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Abstract
Characterizing quantum states is essential for ad-
vancing many quantum technologies. Recently,
deep neural networks have been applied to learn
quantum states by generating compressed implicit
representations. Despite their success in predict-
ing properties of the states, these representations
remain a black box, lacking insights into strategies
for experimental reconstruction. In this work, we
aim to open this black box by developing explicit
representations through generating surrogate state
preparation circuits for property estimation. We
design a reinforcement learning agent equipped
with a Transformer-based architecture and a lo-
cal fidelity reward function. Relying solely on
measurement data from a few neighboring qubits,
our agent accurately recovers properties of target
states. We also theoretically analyze the global
fidelity the agent can achieve when it learns a
good local approximation. Extensive experiments
demonstrate the effectiveness of our framework
in learning various states of up to 100 qubits, in-
cluding those generated by shallow Instantaneous
Quantum Polynomial circuits, evolved by Ising
Hamiltonians, and many-body ground states. Fur-
thermore, the learned circuit representations can
be applied to Hamiltonian learning as a down-
stream task utilizing a simple linear model.

1. Introduction
Quantum state characterization is a critical task in quan-
tum information, underpinning the development of quantum
computing, quantum communication, and quantum sensing
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technologies. There are two main approaches to tackling
this task: classical methods and quantum methods. Classical
methods, such as quantum state tomography (Tóth et al.,
2010; Gross et al., 2010; Cramer et al., 2010; Lanyon et al.,
2017; Cotler & Wilczek, 2020), reconstructs the quantum
state by measuring an informationally complete set of ob-
servables. These methods require exponentially increasing
sample complexity in measurements as the size of the quan-
tum system grows, making them impractical for systems
with many qubits and thereby limiting their applicability
for practical use. Quantum methods, represented by varia-
tional quantum algorithms (Cerezo et al., 2021), utilize the
power of quantum circuits to learn quantum states. These
methods (Peruzzo et al., 2014; Farhi et al., 2014; Du et al.,
2022; Wu et al., 2023a) typically optimize a parameterized
quantum circuit to approach the target quantum state. Nev-
ertheless, due to the necessity of calculating gradients with
respect to circuit parameters, where the loss landscape is
highly flat, these methods often struggle with issues such as
barren plateaus (McClean et al., 2018; Cerezo et al., 2021)
and local minima (Anschuetz & Kiani, 2022; Huang et al.,
2024), consequently affecting their performance in learning
large-scale quantum systems.

In practice, the primary interest often lies in specific prop-
erties of quantum states rather than their full state repre-
sentations. As a result, full quantum state tomography is
not always necessary, especially when the goal is to pre-
dict certain physical observables. Motivated by this, re-
cent approaches integrate machine learning techniques to
construct ”shadow” representations as a surrogate to the
original states, enabling efficient quantum system charac-
terization. These methods have shown success in quantum
state learning (Carleo & Troyer, 2017; Sharir et al., 2020;
Zhu et al., 2022; Zhang & Di Ventra, 2023; Tang et al.,
2024a; Chen & Heyl, 2024; Du et al., 2023; Qian et al.,
2024), quantum process learning (Huang et al., 2023; Torlai
et al., 2023; Zhu et al., 2023), quantum property estima-
tion (Zhang & Di Ventra, 2023; Wu et al., 2024; Lewis et al.,
2024; Tang et al., 2024a), quantum state classification (Tang
et al., 2024b), quantum sensing (Xiao et al., 2022; Zhou
et al., 2024) and quantum verification (Wu et al., 2023b;
Qian et al., 2024). By leveraging neural networks to ef-
ficiently represent quantum states, these methods signifi-
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Table 1. Summary of quantum state characterization methods. #Observables: The number of observables utilized for characterizing the
target quantum states. Experimental Reconstructability: The ability to construct a quantum circuit to prepare the surrogate state from its
measurement data. Downstream Applicability: The capability to perform downstream tasks, such as Hamiltonian learning, based on the
classical representation. Scalablity: The ability to extend the learning scheme to large-scale quantum systems (e.g., N > 20 qubits).

Methods #Observables
Experimental

Reconstructability
Downstream
Applicability

Mitigate
Barren Plateaus Scalability

Quantum Peruzzo et al. (2014) - ✓ ✗ ✗ ✗
Farhi et al. (2014) - ✓ ✗ ✗ ✗

Classical

Tóth et al. (2010); Cotler & Wilczek (2020) O(2N ) ✗ ✗ - ✗
Carleo & Troyer (2017); Chen & Heyl (2024) O(2N ) ✗ ✓ - ✗

Zhu et al. (2022) O(N) ✗ ✓ - ✓
Ours O(N) ✓ ✓ ✓ ✓

cantly reduce the measurement overhead. Approaches such
as generative neural networks (GQNQ) (Zhu et al., 2022)
and LLM4QPE (Tang et al., 2024a) approximate quantum
states using fewer measurements by exploiting underlying
patterns and correlations shared within a family of states.
By learning compact and expressive representations, these
techniques offer scalable solutions for quantum state char-
acterization, making them particularly valuable for learning
large, complex quantum systems where traditional meth-
ods become impractical. However, these representations
are often implicit. While they capture essential features
and properties of the quantum state, they do not support
direct reconstruction of the state from the representation
itself. This limitation poses challenges in scenarios where
an explicit reconstruction of the quantum state is required,
e.g., quantum phase estimation (Kitaev, 1995) and quantum
simulation (Georgescu et al., 2014).

In this work, we propose a novel type of representations, the
explicit circuit representations, formulated by a sequence
of tokens, to characterize quantum states and design a deep
reinforcement learning-based framework named QCrep to
learn such representations that can experimentally recon-
struct a surrogate for the target states for property estimation.
A comparison of different methods for state characterization
is shown in Table 1. Two main challenges for learning the
circuit representation are the high measurement overhead
and the barren plateaus problem. The high measurement
overhead roots from the fact that exponential number of
measurements is required to fully characterize an unknown
quantum state. However, this can be surpassed when tar-
geting at learning an approximation for accurate property
estimation. We only use local measurements on a few neigh-
boring sites of the quantum states to construct a local state
representation for the target state. Additionally, we propose
a novel Transformer-based (Vaswani et al., 2017) measure-
ment feature aggregation block to recover global features of
target states from local measurement data. To mitigate the
problem of barren plateaus and local minima, we involve
deep reinforcement learning that does not require computing
gradients with respect to the circuit parameters. Besides,

we design a novel reward function based on local fidelity,
and provide a theoretical analysis on the effectiveness of
reconstructing global properties given local information of
the states. The contributions are:

(1) We develop a novel type of representations for quantum
states, termed the explicit circuit representations. Unlike
conventional implicit state representations in GQNQ (Zhu
et al., 2022) and Neural Quantum State (NQS) (Carleo &
Troyer, 2017; Sharir et al., 2020; Zhang & Di Ventra, 2023;
Chen & Heyl, 2024), our circuit representations can be
directly utilized to experimentally reconstruct the target
states locally, which allows for computing the properties
of interest via measuring the output states. Moreover, they
possess the advantage of implicit representations that can
be applied to downstream tasks.

(2) We design a reinforcement learning-based framework
named QCrep to learn explicit circuit representations for
specific families of quantum states using only measurement
data from a small number of neighboring sites. The circuits
learned by QCrep can reproduce the target states with high
global fidelity, utilizing O(N) observables with respect to
the system sizeN . Benefiting from our novel design, QCrep
eliminates the need for gradient-based optimization of cir-
cuit parameters and mitigates the barren plateaus problem,
enabling scalability to larger systems of up to 100 qubits.

