair set U ⊆ E, for which the
following holds: (j, i) ∈ U iff (j, i) ∈ E and (j, i′), (j′, i) /∈ U , for all i′ ∈ {1, . . . , n} \ i and
j′ ∈ {1, . . . , d} \ j. Define a maximal unique pair set U∗ as |U∗| ≥ |U| for all unique pair
sets U . As L → ∞, the rank of XL converges to |U∗|.

Proof. First recall that the rank of a matrix M is the smallest number k such that M can
be written as a sum of k rank-1 matrices. Next note that if we have E = {(j, i), (j′, i)} for
j ̸= j′ then we have

XL → aj,iv
A
i v

H
j

⊤
+ aj′,iv

A
i v

H
j′

⊤
= aj,iv

A
i (v

H
j

⊤
+

aj′,i
aj,i

vH
j′

⊤
),

where aj,i := (1 + λH
j λA

i )
Lsj,i. This shows that XL is rank 1, which agrees in this example

with |U∗| = 1 (the same holds for E = {(j, i), (j, i′)}). In general, whenever the same index
appears in different pairs in E , we can group all associated terms in the expression for XL

into a single rank-1 term. Therefore, an element in a unique pair set U corresponds to a
grouped rank-1 term in the expression for XL. Every element in a maximal unique pair set
U∗ corresponds 1-to-1 to every grouped rank-1 term in the expression for XL. So we can
write XL as,

XL →
∑

(j,i)∈U∗

aj,ig
A
i g

H
j

⊤
, (6)

where each gA
i ,g

H
j are potentially grouped terms (i.e., linear combinations of vA

i ,v
H
j ).

Further, none of the elements of the above sum can be grouped to yield a sum with fewer
rank-1 terms. Therefore, the rank of XL approaches |U∗|, and we are done.

10
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Corollary B.5. If the eigenvalues of H fall within [−1, 0), then at least one of {(1+λH
d λA

1 ),
(1+λH

1 λA
1 )} dominates. If the eigenvalues of H fall within (0,∞), then (1+λH

d λA
n ) dominates.

Proof. Let λH
1 ≤ · · · ≤ λH

d . Again we can think of selecting λH
j λA

i that maximizes |1+λH
j λA

i |
as maximizing the distance of λH

j λA
i to −1. Consider the first case where λH

1 , · · · , λH
d ∈

[−1, 0), and so λH
1 is the closest eigenvalue to −1 and λH

d is the farthest. If λA
1 > 0 then all

λA can do is shrink λH to the origin, where λA
1 shrinks λH the most. The closest eigenvalue

to the origin is λH
d , and so (1 + λH

d λA
1 ) dominates. If instead λA

1 < 0, then we can ‘flip’
λH
j over the origin, making it farther from −1 than all other λH

j′ . The eigenvalue that we
can ‘flip’ the farthest from −1 is λH

1 , and so (1 + λH
1 λA

1 ) dominates. If all eigenvalues of
H are equal, then both (1 + λH

d λA
1 ) and (1 + λH

1 λA
1 ) dominate. For the second case where

λH
1 , · · · , λH

d ∈ (0,∞) the result follows directly from the first case in Theorem C.1, and so
we are done.

Corollary B.6. If the phases of λH
1 , . . . , λH

d all fall within specific ranges, the dominating
eigenvalue conditions can be simplified as follows:

(1 + λH
d λA

n ) if φH
j ∈ [−π

2 ,
π
2 ], ∀j

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
1 λA

1 |
(1 + λH

1 λA
1 ) if |1 + λH

d λA
n | < |1 + λH

1 λA
1 |

}
if λA

1 > 0

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

d λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 < 0

 if φH
j ∈ (π2 , π] ∪ [−π,−π

2 ), ∀j

Proof. The proof is similar to that of Theorem B.6 except here we consider special cases.

if φH
j ∈ [−π/2, π/2] for all j ∈ {1, . . . , d}. First recall that λA

i ∈ (−1, 1] and λA
n = 1.

