
Under review as a conference paper at ICLR 2024

MEASURING LOCAL AND SHUFFLED PRIVACY OF
GRADIENT RANDOMIZED RESPONSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Local differential privacy (LDP) provides a strong privacy guarantee in a dis-
tributed setting such as federated learning (FL). Even if deployed LDP mecha-
nisms honestly provide such privacy guarantees by randomizing gradients, how
can we confirm and measure it? To answer the above question, we introduce an
empirical privacy test in FL clients by measuring the lower bounds of LDP. The
results of this measurement give the client the empirical ε and probability that
the two gradients can be distinguished. We then instantiate five adversaries in
FL under LDP to measure empirical LDP at various attack surfaces, including a
worst-case attack that reaches the theoretical upper bound of LDP. The empiri-
cal privacy test with the adversary instantiations enables FL clients to understand
LDP more intuitively and verify that mechanisms claiming ε-LDP actually pro-
vide equivalent privacy protection. We also demonstrate numerical observations
of the measured privacy in these adversarial settings, and the randomization al-
gorithm LDP-SGD is vulnerable to gradient manipulation and a well-pre-trained
model. We further discuss employing a shuffler to measure empirical privacy in
a collaborative way and also measuring the privacy of the shuffled model. Our
observation suggests that the theoretical ε in the shuffle model has room for im-
provement.

1 INTRODUCTION

Local differential privacy (LDP) (Evfimievski et al., 2003; Kasiviswanathan et al., 2011) provides
a strong privacy guarantee in a distributed setting such as federated learning (FL). The randomized
mechanisms that ensure LDP make it difficult to distinguish randomized responses crafted from
any input (e.g., gradient) to the extent that it is quantified by privacy parameter ε0. Furthermore,
the shuffle model (Erlingsson et al., 2019; Cheu et al., 2019), which anonymizes identities of the
randomized responses via secure shuffler and then amplifies the LDP, has gained significant interest.

Even if deployed LDP mechanisms honestly provide such privacy guarantees by randomizing gra-
dients, how can we confirm and measure it? According to a previous survey (Xiong et al., 2020),
some users who did not allow information sharing claimed two reasons: they did not trust the DP
techniques and did not trust the app or tech company. We believe that to encourage more users to
contribute data, it is necessary to clearly explain LDP mechanisms and confirm that the randomized
mechanism is credible.

Auditing differential privacy of machine learning models has been studied mainly for DP-
SGD (Abadi et al., 2016) that employs the Gaussian noise under central DP constraint (Jagielski
et al., 2020; Nasr et al., 2021; Maddock et al., 2022; Andrew et al., 2023). In the distributed settings,
gradient randomized response that randomly samples a vector based on the original gradient vector,
such as LDP-SGD (Erlingsson et al., 2020) and PrivUnit (Bhowmick et al., 2018) have been widely
utilized in local and shuffle DP models. The gradient randomized response differs entirely from the
Gaussian mechanism; therefore, we need another discussion. How can we measure the empirical
privacy of the gradient randomized responses in local and shuffle DP settings?

To answer the above question, we introduce an empirical privacy test in FL clients by measuring
the lower bounds of LDP. Since (local) differential privacy is designed to quantify the privacy level
in the worst-case scenario, we first analyze the worst-case of the gradient randomized responses,
especially in LDP-SGD. Hence, we actualize a way to measure the empirical differential privacy
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(a) Client-side privacy measurement test in FL. (b) Privacy test in the shuffle model

Figure 1: Overview of the empirical privacy measurement test for (a) each randomized response and (b) a
shuffled batch. Our privacy measurement test consists of the crafting phase, which generates (malicious)
inputs, and the distinguishing phase, which infers the input. Play the game of distinguishing inputs from
outputs enough times, and we can get an empirical privacy level ε0. The game with collaborating n clients
enables us to measure the empirical amplified ε on the shuffler (b).

Table 1: Our measurement test is unique in that it deals with FL under LDP.

Techniques Setting DP model Mechanism

Jagielski et al. (2020) Nasr et al. (2021) Lu et al. (2022) Centralized CDP DP-SGDBernau et al. (2021) Zanella-Béguelin et al. (2022)
Maddock et al. (2022) Andrew et al. (2023) FL CDP DP-Fed. SGD/Avg.
Ours FL LDP & Shuffle LDP-SGD

of LDP-SGD. We then instantiate five adversaries in FL under LDP to measure empirical LDP at
various attack surfaces, including a worst-case attack that reaches the theoretical upper bound of
LDP.

We further propose to apply our measurement test to the shuffle model and show empirical pri-
vacy amplification. The privacy amplification via shuffling has been studied mainly in gradient
randomized responses like LDP-SGD but not the Gaussian mechanism. Our empirical test for the
randomized responses also enables us to measure the empirical privacy level given by the shuffler.
This is also our novelty against the prior studies (Jagielski et al., 2020; Nasr et al., 2021; Maddock
et al., 2022; Andrew et al., 2023) that employ the Gaussian mechanism (e.g., DP-SGD).

Contributions. The contributions of this study are summarized as follows:

1. We establish a client-side empirical privacy measurement test of LDP in FL. We also intro-
duce a way to measure empirical privacy amplification by shuffling.

