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ABSTRACT

“Noisy” datasets (regimes with low signal to noise ratios, small sample sizes, faulty
data collection, etc) remain a key research frontier for classification methods with
both theoretical and practical implications. We introduce FINDER, a rigorous
framework for analyzing generic classification problems, with tailored algorithms
for noisy datasets. FINDER incorporates fundamental stochastic analysis ideas into
the feature learning and inference stages to optimally account for the randomness
inherent to all empirical datasets. We construct “stochastic features” by first
viewing empirical datasets as realizations from an underlying random field (without
assumptions on its exact distribution) and then mapping them to appropriate Hilbert
spaces. The Karhunen-Loève (KL) transform breaks these stochastic features into
computable irreducible components, which allow classification over noisy datasets
via an eigen-decomposition: data from different classes resides in distinct regions,
identified by analyzing the spectrum of the associated operators. We validate
FINDER on several challenging, data-deficient scientific domains, producing state
of the art breakthroughs in: (i) Alzheimer’s Disease stage classification, (ii) Remote
sensing detection of deforestation. We end with a discussion on when FINDER is
expected to outperform existing methods, its failure modes, and other limitations.

1 INTRODUCTION

Classification problems are of significant interest across a variety of scientific and commercial fields,
especially when concerned with “noisy” datasets: settings where the nominal data dimension F ≫
than the sample size N , datasets with poor signal to noise ratios, etc. Deep/Machine Learning (ML)
methods are particularly known to be susceptible in data-deficient settings LeCun et al. (2014); Ng
(2004) and thus techniques for performance improvements in these regimes remain of strong interest.

We present a multi-faceted novel development within these contexts: a generic and versatile theory
for discussing classification problems with applications in treating noisy datasets, validated over a
collection of challenging and significant scientific datasets. Broadly speaking, we blend standard
feature inference/construction methods with the Kosambi-Karhunen-Loève theorem Loève (1978)
from stochastic analysis, by rigorously defining and building “stochastic features” that can help
classify the underlying structures while seeing through the inherent “blurriness” of noisy datasets.
We begin with binary classification since many classification problems reduce to a set of binary ones.

Binary classification involves classifying an input object into one of two classes, {A,B}, {0, 1},
etc, based on a list of numeric quantities associated with that object. For large F , this becomes
computationally intractable as N may be too limited for machine training. Principal component
analysis (PCA) was developed largely as a way to effectively reduce the nominal dimension of a given
dataset with minimal information loss Kokoszka and Reimherr (2017). Further developments involved
viewing data not as a vector in RF , but as a function from a closed interval [a, b] to R, sampled at F
points. Such methods for analyzing, constructing machines from, and making predictions based on
data comprise the field of functional data analysis (FDA) Kokoszka and Reimherr (2017); Horváth
and Kokoszka (2012). FDA is often preferred when F ≫ N : even linear discriminant analysis can
be outperformed by the much simpler naive Bayesian classification Bickel and Levina (2004).

The Kosambi-Karhunen-Loève expansion (KLE) Schwab and Todor (2006) is a fundamental result in
FDA, mildly generalized by us as Thm. 2.1. It implies that our stochastic features admit a Fourier
series like expansion in terms of simpler, computable elements. We pair Thm. 2.1 with novel
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algorithms for constructing/finding stochastic features with in-built class separability (to the extent
such underlying features can exist for the available data). We further prove that digitization does not
limit the usefulness of these results and show how optimal choices for truncation may be made.

We test our approach on noisy datasets of significant scientific interest, with major improvements
on existing state of the art results. FINDER is generic, but geared towards such data-deficient or
otherwise noisy settings, its relative performance advantages expectedly increasing with the “noise”.

Another advantage lies in the efficiencies it may unlock for otherwise computationally intensive tasks.
The inherent robustness to noise and in-built class separability implies nominally intractable datasets
can become amenable even to fundamental ML algorithms like support vector machines (SVM) or
hidden Markov models (HMM), which can then be used with dramatic improvements in accuracy.
Hence, while FINDER comes with additional construction costs of its own, the fact that it can be
packaged with simpler methods like SVM provides a pathway to manageable computational costs.

FINDER is also relatively robust to unbalanced data: it is a functional analytic schema and the
number of available samples per class is a matter of concern only insomuch that the “noisiness” of the
class changes with that number. Numerical experiments validating our claims are provided in Sec. 3.

2 A MATHEMATICAL FRAMEWORK FOR FEATURE INFERENCE

FINDER is a 3-step framework: 1) Dataset acquisition, 2) Feature construction, 3) Classification.

We begin by assuming that the datasetD, a subset of some nominal space U , is a random realization of
a complete probability space (Ω,F ,P), without any assumptions on the underlying data distribution.
U is usually a Euclidean space, but could be a manifold, spatio-temporal domain, etc. Formally, we
view this realization of the random field through a map v1 : Ω→ U . We then use another map v2 to
map D to some apt Hilbert spaceH, such that different classes get mapped to disjoint regions inH.
Readers may recognize this as a standard feature construction task or kernel trick. The composition
v := v1 ◦ v2 is called a stochastic feature (and is Bochner measurableA.1), if v ∈ L2(Ω,H).
Classifiers are then simply maps from H to {0, 1}: usually via a machine from H to [0, 1], with a
separatrix t ∈ (0, 1). Figure 1 summarizes FINDER as a whole, but good features make Step 3 trivial,
so our focus is on the composed Steps 1 and 2: the creation and computability of stochastic features.

The novelty of our work is in that our features directly incorporate the stochasticity through which D
is generated. Thus, most binary classification problems fall within the ambit of our framework, while
it becomes especially well-suited to handling noisy datasets. FINDER is agnostic to the choice of
(Ω,F ,P) if it is a complete probability space. H = L2([a, b]) or RF are usual choices if F is large.

Ω {0, 1}

U H

1) v1

FINDER

v

2) v2

3)

Random Field Raw data Featured data

{0,1}

Class

Figure 1: A schematic for FINDER and a visual perspective on classification as a multi-stage process.

Unfortunately, constructing stochastic features v can be prohibitively expensive. However, our goal is
classification and the eigen-decomposition of v via the KLE provides an optimally efficient short-cut.

2.1 A GENERALIZED KOSAMBI-KARHUNEN–LOÈVE EXPANSION THEOREM

We will first need to define the notions of expectation and covariance to formally discuss the KLE:
Definition 2.1. Let ⟨u, v⟩H and

∫
Ω
⟨u, v⟩H dP be the inner products onH and L2(Ω,H) respectively.

The Expectation Operator for v is the Bochner integral: E : L2(Ω,H)→ H,E(v) =
∫
Ω
v(ω)dP .

The Covariance Operator is given by: Cv : H → H, Cv(e) = E(⟨v − E(v), e⟩H (v − E(v))).

2
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For example, if H = L2([a, b]), Cv is the kernel operator whose kernel is K(x, y) = E[(v(x, ω)−

E[v(x, ω)])(v(y, ω)− E[v(y))] and produces a map Cv(f) s.t. Cv(f)(x) :=
∫ b

a

K(x, y)f(y) dy.

We now state a mildly generalized KLE (App. A), dropping the usual separability assumptions onH.

Theorem 2.1. Let v ∈ L2(Ω,H) be Bochner measurable. Then, there exists R ∈ N ∪ ℵ0 such that

v(ω) = E(v) +
R∑

r=1

λ1/2r Yr(ω)ϕr, λr ∈ (0,∞),
∑
r

λr <∞, λ1 ≥ λ2 ≥ ... (1)

where {Yr}Rr=1 , {ϕr}
R
r=1 are orthonormal sets in L2(Ω),H respectively, with E[Yr] = 0 for all r.

For example, ifH = L2([a, b]), then v is simply a measurable map v : [a, b]× Ω→ R, such that

v(x, ω) = E(v) +
R∑

r=1

λ1/2r Yr(ω)ϕr(x), Yr ∈ L2(Ω), ϕr ∈ L2([a, b])

Thm. 2.1 justifies L2(Ω,H) as the setting to source stochastic features from. We will need some
intermediate results to better understand its proof and the computability of KLE. We begin by showing
the isomorphism of L2(Ω,H) to the space of Hilbert-Schmidt operators HS(H, L2(Ω)) in App. A.2:

Lemma 2.1. Let (Ω,F ,P) be a complete probability space and H be a Hilbert space. Then,
L2(Ω,H) is isometrically isomorphic to HS(H, L2(Ω)).