As φH
j ∈ [−π/2, π/2], we have that |1 + λH

d λA
n | > |1 + λH

j′λ
A
i′ | for all j′ ∈ {1, . . . , d − 1}

and i′ ∈ {1, . . . , n − 1}. This is because, if (i), λA
1 > 0, (and so λA

i > 0 for all i) then
arg(λH

j′λ
A
i′ ) ∈ [−π/2, π/2], where arg(a) is the argument or ‘phase’ or a ∈ C. This combined

with the fact that |λH
j′λ

A
i′ | < |λH

d λA
n | means that |1 + λH

j′λ
A
i′ | < |1 + λH

d λA
n |. This because for

any two points a, a′ where we have that arg(a), arg(a′) ∈ [−π/2, π/2] and |a′| < |a|, then it
also holds that |1 + a′| < |1 + a|. Therefore (1 + λH

d λA
n ) dominates. If instead (ii), λA

1 < 0
then for any negative eigenvalues λA

i− < 0 we have that arg(λH
j λA

i−) ∈ (π/2, π] ∪ [−π,−π/2)

for all j. However, for each of these points we have that |1 + λH
j λA

i− | < |1 + λH
j λA

n |.
This is because for any r ∈ (−1, 0) and point b where arg(b) ∈ [−π/2, π/2] we have that
|1 + r ∗ b| < |1 + b|. Further note that |1 + λH

j λA
n | < |1 + λH

d λA
n | from our definitions: λA

n = 1

and |1 + λH
1 | < · · · < |1 + λH

d |. And so (1 + λH
d λA

n ) dominates. For the remaining positive
eigenvalues λA

i+ ≥ 0 we are in the same situation as (i), and so we are done.

if φH
j ∈ (π/2, π]∪[−π,−π/2) for all j ∈ {1, . . . , d}. If (a), λA

1 > 0 then either |1+λH
d λA

n | >
|1 + λH

j′λ
A
i′ | for all j′ ̸= d and i′ ≠ n, and so (1 + λH

d λA
n ) dominates, or shrinking λH

1 to
the origin makes it the farthest from −1, i.e, |1 + λH

1 λA
1 | > |1 + λH

j′λ
A
i′ |, and so (1 + λH

1 λA
1 )

dominates. If (b) λA
1 < 0 then either |1+λH

d λA
n | > |1+λH

j′λ
A
i′ |, and so (1+λH

d λA
n ) dominates,

or ‘flipping’ λH
d across the origin makes it farthest from −1, i.e., |1 + λH

d λA
1 | > |1 + λH

j′λ
A
i′ |,

and so (1 + λH
d λA

1 ) dominates.

Theorem B.3. For all X ∈ Rn×d, as the number of total layers L → ∞, if (1) (1 + λH
j λA

n )
dominates,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= 0, (7)
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and so (I+H⊗A) acts as a low-pass filter, as in Definition 2.1. If (2) (1+λH
j λA

1 ) dominates,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

̸= 0, (8)

and so (I+H⊗A) does not act as a low-pass filter. If (3) multiple eigenvalues have the
same dominating magnitude, and there is at least one dominating eigenvalue (1 + λH

j λA
i )

where λA
i ̸= λA

n , then eq. (8) holds and (I+H⊗A) does not act as a low-pass filter.

Proof. If (1), as L → ∞ we have from Theorem 3.4 that,

lim
L→∞

XL = (1 + λH
j λA

n )
Lsj,n1v

H
j

⊤
. (9)

If we plug this into the expression in Definition 2.1 of a low-pass filter we get,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= lim
L→∞

√
∥HFC[XL]∥22

∥XL −HFC[XL]∥22

= lim
L→∞

√
∥(I− 1

n11
⊤)XL∥22

∥XL − (I− 1
n11

⊤)XL∥22

= lim
L→∞

√√√√ ∥(I− 1
n11

⊤)(1 + λH
j λA

n )
Lsj,n1vH

j
⊤∥22

∥XL − (I− 1
n11

⊤)(1 + λH
j λA

n )
Lsj,n1vH

j
⊤∥22

= lim
L→∞

√√√√ ∥(1 + λH
j λA

n )
Lsj,n(1vH

j
⊤ − 1vH

j
⊤
)∥22

∥XL − (1 + λH
j λA

n )
Lsj,n(1vH

j
⊤ − 1vH

j
⊤
)∥22

= 0,

where (17) is due to the fact that (1/n)11⊤M averages the columns of any matrix M ∈ Rn×r.
This means that (1/n)11⊤1vH

j
⊤
= 1vH

j
⊤ as 1vH

j
⊤ has identical values in each column.