2. We discover the worst-case attack in FL using LDP-SGD. The worst case is essential to
confirm the privacy guarantees empirically.

3. We demonstrate the empirical privacy levels at various attack surfaces and show that LDP-
SGD is vulnerable to gradient manipulation and a well-pre-trained model.

Table 1 shows the differences between our proposed method and related studies. Our technique is
designed for FL and differentiates itself from previous studies because it deals with local DP and
shuffle DP using the gradient randomized responses.

1.1 RELATED WORK

Auditing differential privacy of machine learning models has been studied in centralized settings.
Most of the works analyzed the privacy level of training models privatized with DP-SGD (Abadi
et al., 2016) against membership inference (Yeom et al., 2018) and two poisoning attacks (Gu et al.,
2017; Jagielski et al., 2020). Liu et al. (2019) proposed an interpretation of the CDP using a hy-
pothesis test. The lower bound measurement method devised by Jagielski et al. (2020) allowed the
observation of how DP-SGD reached its upper bound when exposed to various threats. Nasr et al.
(2021) demonstrated empirical privacy with several instantiated adversaries, including the worst-
case against DP-SGD. CANIFE (Maddock et al., 2022) crafts data poisoning canaries adaptively to
generate model updates orthogonal to updates sent by other clients in each round. Zanella-Béguelin
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Algorithm 1 LDP-SGD; client-side Aclient (Er-
lingsson et al., 2020)
Require: Local privacy parameter: ε0, current model:

θt ∈ Rd, ℓ2-clipping norm: L
1: Compute clipped gradient

x← ∇ℓ(θt; d) ·min

{
1,

L

||∇ℓ(θt; d)||2

}
2: z ←

{
L · x

||x||2
w.p. 1

2
+ ||x||2

2L

−L · x
||x||2

otherwise.

3: Sample v ∼u Sd, the unit sphere in d dims

ẑ ←

{
sgn(⟨z, v⟩) · v w.p. eε0

1+eε0

−sgn(⟨z, v⟩) · v otherwise.
4: return ẑ
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Figure 2: Overview of the gradient randomization by
LDP-SGD: the gradient will likely be sampled from
the green zone when privacy parameter ε0 is given a
large value.

et al. (2022) and Andrew et al. (2023) proposed efficient hypothesis testing approaches for the pri-
vacy auditing. ML Privacy Meter (Murakonda & Shokri, 2020) verifies a given theoretical privacy
level through membership inference (Shokri et al., 2017), but does not give empirical privacy level.

The uniqueness of our study is that the target DP mechanism is entirely different from previous
studies. Previous studies estimate empirical privacy under the Gaussian mechanism (e.g., DP-SGD
and DP-FedAvg). Our work studies how to craft adversaries tailored to the gradient randomized
responses that LDP-SGD assumes and also discovers the worst-case scenario in the LDP-SGD.
Therefore, the worst-case is entirely different from those of the Gaussian mechanism. Our empirical
privacy test also enables us to measure empirical privacy amplification via shuffler. Since most of
the shuffling protocols have been discussed under ε0-LDP with the randomized responses but not
(ε0, δ0)-LDP with the Gaussian mechanism, one of the novelty of our proposed privacy test is that
it discusses the empirical privacy amplification.

2 PRELIMINARIES

This section introduces information that is essential for understanding our proposal. FL assumed in
this paper consists of an untrusted model trainer (server) and clients that own sensitive data. First,
the client creates the gradient with the parameters distributed by the model trainer. The client then
randomizes the gradient under LDP and sends it to the model trainer. The model trainer updates the
parameters with the gradient collected from the client.

2.1 LOCAL DIFFERENTIAL PRIVACY

Local differential privacy (Evfimievski et al., 2003; Kasiviswanathan et al., 2011) is an extension of
differential privacy (Dwork et al., 2006) for privately gathering statistics from distributed data.

Definition 1 (ε0-Local Differential Privacy). A randomized mechanismM : X → S satisfies ε0-
local differential privacy if and only if, for any pair of inputs x, x′ ∈ X and for any possible output
S ∈ S, it holds that

Pr[M(x) ∈ S] ≤ eε0 · Pr[M(x′) ∈ S].

Informally, this definition requires the probability that any adversary can observe a difference when
the algorithm operates on any pair of inputs x and x′ is bounded by eε0 .

2.2 LDP-SGD

We adopt LDP-SGD (Duchi et al., 2018; Erlingsson et al., 2020) as a randomizing gradient mech-
anism. The client-side algorithm (Algorithm 1) performs two gradient randomizations in lines 2
and 3. Line 2 is referred to as the gradient norm projection, and line 3 is the random gradient
sampling. We instantiate adversaries based on the following two facts:
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Gradient norm projection: the smaller the norm of the gradient before randomization, the more
likely the sign of the gradient is to be reversed. In addition, the gradient computed in this process
forces the norm to be L.

Random gradient sampling: a gradient close to the gradient before randomization is likely to be
generated when privacy parameter ε0 has a large value. This sampling is illustrated simply in Figure
2. The ẑ case is divided into the following cases using Figure 2.

