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Abstract

Reinforcement learning (RL) frameworks often falter in complex environments1

due to inherent simplifying assumptions. This gap necessitates labor-intensive and2

error-prone intermediate conversion layers, limiting the applicability of RL as a3

whole. To address this challenge, we introduce PufferLib, a novel middleware4

solution. PufferLib transforms complex environments into a broadly compatible,5

vectorized format, eliminating the need for bespoke conversion layers and enabling6

more rigorous testing. Users interact with PufferLib through concise bindings, sig-7

nificantly reducing the technical overhead. We release PufferLib’s complete source8

code under the MIT license, a pip module, a containerized setup, comprehensive9

documentation, and example integrations. We also maintain a community Discord10

channel to facilitate support and discussion.11

1 Background and Introduction12

Reinforcement Learning (RL) generates data through interaction with a multitude of parallel en-13

vironment simulations. This dynamism introduces non-stationarity into the optimization process,14

necessitating algorithmic treatments distinct from those employed in supervised learning. When15

compounded by sparse reward signals, this issue yields several complications, including extreme16

sensitivity to hyperparameters, which extends even to the random seed. Consequently, experiments17

often yield unpredictable learning curves with spikes, plateaus, or crashes, deviating from the more18

reliable behavior observed in other machine learning domains.19

Alongside this lies the pragmatic challenge of implementing RL in complex environments with20

currently available tools. Although this is arguably a more solvable problem than optimizing the21

online learning process, the lack of effective tooling often exacerbates the problem, making it an22

arduous task to resolve despite thorough investigation. These issues frequently cause significant23

delays, frustration, and stagnation in the field, potentially deterring talented researchers from pursuing24

work in this area.25

In response, we introduce PufferLib, a novel middleware solution bridging complex environments26

and reinforcement learning libraries, effectively mitigating the integration challenges. PufferLib27

decouples one layer of RL’s unique complexities, making the remaining challenges more manageable28

and fostering more rapid progress in the field. Other existing solutions such as Gym [Brockman et al.,29

2016], PettingZoo [Terry et al., 2020b], and SuperSuit [Terry et al., 2020a] aim to define standard30

APIs for environments and implement common wrappers. PufferLib builds on Gym and PettingZoo31

but also addresses their specific limitations, which we will discuss after providing comprehensive32

context for the problem at hand.33

PufferLib allows users to wrap most new environments in a single line of code for use with popular34

reinforcement learning libraries, such as CleanRL [Huang et al., 2021a] and RLlib [Liang et al.,35
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Figure 1: Detailed but non-comprehensive illustration of the PufferLib system architecture, com-
prising emulation, vectorization, and learning framework integrations. The orange emulation block
demonstrate how PufferLib receives and processes environment data. The red emulation block
demonstrates how PufferLib processes actions from the neural network to send to the environment.
The blue vectorization blocks aggregate and split data received from and sent to the environment.
Finally, the pink and purple blocks summarize how PufferLib provides compatibility with multiple
frameworks given a single PyTorch network.

2017]. It natively supports multi-agent and variable-agent environments and addresses common36

complexities that include batching structured observations and actions, featurizing observations,37

shaping rewards, and grouping agents into teams. PufferLib is also designed for extensibility and is38

capable of supporting new learning libraries with a complete feature set in typically about a hundred39

lines of code.40

2 Problem Statement41

To thoroughly ground our work, we will walk through the intricacies of the transformations that42

reinforcement learning data must undergo, and demonstrate the shortcomings of existing approaches.43

Specifically, we will trace the required transformations from simulation onset to data processing by44

the initial model layer, and from action computation to the point when those actions influence the45

environment.46

We will use Neural MMO [Suarez et al., 2021], a Gym and PettingZoo-compliant environment, as47

our guiding example. This environment, encapsulating many complexities common to advanced48

environments, features 128 agents competing to complete tasks in a procedurally-generated world.49