Lemma 2.1 implies there is an Hilbert-Schmidt operator Hv ∈ HS(H, L2(Ω)) in correspondence
with every v. Hv is Hilbert-Schmidt means it is compact: the spectral theorem then generates our
KLE directly through a generalized Singular Value Decomposition (SVD), discussed in App. A.3.

Let Hv be the map e 7→ ⟨v − E(v), e⟩H. We promptly see that Cv = H∗
vHv . Thus, λ1/2r , ϕr are just

the singular values and right singular vectors of Hv (App. A.4), while Yr are the left singular vectors.

However, we have established properties over infinite dimensional spaces that no computer can
directly make use of. Fortunately, these properties pass over to the truncations we will necessarily
make: instead of having to build a possibly infinite dimensional Hilbert spaceH and projecting onto
a subspaceHM , we can work directly on our chosenHM (see Sec. A.5). Let PS represent projection
onto some subspace S ⊂ H. Lemma 2.2 tells us the optimal M dimensional subspace to work in:

Lemma 2.2. Let v ∈ L2(Ω,H) and S ⊂ H be an arbitrary M dimensional subspaces. Then
S∗ = Span {ϕr}Mr=1 = argmin

S
∥v − PSv∥L2(Ω,H).

We are now ready to present the class separation identities that turn these results into applications.

2.2 CLASSIFICATION AS FEATURED SEPARATION

We begin by viewing all class A elements inH as images of some stochastic feature vA and class B
elements as images of some vB. FINDER centers the dataset on class A by setting vA → vA−E(vA)
and vB → vB − E(vA), using the training data to do so. The inherent assumption here is that the
training set data allows an adequate estimation of E(vA). Immediately:

vA =

RA∑
r=1

λAr
1/2
Y A
r ϕAr , vB = E(vB) +

RB∑
r=1

λBr
1/2
Y B
r ϕBr (2)

Let HA = Span
{
ϕAr
}MA

r=1
. In practice, we choose some finite MA ∈ N by truncating the KLE

(Lemma 2.2), based on the acceptable error tolerance for the problem at hand. Our goal is to construct
a residual subspaceHres ⊂ H⊥

A such that class B elements present a different profile inHres compared
to class A: the usual choice is to have vB concentrate inHres and/or have a different spectral profile
overHres than vA (for example, in Figure 1, both classes share mean, but not distribution).

3
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Hres is generated fromH⊥
A with some truncated subspace dimension Mres. Intuitively,Hres represents

the portion of Span
{
ϕBr
}

that is not overlapping with Span
{
ϕAr
}

: in short, portions that make class
A,B "different" in some distributional sense (otherwise they are indistinguishable inH anyway).

Thus, we need a formal result/algorithm that shows stochastic features that map distinct classes to
distinct regions inH have spectral profiles concentrating with computable differences within some
probability. We invoke Markov’s inequality to establish the following Lemma (App. B.1):

Lemma 2.3. Let S ⊂ H be a finite-dimensional subspace with orthonormal basis {sm}Mres
m=1. Then

Pr(∥PS(v
A − E(vA))∥2H ≥ ε2) ≤ ε−2

Mres∑
m=1

RA∑
r=1

λAr
〈
ϕAr , sm

〉2
H

Pr(∥PS(v
B − E(vB))∥2H ≥ ε2) ≤ ε−2

Mres∑
m=1

RB∑
r=1

λBr
〈
ϕBr , sm

〉2
H

(3)

for any ε > 0, where
{
λAr , ϕ

A
r

}RA

r=1
,
{
λBr , ϕ

B
r

}RB

r=1
are the eigen-pairs of CvA and CvB respectively.

Lemma 2.3 suggests that if both RHS of (3) are small for S ⊆ H, then mapped stochastic features (i.e.
PSv

A or PSv
B) concentrate around their respective mapped class expectation with high probability.

Remark 2.1. The value of λr is simply the variance of the real-valued random variable ⟨v, ϕr⟩H.
Because the KLE acts as a generalized SVD, the eigen-pairs (λr, ϕr) capture the subspace in which
v tends to concentrate in, along with the spread of v within that subspace. This can be used, as
in the Markov bound (3) above, to place deterministic bounds on the probability that v lies in
certain regions ofH without knowing the underlying distribution of v. For many datasets, only the
first few eigenvalues λAr are non-negligible. Thus, if {sm}Mres

m=1 is an orthonormal set in H⊥
A, then

Mres∑
m=1

RA∑
r=1

λAr
〈
ϕAr , sm

〉2 ≤ ∑
r>MA

λAr . This is the one of the rationales behind the three FINDER

variants we will present later.

The Markov bounds hold regardless of the distribution of the stochastic components (the sequence
Yr in the KLE) of v. Yr having 0 expectation essentially filters them out of the inequality. This
distribution-agnostic aspect of FINDER serves to reduce computational complexity by eliminating
the need to estimate the Yr, a process which can be expensive in the absence of sufficient data and
one that may need additional, potentially unrealistic, assumptions on the probability space (Ω,F ,P).
However, the saved costs come with a large disadvantage: 3 is rarely a tight bound. So while we may
not need assumptions on (Ω,F ,P), better understanding of Yr can get more useful bounds than (3).

2.3 CONSTRUCTING RESIDUAL EIGENSPACES AND IMPLEMENTATIONS

FINDER comes with inherent flexibility of implementation since we may tile Hres in a variety of
ways (we may even nonlinearly parameterize Hres using deep neural networks). However, in this
work we use the following linearly parameterized approaches (complexity analysis in Sec. B.4):

• Direct Residual Subspaces: Initially proposed in Lakhina et al. (2004) in PCA contexts. We
simply extend it to the KLE setting by takingHres = H⊥

A = (Span
{
ϕAr
}MA

r=1
)⊥.

• Multi-Level Subspaces (MLS): This approach adapts the algorithm in Tausch and White (2003)
for constructing a basis for the residual subspace. Class A and B are then projected onto this
subspace and used to train the classifier. It is detailed in Sec. B.2.

• Anomalous Class Adapted (ACA-S and ACA-L): Results in Sec. 2.1, 3 lead to two novel, related
methods, each relying on two successive projections to class A and B samples, as described in
Alg. 1 and detailed in Section B.3.

FINDER variants are tested by training on both unbalanced and balanced datasets (SVMs will be
our usual choice for conventional feature construction, but we will occasionally leverage HMMs
too). For Balanced, NA −NB − 1 samples of Class A are used to estimate CvA and the remaining

4
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Algorithm 1 ACA Algorithm for Residual Eigenspace Construction

Inputs: MA ∈ {1, . . . ,dim(H)}, Mres ∈ {1, . . . ,dim(H)−MA}
vi ← PH⊥

A
vi

if ACA-S then
Hres = argmin

{
∥PS(v

B − E(vB))∥2L2(Ω,H)

}
s.t. S ≤ H⊥

A, dim(S) =Mres

else if ACA-L then
Hres = argmax

{
∥PS(v

B − E(vB))∥2L2(Ω,H)

}
s.t. S ≤ H⊥

A, dim(S) =Mres

end if
vi ← PHresvi

Raw features: vA, vB
Choose MA

Choose Mres
Transformed

Features

v → PH⊥
A
v v → PHresv

NB − 1 Class A samples and NB − 1 Class B samples are used to train the SVM. For Unbalanced,
allNA−1 Class A samples are used to estimate CvA and allNA−1 Class A samples and allNB−1
Class B samples are used to train the SVM. In both the Balanced and Unbalanced regime, CvB is
estimated using all NB − 1 Class B samples. See Section C.1 and Figure 4 for a detailed description.

3 APPLICATIONS AND NUMERICAL EXPERIMENTS

We exemplify FINDER on several noisy datasets, picked for their scientific significance and noted
resistance to a variety of standard classification methods. Performance on each problem will be
compared against the current state of the art results. We pair FINDER with simple ML methods,
allowing us to test the two-fold claims we made regarding its robustness to noise and its capacity
for making complex datasets more amenable to simpler ML methods. To assess classification
performance, we performed leave-(one)-pair-out cross-validation (LPOCV) on standardized data.