ẑ =

{
Sample from the green zone. w.p. eε0

1+eε0

Sample from the white zone. otherwise

2.3 PRIVACY AMPLIFICATION VIA SHUFFLING

Shuffle model (Erlingsson et al., 2019; Cheu et al., 2019) anonymizes identities of the randomized
responses via secure shuffler and then the anonymization gives us a privacy amplification effect. Let
ε be the amplified privacy after the shuffling. The ε in the shuffler model is determined by ε0 set
in the local randomizer and the number of client n entering the shuffler. The various interpreta-
tions (i.e., privacy amplification theorems) have been proposed. We give the state-of-the-art privacy
amplification by shuffling (Feldman et al., 2023) as a theoretical baseline as follows:

ε ≤ ln

(
1 + (eε0 − 1)

(
4
√
2 ln 4/δ

(
√
eε0 + 1)n

+
4

n

))
. (1)

3 ANALYSIS OF THE WORST-CASE ATTACK

Here, we analyze the worst-case scenario by considering the characteristics of LDP-SGD. Analyzing
worst-case attacks is essential to ensure the mechanism satisfies ε-LDP. Furthermore, at the end of
the section, we show the novelties of the LDP-SGD worst-case discovery.

3.1 THE WORST-CASE OF LDP-SGD

The worst-case of the Gaussian mechanism (Nasr et al., 2021) involves database contamination and
the insertion of a watermark into the gradient. Thus, g1, which has almost all zero components, and
g2, which is a watermark λ inserted into g1, such as g1 = (0, 0, ..., 0) and g2 = (0, λ, ..., 0) are
the easiest to distinguish. This manipulation is not effective in LDP-SGD due to random gradient
sampling. We must ensure that g1 and g2 are unaffected by gradient norm projection and random
gradient sampling. In the worst-case, we meet the following proposition:

Proposition 3.1. The worst-case inputs that reach the theoretical upper bound given by ε are gra-
dients whose ℓ2-norm is larger than or equal to L and have a reversed sign.

We offer the proof in Appendix A.

Limitation. Note that the worst-case described in Section 3.1 does not apply to the entire LDP
mechanism but only to algorithms with similar properties to LDP-SGD, such as PrivUnit. However,
it is different from the existing studies (Nasr et al., 2021; Jagielski et al., 2020; Maddock et al.,
2022; Andrew et al., 2023) for the Gaussian mechanisms like DP-SGD under CDP.

3.2 JUSTIFICATION OF THE WORST-CASE ATTACK

Figure 3 demonstrates how well the gradient (vector) of the opposite direction can be distinguished
after randomization, where d is the dimension of the gradient. g̃1 means the output of LDP-SGD.
Here, the norm of g1 is L, the same as the clipping size. Randomization with ε = 0.5 shows that
Cos(g̃1, g1) and Cos(−g̃1, g1) overlap and are difficult to distinguish. The reason for the overlap is
that when g1 is randomized with ε = 0.5, Cos(g̃1, g1) will be negative with the same probability
because the sign is inverted about 38% of the time due to random gradient sampling.

When ε is set to 4, the cosine similarity is neatly divided around 0, making it easy to distinguish
the gradient before randomization. This is because, for ε = 4, the probability of a sign reversal of
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(c) ε0 = 0.5, d = 10
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(d) ε0 = 4, d = 10

Figure 3: Cosine similarity of gradients before and after randomization. Oppositely oriented gradients tend to
show differences in cosine similarity after randomization.

g1 is about 1.8%. The larger the dimension of the vector, the more likely the cosine similarity is to
be near 0. However, if the gradient is in the opposite direction, the distribution is clearly divided
around 0.

4 MEASURING LOWER BOUNDS OF LDP

This section describes the method used to measure the empirical privacy level of FL under LDP. To
the best of our knowledge, this is the first attempt to measure the ε value of LDP empirically.

4.1 LOWER BOUNDING ε OF LDP IN HYPOTHESIS TEST

We follow an analytical approach previously employed to audit CDP (Jagielski et al., 2020; Nasr
et al., 2021).

Given an output y of a randomized mechanism M, we consider the following hypothesis testing
experiment. We select a null hypothesis as input x and an alternative hypothesis as x′:

H0: y came from input x
H1: y came from input x′

When selecting rejection region S, the false positive rate (FPR), when the null hypothesis was true
but rejected, is defined as Pr[M(x) ∈ S]. The false negative rate (FNR), when the null hypothesis
was false but retained, is defined as Pr[M(x′) ∈ S̄], where S̄ is a complement to S. MechanismM
that satisfies ε-LDP is equivalent to satisfying the following conditions (Kairouz et al., 2015):
Theorem 1 (Empirical ε0-Local Differential Privacy). For any ε0 ∈ R+, a randomized mechanism
M : X → S is ε-local differentially private if and only if the following conditions are satisfied for
any pair of inputs x, x′ ∈ X and all rejection regions S ∈ S:

Pr[M(x) ∈ S] + eε0 · Pr[M(x′) ∈ S̄] ≥ 1, and

eε0 · Pr[M(x) ∈ S] + Pr[M(x′) ∈ S̄] ≥ 1.
(2)

It can be seen that satisfying Equation (2) is equivalent to satisfying ε0-LDP. Because 1−Pr[M(x) ∈
S] = Pr[M(x) ∈ S̄], which transforms the upper equation, we can obtain Pr[M(x) ∈ S̄] ≤
eε0 · Pr[M(x′) ∈ S̄]. Therefore, we can determine the empirical ε0-local differential privacy as
follows:

εempirical
0 = max

(
log

1− FPR
FNR

, log
1− FNR

FPR

)
(3)

For example, in 1000 trials, suppose the FPR when the actual input was x but the distinguisher
guessed x′ was 0.1, and the FNR when the actual input was x′ but the distinguisher guessed x was
0.2. Then, FPR and FNR are substituted into Equation (3) to obtain εempirical

0 ≃ 2.0.