It provides agents with rich, structured observations of their surroundings and a hierarchical action50

space for interactions.51

The environment initialization starts with a configuration file and a reset to yield an initial set of52

observations. This results in a dictionary of 128 individual observations, each of which is a structured53

dictionary housing differently-shaped tensors related to various aspects of the observation. As a part54

of the environment’s standard training setting, these agents are grouped into teams of 8. Each team55

observation is then processed by a featurizer to yield a single structured observation, aggregating56

2



information from across the team’s agents. Subsequently, this observation must be batched for model57

usage.58

This introduces two challenges. Firstly, since the observation is structured, we cannot merely59

concatenate tensors; we must concatenate each sub-observation across agents. Secondly, many60

learning libraries presuppose that observations can be stored in flat tensors, thus requiring data61

flattening. Following this, the data must be concatenated with information from several parallel62

environment instances. Once done, the data can be forwarded to the network.63

We now encounter another problem: the network itself is structured, and attempting to learn from64

the flattened representation is akin to unraveling an image and using dense layers. Therefore, the65

structured observation representation must be recovered in a batched form, allowing for efficient66

processing of each sub-observation across all teams and environments in parallel. The model67

then computes a multidiscrete output distribution and samples an integer array for each team and68

environment. The output data is divided across environments, and each multidiscrete action is mapped69

into a structured format where each integer signifies a specific agent’s action within a team. Finally,70

the environment can execute its first step.71

Regrettably, this is the least complex step. All preceding actions must be reiterated, but with additional72

complexities. For example, the environment must now also return rewards, dones, and infos. These73

outputs, particularly rewards and dones, require grouping by team. For each team, we must track74

which agents have completed their tasks and signal that team is done only when all agents have75

finished. Similarly, we need a method to post-process and group reward signals per team. Since most76

learning libraries anticipate each agent to return an observation on every step, we must zero-pad the77

tensor for any agents that are done. Moreover, as the PettingZoo API does not mandate a consistent78

observation return order (a common source of bugs), we must verify this as well.79

As illustrated, considerable work is needed to ensure compatibility between the environment and80

standard learning libraries - even for a fully Gym and PettingZoo-compliant environment like Neural81

MMO. We have provided support to the Neural MMO team in integrating PufferLib, and prior to82

integration, about a quarter of the Neural MMO code base was devoted to these transformations. This83

was also the primary source of bugs, many of which would lead to silent performance degradations.84

For instance, specific patterns of agent deaths could cause incorrectly ordered observations, leading85

to neural networks optimizing trajectories assembled from different agents. In another case, a bug in86

the reconstruction of observations misaligned data, causing incorrect subnetwork processing. Despite87

a strong engineering focus on testing, these bugs are two among dozens that reportedly emerged88

during Neural MMO’s development.89

3 Related Tools90

Gym and PettingZoo, the prevalent environment APIs for single-agent and multi-agent environments91

respectively, offer several tools to mitigate the complexities described earlier. Supplementary third-92

party tools, like SuperSuit, provide standalone wrappers, while numerous reinforcement learning93

libraries furnish wrappers compatible with their internal APIs. For instance, Gym provides a94

range of wrappers for image observation preprocessing, observation flattening, action and reward95

postprocessing, and even sanity check wrappers for bug prevention. SuperSuit further adds multi-96

agent wrappers specifically designed to address the agent termination and padding issues discussed97

previously.98

Current methodologies present some significant challenges. The tools described are designed as a set99

of wrappers applied sequentially to an environment instance, implying that (with a few exceptions),100

they should function in any order. However, particularly with PettingZoo, which caters to multi-101

and variable-agent environments, the gamut of possible environments is vast and challenging to test.102

This often results in scenarios where a bug in one wrapper causes an error in a different wrapper.103