(3) We experimentally demonstrate the effectiveness of our
framework by learning four different families of target states
and applying it to Hamiltonian learning (Wiebe et al., 2014;
Wang et al., 2017) as a downstream task. Our framework
achieves superior performance in learning states generated
by Instantaneous Quantum Polynomial (IQP) circuits (Brem-
ner et al., 2010), states evolved by Ising Hamiltonians, and
ground states of many-body quantum systems. For the
downstream task, numerical experiments reveal that the
unknown parameters of Hamiltonians can be accurately
learned from local measurement data of their corresponding
ground states, leveraging only a linear model applied to the
circuit representations. This further highlights the versatility
and effectiveness of our framework.
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2. Learning Explicit Circuit Representations
2.1. Task Definition

We define the task of learning explicit circuit representations
for quantum states as characterizing a family of unknown
quantum states S = {ρs}s by constructing quantum cir-
cuits U = {Us}s that can prepare these states with high
local fidelity, so that the reconstructed states can be directly
measured to predict quantum properties of interests. We
assume that the states can only be accessed in a black-box
manner, meaning one can measure the states using measure-
ment operators M but remains agnostic to the underlying
circuits used for their preparation. Additionally, we assume
that the measurement operators can only act on neighbor-
ing sites of the quantum states, a setup we refer to as local
measurements. This measurement configuration has been
widely adopted in prior works on quantum state character-
ization (Lanyon et al., 2017; Friis et al., 2018; Zhu et al.,
2022; Kurmapu et al., 2023; Guo & Yang, 2024; Wu et al.,
2024) due to its feasibility for experimental realization. For
this learning task, we do not put explicit constraints on
the global fidelity between the reconstructed states and the
target states, but focus on maximizing the local fidelity.

Explicit Circuit Representations. Let ρs be an N -qubit
quantum state that we want to characterize. The recon-
structed state σs = Us|0⟩⟨0|⊗NU†

s possesses high aver-
age local fidelity with the target state ρs, thus can serve
as a surrogate for predicting quantum properties of inter-
est. Us can be expressed as a product of unitary gates, i.e.,
Us =

∏
t Us,t(ϕs,t), where Us,t represents the quantum

gates applied at time step t, and ϕs,t denotes the corre-
sponding parameter(s) for those gates. The explicit circuit
representation of ρs is a sequence of (us,t, ϕs,t)t, where
us,t is the classical description of the gate type of Us,t. The
correlations between the gate types and actual gates are
encoded using a look-up table.

Overview. To learn the circuit representations, we first
perform local measurements on the target states, which is
introduced in Section 2.2. After that, we design a rein-
forcement learning-based framework, QCrep, to decode the
measurement data into quantum circuits, and keep the classi-
cal descriptions of the circuits as the circuit representations.
This is described in Section 2.3, wherein a measurement
feature aggregation block is proposed to process the local
measurements, and a local fidelity reward function is de-
signed to ensure learnability. Background information on
quantum computation is introduced in Appendix B.

2.2. Measurement Setup

We consider a set of measurements M = {Mi}N−2
i=0 ,

termed local measurements, performed on neighboring sites
of the unknown N -qubit quantum states ρs. Each measure-

ment Mi = (Mij)
K
j=1 is a positive operator-valued mea-

sure (POVM) acting on two neighboring qubits (i, i+ 1) of
ρs, satisfying

∑K
j=1Mij = I . Specifically, we select the

measurement operators Mij as the tensor product of two
single-qubit Pauli operators, i.e., Mij ∈ {X,Y, Z}⊗2. We
measure each pair of neighboring qubits using all such oper-
ators in a fixed order, taking the expectation values of the
measurements to obtain the measurement output mi ∈ RK ,
where K = 9. We repeat this process for all qubit pairs and
record the measurement data as m ∈ R(N−1)×K .

Importantly, the measurement operators are discarded when
we input the measurement data into the agent. The cor-
respondence between the operators and their expectation
values is expected to be reconstructed during training. Note
that although quantum states and measurement operators are
represented by complex-valued numbers, the measurement
expectation values are real and range from −1 to 1, since
the eigenvalues of Pauli operators are either −1 or 1. This
property, along with the removal of measurement operators
from the neural network’s input, exempts the framework
from the overhead of processing complex values.

2.3. QCrep Framework

To construct circuit representations for reproducing a fam-
ily of quantum states, we design a reinforcement learning-
based framework, QCrep. This framework relies exclusively
on local measurements and avoids performing gradient de-
scent on circuit parameters, effectively mitigating the barren
plateau problem. The overall pipeline is shown in Figure 1.
A deep reinforcement learning agent utilizing a neural net-
work policy is employed to construct the circuit represen-
tations for a family of unknown quantum states S. The
environment in which the agent interacts and learns is de-
fined as the quantum system. This environment is initialized
with the quantum state to be learned, ρ(0)s = ρs ∈ S , and is
responsible for applying gates to the state as the agent itera-
tively learns to reconstruct the state. The observations are
the local measurement values ms obtained in Section 2.2.
We define the actions that the agent can take at step t as
applying a layer of quantum gates to the state. The reward
function is the local fidelity reward defined in Equation 3.

Instead of directly learning Us, the agent is trained to con-
struct Vs =

∏T
t=1 Vs,t(ϕs,t) = U†

s , which evolves ρs to-
wards |0⟩⟨0|⊗N , where Vs,t represents a layer of quantum
gates chosen at step t, and ϕs,t is the corresponding gate
parameter. This approach enables the learning of a family of
quantum states, as directly learning Us requires a fixed input
state |0⟩⟨0|⊗N , which limits it to learning a single state. In
contrast, by evolving towards |0⟩⟨0|⊗N , any state can be set
as the input, facilitating the learning of a family of states.
The target Us can then be obtained via taking the inverse
of Vs, i.e., Us = V †

s =
∏1

t=T V
†
s,t(ϕs,t). Note that during
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Figure 1. QCrep framework. Given an initial state ρ
(0)
s sampled from an unknown quantum states family S, the agent iteratively

applies quantum gates Vt(ϕt) to evolve the state towards |0⟩⟨0|⊗N . The policy is parameterized by a neural network, which includes an
Attention-based measurement feature aggregation block followed by a Multilayer Perceptron (MLP). The agent is trained using the PPO
algorithm with a local fidelity reward.

the circuit construction procedure, only the local fidelity
between an arbitrary state and |0⟩⊗N needs to be evaluated,
which can be obtained via Pauli Z measurements. This
empowers the practical implementation of our framework.

The entire process of learning the circuit representation for
ρs consists of several iterative steps. At each step t, the state
ρ
(t)
s is measured using local measurement operators and

the agent takes the expectation values m(t)
s as observations

from the environment. Then, the agent selects the action
Vs,t(ϕs,t) according to its policy πα, which is parameter-
ized by a trainable Gaussian distribution generated from a
neural network composed of a feature aggregation block
followed by a Multilayer Perceptron (MLP). The action
Vs,t(ϕs,t) =

⊗
k Vs,t,i(ϕs,t,i) is a column of single-qubit

or two-qubit gates acting in parallel to every qubit i, where
Vs,t,i(ϕs,t,i) = exp (−iϕs,t,iG) are generated from the lin-
ear combination of the single-qubit and two-qubit Pauli
operators, namely, G ∈ span

(
{X,Y, Z} ∪ {X,Y, Z}⊗2

)
.

To further reduce the search space, we adopt a task-aware
fashion to select a subset of gates as the action space, which
will be detailed in Section 3. After that, the environment up-
dates the quantum state as ρ(t+1)

s = Vs,t(ϕs,t)ρ
(t)
s V †

s,t(ϕs,t)

and the agent receives a reward r(t) defined in Equation 6.
We repeat the above procedure until the average local fi-
delity L(ρ(t)s , |0⟩⟨0|⊗N ), defined in Equation 3, exceeds a
threshold of 1 − ϵ, or until the number of iterative steps
reaches a predefined maximum of T . We set ϵ = 0.001

in the experiments. Note that this T can be flexibly ad-
justed to control the accuracy of the reconstructed states or
to meet hardware requirements when implemented on real
quantum computers. The measurement complexity scales
linearly with T , because for each t, only constant number of
measurements is performed if the system size is fixed. The
policy πα is updated using Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017),

αk+1 = argmax
α

E(m,V (ϕ))∼παk
[J(α,m, V (ϕ),αk)],

(1)
and

J(α,m, V (ϕ),αk) = min

(
πα(V (ϕ)|m)

παk
(V (ϕ)|m)

Aπαk ,

clipδ

(
πα(V (ϕ)|m)

παk
(V (ϕ)|m)

)
Aπαk

)
,

(2)

where Aπαk is the estimated advantage function associated
with reward r, and δ measures the gap between the new and
old policies. Finally, we keep the sequence of classical de-
scriptions of the quantum gates (v†s,t, ϕs,t)

1
t=T as the circuit

representation of ρs.