For comparative purposes, our benchmark methods will usually comprise of 1) a linear SVM, 2) SVM
with RBF (SVM Radial), 3) LogitBoost, 4) RUSBoost, and 5) random forest (BAG) trained on raw
features. We present and discuss two regimes where FINDER produced significant breakthroughs,
while App. D considers its impact and limitations across a wider variety of settings and applications.

3.1 AD CLASSIFICATION FROM BLOOD PLASMA PROTEIN DATA

Our first suite of tests employs proteomics data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) Petersen et al. (2010). The features correspond to 146 blood plasma biomarkers. The final
cohort distribution includes 54 Cognitive Normal (CN), 96 Alzheimer’s Disease (AD), and a mix of
346 Mild Cognitive Impairment (MCI) to Late MCI participants, for simplicity referred to as LMCI.

Early and accurate AD state classification is critical for the tens of millions of people suffering from
or at risk of AD, particularly since early detection significantly improves prognosis. High accuracy
techniques to distinguish between CN and LMCI with minimally invasive methods like blood tests
are a prominent area of research, while tests for CN vs Early MCI would be even more significant.

In our experiments, we have U = H = HM = R146. Furthermore,Hres ≤ H⊥
A, where dim(HA) =

MA = 5. Table 1 summarizes the best AUC obtained on the ADNI dataset by various FINDER
variants and the best AUC performance by the entire set of benchmark learners.

We note that the AUC results we obtain with ACA and MLS are significantly higher under FINDER
than the benchmark approach. At the same time, the results in Table 1 demonstrate that the run
time under FINDER also improves significantly in all three cohorts. This efficiency is especially
remarkable in the AD vs. CN and AD vs. LMCI cohorts, for which LogitBoost obtains the best AUC
among the benchmark learners (see Figure 2).

In addition to the AUC, Section D reports the accuracy obtained across all three methods. In binary
classification problems, one metric is often insufficient to substantiate the classification capacity

5
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Table 1: Maximum AUC achieved for ADNI cohorts using MLS, ACA-S, and ACA-L variants across
all values of Mres, compared against the best benchmark (See Figure 2 for the best performing bench-
mark within each cohort). We also report the time needed to perform both the feature transformations
and train the classifier for a single round of LPOCV. The AUCs reported across the different regimes
within MLS and AUC demonstrate the sensitivity of different data sets to the type of SVM separating
boundary. The difference in reported AUC for the ACA-S vs. ACA-L regimes also highlight the
sensitivity of this dataset to the choice of residual subspace. Both the MLS and ACA methods are
capable of elevating the AUC obtained by LogitBoost and SVM with linear separating boundary
while also achieving a significant reduction in overall run time.

Balanced
Regime MLS MLS ACA-S ACA-S ACA-L ACA-L Best
SVM Linear RBF Linear RBF Linear RBF Benchmark

AD vs. CN 0.838 0.894 0.821 0.883 0.782 0.864 0.789
Time (ms) 116.1 130.3 70.6 87.8 74.0 78.7 1173.42

AD vs. LMCI 0.750 0.886 0.863 0.863 0.647 0.860 0.790
Time (ms) 212.1 287.0 81.8 109.4 85.8 112.1 2302.33

CN vs. LMCI 0.923 0.937 0.970 0.968 0.830 0.909 0.910
Time (ms) 178.2 247.5 80.1 93.8 79.7 89.1 246.69

Unbalanced
Regime MLS MLS ACA-S ACA-S ACA-L ACA-L Best
SVM Linear RBF Linear RBF Linear RBF Benchmark

AD vs. CN 0.865 0.910 0.875 0.912 0.864 0.913 0.789
Time (ms) 114.6 129.5 76.2 93.0 77.0 81.9 1173.42

AD vs. LMCI 0.743 0.883 0.860 0.889 0.743 0.883 0.790
Time (ms) 212.6 289.8 115.3 179.1 121.8 178.1 2302.33

CN vs. LMCI 0.927 0.938 0.955 0.959 0.928 0.938 0.910
Time (ms) 175.3 237.9 91.4 135.9 94.6 146.2 246.69

of a given method. Indeed, AUC can be sensitive to the interpolation method between thresholds
Muschelli (2019). Furthermore, datasets with NA ≫ NB can yield a high AUC but a low accuracy.

This is exemplified in the CN vs. LMCI cohort (see Table 3). For this cohort, we have NA = 346
and NB = 54. An SVM with linear separating hypersurface obtains an AUC of 0.91 and an accuracy
of only 0.71 on this dataset. With this in mind, we report that FINDER is also capable of elevating
the accuracy of SVM classification compared to the benchmark learners on all three ADNI cohorts
(see Table 4 and Figure 5).

Moreover, in Rehman et al. (2024) the authors propose several models that include a subset of the
ADNI blood plasma proteins plus other features such as age, sex, education and the APOE4 gene.
Although we used all of the proteomic blood plasma features, our results are significantly higher than
those presented in Figure 2 in that paper.

3.2 DEFORESTATION DETECTION VIA RADAR AND OPTICAL REMOTE SENSING

For a second assessment of FINDER and to test its versatility, we applied the direct residual method to
remote sensing/detection of deforestation using optical (Sentinel-2 Drusch et al. (2012)) and Synthetic
Aperture Radar (SAR) (Sentinel-1 Torres et al. (2012)) data. We note that a similar approach was
proposed in Lakhina et al. (2004) in the context of anomaly detection for network traffic.

These two datasets require us to consider two types of noise. SAR data contains noise due to the
relatively weak sensors, but is unaffected by cloud cover. Optical data comes from higher quality
and higher resolution sensors, but clouds can obstruct or completely block the ground, significantly
reducing the amount of usable data. These datasets are critical in detecting deforestation, illegal
logging, and quantifying the loss of carbon absorption in the atmosphere Initiative et al. (2016).

Our hybrid FINDER approach filters the SAR data, applies the direct residual method to the optical
data, and combines the processed data in a complementary way that is very effective for highly
cloudy regions such as the West African coast, Madagascar, and parts of the Amazon forest and

6
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Figure 2: AUC obtained across all three methods for each of the three ADNI cohorts. Within each
method (MLS, ACA, benchmark), the regime with the highest overall AUC obtained across all tested
values of Mres is reported. AUC can improve significantly from the benchmark level when both
FINDER methods are employed with an RBF separating boundary. While the MLS method remains
robust with respect to the choice to pre-balance or not pre-balanced the data, the ACA method is
highly dependent on this choice. For the AD vs. CN cohort, the Unbalanced regime within ACA
performs consistently better than benchmark and MLS. However, for the CN vs. LMCI cohort, the
Balanced regime within ACA performs consistently better than benchmark and MLS. The data also
demonstrate that the performance of FINDER is sensitive to the choice of Mres. The overall trend
appears to be that larger Mres achieve higher AUCs, though too large Mres can diminish AUCs.

Southeast Asia Tang et al. (2023); Zhang et al. (2022). In particular, it significantly out-performs
state-of-the-art methods such as Fusion Near Real Time (FNRT) Tang et al. (2023). This is made
clear by the results in Table 2, where FINDER compares well against FNRT while using roughly 45
percent less data when FNRT can be used, and retains a fair proportion of its performance in the data
scarce environments where FNRT is not applicable/usable.

We choose a test region of approximately 92 km × 92 km (corresponding to 9219× 9180 pixels) in
the Amazon forest. The Sentinel-2 optical bands are converted to a scalar valued Enhanced Vegetation
Index (EVI) Huete et al. (2002) measurement on the terrain. This is a common measure in remote
sensing to detect vegetation on land cover and can be used to detect loss of forest vegetation. Each
optical pixel has a resolution of 10m × 10m. The optical Sentinel radar is resampled to same
resolution as the optical EVI data and then filtered using a spatio-temporal Bayesian approach.

Using a simplified version of the residual eigenspace FINDER approach, an anomaly map is built
from optical data that are fused with SAR with a Hidden Markov Model (HMM). The HMM then
classifies the pixel as without change (forest), deforestation or cloud cover. For this experiment, the

7
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Figure 3: (a) Test region in the Amazon forest and validation samples. 1000 samples of the validation
regions are selected. The region is formed by 9, 219× 9, 180 pixels, each pixel a 10m× 10m patch
of land, representing the Enhanced Vegetation Index. The colored areas indicate the detection of
deforestation with the Hybrid FINDER+HMM method by December 31 2022. (b) Overall metric
accuracy with Hybrid and Optical only vs the number of available optical Sentinel-2 days.