Identifying the origin of such errors across multiple wrapper classes can be an overwhelming task,104

contributing to a general sense of frustration common in reinforcement learning research.105
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Moreover, the coverage of wrappers is insufficient. Despite the difficulties in testing and maintaining106

compatibility among existing wrappers, more are still needed. As it stands, there is no wrapper107

ensuring consistent agent key ordering, despite many reinforcement learning libraries demanding this.108

No wrapper exists for grouping agents into teams, a common operation, nor a wrapper that inherently109

vectorizes multi-agent environments across multiple cores. The current workarounds for the latter are110

unstable, abusing single-agent vectorization code. While additional development could resolve these111

issues, it would further aggravate the existing compatibility problem.112

Another challenge is that some wrappers are infeasible to construct using the above approach. An113

observation unflattening wrapper, often needed to store observations in flat tensors while retaining the114

structured format for the model, is one such example. If the flattening wrapper is not the outermost115

one, the observation space structure required to unflatten the observation is lost. Conversely, if the116

flattening wrapper is always the final layer, all other wrappers must handle structured observation117

spaces, thereby adding unnecessary complexity and error-prone code.118

4 PufferLib’s Approach119

PufferLib aims to handle all the complex data transformations discussed above, returning data120

in a format compatible with even the most basic reinforcement learning libraries. The system121

comprises three primary layers: emulation, vectorization, and framework integrations. The ultimate122

outcome allows users to write one-line bindings for some of the most intricate reinforcement learning123

environments available and use a single PyTorch network to train with multiple reinforcement learning124

frameworks.125

4.1 Emulation126

This layer forms the core of PufferLib. By applying the aforementioned data transformations, it127

generates a simple, standard data format, thereby emulating the style of simpler environments. Our128

approach diverges from Gym, PettingZoo, and Supersuit in three significant ways:129

1. PufferLib consists of a single wrapper layer with transformations applied in a fixed sequence.130

Observations are grouped, then featurized, subsequently flattened, and finally padded and131

sorted.132

2. It provides utilities for both flattening and unflattening observations and actions without the133

issues described earlier.134

3. The wrapper class is procedurally generated using data scoped from a dummy instance of135

the unwrapped environment, enabling the static precomputation of a few costly operations.136

The emulation layer starts with a Binding object. Users can instantiate a binding from a Gym or137

PettingZoo environment class, instance, or creation function. They can supply several arguments to138

the Binding object, including a custom postprocessor for features, actions, and rewards, choices about139

flattening observation and action spaces, whether to pad to a constant number of agents, whether140

to truncate environment simulation at a set number of steps, etc. The Binding class creates or uses141

the provided environment instance and resets it to yield an initial observation. This observation,142

alongside the provided binding arguments, is used to create a wrapper class for the environment. The143

significance of this process is that it allows the initial observation to be statically scoped into the144

wrapper class. The Binding then offers access to the wrapper class with no intermediate layer.145

The wrapper class is designed to address all the common difficulties associated with working with146

complex, multi-agent environments as simply as possible. For context, it totals only around 800 lines147

of code, which further shrinks excluding the various API usage, input checking exceptions, optional148

correctness checks, and utility functions. By comparison, the core of PufferLib is shorter than the149

domain-specific code previously used to support Neural MMO alone. In an ideal world, users would150

never face uncaught errors in internal libraries. However, as no reinforcement learning library to151
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date has achieved this standard, PufferLib provides a pragmatic solution by offering a simple, single152

source of failure, as opposed to the potential confusion caused by dozens of conflicting wrappers.153

4.2 Vectorization154

Existing vectorization tools build into Gym and PettingZoo lack stable support for multi-agent155

environments. PufferLib bridges this gap by including a suite of three vectorization tools. These156

tools leverage the sanitized output format provided by the emulation layer, allowing them to be both157

performant and simple. Each environment will consistently present the same number of agents, in the158

same order, with flattened observations. The three vectorization backends are as follows:159