Attention-based Measurement Feature Aggregation
Block. We construct a novel feature aggregation block to
map the quantum measurement data m to a compact vector
representation p. There are two main features for this block:
(1) A Transformer (Vaswani et al., 2017) module is proposed
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to capture the entanglement property of the quantum states
from local measurement data. Due to the entangled nature
of quantum states, non-local correlations exist among qubits,
leading to long-range dependencies between measurement
values. Therefore, we utilize self-attention to model the
dependencies between different qubits. (2) An aggrega-
tion layer, implemented as global average pooling along the
sequence axis (the second axis), is introduced to globally
model the state. This enables transferability across quantum
systems of varying sizes, allowing the framework to perform
zero-shot transfer learning. Ablation studies demonstrating
the effectiveness of this component compared to vanilla
MLP are presented in Appendix I.

Local Fidelity-based Reward Function. Training based on
global fidelity is prone to be trapped by barren plateaus (Mc-
Clean et al., 2018; Cerezo et al., 2021; Bittel & Kliesch,
2021; Larocca et al., 2025). To mitigate this effect, we
propose a novel reward function based on average n-local
fidelity, inspired by the use of local cost functions to miti-
gate barren plateaus (Cerezo et al., 2021; Caro et al., 2023).
Given two N -qubit quantum states ρ and σ, the average
n-local (1 ≤ n ≤ N ) fidelity is defined as

L(n)(ρ, σ) =
1

N − n+ 1

N−n∑

i=0

F (ρi:i+n, σi:i+n), (3)

where F is the (global) fidelity between the reduced density
matrices ρi:i+n and σi:i+n of the original states on qubits
{i, i + 1, . . . , i + n − 1}. This reward is derived exclu-
sively from local measurements. In our scenario, we set
σi:i+n = |0⟩⟨0|⊗n and the average n-local fidelity, denoted
as L(n)(ρ

(t)
s , |0⟩⟨0|⊗N ), can be estimated by measuring ρ(t)s

using local operators {O(n)
i }N−n

i=0 , where

O
(n)
i = |0⟩⟨0|i:i+n ⊗ IN\i:i+n, (4)

which applies a projector |0⟩⟨0|⊗n to qubits {i, . . . , i+n−
1}, and identity to the remaining qubits. The overall operator
associated with the average local fidelity is defined as

O(n) =
1

N − n+ 1

N−n∑

i=0

O
(n)
i . (5)

We can compute average local fidelity between the state
at step t and the target state as L(n)(ρ

(t)
s , |0⟩⟨0|⊗N ) =

Tr(O(n)ρ
(t)
s ). The reward for the agent is defined as

r(t) = −1 + L(n)(ρ(t)s , |0⟩⟨0|⊗N ). (6)

An additional −1 term is added into the reward to encourage
generating circuits with lower depth. In our experiments,
we fix n = 1 for efficiency. Results on circuit learning with
larger n is presented in Appendix H.1. To bound the accu-
racy of the circuit representation trained with this reward
function, we present the following proposition (the proof is
given in Appendix C):

Proposition 2.1. If the agent learns a policy that constructs
an N -qubit quantum state with average n-local fidelity
L(n)(ρ

(T )
s , |0⟩⟨0|⊗N ) ≥ 1− ϵ, then the global fidelity satis-

fies F (ρ(T )
s , |0⟩⟨0|⊗N ) ≥ 1− (N − n+ 1)ϵ.

This presents a lower bound for the global fidelity when the
agent learns a good approximation of the local fidelity. The
bound is derived without assumptions on the entanglement
of the target states. However, one expects that for low-
entangled states, the gap between local and global fidelity
becomes much higher than 1 − (N − n + 1)ϵ. This phe-
nomena exists commonly in quantum many-body systems.
We will show in experiments that in addition to predicting
properties, the learned states can even achieve high global
fidelity with the target states.

3. Experiments
In this section, we apply our framework to learn circuit rep-
resentations for four different families of states – the states
prepared by Instantaneous Quantum Polynomial (IQP) cir-
cuits, states evolved by Ising Hamiltonians, and two types
of quantum many-body ground states. In addition, we use
Hamiltonian learning as an example to showcase the inter-
pretability of circuit representations learned by our model.

Our framework is compared with Transformer Quantum
State (TQS) (Zhang & Di Ventra, 2023), Variational Quan-
tum Eigensolver (VQE) (Peruzzo et al., 2014), Quantum
Approximate Optimization Algorithm (QAOA) (Farhi et al.,
2014) and Quantum Architecture Search (QAS) (Du et al.,
2022). The metrics for evaluation are second-order Rényi
entropy (Rényi, 1961), two-point correlations (Fetter &
Walecka, 2003), spin-Z values (Atkins & de Paula, 2010),
and square root global fidelity. The definitions of them are
introduced in Appendix D. For the former three metrics, we
compute the Root Mean Squared Error (RMSE) between
the ground-truth values measured form the target states, and
the actual values obtained form the learned representations /
output states. For fair comparisons, the training objective
for all methods is fidelity—global fidelity for the other meth-
ods and local fidelity reward for ours. All properties are
predicted once trained without fine-tuning. The simulation
details for the experiments are presented in Appendix E.

3.1. Learning Quantum States Generated by
Instantaneous Quantum Polynomial Circuits

IQP circuits are frequently used to benchmark the classical
simulatability of quantum circuits (Bremner et al., 2010).
While general IQP circuits are classically intractable to
simulate, in this experiment, we focus on a specific family
of states generated from shallow circuits to demonstrate the
capabilities of our framework. The output states generated
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by IQP circuits are

|ψ⟩k =

N−1⊗

i=0

HiZ[α]k

N−1⊗

i=0

Hi|0⟩⊗N , (7)

where Z[α]k are single- or two-qubit gates that can be diag-
onalized in the computational basis, e.g., Z, CZ and Rz(α).
In our setting, Z[α]k contains one column of CZ gates act-
ing on every two adjacent qubits, followed by one column
of single-qubit gates randomly sampled from Rz(α), where
α ∈ [−π/2, π/2] for each qubit. We consider a quantum
system with a size of N = 50. We generate 100 different
circuits and record the output states as our training set. The
quantum circuits are discarded once the states are generated.
We train our framework to reconstruct the circuits that pre-
pare the target states in the training set. The action space
for generating circuit representations is {H,CZ,Rz(ϕ)},
where ϕ is determined by the agent. During training, we set
the maximum number of iterative steps to T = 100. In each
step, one gate is applied to one qubit or two nearest neigh-
bor qubits. After training, we generate another 10 different
states for evaluation. We use global fidelity and local fidelity
as metrics between the reconstructed states and the target
states to test the learned circuit representations. Figure 2(a)
and (b) show the scaling of global and local fidelity at step t.
For 4-qubit states, the local fidelity increases concurrently
with global fidelity. However, for 50-qubit states, while the
local fidelity monotonically increases, the global fidelity
remains stable and sharply rises at the end of the period.
The trajectory of the evolution of global fidelity shows that
in a large region corresponding to iterative steps 0 to 70,
the global fidelity is almost 0. This indicates that the vari-
ance of the loss function over the whole parametric space
is small, highlighting the existence of barren plateaus. We

(b)(a)

Figure 2. Learning quantum states generated by IQP circuits. (a)
States generated by 4-qubit IQP circuits. (b) States generated by
50-qubit IQP circuits.

also compare the performance of our framework with other
state characterization methods for quantum systems of size
N = 10. The results in Table 2 show that our framework
outperforms all others across all metrics.