FINDER spaces and parameters will beH = HM = Span {ek}k=1,...,9219×9180, where ek is a unit
vector such that ei · ej = δ[i− j], andHres = H⊥

A where MA = 29.

The performance of the algorithms is measured by selecting 1000 validation data points in the test
region (See Figure 3(a)). Of these, 740 are stable forest with no change and in 260 the forest has been
removed. The final state of the forest (stable or deforestation) at the end date is visually checked, and
this is our ground truth.

The remote sensing community relies on three kinds of metrics to quantify detection algorithm
performance: i) Overall accuracy refers to the percentage of correctly classified pixels (stable or
deforestation) in the validation test area. ii) User’s accuracy represents the probability that a pixel
classified as a particular class (stable forest or deforestation) in a map is actually the correct validation
state. iii) Producer’s accuracy measures how well a map maker correctly identifies areas on the
ground that belong to a specific class. Specific formulae from the remote sensing community can be
found in Olofsson et al. (2014).

In Figure 3(b) the overall accuracy of the hybrid and optical-only methods is simulated for all possible
numbers of available optical days. More specifically, for all n ≤ 161 days we randomly choose 100
sets of n Sentinel-2 EVI images and compute the hybrid and optical-only accuracies using the same
sets, so as to get a direct comparison. The plot shows the mean and corresponding 95% confidence
intervals from those 100 accuracies for each number of optical days. As this number decreases we
clearly see that the optical-only accuracy reduces significantly. In contrast the hybrid method is robust
to loss of optical data, limiting to the result from only using SAR data.

The remote sensing community has seen a recent surge in interest in combining optical and radar data
to detect deforestation Chen et al. (2023). Table 2 summarizes the comparisons between the current
state-of-the-art optical and radar hybrid approach and FINDER. The accuracy results presented are
with common postprocessing remote sensing methods Chen et al. (2023) that give slightly higher
accuracies for all the methods. We observe that FINDER achieves high accuracies for hybrid optical
and radar data. For 71 days of optical training day an accuracy of 0.942 is achieved. If we reduce
the training days to 35 the accuracy reduces only slightly to 0.933. In contrast, for the same training
period with 71 days the performance of FNRT is poor. However, if we increase the training period
for FNRT to 130 days (Jan 2018 to March 2020) the accuracy increases to 0.935.
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Thus, we identify a strong use-case for FINDER here. Figure 3 and Table 2 show how well our
method works under lack of optical data. Moreover, it can be used to track forest loss in almost real
time. Many regions of the world at the risk of deforestation, such as large sections of the Amazons,
coastal West Africa, Southeast Asia Tang et al. (2023); Zhang et al. (2022), etc, are too cloudy to
supply FNRT methods with the data they need. In some cases, it can be years before sufficient data is
assembled. Beyond the opportunity costs of not being able to act in time, this can also be a problem
as deforestation during the data collection period can itself affect the performance of the algorithm.
Remark 3.1. The necessity of applying FINDER to the optical data is discussed in Section D.2.

Table 2: Accuracy results after postprocessing. Sentinel-2 optical data with HMM + FINDER has
the same accuracy as joint optical and SAR data with the HMM + Finder. For the joint optical
+ SAR data the user accuracy is superior and the producer’s accuracy is almost the same. Note
that the state-of-the-art FNRT performs poorly when not enough optical training days exist, but
improves significantly with more training data. Note that the timings for FNRT are 368 Google
engine EECU-hours, which corresponds ≈ 3 or 4 wall hours. For the HMM + FINDER results the
code was run using two 14-core 2.4 GHz Intel Xeon E5-2680v4 CPUs.

Algorithm (Data) Train Days Overall Acc. User Producer Comp Time (h)

FNRT (Hybrid) 71 0.260 0.260 1.00NA 368#

FNRT (Hybrid) 130 0.935 0.892 0.707 368#

HMM + FINDER (Optical) 71 0.936 0.801 0.748 13.95
HMM + FINDER (Hybrid) 35 0.933 0.839 0.718 49.34
HMM + FINDER (Hybrid) 71 0.942 0.865 0.752 49.47

4 LIMITATIONS AND CONCLUSION

FINDER is generic, versatile, robust in noisy regimes, and blends well with simple ML methods.
However, its advantages diminish as noise decreases: stochastic features are computationally unnec-
essary in settings where data is “clean”, “simple”, or “ample” enough to easily learn the generalizing
classes (see App. D.4 for an instructive examlpe).

Further, FINDER relies on judicious choices of the truncation parameters MA and Mres. Empirically,
the MLS method at least appears to demonstrate experimental predictability, with performance
improving as Mres is increased.

In contrast, the ACA methods demonstrate less obvious patterns in performance as Mres is varied.
Some heuristics for choosing MA in particular are informed by Scree plots and the intuition of the
user for their dataset. We are currently researching methods to make these choices, but it remains a
stark weakness.

Another significant limitation lies in the Lemma 2.3 bounds being sub-optimal, as we eliminate
the need to estimate Yr in our implementations to save computational costs. Furthermore, if the
eigen-pairs (λAr , ϕ

A
r ) and (λBr , ϕ

B
r ) are too similar, then classification becomes nearly impossible.

Finally, FINDER is still only a binary classification regime: we offer no true breakthroughs on
the question of multi-class problems, beyond decomposing them into a collection of costly binary
problems.

Mitigating these weaknesses will remain the core focus of our future work. However, FINDER’s
initial results and applications are not just promising, but definitive evidence of its value.
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A MATHEMATICAL DETAILS

We begin by assumingH is some arbitrary Hilbert space over the field R and (Ω,F ,P) is a complete
probability space, substantially generalizing from the usual assumptions Schwab and Todor (2006).
We will now derive Thm. 2.1 through a sequence of intermediate results. Let us first define:
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A.1 BOCHNER SPACES

Definition A.1 (Simple functions). We say that v : Ω 7→ H is simple if there exists a finite set of

mutually disjoint measurable sets {En}Nn=1 and vectors {en}Nn=1 such that v(ω) =
N∑

n=1

In(ω)en,

where In(ω) ≡ IEn
(ω) are the indicator functions.

Definition A.2 (Bochner-measurable). We say that v : Ω 7→ H is Bochner-measurable if there exists
a sequence of simple functions {vn}∞n=1 such that for P-a.e., we have lim

n→∞
∥vn(ω)− v(ω)∥H = 0.

Throughout this paper, we will assume the following conditions on v:

Assumption A.1. v(ω) is a Bochner-measurable function from Ω toH.

Assumption A.2.
∫
Ω

∥v(ω)∥2H dP <∞

The set of all such v : Ω → H satisfying assumptions (A.1) - (A.2) is denoted L2(Ω,H),
which constitutes a vector space under pointwise addition and scalar multiplication. The space
L2(Ω,H) comprises all the distinct equivalence classes in L2(Ω,H) where two functions are
declared equivalent if they agree almost surely. We define an inner product on L2(Ω,H) by

⟨u, v⟩L2(Ω,H) :=

∫
Ω

⟨u(ω), v(ω)⟩H dP. With this inner product, L2(Ω,H) gains the structure

of a Hilbert space. The purpose of this section is to develop what is known as the Karhunen-Loève
(KL) expansion of a random element v, given by

v(ω) = E(v) +
R∑

r=1

λ1/2r Yr(ω)ϕr (4)

where R ∈ N ∪ {ℵ0}, E(v) is the expectation of v (made precise later), {λr}Rr=1 is a non-increasing
sequence of positive real numbers with λn ↘ 0, {Yr}Rr=1 is an orthonormal set in L2(Ω), and
{ϕr}Rr=1 is an orthonormal set in H. The proof of this expansion, which will be developed in this
paper, relies on some elementary results about compact operators in Hilbert spaces.

By the Pettis theorem Diestel and Uhl (1977), v : Ω→ H is Bochner-measurable if and only if v is
weakly measurable (i.e. the scalar-valued mapping ω 7→ ⟨v(ω), e⟩H is measurable for each e ∈ H)
and essentially separably valued (i.e. v(Ω1) is separable for some Ω1 ∈ F with P(Ω1) = 1). IfH is
separable (which we do not necessarily assume), then we need only verify that v : Ω→ H is weakly
measurable to assert its membership in L2(Ω,H).