1. Multiprocessing: This tool simulates n environments on each of m processes, totaling nm160

environments, using Python’s native multiprocessing. An additional version, which transfers161

observations via shared memory, is included. This variant can prove useful for environments162

demanding high data bandwidth.163

2. Ray: This tool, like the multiprocessing one, simulates n environments on each of m164

processes, using Anyscale’s Ray distributed backend. Although this implementation might165

be slower for fast environments, it works natively on multi-machine configurations. It also166

includes a version that transfers observations to the shared Ray memory store instead of167

directly to processes, which can be faster for specific environment configurations.168

3. Serial: This tool simulates all of the environments on a single thread. This setup proves169

useful for debugging, as it is compatible with breakpoints while maintaining the same170

API as the previous implementations. Additionally, it is faster for extremely low-latency171

environments where the overhead of multiprocessing outweighs its benefits.172

All these backends offer both synchronous and asynchronous APIs, facilitating their use in a buffered173

setup. In this configuration, the model processes observations for one set of environments while174

another set of environments processes the previous set of actions. Additionally, all these backends175

provide hooks for users to shuttle any arbitrary picklable data to the environments. This feature is176

essential for advanced training methods that need to communicate - for instance, new tasks or maps -177

with specific environments on remote processes.178

4.3 Integrations179

The current release of PufferLib includes support for CleanRL and RLlib, with an extension to180

Stable Baselines [Raffin et al., 2021] projected for the forthcoming minor versions. Owing to the181

consistent and standard format defined by the emulation layer, even for complex environments,182

it is relatively straightforward to employ the same PyTorch network across different framework183

APIs. PufferLib introduces a PyTorch base class that separates the forward() function into two parts:184

encode_observations and decode_actions. Functions preceding a recurrent cell are categorized under185

the encoding function, and those succeeding it are under the decoding function. This division is186

implemented because the handling of recurrence is often the most challenging difference among187

various frameworks. In addition, the mishandling of data reshaping in the recurrent cell is a common188

source of implementation bugs. We provide additional checks to mitigate this risk. On top of this API,189

PufferLib constructs a small, per-framework wrapper, which activates the user-specified recurrent190

cell according to the specific requirements of the given framework. This approach may be expanded191

to include transformers in the future, although most RL frameworks currently lack support for this.192

5 Materials Available for Release193

The public version of PufferLib (version 0.3) is accessible at pufferai.github.io. Version 0.4 is planned194

for release by the end of the summer and will include additional framework support. User testing195

greatly accelerates progress, and the exposure from publication would significantly benefit this work.196

We currently have the following materials ready for release:197
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• Simple documentation and demos for CleanRL and RLlib with Neural MMO available on198

the website mentioned above.199

• Built-in support and testing for Atari Bellemare et al. [2012], Butterfly (part of PettingZoo),200

Classic Control (part of Gym), Crafter Hafner [2021], MAgent Zheng et al. [2017], Mi-201

croRTS [Huang et al., 2021b], Nethack [Küttler et al., 2020], Neural MMO [Suarez et al.,202

2021], and SMAC [Samvelyan et al., 2019] with partial support for Griddly [Bamford et al.,203

2020] and planned extensions to DM Lab [Beattie et al., 2016], DM Control [Tassa et al.,204

2018], ProcGen [Cobbe et al., 2019], and MineRL [Guss et al., 2019]. Most of these are205

one-line bindings that primarily depend on ensuring compatibility of dependency versions.206

These are also included in our correctness tests.207

• A Docker container, fondly referred to as PufferTank, that comes pre-built with PufferLib208

and all of the above environments pre-installed.209

• Baselines on the 6 original Atari environments from DQN [Mnih et al., 2013], sanity-checked210

against CleanRL’s vanilla implementation.211

• A community Discord server with 100 members, offering easy access to support.212