Table 2. Evaluation results of learning states generated by 10-qubit
IQP circuits.

Method Rényi Entropy ↓ Correlations ↓ Spin-Z ↓ Global Fidelity ↑
TQS 0.5765 0.2906 0.2309 0.6894±0.2946
VQE 0.1665 0.1100 0.1539 0.9174±0.1042
QAOA 0.2538 0.1026 0.1429 0.8336±0.1617
QAS 0.3977 0.0895 0.2401 0.4694±0.1500

Ours 3.0737e-07 1.0902e-08 0.0441 0.9851±0.0208

3.2. Learning Quantum States Evolved by Transverse
Field Ising Hamiltonians

Next, we consider learning the circuit representations for
a family of states evolved by transverse field Ising Hamil-
tonians, where the exact parameters of the Hamiltonians
and evolution time are agnostic to the framework. Starting
with product state |0⟩⊗N , the state is evolved by an Ising
Hamiltonian for time τ . The target states after the evolution
are defined as

|ψ⟩k = e−iHIsingτ |0⟩⊗N , (8)

whereHIsing = J
∑N−2

i=0 ZiZi+1+g
∑N−1

i=0 Xi is the trans-
verse field Ising Hamiltonian, t is the evolution time. In our
experiment, we set N = 50, J = −1, g ∈ [−2.0,−1.0]
and τ ∈ [0.1, 1.0]. We sample 10 different gs and 10 τs
uniformly from the range with stride 0.1 to construct the
training set of size 100. For training, we set the maximum
number of iterative steps to T = 100, each corresponds to
applying one gate to each qubit or every two nearest neigh-
bor qubits. The quantum gates composing the action space
are {exp(−iϕX), exp(−iϕZ ⊗ Z)}. To exhibit the results,
we average the performance on different parameters g for
each evolution time τ . Figure 3(a) shows that the learned cir-
cuit can successfully recover the target quantum states with
high fidelity. Additionally, we evaluate the circuit depth and
compare it to the first-order Trotter decomposition (Suzuki,
1985), which is considered one of the most straightforward
methods for simulating the dynamics of quantum systems.
As shown in Figure 3, our framework can construct circuits
shallower than those generated by the Trotter decomposition
in general. This indicates that our framework can serve as
an optimization technique for traditional quantum simula-
tion technologies. Notably, our framework does not require
prior knowledge on the Hamiltonian parameters, offering
greater flexibility compared to the Trotter decomposition
method when simulating the dynamics of quantum systems.
Figure 3(c) shows the zero-shot transfer performance of ap-
plying the framework trained on 50-qubit systems to other
quantum N -qubit systems with N ∈ {10, 30, 70, 100}. The
output states remain high fidelity with the target states of
unseen sizes, demonstrating the success of our measurement
feature aggregation block. In addition, we compare the per-
formance of our framework with other methods for quantum
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(a) (b) (c)

Figure 3. Learning 50-qubit quantum states evolved by Ising Hamiltonians. (a) Scaling of global and local fidelity w.r.t. the evolution
time. (b) Comparison of the circuit depths for simulating the dynamics between our framework and the Trotter decomposition method. (c)
Zero-shot transfer performance on quantum systems of various sizes. Our framework is trained on the 50-qubit system.

systems of size N = 4. Table 3 illustrates the results of
predicting different properties. Our framework outperforms
other methods on all metrics.

Table 3. Evaluation results of learning 10-qubit states evolved by
Ising Hamiltonians, where the evolution time τ ∈ [0.1, 1].

Method Rényi Entropy ↓ Correlations ↓ Spin-Z ↓ Global Fidelity ↑
TQS 0.1727 0.1037 0.0944 0.8524±0.0957
VQE 0.5824 0.3044 0.3619 0.2795±0.2359
QAOA 0.0324 0.0382 0.0513 0.9637±0.1402
QAS 0.3729 0.4349 0.4806 0.5215±0.2153

Ours 0.0108 0.0227 0.0231 0.9979±0.0012

3.3. Learning Many-body Ground States

Our third experiment is learning the circuit representations
for a family of many-body ground states. We consider two
families of ground states separately, the transverse-field
Ising ground states, and the anisotropic Heisenberg XXZ
ground states.

Learning Transverse-field Ising Ground States. In this
experiment, we consider the same Ising Hamiltonians as
in Section 3.2, but with the goal of learning the ground
states rather than time-evolved states. The configurations
are N = 50, J = −1 and g ∈ [−2.0,−1.5] . We uni-
formly sample 20 different parameters g and compute the
corresponding ground states, storing them into the training
set. Then we use the QCrep agent to learn the circuits to
prepare these ground states. The action space is the same
as described in Section 3.2. We set the maximum number
of iterative steps to T = 200 during training. Figure 4(a)
shows the scaling of global and local fidelity with the pa-
rameters g. The local fidelity almost remains stable but the
global fidelity slightly drops with the increment of g. This
indicates that in high-dimensional space, global fidelity is
more sensitive to differences between states compared to
local fidelity. Thus, global fidelity may not be a good guid-

ance on learning quantum states, in which a relaxed metric
encourages exploration and increases the chance of finding
the optimal result. Figure 4(c) shows the zero-shot transfer
performance of the framework trained on the 50-qubit sys-
tem when applied to system sizes of {10, 30, 70, 100}. The
comparison results between different methods for learning
10-qubit Hamiltonian ground states are presented in Table 4.

(b)(a)

Figure 4. Learning 50-qubit ground states of transverse-field Ising
model. (a) Scaling of global and local fidelity w.r.t. the Ising
parameters. (b) Zero-shot transfer performance on learning Ising
ground states of various sizes (trained on the 50-qubit system).

Table 4. Evaluation results of learning ground states of 10-qubit
Ising systems.

Method Rényi Entropy ↓ Correlations ↓ Spin-Z ↓ Global Fidelity ↑
TQS 0.1187 0.0958 0.0306 0.9537±0.0724
VQE 0.6442 0.1475 0.0425 0.4773±0.0087
QAOA 0.0368 0.1009 0.0229 0.9614±0.0181
QAS 0.2260 0.1806 0.1706 0.8032±0.0450

Ours 0.0989 0.0947 0.0309 0.9691±0.0083

Learning Anisotropic Heisenberg XXZ Ground States.
Here, we learn the circuit representations of ground states of
a family of 1-D Heisenberg XXZ Hamiltonians. The Hamil-
tonian is HHeisenberg =

∑N−1
i=0 JxXiXi+1 + JyYiYi+1 +

JZiZi+1. Throughout the experiment, we set Jx = Jy =
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−1, and J ∈ [−3.0,−2.0]. To construct the training set, we
uniformly sample 10 different J and generate the ground
state of system size N = 10. The action space of the agent
is {exp(−iϕX ⊗X), exp(−iϕY ⊗ Y ), exp(−iϕZ ⊗ Z)}.
We set the maximum iterative steps to T = 100. The scal-
ing of global and local fidelity with parameter J is shown
in Figure 5(a). Besides, we evaluate the trained frame-
work on out-of-distribution data. We generate 9 different
ground states corresponding to J ∈ [−1.9,−1.1], and use
the trained framework to generate circuit representations
to reproduce these states. Results in Figure 5(b) show that
our framework can successfully be generalized to prepare
unseen states within the same state family. The comparison

(a) (b)

Figure 5. Learning 10-qubit Heisenberg ground states. (a) Scaling
of global and local fidelity w.r.t. the Hamiltonian parameters. (b)
Out-of-distribution generalization.

with other methods on 10-qubit system is shown in Table 5.
Our framework can accurately recover the three properties
of the target states and achieves the highest performance.

Table 5. Evaluation results of learning ground states of 10-qubit
Heisenberg XXZ systems.