Number of trials and measurable ε. Let us find the number of trials n and the measurable ε from
the Clopper-Pearson bound. We set α = 0.05 to get a 95%-confidence bound. The probability of
success p is denoted by eε0

1+eε0 . Even if the client were to succeed in all 1000 of the trials, the lower
confidence limit of p is 0.99632. This is almost equal to the probability of success when ε0 is 5.6.
Similarly, if all 1000000 trials are successful, the Clopper-Pearson bound would imply an ε0 lower
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bound of 12.5. This hypothesis test may be difficult depending on the number of trials and the client
machine environment.

4.2 INSTANTIATING THE LDP ADVERSARY IN FL

To perform a privacy test based on the hypothesis testing above, we define the following phases:

• Crafting phase. The FL client produces two gradients, g1 and g2, with global model θt.
In this phase, the client honestly randomizes one of the gradients using Algorithm 1 and
makes it g̃, which is sent to the distinguishing phase.

• Distinguishing phase. The FL client predicts whether the randomized gradient is g1 or g2.

We present this algorithm in Appendix B. We propose the privacy measurement test that repeating
crafting and distinguishing a sufficient number of times under specific settings yields εempirical in
Equation (3).

4.3 ALGORITHM IN DISTINGUISHING PHASE

According to the worst-case attack analysis, the worst-case is achieved by comparing the cosine
similarities of the raw and randomized gradients. In this phase, we compare the two raw gradients
{g1, g2} and randomized gradient g̃. Here, we employ the cosine similarity between g̃ and {g1, g2}
for a distinguishing algorithm. The discrimination in the distinguishing phase is defined as follows:

guess =

{
g1 cos(g̃, g1) ≥ cos(g̃, g2)

g2 otherwise
. (4)

We employ a case with a higher cosine similarity to the randomized gradient. Calculating the FPR
and FNR for this expectation yields εempirical.

4.4 ALGORITHMS IN CRAFTING PHASE

Although evaluating the effect of every possible combination of assumptions is possible in principle,
it is computationally intractable. We must make certain assumptions that will allow computation by
the client. We introduce five types of crafting algorithms. Adversaries are classified according
to their access levels. The two crafting algorithms assume collusion with the FL server. After
generating two candidate inputs for each setting, FL clients choose one gradient from the two with
a probability of 50%. The adversary settings proposed in this paper are summarized in Table 2.

Benign setting. Under the most realistic settings, suppose that all entities are benign. With this
setting, we provide an instantiated adversary with minimal power. In this crafting phase, the client
uses the global model θt distributed by the FL server to generate gradients g1 and g2 from inputs
x1 and x2, respectively. The input data x1 used for our measurement test is chosen randomly from
the dataset. In the case of CIFAR-10, x1 is chosen from 50,000 images. For benign settings, x2 is
selected in the same way. Here, we check whether the gradients of two randomly selected inputs are
discriminable; for example, x1 is the image of a cat, and x2 is the image of a dog. Next, g1 or g2 is
chosen and randomized in this phase using the client-side algorithm (Algorithm 1).

Label flip. The previous setting defined a weak adversary to establish the first baseline lower bound
under a realistic setting. The malicious processing of input data includes adding perturbations to
the image using FGSM (Goodfellow et al., 2014), Deepfool (Moosavi-Dezfooli et al., 2016), etc. In
the case of DP-SGD (Nasr et al., 2021), the poisoned input by Deepfool is the worst-case input for
membership inference. The worst-case of LDP-SGD, when only input data poisoning is allowed, can
be achieved without using FGSM or Deepfool. To avoid the effects of random gradient sampling,
the cosine similarity between g1 and g2 must be negative. The first method that comes to mind to
make g1 and g2 face in opposite directions is to flip the sign of g1 to that of g2 (Zhao et al., 2020;
Wainakh et al., 2021). Changing the correct labels of the input data is a simple method to approach
the worst-case without manipulating the gradients. In this case, a gradient must be generated from a
well-trained model. The only difference between g1 and g2 is the data label.

Proposition 4.1. When θt is well pre-trained, changing the input data label can generate a gradient
in the opposite direction.
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Table 2: Adversary settings. A lower row indicates a stronger adversary.

Setting
Malicious Access

g1 g2
Crafting phase FL server

Benign Benign Benign ∇ℓ(θt;x1) ∇ℓ(θt;x2)
Label flip Inputs Parameters ∇ℓ(θt;x1, label1) ∇ℓ(θt;x1, label2)
Gradient flip Gradients Benign ∇ℓ(θt;x1) −g1
Collusion Gradients Parameters ∇ℓ(θ̃t;x1) −g1
Dummy Gradients Benign (λ, λ, . . . , λ) −g1

We offer the proof in Appendix C. If θt is not a well-pre-trained model, i.e., the output probability
of a positive label is far from 1 in the early stages of FL training, and flipping labels may not work.
We must validate εempirical

0 for each training stage.