Remark A.1. IfH = L2([a, b]), then Assumption A.2 reduces to
∫
Ω

∫ b

a

|v(x, ω)|2dx dP <∞ and

the L2(Ω,H) inner product is given as ⟨u, v⟩L2(Ω,H) =

∫
Ω

∫ b

a

v(x, ω)u(x, ω)dx dP.

A.2 HILBERT-SCHMIDT SPACES

Let G,H be two Hilbert spaces over R. Given g ∈ G and h ∈ H, we may define a rank-one operator
H → G, symbolized by g ⊗ h, given by (g ⊗ h)(x) = ⟨h, x⟩H g for all x ∈ H.

We may define an inner product on two such operators as follows:

⟨g1 ⊗ h1, g2 ⊗ h2⟩ := ⟨g1, g2⟩G ⟨h1, h2⟩H (5)

The space HS(H,G) is defined to be the Hilbert space formed by the closure of the linear span of the
operators of the form g ⊗ h w.r.t. the inner product (5). If G = L2(Ω), we can embed HS(H, L2(Ω))
into L2(Ω,H) via the correspondence X ⊗ e 7→ Xe. We prove that this inclusion is actually an
isometric isomorphism by adapting (Hytönen et al., 2016, Prop. 1.4.4)
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Lemma A.1. L2(Ω,H) is isometrically isomorphic to HS(H, L2(Ω)).

Proof. To first show that the inclusion ι : HS(H, L2(Ω)) → L2(Ω,H) is an isometry, let X1 ⊗
e1, X2 ⊗ e2 be two elements of HS(H, L2(Ω)), whence we have:

⟨X1 ⊗ e1, X2 ⊗ e2⟩HS(H,L2(Ω)) = ⟨X1, X2⟩L2(Ω) ⟨e1, e2⟩H

=

∫
Ω

⟨X1(ω)e1, X2(ω)e2⟩H dP

= ⟨X1e1, X2e2⟩L2(Ω,H)

To show that ι is an isomorphism, it suffices to show that each v ∈ L2(Ω,H) may be written as a

potentially infinite sum
N∑
j=1

Xjej for appropriate Xj ∈ L2(Ω), ej ∈ H. As v is essentially separably

valued, we may assume v takes all of its values in a separable subset Z ⊆ H. Letting {ej}Nj=1

(N ∈ N ∪ ℵ0) be an orthonormal basis of Span {Z}, we may expand v(ω) in its Fourier series with
respect to the basis {ej}Nj=1 as follows

v(ω) :=

N∑
j=1

Xj(ω)ej

whereXj(ω) := ⟨v(ω), ej⟩H. EachXj is measurable (v is weakly measurable) and square summable
(apply Cauchy-Schwarz inequality), and thus lies in L2(Ω). If N < ∞, we are done. Other-

wise, we must show that lim
n→∞

n∑
j=1

Xjej → v in the L2(Ω,H) norm. In this case, the remainder∥∥∥∥∥∥v(ω)−
n∑

j=1

Xj(ω)ej

∥∥∥∥∥∥
2

H

→ 0 as n → ∞ and is uniformly dominated by ∥v(ω)∥2H P-a.e. The

Dominated Convergence Theorem ensures that∥∥∥∥∥∥v −
∑
j>n

Xjej

∥∥∥∥∥∥
2

L2(Ω,H)

=

∫
Ω

∥∥∥∥∥∥v(ω)−
∑
j>n

Xj(ω)ej

∥∥∥∥∥∥
2

H

dP→ 0 as n→∞.

A.3 BOCHNER INTEGRALS AND THEIR PROPERTIES

Definition A.3 (Pettis integral). Let v ∈ L2(Ω,H). The Pettis integral is the unique µ ∈ H for which

⟨µ, e⟩H =

∫
Ω

⟨v(ω), e⟩H dP for all e ∈ H.

Definition A.4 (Bochner integral). Let v ∈ L2(Ω,H). We call E(v) :=

∫
Ω

v dP, the Bochner

integral of v. Given an approximating sequence of simple functions {vn}n∈N, the Bochner integral of

v is the limiting value of
∫
Ω

vn(ω) dP as n→∞ (provided it exists).

With these preliminaries in mind, we can now prove Theorem 2.1

Proof. Since all Hilbert spaces satisfy the Radon-Nikodým Property (RNP) and v is Bochner inte-
grable, it is also Pettis integrable and the two integrals coincide (Diestel and Uhl, 1977, Ch. 2). Thus
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we may instead consider the element v0 := v − E(v), which also lies in L2(Ω,H). By our identifi-
cation of L2(Ω,H) with HS(H, L2(Ω)), there exists a unique Hilbert-Schmidt corresponding to v0,
which we will denote Hv0 . As all Hilbert-Schmidt operators are compact, we may invoke the spectral

theorem to write the SVD of Hv0 as
R∑

r=1

λ1/2r Yr ⊗ ϕr where R ∈ N ∪ {ℵ0}.
{
λ
1/2
r

}R

r=1
comprises

the non-increasing real-valued sequence of singular values of Hv0 with λr ↘ 0. {Yr}Rr=1 comprises
the left singular vectors of Hv0 and forms an orthonormal set in L2(Ω). {ϕr}Rr=1 comprises the right
singular vectors of Hv0 and forms an orthonormal set inH. Using the correspondence once more, we
see

v0 = v − E(v) =
R∑

r=1

λ1/2r Yrϕr v0 ∈ L2(Ω,H)

A.4 THE COVARIANCE OPERATOR

For each v ∈ L2(Ω,H) the operator Hv0 may be constructed as the mapping e 7→ ⟨v − E(v), e⟩H.
We define the covariance operator of v by H∗

v0Hv0 and denote it Cv . We immediately obtain

Cv(e) = E(⟨v − E(v), e⟩H (v − E(v)))

for each e ∈ H. We obtain the sequences {λr}Rr=1 and {ϕr}Rr=1 in the KL expansion of v as the
descending sequence of eigenvalues and eigenvectors of Cv. The sequence {Yr}Rr=1 comprises the
left singular vectors of Hv0 , obtained as

Yr := λ−1/2
r Hv0ϕr

Furthermore, each Yr has expectation zero, which results from the fact that the Bochner (and thus
Pettis) integral of v − E(v) is zero. Indeed, for any s ≤ R, we have

0 =

〈
λ−1/2
s ϕs,

∫
Ω

v(ω)− E(v) dP
〉

H

=

∫
Ω

〈
λ−1/2
s ϕs, v(ω)− E(v)

〉
H
dP

=

∫
Ω

Ys(ω) dP

Remark A.2. IfH = L2([a, b]), then E(v) =
∫
Ω

v(−, ω) dP. Furthermore, the covariance operator

associated to v is a kernel operator whose kernel is

K(x, y) =
∫
Ω

[v(x, ω)− E((v(x, ω))][v(y, ω)− E((v(y, ω))] dP,

that is, for any f ∈ L2([a, b]), Cv(f)(x) =

∫ b

a

K(x, y)f(y)dy.

A.5 COMPUTABLE SUBSPACES

For the purposes of computation, only finite dimensional Hilbert spaces are admissible. Suppose
HM ≤ H is such a finite dimensional subspace and PHM

is the projection onto HM operator. A
desirable quality of FINDER, or any machine learning approach, would be that this finite dimensional
digitization that occurs when replacing H with HM also translates to replacing L2(Ω,H) with
L2(Ω,HM ) and HS(H, L2(Ω)) with HS(HM , L

2(Ω)). Mathematically, we would like to verify that
PHM

induces maps P ′ : L2(Ω,H) → L2(Ω,HM ) and P ′′ : HS(H, L2(Ω)) → HS(HM , L
2(Ω))

such that the following diagram commutes:
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L2(Ω,H) L2(Ω,HM )

HS(H, L2(Ω)) HS(HM , L
2(Ω))

P ′

η η

P ′′

where η is the correspondence Xe↔ X ⊗ e. In the language of category theory, if L2(Ω,−) and
HS(−, L2(Ω)) are functors from the category of Hilbert spaces over R to itself, then η should act as
a natural isomorphism between these two functors.