This version further includes an advanced set of correctness tests that reconstruct the original213

environment data format from the final version postprocessed by PufferLib. This has aided us in214

identifying several dozen minor bugs in our development builds. PufferLib is also being utilized215

in the upcoming Neural MMO competition, enabling much simpler baseline code than would be216

achievable without it.217

6 Limitations218

The most significant limitations of the current release of PufferLib include219

1. No support for heterogenous observation and action spaces. These are difficult to process220

efficiently in a vectorized manner.221

2. No support for continuous action spaces. This may be supported with a medium amount of222

development effort in future versions.223

3. Environments must define a maximum number of agents that fits in memory. Additionally,224

agents may not respawn. The former is a fundamental limitation of the underlying PettingZoo225

binding. The latter may be supported in a future version with a small amount of development226

effort.227

Additionally, as the first publication release of a new framework, we are heavily reliant upon growing228

a user base to ensure the stability of our tools. We run a battery of correctness tests and verify training229

performance on Atari in each new release, but subtle bugs have occasionally slipped through during230

development.231

7 Conclusion232

This paper introduces PufferLib, a versatile tool that greatly simplifies working with both single and233

multi-agent reinforcement learning environments. By providing a consistent data format and handling234

complex transformations, PufferLib allows researchers to focus on model and algorithm design rather235

than the quirks of their environments. Its built-in support for a wide variety of environments, coupled236

with its scalability and compatibility with popular RL frameworks, makes PufferLib a comprehensive237

solution for reinforcement learning tasks. We welcome the open-source community to use and238

contribute to PufferLib, and we anticipate that its ongoing development and integration will continue239

to lower barriers in reinforcement learning research.240
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Checklist301

1. For all authors...302

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s303

contributions and scope? [Yes] We claim only a release of the platform and it’s basic304

capabilities, which may be verified from downloading the library.305

(b) Did you describe the limitations of your work? [Yes] See Limitations306

(c) Did you discuss any potential negative societal impacts of your work? [No] This is a307

release of tools for academic research308

(d) Have you read the ethics review guidelines and ensured that your paper conforms to309

them? [Yes]310

2. If you are including theoretical results...311

(a) Did you state the full set of assumptions of all theoretical results? [N/A]312

(b) Did you include complete proofs of all theoretical results? [N/A]313

3. If you ran experiments (e.g. for benchmarks)...314

(a) Did you include the code, data, and instructions needed to reproduce the main experi-315

mental results (either in the supplemental material or as a URL)? [Yes] Included in the316

base repository, not the package itself317

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they318

were chosen)? [Yes] We used the default hyperparameters of the frameworks319

(c) Did you report error bars (e.g., with respect to the random seed after running experi-320

ments multiple times)? [No] These experiments were run only as correctness tests to321

verify similarity to base CleanRL etc.322

(d) Did you include the total amount of compute and the type of resources used (e.g., type323

of GPUs, internal cluster, or cloud provider)? [No] We used a single T40 and 4 cores324

for Atari baselines, run for a few days. Given that our work is tooling, this did not seem325

relevant to include in the main text.326

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...327

(a) If your work uses existing assets, did you cite the creators? [Yes] Attribution for the328

logo and design is provided on the main page329
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(b) Did you mention the license of the assets? [Yes] The release (i.e. everything but the330

logo) is MIT licensed. Copyright for the logo is owned by the author.331

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]332

pufferai.github.io333

(d) Did you discuss whether and how consent was obtained from people whose data you’re334

using/curating? [N/A] No such data335

(e) Did you discuss whether the data you are using/curating contains personally identifiable336

information or offensive content? [N/A] No such data337

5. If you used crowdsourcing or conducted research with human subjects...338

(a) Did you include the full text of instructions given to participants and screenshots, if339

applicable? [N/A] No crowdsourcing340

(b) Did you describe any potential participant risks, with links to Institutional Review341

Board (IRB) approvals, if applicable? [N/A]342

(c) Did you include the estimated hourly wage paid to participants and the total amount343

spent on participant compensation? [N/A]344
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