Method Rényi Entropy ↓ Correlations ↓ Spin-Z ↓ Global Fidelity ↑
TQS 0.7071 0.0017 0.0159 0.6288±0.1204
VQE 0.0042 0.0816 0.7840 0.4765±0.0105
QAOA 0.0038 0.0693 0.0000 0.5970±0.0085
QAS 0.3379 0.1234 0.4962 0.7613±0.0609

Ours 0.0000 0.0000 0.0000 0.9550±0.0229

3.4. Downstream Application: Hamiltonian Learning

After learning the circuit representations for quantum states,
it is natural to investigate the interpretability of these repre-
sentations. To this end, we consider Hamiltonian learning
as a downstream task to evaluate their effectiveness. Hamil-
tonian learning is a task to determine the parameters of an
unknown Hamiltonian, which serves as a meaningful bench-
mark for assessing how well the learned representations
encodes the information of the underlying physical system.

In our setting, we use the circuit representations of the
ground states to learn the corresponding Hamiltonians. The
quantum systems we consider are the Ising model and the

Heisenberg XXZ model. Specifically, we first use QCrep
to learn the circuit representations (v†t , ϕt)

1
t=T for ground

states corresponding to Hamiltonians with unknown param-
eters (g in Ising model and J in Heisenberg model). Next,
we concatenate the representations into vectors and pad 0s
at the end to ensure the same length. Finally, we employ
linear regression to establish the relationship between circuit
representations and Hamiltonian parameters using a small
training set, and we utilize the learned framework to predict
the relationship on the test set. Experimental results in Fig-
ure 6 show that, given the circuit representation of a ground
state associated with a Hamiltonian with unknown parame-
ters, these unknown parameters can be accurately predicted
using only linear regression. Meanwhile, for comparison,

(a) (b)

Figure 6. The test set performance of different methods on learning
Hamiltonian parameters for 10-qubit (a) Ising and (b) Heisenberg
XXZ quantum systems. The x-axis represents the parameter in-
dices, and the y-axis shows the corresponding parameter values.

we use the circuit parameters learned from VQE and QAOA
to perform Hamiltonian learning. However, the linear model
fails to establish a relationship between the Hamiltonian and
circuit parameters. We attribute this outcome to the QCrep
learning pipeline, which effectively encodes information
about the underlying Hamiltonian into the circuit parame-
ters. This is not achievable with VQE or QAOA, as they rely
on gradient-based optimization of the circuit parameters,
which perturbs the parameters and hinders the preservation
of Hamiltonian information.

3.5. Discussions on Practical Implementation

Impact of Finite Sampling. In the above experiments, our
framework is trained using expectation values of measure-
ment outcome computed via classical simulation, which
corresponds to the ideal setting of infinite measurement
samples. However, real-world experiments only allow sam-
pling the states for finite times. To assess the robustness
of our model under realistic conditions, we simulate finite-
sample effects by introducing measurement inaccuracies at
test time.

The framework is first trained on simulation of infinite sam-
pling data m = Tr(Mρ) given measurement operator M
and state ρ. At test time, we use finite measurement shots
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k ∈ {128, 256, 512, 1024} to obtain the measurement data
⟨m⟩k as the input to our framework. System sizes for IQP,
Ising evolution, Ising ground states, Heisenberg ground
states are 10, 50, 50, 10 respectively. The results are shown
in Figure 7. Inaccurate measurement has nearly no effect
on learning IQP circuits, where the action space contains
no continuous parameters. For the other three families of
states, using only 512 measurement shots is enough for high
fidelity reconstruction, demonstrating the effectiveness of
our framework in practical scenarios.

(a) (b)

(c) (d)

Figure 7. Results under finite sampling conditions. (a) Learning
states generated by IQP circuits. (b) Learning states evolved by
Ising Hamiltonians. (c) Learning Ising ground states. (d) Learning
Heisenberg ground states.

Impact of Circuit Noise. Real-world quantum circuits are
affected by noise, which causes deviations between actual
and ideal measurement outcomes. Unlike measurement
inaccuracy, this gap cannot be mitigated via increasing the
number of measurement shots. Therefore, it is important
to investigate the impact of circuit noise to the construction
procedure of circuit representations.

We evaluate the performance of our framework under
the condition that the quantum circuit is affected by a
global depolarizing noise. The noisy output state is ρ =
N (U |0⟩⟨0|U†), where N represents the noise channel, U is
the noise-free circuit. We set the noise parameter associated
with the noise strength of N to p ∈ {0.05, 0.1, 0.15, 0.2}.
System sizes for IQP, Ising evolution, Ising ground states,
Heisenberg ground states are 10, 50, 50, 10 respectively.
Figure 8 illustrates the impact of varying noise strengths on
both global and local fidelity between the learned and target
quantum states. Although fidelity degrades with increasing
noise strength, our framework maintains consistently high
performance up to a noise level of 0.2, demonstrating ro-
bustness to moderate levels of noise. To deal with strong

noise, strategies like error correction (Shor, 1995; Fowler
et al., 2012) or error mitigation (Giurgica-Tiron et al., 2020;
Liao et al., 2025) can be employed.

(a) (b)

(c) (d)

Figure 8. Impact of global depolarizing noise on the performance
of our framework. (a) Learning states generated by IQP circuits.
(b) Learning states evolved by Ising Hamiltonians. (c) Learning
Ising ground states. (d) Learning Heisenberg ground states.

4. Conclusion and Outlook
We propose the explicit circuit representations, which fea-
ture efficient property estimation and experimental recon-
struction of quantum states. To learn this representation, we
design a reinforcement learning framework with a Trans-
former feature aggregation block and a novel local fidelity
reward function. The learning procedure relies exclusively
on local measurement data, achieving high accuracy on pre-
dicting properties. The learned representations can further
be transferred to quantum systems of varying sizes and ap-
plied to Hamiltonian learning as a downstream task using a
linear model.

Outlook. Our current experiments focus on learning quan-
tum states prepared by shallow circuits and ground states of
one-dimensional Hamiltonians. In future work, we would
extend our framework to more complex scenarios, such as
deeper circuits, two-dimensional Hamiltonians, and critical
behaviors of many-body Hamiltonians. Additionally, we
would generalize our approach to quantum process learn-
ing, enabling the model to handle tasks involving varying
input-output state pairs. Another promising direction is to
integrate the physics knowledge from large language mod-
els into the agent, which may further enhance the learning
capability and efficiency of the framework.
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construction of efficient matrix product operators. Physi-
cal Review B, 95:035129, 2017.

Kitaev, A. Y. Quantum measurements and the abelian stabi-
lizer problem. arXiv preprint arXiv:quant-ph/9511026,
1995.

Kurmapu, M. K., Tiunova, V., Tiunov, E., Ringbauer, M.,
Maier, C., Blatt, R., Monz, T., Fedorov, A. K., and
Lvovsky, A. Reconstructing complex states of a 20-qubit
quantum simulator. PRX Quantum, 4(4):040345, 2023.

Lanczos, C. An iteration method for the solution of the
eigenvalue problem of linear differential and integral op-
erators. Journal of Research of the National Bureau of
Standards, 45(4):255, 1950.

Lanyon, B. P., Maier, C., Holzäpfel, M., Baumgratz, T.,
Hempel, C., Jurcevic, P., Dhand, I., Buyskikh, A., Da-
ley, A. J., Cramer, M., et al. Efficient tomography of
a quantum many-body system. Nature Physics, 13(12):
1158–1162, 2017.

Larocca, M., Thanasilp, S., Wang, S., Sharma, K., Biamonte,
J., Coles, P. J., Cincio, L., McClean, J. R., Holmes, Z.,
and Cerezo, M. Barren plateaus in variational quantum
computing. Nature Reviews Physics, 7(4):174–189, 2025.

Lewis, L., Huang, H.-Y., Tran, V. T., Lehner, S., Kueng, R.,
and Preskill, J. Improved machine learning algorithm for
predicting ground state properties. Nature Communica-
tions, 15(1):895, 2024.

Liao, M., Zhu, Y., Chiribella, G., and Yang, Y. Noise-
agnostic quantum error mitigation with data augmented
neural models. npj Quantum Information, 11(1):8, 2025.

McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush,
R., and Neven, H. Barren plateaus in quantum neural
network training landscapes. Nature Communications, 9
(1), 2018.