Proof. In fact, we put P ′ as the map v 7→ PHM
v and P ′′ as the map H 7→ HPHM

and compute for
each element of the form Xe ∈ L2(Ω,H)

η(P ′(Xe)) = η(X(PHM
e)) = X ⊗ (PHM

e) = P ′′(X ⊗ e) = P ′′η(Xe)

B APPLICATIONS TO BINARY CLASSIFICATION

Consider two random elements of L2(Ω,H), vA and vB, whose instantiations vA(ω) and vB(ω)
are thought of as belonging to Class A or Class B. This section presents a method for determining
whether or not an observed random element u ∈ H belongs to Class A or Class B.

Definition B.1 (Equality (in distribution)). v, ṽ ∈ L2(Ω,H) are said to be equal in distribution,

denoted v d
= ṽ, if Pr(v ∈ B) = Pr(ṽ ∈ B) for all Borel-measurable subsets B ofH.

Remark B.1. We can restrict to the cases where B is an open set inH.

Corollary B.1. Let v d
= ṽ. Then Cv and Cṽ share the same spectrum, i.e., {λr}Rr=1 =

{
λ̃r

}R

r=1
.

Further, ker(Cv − λrI) = ker(Cṽ − λ̃rI)) for each r = 1, 2, . . . R.

Note the converse need not be true; if Cv = Cṽ, the it need not be the case that v d
= ṽ. In fact, if Cv

possesses eigen-pairs {λr, ϕr}Rr=1, then for any zero mean, orthonormal sequence
{
Ỹr(ω)

}R

r=1
⊆

L2(Ω), the random element ṽ :=

R∑
r=1

λ1/2r Ỹr(ω)ϕr admits covariance operator Cṽ equal to Cv .

Although knowledge of the sequence of singular values
{
λ
1/2
r

}R

r=1
, right singular vectors {ϕr}Rr=1,

and left singular vectors (random variables) {Yr}Rr=1 are all needed to fully describe the distribution
of the random element v, we describe a classification method which does not require knowledge of
the sequence of random variables {Yr}Rr=1 present in the KL expansion of v. This is particularly
advantageous, since the {Yr}Rr=1 are not necessarily independent, just uncorrelated, thus estimation
of the joint distribution of {Yr}Rr=1 requires a high dimensional estimation problem which is quite
difficult to do from even a moderately sized empirical dataset {vi}Ni=1 without additional assumptions
on v.

In contrast, the estimation of the eigen-pairs
{
λ̂
1/2
r , ϕ̂r

}R

r=1
from the empirical covariance operator

Ĉv :=
1

N − 1

N∑
i=1

(vi−v)⊗(vi−v) (with v :=
1

N

N∑
i=1

vi) is relatively easy. In particular, ifH = RP ,

then Ĉv is just the empirical covariance matrix, and the eigen-pairs
{
λ̂
1/2
r , ϕ̂r

}R

r=1
are just the square

roots of the eigenvalues and the eigenvectors of this matrix.
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B.1 CLASS CONCENTRATION BOUNDS

Throughout the remainder of this paper, assume that E(vA) = 0, since we can impose this by setting
vA → vA − E(vA) and vB → vB − E(vA). Let vA and vB have KL expansions:

vA =

RA∑
r=1

λAr
1/2
Y A
r ϕAr

vB = E(vB) +
RB∑
r=1

λBr
1/2
Y B
r ϕBr

We will also make use of following corollaries of Hille’s theorem (Sullivan, 2024, Thm. 1) throughout:
Lemma B.1. Let K : H → H be a bounded linear operator. For any v ∈ L2(Ω,H), we have that:

E(Kv) = KE(v), CKv = KCvK∗

The method of classification consists of computing an orthonormal basis {sm}Mres
m=1 of a finite

dimensional subspace Hres ≤ HM for which the projections PHresv
A and PHres(v

B − E(vB))
(which equals by PHresv

B − E(PHresv
B) Lemma B.1) concentrate in distinct regions of H with

high probability (recall that we’ve assumed that E(vA) has been pre-subtracted from both vA and

vB). To this end, we establish the following bounds for the quantities
∫
Ω

∥PHresv
A∥2H dP and∫

Ω

∥PHres(v
B − E(vB))∥2H dP.

∫
Ω

∥PHresv
A∥2H dP =

∫
Ω

Mres∑
m=1

〈
sm, v

A
〉2
H dP

=

Mres∑
m=1

∫
Ω

〈〈
sm, v

A
〉
H vA, sm

〉
H dP

=

Mres∑
m=1

〈
E(
〈
sm, v

A
〉
H vA), sm

〉
H

=

Mres∑
m=1

(⟨CvAsm, sm⟩H)

=

Mres∑
m=1

(〈
RA∑
r=1

λAr
〈
sm, ϕ

A
r

〉
H ϕAr , sm

〉
H

)

=

Mres∑
m=1

RA∑
r=1

λAr
〈
ϕAr , sm

〉2
H

A similar calculation proves that
∫
Ω

∥PHres(v
B − E(vB))∥2H dP =

Mres∑
m=1

RB∑
r=1

λBr
〈
ϕBr , sm

〉2
H. Hence

using Markov’s (or Chebyshev’s first) inequality Stein and Shakarchi (2005), we have for any ε > 0

Pr(∥PHresv
A∥2H ≥ ε2) ≤ ε−2

Mres∑
m=1

RA∑
r=1

λAr
〈
ϕAr , sm

〉2
H (6)

and for Class B
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Pr(∥PHres(v
B − E(vB))∥2H ≥ ε2) ≤ ε−2

Mres∑
m=1

RB∑
r=1

λBr
〈
ϕBr , sm

〉2
H (7)

The two inequalities (6) and (7) imply that an upper bound for the probability that a random element
v equal in distribution to vA lies inside a ball centered at the origin with probability proportional to∫
Ω

∥PHresv
A∥2H dP and that v equal in distribution to vB lies inside a ball centered at PHresE(vB)

with probability proportional to
∫
Ω

∥PHres(v
B − E(vB))∥2H dP =

∫
Ω

∥PHresv
B − E(PHresv

B)∥2H dP

B.2 MULTILEVEL SUBSPACES (MLS)

The approach used in the MLS regime within FINDER endeavors to produce a subspace Hres for

which the quantity
Mres∑
m=1

RA∑
r=1

λAr
〈
ϕAr , sm

〉2
H is small. For then, when the sampled features vAi are

updated as vAi → PHresv
A
i , they will concentrate about the origin with high probability. An SVM

(with an RBF kernel, if desired) is suitable to binary classification problems where the data is assumed
to possess some sort of geometric separation; this method can reliably classify A from B.

In fact, a sequence of nested subspaces {Vℓ}Lℓ=0 (L ∈ N ∪ {ℵ0}) is created to this end. To say that

the sequence of subspaces is nested means that Vℓ ⊆ Vℓ+1 (ℓ ∈ N), and
⋃L

ℓ=0 Vℓ = H. Of course,
in computation L will be finite. Define Wℓ to be the orthogonal complement of Vℓ−1 in Vℓ, which

makes it so thatH =
⋃L

ℓ=0 Vℓ = V0 ⊕
⊕L

ℓ=1 Wℓ.

We introduce an integer MA between 1 and RA, thinking of it as a “truncation parameter" for vA.
LetHA := Span

{
ϕAr
}MA

r=1
. The MLS approach within FINDER sets V0 = HA. The subspaces Vℓ

are chosen such that each Wℓ are finite dimensional (Wℓ = Span
{
ϕℓk
}Mℓ

k=1
, ϕℓk ∈ H). The ϕℓk are

constructed to satisfy the orthonormality condition:
〈
ϕℓ1k1

, ϕℓ2k2

〉
H

= δ[k1 − k2]δ[ℓ1 − ℓ2]. For any
choice of ℓ, Vℓ satisfies the inequality

Pr(∥PVℓ
vA∥2H ≥ ε2) ≤ ε−2

∑
r>MA

λAr (8)

The MLS approach is tractable when H = L2(U) for some U ⊆ RD. In this context, the ϕℓk are
chosen to be characteristic functions whose support is constructed by a kd-tree division of U (where
k = D). In computation, the ϕℓk are chosen to be vectors in RF with relatively few nonzero entries,
which lends well to efficient memory usage. Explicit construction of the ϕℓk, the choice of Mℓ and L
are an adaption of a construction detailed in Tausch and White (2003).