If (2) we have from Theorem 3.4 that,

lim
L→∞

XL = (1 + λH
j λA

1 )
Lsj,1v

A
1 v

H
j

⊤
. (10)

Plugging this into Definition 2.1 we get,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= lim
L→∞

√
∥HFC[XL]∥22

∥XL −HFC[XL]∥22

= lim
L→∞

√
∥(I− 1

n11
⊤)XL∥22

∥XL − (I− 1
n11

⊤)XL∥22

= lim
L→∞

√√√√ ∥(I− 1
n11

⊤)(1 + λH
j λA

1 )
Lsj,1vA

1 v
H
j

⊤∥22
∥XL − (I− 1

n11
⊤)(1 + λH

j λA
1 )

Lsj,1vA
1 v

H
j

⊤∥22

= lim
L→∞

√√√√ ∥(1 + λH
j λA

1 )
Lsj,1(vA

1 v
H
j

⊤ − 1
n11

⊤vA
1 v

H
j

⊤
)∥22

∥XL − (1 + λH
j λA

1 )
Lsj,1(vA

1 v
H
j

⊤ − 1
n11

⊤vA
1 v

H
j

⊤
)∥22

̸= 0.

The final line holds because in general (1/n)11⊤vA
1 v

H
j

⊤ ̸= vA
1 v

H
j

⊤, unless vA
1 = c1 for

some c ∈ R. However, this is impossible given Assumption 3.1, as the Perron-Frobenius
Theorem states that there is only one eigenvector of A that has all positive real entries.
As we know vA

n = 1, there is no other eigenvector of A such that vA
i = c1. Therefore,

limL→∞
∥HFC[XL]∥2

∥LFC[XL]∥2
> 0.

12
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If instead, (3), then by the definition of E in Corollary ?? we have that,

lim
L→∞

XL =
∑

(j,i)∈E

(1 + λH
j λA

i )
Lsj,iv

A
i v

H
j

⊤
. (11)

Therefore,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= lim
L→∞

√√√√ ∥
∑

(j,i)∈E(1 + λH
j λA

j )
Lsj,1(vA

i v
H
j

⊤ − 1
n11

⊤vA
i v

H
j

⊤
)∥22

∥XL −
∑

(j,i)∈E(1 + λH
j λA

j )
Lsj,1(vA

i v
H
j

⊤ − 1
n11

⊤vA
i v

H
j

⊤
)∥22

̸= 0.

The final line follows so long as vA
i v

H
j

⊤ ̸= 1vH
j

⊤ for at least one (j, i) ∈ E . If this is true

then we have one term in the sums above for which (1/n)11⊤vA
i v

H
j

⊤ ̸= vA
i v

H
j

⊤. This is
because vA

i ≠ c1 (by Assumption 3.1 and the Perron-Frobenius Theorem, as described in
the proof of condition (2)). As we know that there is at least one dominating eigenvalue
(1 + λH

j λA
i ) where λA

i ≠ λA
n (this is given in the Theorem statement), then vA

i v
H
j

⊤ ̸= 1vH
j

⊤,
and so we are done.

C Additional Theorems

If λH ∈ R. The following is a special case of Theorem B.6 where all eigenvalues of H are
real.
Theorem C.1 (eigenvalues λH ∈ R). Consider the Transformer update with fixed
A > 0,H := W⊤

projW
⊤
V , as described in eq. (1). Let {λA

i ,v
A
i }ni=1 and {λH

j ,vH
j }dj=1 be

the eigenvalue and eigenvectors of A and H. Let the eigenvalues (and associated eigen-
vectors) be sorted in ascending order i.e., λA

1 ≤ · · · ≤ λA
n and λH

1 ≤ · · · ≤ λH
d . Let the

eigendecomposition of (I +W⊤
projW

⊤
V ⊗A) be QΛQ−1, where Λji = (1 + λH

j λA
i ). As the

number of total layers L → ∞, one of four possible eigenvalues dominate the rest (multiple
dominate if there are ties):