Gradient flip. This attack allows FL clients to examine the level of privacy when gradient manip-
ulation is permitted. In the crafting phase, the FL client processes the raw gradient. The simplest
method for processing a gradient to increase its discriminability is to flip the gradient sign. As de-
scribed in Section 3.1, in the random gradient sampling of LDP-SGD, when ε0 is set to a large value,
the sign of the gradient is unlikely to change; therefore, such processing is effective. The client uses
the global model, θt, distributed by the FL server to generate gradient g1 from input x1. Let g2 be a
gradient with a sign that is the opposite of g1.

Collusion. Here, we consider distributing a malicious model from the server to the clients. As
explained in Section 3.1, in the gradient norm projection of LDP-SGD, a smaller norm for the raw
gradient makes it easier for the sign to be flipped. Taking advantage of this property, we consider
a setting where the client and server collude, making it challenging to generate a gradient with a
small norm. With this setting, the server intentionally creates a global model with massive loss and
distributes it to the client. To realize this adversary, we introduce the following procedure. First,
the server generates a malicious global model, θ̃t, based only on inputs with the same label and
distributes it to the client. Second, the client utilizes this malicious model θ̃t to generate gradient
g1 from input x1. The label x1 differs from the labels of the inputs used to generate the malicious
model. The client flips a gradient in the same manner as gradient flipping.

Dummy gradient. In our final and most powerful attack, we assume that the client produces a
dummy gradient. In other words, FL clients alone can verify the authenticity of LDP-SGD through
the worst-case input without collaborating with the server. LDP-SGD includes gradient norm projec-
tion, which causes errors owing to random flipping gradients. The simplest way to avoid randomly
flipping the sign is to generate a gradient with a large norm, regardless of the FL client’s input or
model. To craft the dummy gradient, we simply use a constant λ to fill all the elements of the gra-
dient. To avoid the gradient norm projection, the norm of g1 must be greater than or equal to the
clipping threshold L. Therefore, let λ be L/

√
d and d be the dimension of the gradient. As another

choice of gradient, we also employ gradient flipping to maximize the difference compared to g1.

5 EMPIRICAL PRIVACY IN SHUFFLE MODEL

We also present empirical privacy measures for the shuffle model. The shuffle model of DP has
gained significant interest as an intermediate trust model between the standard local and central
models (Erlingsson et al., 2019). We argue that from the worst-case of LDP-SGD, the empirical
ε can also be calculated when the gradient is shuffled, as illustrated in Figure 1b. The crucial
difference with the local model is that the shuffle model assumes that a mechanism is in place to
provide anonymity to each message, i.e., the data collector cannot associate messages with users.
This is equivalent to assuming that, in the view of the adversary, these messages have been shuffled
by a random permutation unknown to the adversary (Balle et al., 2019).

Crafting for shuffling. We define the following neighboring datasets D and D′. g1 must be greater
than or equal to the clipping threshold L to achieve the worst-case of LDP-SGD, and g2 is opposite
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to g1. Therefore, the algorithm for generating g1 and g2 is the same as for dummy.

D = {g1}n;D′ = {g1}n−1 + {g2}1 (5)

In Equation (5), let D denote the case where everyone randomizes the same gradient g1, and let D′

denote the case where only one client randomizes a gradient in the opposite direction g2.

Distinguishing for shuffling. Equation (6) distinguishes the input from the shuffler output (the char-
acteristics of the distribution of the gradient), as also shown in Figure 1b. When multi-dimensional
vectors are output as in LDP-SGD, the dataset is distinguished by the frequency of positive and
negative cosine similarity. When g1 is randomized n times, the expected value of cos(g, g̃) > 0 is
neε

1+eε . Therefore, we set τ in Equation (6) to neε

1+eε .

guess =

{
D

∑
i∈[n]{cos(g, g̃) > 0} ≥ τ

D′ otherwise
(6)

By repeating the trial of predicting the input dataset from the shuffling output, the empirical ε of the
shuffle model can also be derived from Equation (3).

6 NUMERICAL OBSERVATIONS

Here, we present the results of an experimental study to observe the numerical results of our LDP
tests in FL. Furthermore, we present observations of empirical privacy in the shuffle model. Finally,
we discuss the feasibility of a worst-case scenario by FL clients and the possible relaxation of privacy
parameter ε. The experimental code is available on the anonymous repository for the blind review 1.

Experimental setup. For each adversary instantiation listed in Table 2, we run ten measurements
and average the measurement results. Each measurement consists of K = 1000 trials. We use LDP-
SGD (Erlingsson et al., 2020) to train the models, with clipping norm size L=1. The guaranteed
privacy levels ε are set to 0.5, 1.0, 2.0, and 4.0. We observe our measurement test on both image and
language models. We utilize LEAF benchmarks (Caldas et al., 2018), which provides benchmark
federated datasets for simulating clients with non-IID data and varying local samples. We employ
CIFAR-10 (Krizhevsky et al., 2010), FEMNIST (Caldas et al., 2018) and CelebA (Liu et al., 2015)
and train a simple CNN as image classification tasks. For our language tasks, we train an LSTM
model on non-IID splits of Sent140 (Go et al., 2009). We utilize the FLSim framework 2.