B.3 ANOMALOUS CLASS ADAPTED SPACES

The Anomalous Class Adapted (ACA) approach differs from the MLS approach in that the latter
does not consider the specific eigen-structure of CvB , only that it is assumed to be distinct from the
eigen-structure of CvA . Our choice of constructing such a finite-dimensional subspaceHres endeavors
to make both the RHS of (6) and (7) “small" such that PHresv

A and PHresv
B lie in separate parts ofH

with high probability.

B.3.1 ACA -S

Like the MLS approach, we considerHres to be a subspace ofH⊥
A. Then the first MA terms in (6)

vanish such that

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Pr(∥PHresv
A∥2H ≥ ε2) ≤ ε−2

Mres∑
m=1

RA∑
r=MA+1

λAr
〈
ϕAr , sm

〉2
H ≤ ε

−2
RA∑

r=MA+1

λAr (9)

To minimize the RHS of (7), subject toHres ≤ H⊥
A, let {ψi}i∈I be an orthonormal basis forH⊥

A, let
VMA

: ℓ2(I)→ H⊥
A be the isometry VMA

f =
∑
i∈I

f(i)ψi, whence

min
sm

Mres∑
m=1

RB∑
r=1

λBr
〈
ϕBr , sm

〉2
H = min

sm

Mres∑
m=1

⟨sm, CvBsm⟩H = min
tm

Mres∑
m=1

〈
tm, V

∗
MA
CvBVMA

tm
〉
H .

(10)

where tm = V ∗
MA

sm. It follows that the minimum occurs when tm are the eigenvectors corresponding
to the smallest Mres eigenvalues of V ∗

MA
CvBVMA

. Then we set sm = VMA
tm.

Remark: IfH = RF , then let
{
ϕAr
}F
r=1

denote orthonormalized eigenvectors of the matrix CvA . Then
VMA

=
[
ϕAMA+1 . . . ϕAF

]
, and we set the vectors {tm}Mres

m=1 as the unit eigenvectors corresponding
to the Mres smallest eigenvalues of the matrix V ⊤

MA
CvBVMA

. Note that tm ∈ RF−MA . Then we set
sm = VMA

tm and Hres = Span {sm}Mres
m=1. This choice of Hres constitutes the ACA-S method of

FINDER.

Lemma B.1 offers a simple generalization of a property of random vectors: namely if v ∈ L2(Ω,RF )
is a random vector and K ∈ Rq×F is an arbitrary matrix then the covariance matrix of Kv is simply
KCvK⊤. From Lemma (B.1), it follows that upon projection onto Hres, the covariance operators

update as CvC → PHresCvCP ∗
Hres

. In computation, the operator Qres :=

Mres∑
m=1

em ⊗ sm is used in place

of PHres , where em is the mth standard basis vector of RMres

B.3.2 ACA-L

The tendency of the projected vi to concentrate in different regions ofH makes an SVM with RBF
kernel a particularly attractive choice of machine, though we test a linear kernel as well. However, if
the within-class spread of the two classes is large, relative to the distance between the class means,
then the above projection Qres may fail to reliably separate the two classes. If it is the case that the
two class means are particularly close, it may be more desirable to choose a subspaceHres with the
property that Qresv

A concentrates about the origin with low spread and Qresv
B also concentrates

about the origin but with large spread, as in Figure 1. Since concentration bound (9) holds as long
as Hres ≤ H⊥

A, one can instead set the tm to be the eigenvectors of V ∗
MA
CvBVMA

corresponding
to the largest eigenvalues of this operator, thereby maximizing ∥PS(v

B − E(vB))∥2L2(Ω,H) over all
possible subspaces of dimensionMres. This choice ofHres constitutes the ACA-L method of FINDER.
Furthermore, we employ several, equally spaced values of Mres in experimentation.

B.4 COMPLEXITY ANALYSIS FOR FEATURE CONSTRUCTION

Suppose that class A ∈ RF×NA consists of F features andNA samples. Similarly B ∈ RF×NB with
F features and NA samples. Suppose we have MA principal components truncation parameters of
Class A. There are three basic modules for computing the training data: (i) KL module that computes
the covariance matrix. (ii) Construction module that constructs the basis for the residual subspace.
This module varies according to the type of residual subspace of the basis that is constructed. (iii)
Feature module that computes the projection on the residual subspace and thus the novel features.

Direct calculations estimate the nominal computational complexity of each FINDER variant as:

Direct residual subspace: (i) KL and Construction modules: If NA < F then O(N2
AMA) +

O(FN2
AMA) else O(F 2MA). (ii) Feature module: O(FNBMA)
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MLS: (i) KL module: If NA < F then O(N2
AMA) + O(FN2

AMA) else O(F 2MA).
(ii) Construction module: ≈ O(F logF ) (iii) Feature module: ≈ O((NA +NB)F logF ))

ACA: (i) KL & Construction modules: O(F logF ). (ii) Feature module: O((F −MA)F (NA +
NB)).

C TESTING

C.1 ESTIMATES

For LPOCV, the datasets
{
vAi
}NA

i=1
,
{
vBi
}NB

i=1
are both divided into training sets T Train

A , T Train
B and

testing sets T Test
A , T Test

B . Further, the set T Train
A is further divided into two, not necessarily disjoint,

subsets T Cov
A and T SVM

A , used to estimate CvA and the separating hypersurface respectively. We
consider the performance of FINDER for balanced and unbalanced training sub-cohorts for the
SVM estimation. In the Balanced regimes, T SVM

A contains the first NB − 1 samples of T Train
A

and T Cov
A contains the remaining NA − NB − 1 samples of T Train

A . In the Unbalanced regimes,
T SVM
A = T Cov

A = T Train
A . Figure 4 illustrates the procedure for partitioning the data into training

and testing subsets.

Figure 4: The division of the dataset D into training (which includes SVM separating hypersurface
and covariance operator estimation) and validation (testing) subsets for one round of LPOCV.

In either regime, the aggregated dataset T SVM
A ∪ T Train

B is used to estimate the SVM.

We assume that all observations have had the empirical Class A expectation (computed as
1

|T Cov
A |

∑
vA
i ∈T Cov

A

vAi ) subtracted.

For both FINDER methods, the covariance operator of vA is estimated by

ĈvA :=
1

|T Cov
A | − 1

∑
vA
i ∈T Cov

A

vAi ⊗ vAi

The eigen-pair estimates
{
λ̂Ai , ϕ̂

A
i

}|T Cov
A |

i=1
are computed as the eigen-pairs of ĈvA .
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For ACA only, ĈvB is calculated as

ĈvB =
1

|T Train
B | − 1

∑
vB
i ∈T Train

B

(vBi − vBi )⊗ (vBi − vBi )

where vBi =
1

|T Train
B |

∑
vB
i ∈T Train

B

vBi . Note that unlike T Train
A , the entirety of T Train

B in both the

Balanced and Unbalanced regimes within ACA, is used to compute ĈvB and the SVM.

For the chosen value of truncation parameter MA < |T Cov
A |, the isometry VMA

as described in
section B.1 is estimated by the operator satisfying

V̂MA
f :=

∑
i∈I

f(i)ψ̂i

where
{
ψ̂i

}
i∈I

is an orthonormal basis for
(
Span

{
ϕ̂Ai

}MA

i=1

)⊥

created by adapting the algorithm

detailed in Tausch and White (2003) as in MLS, or by a full SVD if F is small enough that a full
SVD is faster.

The eigenvectors
{
t̂m
}Mres

m=1
corresponding to the smallest (largest if ACA-L) Mres eigenvalues of the

operator V̂ ∗
MA
ĈvB V̂MA

are computed. Finally, the training data is updated as

vAi →
Mres∑
m=1

〈
vAi , V̂MA

t̂m

〉
H
em, vBi →

Mres∑
m=1

〈
vBi , V̂MA

t̂m

〉
H
em

With {em}Mres
m=1 the standard basis of RMres .

Remark C.1. The leave-one-out cross validation approach is applied to both classes. If we have two
classes A and B with number of samples NA and NB, one sample is removed from each class as
validation and the rest as training. All possible combinations are removed for each class. This leads
to a total of NANB training-validation tests.