(1 + λH
d λA

n ) if λH
j > 0, ∀j ∈ {1, . . . , d}

(1 + λH
d λA

n ) if λH
d + 2 > |λH

1 |
(1 + λH

1 λA
1 ) if |1 + λH

1 λA
1 | > |1 + λH

1 λA
n |

(1 + λH
1 λA

n ) if |1 + λH
1 λA

1 | < |1 + λH
1 λA

n |

}
if λH

d + 2 < |λH
1 |

 if λH
1 < 0, λH

d > 0

(1 + λH
d λA

1 ) if |1 + λH
d λA

1 | > |1 + λH
1 λA

n |
(1 + λH

1 λA
n ) if |1 + λH

d λA
1 | < |1 + λH

1 λA
n |

}
if λA

1 > 0, λH
1 > −2

(1 + λH
1 λA

n ) if λA
1 > 0, λH

1 < −2

(1 + λH
1 λA

1 ) if λA
1 < 0, λH

1 > −2

(1 + λH
1 λA

1 ) if |1 + λH
1 λA

1 | > |1 + λH
1 λA

n |
(1 + λH

1 λA
n ) if |1 + λH

1 λA
1 | < |1 + λH

1 λA
n |

}
if λA

1 < 0, λH
1 < −2


if λH

j < 0, ∀j ∈ {1, . . . , d}

Proof. Our goal is again to characterize the identity of λH
j∗λ

A
i∗ where |1+λH

j∗λ
A
i∗ | > |1+λH

j′λ
A
i′ |

for all j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗, for all ranges of λH , λA. This is because
(1+λH

j∗λ
A
i∗)

L will dominate as L → ∞. We will again assume there are no ties i.e., j∗, i∗ each
denote a single index. Given this, we detail each case described in the theorem statement.

if λH
j > 0 for all j ∈ {1, . . . , d}. First recall that λA

i ∈ (−1, 1] and λA
n = 1. As λH

j > 0, we
have that |1 + λH

d λA
n | > |1 + λH

j′λ
A
i′ | for all j′ ∈ {1, . . . , d− 1} and i′ ∈ {1, . . . , n− 1}. This

is because, by definition λH
d λA

n > λH
j′λ

A
i′ . Further, 1 + λH

d λA
n > |1 + λH

j′λ
A
i′ | as the largest

|1 + λH
j′λ

A
i′ | can be is either (i) |1 − ϵλH

d | for 0 < ϵ < 1 or (ii) |1 + λH
d−1λ

A
n | (i.e., in (i) λH

d

13
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CIFAR100 The Pile

Model ViT-Ti FeatScale Cent. Attn. ViT-Ti− ViT-Ti+ Cram. Bert Cram. Bert− Cram. Bert+ Cram. Bert∼

(1 + λH
j λA

n ) 73.99% 100% 88.51% 0% 100% 90% 0% 100% 100%
(1 + λH

j λA
1 ) 26.01% 0% 11.49% 100% 0% 10% 100% 0% 0%

Table 1: Distribution of dominating eigenvalues. We compare different vision models
trained on CIFAR100 and language models trained on The Pile, and count the percentage of
cases where the dominating eigenvalue is (1 + λH

j λA
n ) or (1 + λH

j λA
1 ).

is negated by λA
1 and in (ii) λH

d−1 is the next largest value of λH). For (i), it must be that
1 + λH

d λA
n > |1− ϵλH

d | as λH
d > 0. For (ii) λH

d > λH
d−1 > 0 (as we assume there are no ties),

and so |1 + λH
d λA

n | > |1 + λH
d−1λ

A
n |. Therefore (1 + λH

d λA
n ) dominates.

if λH
1 < 0, λH

d > 0. Recall we can view selecting λH
j λA

i to maximize |1 + λH
j λA

i | as
maximizing distance to −1. In this condition the maximal λH

j∗λ
A
i∗ depends on whether λH

1

or λH
d is farther away from −1. If λH

d is farther from −1, i.e., |1 + λH
d λA

n | > |1 + λH
1 λA

n |
(which can be simplified to λH

d + 2 > |λH
1 |) , then |1 + λH

d λA
n | is maximal because (a) any

other λA
i′ will move λH

d closer to −1, and (b) any other λH
j′ is closer to −1. So (1 + λH

d λA
n )

dominates. If λH
1 is farther from −1, i.e., |1 + λH

d λA
n | < |1 + λH

1 λA
n | (which can be simplified

to λH
d + 2 < |λH

1 |) , then it depends on whether λA
1 can push λH

1 farther away from −1 than
λH
1 is itself (sidenote: this will only happen for λA