McMillan, W. L. Ground state of liquid he4. Phys. Rev.,
138:A442–A451, 1965.

Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K. Quan-
tum circuit learning. Physical Review A, 98(3), 2018.

Motta, M., Sun, C., Tan, A. T., O’Rourke, M. J., Ye, E.,
Minnich, A. J., Brandao, F. G., and Chan, G. K.-L. De-
termining eigenstates and thermal states on a quantum
computer using quantum imaginary time evolution. Na-
ture Physics, 16(2):205–210, 2020.

Nielsen, M. and Chuang, I. Quantum Computation
and Quantum Information: 10th Anniversary Edi-
tion. Cambridge University Press, 2010. ISBN
9781139495486. URL https://books.google.
com.hk/books?id=-s4DEy7o-a0C.

Ostaszewski, M., Trenkwalder, L. M., Masarczyk, W.,
Scerri, E., and Dunjko, V. Reinforcement learning for
optimization of variational quantum circuit architectures.
In Proceedings of the 35th International Conference on
Neural Information Processing Systems, volume 34, pp.
18182–18194, 2021.

Perez-Garcia, D., Verstraete, F., Wolf, M. M., and Cirac,
J. I. Matrix product state representations. arXiv preprint
arXiv:quant-ph/0608197, 2007.

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,
X.-Q., Love, P. J., Aspuru-Guzik, A., and O’Brien, J. L.
A variational eigenvalue solver on a photonic quantum
processor. Nature Communications, 5(1), 2014.

Qian, Y., Du, Y., He, Z., Hsieh, M.-H., and Tao, D. Mul-
timodal deep representation learning for quantum cross-
platform verification. Physical Review Letters, 133:
130601, 2024.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.
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A. Related Work
Tomography-based quantum state characterization. Tomography-based methods use direct measurement to characterize
quantum states. To accurately characterize the full quantum state, Quantum State Tomography (Tóth et al., 2010; Gross
et al., 2010; Cramer et al., 2010; Lanyon et al., 2017; Cotler & Wilczek, 2020) has been proposed, which measures the state
in exponential number of basis to obtain the state vector. Other methods focus on constructing a partial knowledge of the
state. For instance, Shadow Tomography (Aaronson, 2018) targets at characterizing the measurement values of 2-outcome
measurements using only a few copies of the states. Classical shadow (Huang et al., 2020; Akhtar et al., 2023) utilizes
randomized measurement to efficiently estimate local properties of the states. Noteworthy, there is a special family of work
that uses Tensor network, e.g., Matrix Product State (MPS) (Perez-Garcia et al., 2007) and Projected Entangled Pair States
(PEPS) (Scarpa et al., 2020), to approximate the state vector of a quantum state. The original high dimensional state vector
is decomposed into multiple low-rank tensors with restricted bound dimension.

Variational-based quantum state characterization. Alternative to state tomography, variational quantum algorithms
optimize the parameters of a variational ansatz, i.e., a parameterized quantum circuit, to approach the target state. Two
representative methods are Variational Quantum Eigensolver (VQE) (Peruzzo et al., 2014) and Quantum Approximate
Optimization Algorithm (QAOA) (Farhi et al., 2014). These methods update their output towards the target states, usually
the ground states of a Hamiltonian, by measuring the energy and computing quantum gradient descend via, e.g., parameter
shift rule (Mitarai et al., 2018). In addition to optimizing parameters, Quantum Architecture Search has been proposed to
optimize the circuit ansatz. Du et al. (2022) traverse a candidate gate set and select the gate configurations that achieve the
highest scores on the target objective. Wauters et al. (2020); Yao et al. (2021); Ostaszewski et al. (2021) utilize reinforcement
learning to optimize the circuit while keeping quantum gradient descend to update parameters. Zhang et al. (2022); Wu et al.
(2023a) propose differentiable strategy to simultaneously update the ansatz and parameters.

Machine learning-based quantum state characterization. Machine learning can be used to learn the measurement values
of states, and predict state properties. The machine learning state characterization methods can mainly be categorized into two
classes – Neural Quantum State (Carleo & Troyer, 2017; Sharir et al., 2020; Zhang & Di Ventra, 2023; Chen & Heyl, 2024)
and Neural State Representation (Zhu et al., 2022; Tang et al., 2024a; Qian et al., 2024). The Neural Quantum State represents
a quantum state as a neural network, where sampling the neural network corresponds to measuring the state. Parameters of
the neural network can be updated via Variational Monte Carlo (McMillan, 1965) and Stochastic Reconfiguration (Sorella,
1998) methods. The Neural State Representation compresses the quantum state into a classical description, usually a low
dimensional vector, via pretraining. Zhu et al. (2022) adopt a self-supervised manner to predict the measurement values
of some measurement operators given other operators. Tang et al. (2024a) use language modeling (Bengio et al., 2003)
as the pretraining strategy. In Qian et al. (2024), the vector pretrains the representation by fitting the inner product to
fidelity. Afterwards, the pretrained representation can be fine-tuned for downstream tasks, such as predicting the properties
of quantum states.

Different from previous machine learning-based methods, we decode the state representation into a novel circuit representa-
tion instead of low dimensional vector to support experimental reconstruction ability. Our representation is suitable for
downstream applications like Hamiltonian learning. Unlike the reinforcement learning for quantum architecture search, our
framework circumvents the need of calculating gradients with respect to the circuit parameters, and possesses the ability to
characterize a family of states rather than one specific state.

B. Preliminaries
We review some of the key concepts in quantum computation. For a more comprehensive overview, please refer to Nielsen
& Chuang (2010).

Quantum states are quantum counterparts of classical bits. They can be mathematically represented as vectors in Hilbert
space, i.e., state vectors, denoted as |ψ⟩ ∈ C2N , satisfying ∥|ψ⟩∥2 = 1, where N is the system size or the number of qubits.
The notation |·⟩ is just used to emphasize that ψ is a (column) vector. Its dual (row vector) is given by ⟨·| ≡ |·⟩†, where “†” is
the notation for conjugate transpose. The standard basis for quantum states is the computational basis {|i⟩}2N−1

i=0 , where |i⟩ is
the vector whose i-th element is 1 and others are 0. For example, |0⟩ = (1, 0, 0, · · · , 0). Alternatively, we can use the mixed
state to describe a probability ensemble of quantum states {pi, |ψi⟩}. pi is the probability of the quantum system being in the
state |ψi⟩. This can be represented as density matrix ρ ∈ C2N×2N , where ρ =

∑
i pi|ψi⟩⟨ψi|. Clearly, for pure state |ψ⟩, the

corresponding density matrix is |ψ⟩⟨ψ|. Multiple quantum states can be combined to form a compositional system, which is
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represented by the tensor product (Kronecker product) denoted as “⊗”. For two states |ψ⟩, |ϕ⟩ ∈ C2N , their composition is
given by |ψ⟩ ⊗ |ϕ⟩ ∈ C22N . We use the notation |·⟩⊗N to denote an N-qubit product state, e.g., |0⟩⊗N ≡ |0⟩ ⊗ · · · ⊗ |0⟩.
The similarity between two quantum states can be quantified by (global) fidelity and trace distance. In this paper, we focus
exclusively on the global fidelity. Given two density matrices ρ and σ, the global fidelity is defined as

F (ρ, σ) =
(

Tr
(√

ρ1/2σρ1/2
))2

. (9)

If the two states are pure states |ψ⟩ and |ϕ⟩, the fidelity simplifies to |⟨ψ|ϕ⟩|2, which is closely related to the cosine similarity
between two vectors.

Quantum states can be measured, causing them to collapse into classical bits. Measurement is described by a set of
measurement operators {Mj}, where eachMj is a Hermitian matrix, i.e.,M†

j =Mj . In the case of projective measurements,
the operators are projectors that satisfy

∑
j Mj = I and MjMk = δj,kMj . The measurement outcomes, which correspond

to classical bits, are associated with the index j. When measuring a state ρ, the probability of obtaining outcome j is given
by p(j) = Tr(Mjρ). The observable M =

∑
j jMj describes the overall measurement results, and the expectation value of

the measurement on the state ρ is m =
∑

j jp(j) = Tr(Mρ). Additionally, measurement operators can be composed using
tensor products to form new measurements for larger quantum systems.