6.1 OBSERVATIONS OF EMPIRICAL LDP

Figure 4 summarizes the empirical ε values for each dataset. Based on tiered access levels, our sce-
nario gives the FL client an assessment of privacy parameter ε0. Over the four datasets, LDP-SGD
was vulnerable to label flipping with a well-pre-trained model and gradient flipping. Adversaries that
directly manipulate raw gradients can reach the theoretical upper bounds given by privacy parame-
ter ε0. In addition, collusion with a server employing the malicious model increases the adversary’s
capability. Even if only the processing of input data is allowed, the probability of approaching the
upper bound increases depending on the classification accuracy of the pre-trained model, i.e., the
probability of privacy information leakage increases (Figure 5). If the norm of the dummy gradient
is smaller than the clipping size L, the gap between the theoretical and measured ε0 values becomes
larger (Figure 6). Details on the execution time of the measurement test are given in Appendix D.

6.2 EMPIRICAL PRIVACY AMPLIFICATION BY SHUFFLING

Table 3 shows the theoretical and empirical ε corresponding to local privacy parameter ε0 and the
number of clients n with δ=10−6. We utilize the state-of-the-art privacy amplification Feldman et al.
(2023) as the theoretical ε (Equation (1)). The number of clients required for shuffling is derived
from ε0 ≤ ln( n

8 ln(2/δ) − 1) in Feldman et al. (2023). Privacy amplification by shuffling is still in
the improvement stage and is expected to become smaller than the value in Equation (1).

1https://anonymous.4open.science/r/ldp-hypothesis-testing-28FA/
2https://github.com/facebookresearch/FLSim
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Table 3: Theoretical (Feldman et al., 2023) and empirical privacy under shuffle model. Privacy amplification
by shuffling may be an improvement over the state-of-the-art.

ε0 Required clients n Theoretical ε Measured ε

1 n ≥432 432 0.67 0.07
1000 0.48 0.06

2 n ≥ 974
974 0.95 0.12

1000 0.94 0.11

4 n ≥ 6454
6454 1.1 0.16

10000 0.96 0.10

As shown in Table 3, ε0=2 used for gradient randomization requires a minimum of 974 clients, and
ε0=4 requires a minimum of 6454 clients for the shuffling.

Empirical privacy amplification is found to be larger than the theoretical value. 974 clients random-
ize the gradient with ε0 = 2, and when shuffled, the empirical value is 0.12, despite the theoretical
value of ε = 0.95. These results suggest that privacy amplification by shuffling may be an improve-
ment over the state-of-the-art.

6.3 DISCUSSION

Feasibility of a worst-case scenario by FL clients. An FL client can determine whether the mech-
anism satisfies ε-LDP by gradient manipulations; however, it might not be allowed to access the
gradient directly as a default. An alternative approach is to manipulate the labels, but reaching the
theoretical bounds is difficult since it depends on some factors, including the pre-trained model. So,
seeking a way to access the gradient is mandatory when we want to assess empirical privacy solidly.

Relaxations of privacy parameters. One possible way to prevent worst-case attacks is to prohibit
gradient poisoning. As shown in the experiments, the empirical privacy did not reach the given
privacy bound without directly manipulating the gradients. This suggests that there may be too
much privacy protection in FL under LDP, reducing its utility. By adding restrictions to the FL
entities, it may be possible to relax ε.

7 CONCLUSION

We introduced a client-side empirical privacy test that measured the lower bounds of LDP. To verify
whether the mechanism satisfied ε0-LDP, we discovered the worst-case of LDP-SGD. In the mea-
surement test of LDP, we demonstrated the empirical privacy levels at various attack surfaces and
found that LDP-SGD was vulnerable to label flipping with a well-pre-trained model and gradient
flipping. Furthermore, we observed empirical privacy amplification in the shuffle model. To encour-
age more users to contribute data, our privacy test will contribute to confirm the credibility of the
gradient randomized responses in federated learning.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Galen Andrew, Peter Kairouz, Sewoong Oh, Alina Oprea, H Brendan McMahan, and Vinith
Suriyakumar. One-shot empirical privacy estimation for federated learning. arXiv preprint
arXiv:2302.03098, 2023.
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A PROOF FOR PROPOSITION 3.1

Proof. Recall that in LDP-SGD, the direction is reversed, depending on the gradient norm and ε0.
First, the gradient norm projection may flip the gradient sign. From line 2 in Algorithm 1, when
a gradient has norm L, the probability of preserving the sign is 100%. In other words, a norm
smaller than L leads to sign flipping. Hereafter, we assume that g is a gradient with norm L to fix
the sign. Next, we recall the random gradient sampling samples from the green zone in Figure 2
with a probability of eε0

1+eε0 . Unless g1 and g2 are not in the same semicircle (i.e., facing opposite
directions), g1 and g2 are difficult to distinguish because of random gradient sampling. We present
the effects of sign-flipping on the gradient. Let gflip be the flipped gradient of g, g̃ and g̃flip be the
outputs of random gradient sampling. In Line 3, there is a eε0