1 < 0, when it can ‘flip’ λH
1 across the

origin, because by definition it has to beat λH
d > 0). If it can, i.e., |1 + λH

1 λA
1 | > |1 + λH

1 λA
n |

then (1+λH
1 λA

1 ) dominates. Otherwise, |1+λH
1 λA

1 | < |1+λH
1 λA

n | and (1+λH
1 λA

n ) dominates.

if λH
j < 0 for all j ∈ {1, . . . , d}. In this case we need to know if (a) λA

1 > 0 or (b) λA
1 < 0.

If (a) then all λA
j > 0 and so we cannot ‘flip’ λH across the origin. Because of this, if

λH
1 > −2 then we have that λH

j λA
i ∈ (−2, 0) for all j. Note that |1 + λH

j λA
i | is symmetric

in this interval around −1 so whichever λH
j λA

i is closest to the ends of the interval will
maximize |1 + λH

j λA
i |. Note that λH

1 λA
n will be closest to −2 and λH

d λA
1 will be closest to

0. Therefore if |1 + λH
d λA

1 | > |1 + λH
1 λA

n | then (1 + λH
d λA

1 ) will dominate. If the opposite
is true then (1 + λH

1 λA
n ) will dominate. If instead λH

1 < −2 then λH
1 λA

n is farthest from
−1 as λH

j λA
i < 0, so (1 + λH

1 λA
n ) dominates. If case (b) and we have that λA

1 < 0 and
λH
1 > −2 then λH

1 λA
1 > 0. This means that |1 + λH

1 λA
1 | > |1 + λH

j λA
i | because any ’flip’ of

λH
j across the origin by λA

i < 0 makes λH
j λA

i > λH
j λA

i′ where λA
i′ > 0. The flip that is largest

is λH
1 λA

1 > λH
j λA

i , by definition of λH
1 , λA

1 . So (1 + λH
1 λA

1 ) dominates. If instead λA
1 < 0 and

λH
1 < −2 Then it depends on whether λA

1 can ‘flip’ λH
1 farther from −1 than λH

1 is itself. If
it can, then (1 + λH

1 λA
1 ) dominates, otherwise (1 + λH

1 λA
n ) dominates. (For completeness,

note that max{|1 + λH
1 λA

1 |, |1 + λH
1 λA

n |} > |1 + λH
d λA

n | because either λH
d λA

n < −2 in which
case |1 + λH

1 λA
n | > |1 + λH

d λA
n | or λH

d λA
n ∈ (−2, 0) in which case |1 + λH

1 λA
1 | > |1 + λH

d λA
n |.

Also note that |1 + λH
1 λA

1 | > |1 + λH
d λA

1 | as λH
d is closer to the origin than λH

1 ).

As these cases define a partition of λH and λA, we are done.

D Additional Results
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ViT-Ti [Touvron et al., 2021]
ViT-Ti + FeatScale [Wang et al., 2022]
ViT-Ti + Centered Attention [Ali et al., 2023]
ViT-Ti-

ViT-Ti+

Figure 4: Filtering during training. ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
of the last layer for CIFAR100 models

during training.

ViT-Ti [Touvron et al., 2021]
ViT-Ti + FeatScale [Wang et al., 2022]
ViT-Ti + Centered Attention [Ali et al., 2023]
ViT-Ti-

ViT-Ti+

attention layers
fully-connected layers

Figure 5: Filtering, image classification. ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
for different models on CIFAR100.
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Crammed Bert [Geiping & Goldstein, 2023]
Crammed Bert-

Crammed Bert+

Crammed Bert~

attention layers
fully-connected layers

Figure 6: Filtering, text generation. ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
for different models on The Pile.
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Figure 7: The average condition number of all H for ViT-Ti throughout training on
CIFAR100.
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