Quantum states can be evolved by quantum gates, analogous to classical logical gates, which are represented by unitary
matrices U that satisfy U†U = UU† = I . A unitary matrix can be generated from a Hamiltonian H – a Hermitian matrix –
using a parameter ϕ, and is expressed as U(ϕ) = exp(−iHϕ). A special group of unitary matrices are Pauli matrices – X ,
Y , and Z, where

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (10)

The Pauli matrices form the single-qubit Pauli gates. Besides these gates, other typical quantum gates are single-qubit
rotation gates Rx(θ) = exp(−iXθ/2), Ry(θ) = exp(−iY θ/2), Rz(θ) = exp(−iZθ/2), and two-qubit gates CX =
|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X , CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z. More general quantum gates can be decomposed into these
single-qubit and two-qubit gates.

C. Proof of Proposition 2.1
Proposition 2.1 states that if the agent learns a policy that constructs an N -qubit quantum state with average n-local
(1 ≤ n ≤ N ) fidelity L(n)(ρ

(T )
s , |0⟩⟨0|⊗N ) ≥ 1−ϵ, then the global fidelity satisfies F (ρ(T )

s , |0⟩⟨0|⊗N ) ≥ 1− (N−n+1)ϵ.
Before proving this proposition, we present the following lemma.

Lemma C.1. The observable O(n) associated with the n-local fidelity has the largest eigenvalue λ0 = 1 and the second
largest eigenvalue λ1 = 1− 1/(N − n+ 1).

Proof. The local operator O(n)
i acting on qubits {i, . . . , i+ n− 1} can be expressed as

O
(n)
i = I ⊗ · · · ⊗ I︸ ︷︷ ︸

i

⊗|0⟩⟨0|i:i+n ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−i−n

(11)

= diag(1, 1, . . . , 1︸ ︷︷ ︸
2i

, 0, 0, . . . , 0︸ ︷︷ ︸
2i+n−2i

)⊗ diag(1, 1, . . . , 1︸ ︷︷ ︸
2N−i−n

) (12)

= diag(12i ,02i+n−2i ,12i ,02i+n−2i , . . . ,12i ,02i+n−2i︸ ︷︷ ︸
2N−i−n

). (13)

Now that O(n)
i is a diagonal matrix, the elements 1s and 0s are the eigenvalues. Next, we are interested in the eigenvalues of

O(n), which is defined as

O(n) =
1

N − n+ 1

N−n∑

i=0

O
(n)
i . (14)

O(n) is also a diagonal matrix that has eigenvalues 0 ≤ λj ≤ 1, with corresponding eigenvectors |j⟩. Each of λj is a
sum of N − n + 1 items of the corresponding j-th entries on the diagonal of local operators O(n)

i , denoted by O(n)
i [j]
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(0 ≤ j ≤ 2N − 1). Since the entries O(n)
i [j] are either 1 or 0, the value of λj depends on the number of 1s in O(n)

i [j]. Set
j = 0, we obtain the largest eigenvalue as all entries O(n)

i [0] are 1, thus λ0 = 1. Next, let j = 1, the entry O(n)
0 [1] is 0 while

others are 1, so the second largest eigenvalue λ1 = (N − n)/(N − n+ 1) = 1− 1/(N − n+ 1).

Corollary C.2. λ0 is a unique eigenvalue of O(n).

Proof. Consider j = 2i − 1 for any 0 < i < N − n+ 1, we notice that O(n)
i [j] = 1 and O(n)

i−1[j] = 0. Thus there cannot

exist a j > 0 in which the entries O(n)
i [j] are 1 for all i. This means that j = 0 generates the unique largest eigenvalue

λ0 = 1 with eigenvector |λ0⟩ = |0⟩⊗N .

Now we prove Proposition 2.1. We use spectral decomposition on the local fidelity observable O(n) to construct the relation
between average local fidelity Tr(O(n)ρ) and fidelity F as follows

Tr(O(n)ρ) = Tr


∑

k≥0

λk|λk⟩⟨λk|ρ


 (15)

= ⟨0|⊗Nρ|0⟩⊗N + Tr


∑

k≥1

λk|λk⟩⟨λk|ρ


 (16)

= F +
∑

k≥1

λk⟨λk|ρ|λk⟩ (17)

≤ F + λ1
∑

k≥1

⟨λk|ρ|λk⟩ (18)

= F + λ1(1− ⟨λ0|ρ|λ0⟩) (19)
= F + λ1(1− F ). (20)

Lemma C.1 tells us that λ1 = 1 − 1
N−n+1 . Suppose L(n)(ρ, |0⟩⟨0|⊗N ) = Tr(O(n)ρ) ≥ 1 − ϵ, then F ≥ 1 − ϵ

1−λ1
=

1− (N − n+ 1)ϵ.

D. Quantum Properties of Interest in the Experiments
In the experiment section, we consider 3 different properties along with global fidelity for performance evaluation, namely
the second-order Rényi entropy (Rényi, 1961), two-point correlations (Fetter & Walecka, 2003) and spin-Z values (Atkins &
de Paula, 2010). These are important quantities that characterize quantum states from different perspectives. Rényi entropy
is a non-linear property, while the two-point correlation and the spin-Z are linear properties.

Second-order Rényi entropy. This quantity is used to characterize the subsystem (some of the qubits) entanglement of a
quantum state. Denote ρA as the reduced density matrix of quantum state ρ on its subsystem A, i.e., ρA = TrA(ρ). The
Rényi entropy quantifies the entanglement strength of A, which is computed by

Sα(ρA) =
1

1− α
logTr(ραA), (21)

where α is the order, which is set to 2 in our experiments. We consider the average value of N − 1 qubit subsystems.

Two-point correlation. The correlation function describes the relationships between different parts of the quantum system.
This is useful for characterizing quantum phases of matter (Sachdev, 2012) and studying critical behavior (Sachdev, 1999).
We consider the two-point correlation defined as follows

C0,j = Tr(Z0Zjρ). (22)

We take the average of all correlation values for 0 ≤ j < N .
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Spin-Z value. This quantity describes the angular momentum of a many-body quantum state. In our experiments, we
consider the spin-Z value, namely the angular momentum in the Z direction, which is defined as

s = Tr

(∑

i

Ziρ

)
. (23)

To evaluate the performance of different methods in predicting the aforementioned properties, we first compute the true
properties of the target states. Next, we apply the benchmarked methods to predict these properties. Finally, we calculate the
root mean squared error (RMSE) between the actual and predicted properties as the evaluation metric.

E. Simulation of Quantum Systems
To simulate large-scale quantum systems, we use the Matrix Product State (MPS) (Perez-Garcia et al., 2007) to represent
quantum states, rather than directly using the full state vector. MPS decomposes the state vector into a chain of low-rank
tensors through methods such as singular value decomposition, truncating the singular values to compress the state from
O(2N ) to O(Nχ2d) scale, where d is the physical dimension (typically d = 2 for qubit systems), and χ is the bond
dimension, which represents the number of singular values retained and is related to the degree of entanglement. For product
states, χ = 1, while for maximally entangled state, χ scales exponentially with the system size. Since the quantum states
we consider exhibit a low degree of entanglement, e.g., the Ising ground states, the Heisenberg ground states, and states
prepared by shallow circuits, we restrict χ ≤ 16 throughout our experiments.