1+eε0 probability that g · g̃ ≥ 0 and
gflip · g̃flip ≥ 0. Let g̃target be the gradient randomized to either g or gflip with a probability of 50%.
Let us predict the value of gtarget. The case can be divided by the cosine similarity between g̃target and
g as follows:

1. cos(g̃target, g) ≥ 0

• gtarget is g and g rotates within ±90 degrees. w.p. 1
2 ·

eε0

1+eε0

• gtarget is gflip and gflip rotates over ±90 degrees. w.p. 1
2 ·

1
1+eε0

2. cos(g̃target, g) < 0

• gtarget is g and g rotates over ±90 degrees. w.p. 1
2 ·

1
1+eε0

• gtarget is gflip and gflip rotates within ±90 degrees. w.p. 1
2 ·

eε0

1+eε0

In the distinguishing phase, the FL client predicts g for the original data of g̃target when the co-
sine similarity between g and g̃target is positive; then, the prediction is correct with a probability of
1
2 ·

eε0

1+eε0 . Likewise, the client predicts gflip for the original data of g̃target when the cosine similarity
between g and g̃target is negative; then, the prediction is correct with a probability of 1

2 ·
eε0

1+eε0 . There-
fore, the client can distinguish g and gflip with probability eε0

1+eε0 . As initially assumed, maximizing
the norm and flipping the sign of the gradient are the most effective.

B ALGORITHM OF OUR MEASUREMENT TEST

Algorithm 2 LDP Test in FL clients

Require: Privacy parameter: ε0, #trials: K
1: FP, FN, TP, TN← 0
2: for k ∈ [K] do
3: The FL server sends θt to the client.
4: Crafting phase
5: {g1, g2} ← Craft(x1, x2, θt)
6: Randomly choose g from {g1, g2}
7: g̃ ← Aclient(g).
8: Submit g̃ to the distinguishing phase.
9: Distinguishing phase

10: guess← D(g̃, g1, g2)

11: if g is g1 and guess is g2 then
12: FP += 1
13: else if g is g2 and guess is g1 then
14: FN += 1
15: else if g is g2 and guess is g2 then
16: TP += 1
17: else
18: TN += 1
19: end if
20: end for
21: Compute εempirical

0 as (3)
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C PROOF FOR PROPOSITION 4.1

Proof. We consider an NN model trained for binary classification with cross-entropy loss (y = 1
indicates a positive class, y = 0 otherwise):

L = −y log(p)− (1− y) log(1− p)

where p is the output probability of an input being labeled positive. More precisely, we write the
following:

p =
ez+

ez+ + ez−
,

Where z± is the output (corresponding to the positive and negative classes, respectively) from the
penultimate layer before undergoing sigmoid transformation, which we assume to be a linear NN
layer: z+ = w+x + b+ and z− = w−x + b−, where w± and b± are the weights and biases,
respectively, and x is the logit from the previous layer. Assume an input for which the ground-truth
label is positive. Then, using the chain rule, the gradient is obtained as follows:

dL

dW
=

dL

dp
· dp

dz+
· dz+
dW

= −1

p
· p(1− p) · dz+

dW
= (p− 1) · dz+

dW
(7)

where W denotes the weight in the NN. If we flip the label (i.e., y = 0), we obtain the gradient

dL

dW
=

dL

dp
· dp

dz−
· dz−
dW

=
1

1− p
· −p(1− p) · dz−

dW
= −p · dz−

dW
(8)

instead. We say that a model is well pre-trained when it is confident that an input with y = 1 is
positive, i.e., p ≃ 1. In other words, given an input with y = 1, a well-pre-trained NN would yield
a large z+ and small z−. One can then deduce that the weights are trained to satisfy w+ ≈ −w−
such that the above relation holds. It should be noted that dz+

dW = dz+
dx

dx
dW = w+

dx
dW and dz−

dW =
dz−
dx

dx
dW = w−

dx
dW . When a model is pre-trained, p ≃ 1 for y = 1, the signs of p− 1 in Equation (7)

and −p in Equation (8) are the same. We can deduce that the gradient is in the opposite direction
when the label is flipped for a well-pre-trained NN. The same argument applies to the inputs with
y = 0.

D RUNNING TIME OF MEASUREMENT TEST

Figure 7a shows the running time when εempirical is measured from 1000 trials of guessing g1 or g2 on
the Laptop (Apple M1 Pro CPU machine with 32 GB memory). Collusion is almost the same process
as gradient flip, so it is omitted. Naturally, the dummy provides the fastest measurement since it only
puts a constant in g1. The dimension of the dummy setting is the same as FEMNIST, the smallest
of the four datasets. The time complexity of our privacy measurement test is proportional to the
dimension d of the gradient, i.e., O(d). The difference in execution time between Datasets is due to
differences in the structure of the CNN and LSTM models.

Figure 7b means the estimated execution time of εempirical
0 in the dummy setting when the number

of trials is between one thousand and one million. As mentioned in Section 4.1, 1000 trials are
sufficient to check ε0 = 4, but if FL clients want to use this hypothesis test to verify that the
mechanism guarantees a significant value such as ε0 = 10, it can be measured by setting the trials
at one million. In other words, it takes about 2.2 seconds to check that ε0 = 4 is guaranteed, while
it takes about 37 minutes to verify ε0 = 10. This experiment was performed on a Laptop, but there
may still be issues running it on a smartphone. If the clients verify large ε0, they may not be able to
execute, but a shuffle model can estimate εempirical

0 by sharing randomized gradients.