Afterwards, to simulate the evolution of states, we apply Matrix Product Operators (MPO) (Hubig et al., 2017) to MPS.
The evolution of quantum states can be viewed as applying unitaries to the states, which is equivalent to applying MPO
to MPS. For single-qubit gates, the MPO is simply the gate itself. For multi-qubit gates, the corresponding MPO can
be derived through tensor decomposition similar to MPS. To simulate the time evolution of a state |ψ⟩ governed by a
Hamiltonian H =

∑
lHl, where Hl are local Pauli terms, we first apply the first-order Trotter decomposition (Suzuki, 1985)

to approximate e−iHτ . This yields

e−iHτ ≈
N∏

k=i

∏

l

e−iHlδτ , (24)

where δτ is the time step and N = τ/δτ . In the Ising evolution experiment, we set δτ = 0.1. Following this, we use the
Time-Evolving Block Decimation (TEBD) algorithm (White & Feiguin, 2004) to simulate the evolution. The Hamiltonian
terms are divided into even and odd components, and a series of brickwork MPOs are applied to the MPS to perform the
time evolution.

For simulating the ground states, we use the DMRG algorithm. First, the Hamiltonian is decomposed into MPO. Then
each tensor of MPS is iteratively updated, sweeping from left to right and from right to left. For each tensor, Lanczos
method (Lanczos, 1950) is applied to find the eigenvalues and eigenvectors, and the tensor is optimized to the eigenvector
with the minimum eigenvalue. This procedure is repeated until the energy converges. In our implementation, the MPS is
randomly initialized. We set the maximum dimension of Krylov space to 10, and the maximum sweep steps to 200. The
iteration stops if the energy difference between to updates is smaller than 10−4. Note that for Hamiltonians with degenerate
eigenspace, the ground states found by DMRG can be different for different initialization of MPS and different parameter
specification. Therefore, we turn to imaginary-time evolution (Motta et al., 2020) to simulate the Heisenberg ground states,
which is steered by TEBD algorithm with the time being an imaginary number. This guarantees deterministic ground states
if the initial MPS, the time step δτ and total steps N are fixed. We set the initial MPS to |0⟩, δτ = 0.01 and N = 10.

F. Additional Implementation Details
The policy network of our agent consists of a Transformer measurement feature aggregation block as encoder followed by
an MLP for decision making. The encoder comprises two Transformer encoder layer. The positional encoding follows the
standard procedure in (Vaswani et al., 2017). The embedding dimension is set to 128. The number of heads for the MHA is
4. For the decision making MLP, we use 3 linear layers with ReLU activation, and the feature dimension is 512. We discard
any dropout layer.

To train the policy network, we use Adam optimizer with learning rate 0.001. For the implementation of PPO, we use Stable
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Baselines3 package (Raffin et al., 2021). The batch size is set to 1000. We use a cutoff KL divergence 0.05 between two
updates of the policy to enhance training stability.

G. Resource Requirement for Training and Inference of QCrep
Table 6 and Table 7 detail the resources required in training and inference for each experiment we conducted respectively.
“System Size” denotes the number of qubits of the target state family. “#Iterations” denotes the total number of iterations
required for the RL agent to learn the family of states from beginning until convergence, where each iteration is an episode
of maximum length T = 200 for Ising ground states and 100 for others. “#Observables” is the number observables required
for measurements in each iteration.

Table 6. Resource requirement for training.

Experiment System Size #Iterations #Observables

IQP 50 610 441
Evolve Ising 50 1240 441
Ground Ising 50 1880 441

Ground Heisenberg 10 2040 81

Table 7. Resource requirement for inference.

Experiment System Size Circuit Depth #Observables

IQP 50 2 441
Evolve Ising 50 10 441
Ground Ising 50 22 441

Ground Heisenberg 10 28 81

H. Additional Experiment Results
H.1. Learning States Using n-local Fidelity with Larger n

With the increment of entanglement, the local fidelity and global fidelity diverges but can still be lower-bounded by
Proposition 2.1. In practice, one can increase n to obtain higher global fidelity. We consider 50-qubit quantum states
prepared by 10 layers of randomly selected single-qubit and two-qubit gates. The gates satisfy V = exp(−iϕG), where
ϕ ∈ [−π/2, π/2] and G are sampled from universal single- and two-qubit Pauli operators. The model is trained using
n-local fidelity. Figure 9 shows the scaling of global and local fidelity with respect to n. The local fidelity remains high,
indicating that the circuit representation can still be faithfully utilized to predict local properties of interest. Whereas if
training on 1-local fidelity, the global fidelity drops to nearly 0. However, this can be improved if we increase n, which
attains a relatively high value at n = 4. The result further demonstrates the versatility of our model on learning various
types of quantum states.

H.2. Learning Rotated GHZ States

To achieve faithful global fidelity during circuit construction for states with higher entanglement, it is typically necessary to
use n-local fidelity with larger n. However, we demonstrate that in certain cases, high global fidelity can be attained using
only 1-local fidelity, even for highly entangled states, by carefully designing the action space. Specifically, we consider a
family of Z-rotated GHZ states as the target states, which are known to be maximally entangled. We set the number of qubits
N = 50. The action space is chosen as {H,CNOT, Rz(θ)}, with θ ∈ (−π/4, π/4). As shown in Table 8, both the local
and global fidelity between the reconstructed and target states indicate that the agent can still achieve strong performance,
despite the high entanglement.
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Figure 9. Learning 50-qubit states prepared by 10-layer universal circuits using n-local fidelity.

Table 8. Learning 50-qubit Z-rotated GHZ states.

Local Fidelity Global Fidelity

0.9927 ± 0.0151 0.9275 ± 0.1511

H.3. Universal Gate Set as Action Space and Mixture State Family

In our experiments, we focus on restricted action spaces. They are constructed by utilizing prior knowledge of the underlying
physical system of the target state family. It is an interesting question to explore how the agent performs when a universal
gate set is considered, and when the state family is not restricted to one particular physical system.

Here we consider a mixture state family – the ground states of Ising model together with the ground states of Heisenberg
model. The coefficients of the Hamiltonian are chosen the same as in Experiment Section 3.3. We set the number of qubits
to 4. The gate set is chosen as g = exp(iθG), where G = {X,Y, Z} ∪ {X,Y, Z}⊗2 takes all possible combinations of
single- and two-qubit Pauli operators, which form universal 2-local gates. The parameters θ ∈ [−π/2, π/2]. Table 9 shows
that our model can also perform well using a universal gate set. We highlight that in many practical scenarios, some prior
information is available to inform the choice of action space. For example, it is often possible to learn the ground states of a
Heisenberg-interaction many-body system without knowing the interaction coefficients but knowing the skeleton of the
Hamiltonian.

Table 9. Learning a mixture state family using universal 2-local gates.

Experiment System Size Fidelity Rényi Entropy Two-point Correlations Spin-Z

Mixture family 4 0.9587±0.0130 0.0745 0.0128 0.0434

I. Ablation Study
In our framework, the agent employs a Transformer network as a feature extractor for the measurement data. A simpler
alternative is to use an MLP. In this section, we investigate the impact of architectural choices on entanglement capture and
zero-shot transferability by considering the task of learning 50-qubit Ising ground states. First, we replace the Transformer
block with an MLP. The input measurement data is flattened and passed through the MLP with 49× 9 input neurons. Unlike
the Transformer, this architecture is not size-agnostic, and the number of input neurons increases with system size. As a
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result, the MLP architecture does not naturally support transfer to systems of different sizes. To enable zero-shot transfer,
we pad the measurement data with zeros when applying the MLP-trained model to 10-qubit system.

Results in Table 10 shows that, while the local fidelity achieved by the Transformer and MLP are comparable, the Transformer
outperforms the MLP in terms of global fidelity. This suggests two key advantages of the Transformer architecture in our
framework: (1) it effectively captures entanglement as long-range dependencies in the measurement data, without increasing
the number of network parameters with system size, and (2) it enables zero-shot transfer learning across quantum systems of
different sizes.

Table 10. Architectural comparison of the feature extraction layer.

Model System Size Local Fidelity Global Fidelity

Transformer 50 0.9986 ± 0.0003 0.9673 ± 0.0083
Transformer (transfer) 10 0.9876 ± 0.0032 0.9391 ± 0.0160

MLP 50 0.9985 ± 0.0002 0.9560 ± 0.0041
MLP (transfer) 10 0.7311 ± 0.0271 0.1617 ± 0.0456
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