E DETAILED MEASURED EMPIRICAL PRIVACY ε0

Figure 8 shows the empirical ε0 for each setting in more detail.

Benign setting. Simply generating gradients from two different inputs suggests that g1 and g2
would be difficult to use for the worst-case. When we performed this attack on CIFAR-10 and
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Figure 7: (a) Time required to calculate εempirical
0 when trial K = 1000. (b) The larger ε0, the longer the

inspection takes.

trained a model with ε0 = 4, εempirical was 0.85. In other words, the attack accuracy was equivalent
to approximately 68%. This attack was weak not only when using CIFAR-10 but also when using
FEMNIST, Sent140, and CelebA. Therefore, the client requires more ability in the crafting phase to
achieve the theoretical upper bound. In the most realistic setting of DP-SGD (Abadi et al., 2016),
prior studies (Nasr et al., 2021; Jagielski et al., 2020) have observed the same phenomenon. The
distribution of gradients after randomization in this setting is shown in Figure 9a and 9b.

Label flip. From Figure 8b, the probability of discrimination increased when manipulating the input
label with the well-pre-trained model. The gap between the empirical and theoretical privacy levels
in this setting was narrower than that in the benign setting. In other words, label flipping could
leverage the poisoning capability to leak more private information. When we performed this attack
on Sent140 and trained a model with ε0 = 4, εempirical

0 was 1.76. Figure 5 shows the relationship
between the effects of label flipping and the pre-trained models. The horizontal axis represents the
number of FL iterations, where the batch size was set to 100. This result indicated that the effect
of label flipping became more apparent as the FL training progressed. The well-pre-trained model
in this experiment was one that had been trained to the limit in our environment. Depending on the
learning method used, it may be closer to the upper bound.

Gradient flip. Discriminability improved compared to the benign setting when the client flipped
the gradient sign. A comparison of label flip and gradient flip suggests that processing gradients
leak more private information than processing input data, especially correct labels. In particular,
when ε0 = 4, εempirical

0 had a value of 3.73 on FEMNIST, which was close to the theoretical value.
As shown in the worst-case proof, LDP-SGD maintained a direction roughly proportional to the
guaranteed ε0. Thus, g1 and g2, which had opposite signs, could easily be distinguished. However,
the empirical value of ε did not reach its theoretical value for all the datasets because gradients with
small norms were occasionally included, causing gradient norm projection.

Collusion. Collusion between the client and server narrowed the gap between the theoretical and
empirical levels compared with gradient flipping. In this setup, the initial malicious model prevented
sign inversion owing to the gradient norm projection, in which gradient flipping was not controlled.
The empirical value of ε0 reached the theoretical value at all setting values, ε0 = 0.5, 1, 2, 4.

Dummy gradient. This setting is a worst-case scenario, and we can ensure that LDP-SGD guar-
antees a proper ε0-LDP. From Figure 8e, as with collusion, this setting increases the probability of
gradient discrimination. The attack accuracy was approximately 98%. Figure 6 shows the effect
of the norm on the discrimination probability. Even with a dummy gradient, if the norm is smaller
than the clipping size L, the gap between the theoretical and measured ε0 values becomes larger.
Therefore, flipping the sign of the gradient with a small norm had little effect. Daring to generate
dummy gradients with a large norm is uncommon in FL. However, it was clear that maximizing the
norm of the gradient and sign flipping were the most potent attacks.
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Figure 8: (a) The client randomizes the gradient without malicious behavior. In practice, the gradient has
stronger protection than the assumed privacy level. (b) LDP-SGD is vulnerable to label flipping. (c) LDP-SGD
is vulnerable to flipping the gradient sign. Depending on the dataset, εempirical

0 almost reached the theoretical
value. (d) This setting considers the collusion of the FL client and FL sever to achieve the worst-case. The
adversary crafts g2 by flipping g1, just as with gradient flip. (e) The adversary generates a gradient with a
large norm, regardless of the image or model possessed by the FL client. εempirical

0 reached the theoretical value,
confirming that LDP-SGD satisfied ε-LDP.

F POISONING EFFECTS

Figure 9 shows how effective the crafting algorithm is in terms of cosine similarity distribution on
CIFAR-10. We observe that the stronger the assumed attack, the easier it becomes to distinguish the
outputs. We first compare the distributions for ε0 = 0.5 and ε0 = 4. It is clear that the larger the
epsilon, the more likely there is to be a difference in the post-randomization gradient g̃. We next
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show the effect of gradient poisoning. Figure 9a and 9b shows the distribution of cosine similarity
in the benign setting, and Figure 9e and 9f show the distribution of cosine similarity in the gradient
flip setting. These comparisons show that for ε0 = 4, the distributions after randomizing g1 and g2
(−g1 for gradient flip) are less likely to mix in gradient flip than in benign setting, making it easier
to distinguish.
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Figure 9: Cosine similarity of gradients before and after randomization. Oppositely oriented gradients tend to
show differences in cosine similarity after randomization.
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