D EXPERIMENTAL DETAILS

We conduct a set of experiments spanning various kinds of inherently noisy datasets, sourcing data
from bio-medical and geo-sensing contexts. For each setting, we pick datasets with high and low
noise contents respectively, so we can compare performances of conventional vs our methods and
how they each scale with an increase in noise. We give a brief description of each dataset below:

D.1 AD USING BLOOD PROTEINS

To assess the performance of the FINDER framework, we employed proteomic data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), a longitudinal, multi-center observational
study initiated in 2003 to facilitate the discovery and validation of biomarkers for Alzheimer’s
disease progression. The ADNI dataset comprises multiple study phases—namely ADNI1, ADNIGO,
ADNI2, ADNI3, and ADNI4—with clinical and molecular data collected across time points Petersen
et al. (2010).

Our analysis focused on the ADNI1 cohort, consisting of 209 subjects clinically diagnosed with
Alzheimer’s disease (AD), 742 with Late Mild Cognitive Impairment (LMCI), and 112 cognitively
normal (CN) controls. Peripheral blood samples were collected at baseline (BL) and at the 12-
month follow-up (M12). The experimental evaluation in this section is carried out using the plasma
proteomics subset M12, comprising quantitative measurements for 146 protein biomarkers. This
final cohort distribution includes 54 CN, 96 AD, and 346 LMCI participants. Note that the LMCI
paritipants are actually a combination of LMCI and MCI.
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AUC
Regime SVM Linear SVM w/ RBF Logit Boost BAG RUS Boost

AD vs. CN 0.754 0.561 0.798 0.743 0.763
Time (ms) 127.66 102.79 1173.42 1335.89 599.03

AD vs. LMCI 0.768 0.590 0.790 0.781 0.768
Time (ms) 356.61 246.40 2302.33 2092.64 897.66

CN vs. LMCI 0.910 0.637 0.814 0.778 0.776
Time (ms) 246.69 179.36 2075.48 1339.35 796.28

Accuracy
Regime SVM Linear SVM w/ RBF Logit Boost BAG RUS Boost

AD vs. CN 0.644 0.486 0.684 0.684 0.657
Time (ms) 127.66 102.79 1173.42 1335.89 599.03

AD vs. LMCI 0.570 0.497 0.667 0.735 0.581
Time (ms) 356.61 246.40 2302.33 2092.64 897.66

CN vs. LMCI 0.717 0.497 0.586 0.721 0.513
Time (ms) 246.69 179.36 2075.48 1339.35 796.28

Table 3: Benchmark machine performance for ADNI blood protein data (raw data features), along
with elapsed time to complete one round of LPOCV. Maximum AUC and accuracy and minimum run
time are emboldened in each row.

Balanced
Regime MLS MLS ACA-S ACA-S ACA-L ACA-L Best
SVM Linear RBF Linear RBF Linear RBF Benchmark

AD vs. CN 0.722 0.819 0.752 0.783 0.710 0.783 0.684
Time (ms) 116.1 130.9 68.8 86.7 74.0 78.4 1173.42

AD vs. LMCI 0.561 0.736 0.788 0.767 0.525 0.775 0.735
Time (ms) 212.1 287.0 81.8 109.4 84.9 100.1 2092.64

CN vs. LMCI 0.783 0.786 0.918 0.907 0.748 0.835 0.721
Time (ms) 164.7 231.3 74.8 92.5 79.7 89.1 1339.35

Unbalanced
Regime MLS MLS ACA-S ACA-S ACA-L ACA-L Best
SVM Linear RBF Linear RBF Linear RBF Benchmark

AD vs. CN 0.788 0.857 0.796 0.855 0.790 0.857 0.684
Time (ms) 112.1 129.5 76.2 93.0 77.0 85.6 1173.42

AD vs. LMCI 0.559 0.735 0.784 0.778 0.558 0.734 0.735
Time (ms) 215.2 291.1 115.3 179.1 121.8 178.1 2092.64

CN vs. LMCI 0.761 0.791 0.897 0.841 0.715 0.790 0.721
Time (ms) 164.9 239.9 91.4 135.9 94.6 146.2 1339.35

Table 4: Maximum accuracy Achieved ADNI data sets along with elapsed time to complete one
round of LPOCV. We observe that the benchmark accuracy is ameliorated across the three cohorts
within the ACA-S regime (although the MLS w/ RBF regime offers the optimum accuracy in the AD
vs. CN cohort, regardless of balancing). Additionally, each of the FINDER regimes offer a significant
reduction in run time compared to benchmark.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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Figure 5: Accuracy obtained across all three methods for each of the three ADNI cohorts. Within
each method (benchmark, MLS, ACA), we display the regime which obtains the maximum accuracy
among the values of Mres tested. We observe that the ACA-S regime either outperforms or matches
both the MLS method and the benchmark learners across all three cohorts. However, the performance
of the ACA-S regime can be sensitive to the choice of Mres, as exemplified in the AD vs. LMCI
and CN vs. LMCI cohorts. Values of Mres which are too high or too low can prevent the ACA-S
regime from achieving maximum accuracy, and can even reduce the accuracy below benchmark level,
as exhibited by the AD vs. LMCI cohort. The data demonstrate a significant improvement on the
benchmark performance, prompting an ad-hoc analysis of the ratio of the FINDER and benchmark
error rates as tabulated in Figure 6.
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Figure 6: ADNI accuracy refinement with respect to best performing baseline, computed as
1− accuracyFINDER

1− accuracyBenchmark
. In both the Balanced and Unbalanced regimes, both the ACA and MLS

methods offer a two fold (or near two fold) reduction in error across all three ADNI cohorts. In
particular, the MLS method obtains an almost three fold error reduction in the AD vs. CN cohort,
and the ACA method obtains an almost four fold error reduction in the CN vs. LMCI cohort.
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D.2 REMOTE SENSING (DEFORESTATION DETECTION)

The radar and optical data are provided by the Copernicus Sentinel data [2018-2022]’. From the
optical Sentinel-2 the EVI data observations are split between training and validation. The training
data consists of 71 optical Sentinel-2 EVI measurements between December 17, 2018 and March
21, 2020. Sentinel-2 covers the Earth every 5 days. However, some days contain heavy clouds and
are thus removed from the dataset. The validation dataset consists of 161 days between March 26,
2020 to December 31, 2022. The SAR Sentinel-1 data consist of 234 samples between January 4th
2017 and December 28, 2022. In Figure 7, the detection capabilities of the FINDER approach with
both optical and radar data are shown. This corresponds to a small region from the full testing region.
Notice the regions where the forest is removed are detected with high accuracy. In particular, the
road created by removing the trees in the yellow box is detected.

Start (2020, March 26) End (2022, December 31) Deforestation Pattern

(a) (b) (c)

Figure 7: Multi-sensor hybrid optical and SAR tracking of deforestation during a cloudy period.
In these images we examine the deforestation pattern from March 26, 2020 to December 31, 2022
using the HMM model. (a) Due to the cloudy period, a composite image for the start is shown.
(b) By the end date notice that many regions of the forest have been removed. (c) The color map
shows the tracking of deforestation using the HMM with the optical and SAR data. There are many
deforestation activities that are caught within the HMM hybrid model.

A natural question for the HMM + FINDER method is whether the anomaly filter is a necessary part
of the pipeline. Table 5 compares the results from using the anomaly data against just using the raw
optical data. Based on these values it would seem that using the raw optical data is better, however
a closer inspection of the results illustrates a different picture. Figure 8 shows that while there is
already good class separation in the unprocessed optical data between dry forest and dry bare ground,
since water and bare ground both have low EVI values we get that wet forest and bare ground are
classified together. This causes regions of false positives in marshy land, as can be seen in Figure
8 in the top right. Applying the KLE allows us to better separate these classes. Note there are still
some false positives in these regions when using the processed optical data due to the radar data,
which is also affected by water. While these regions of false positives are relatively small in this
example, using the raw optical data could cause serious problems for regions experiencing heavy
rainfall/flooding or with a large portion of marshy land - the anomaly data is still the superior choice.

Table 5: Accuracy using optical anomaly data (HMM + FINDER) vs unprocessed optical data (HMM)

Algorithm (Data) Training
Days

Overall
Acc.

User
Acc.

Producer
Acc.

Computational
Time (h)

HMM + FINDER (Optical) 71 0.931 0.823 0.718 13.95
HMM + FINDER (Optical + Radar) 71 0.942 0.878 0.745 49.47

HMM (Raw Optical) NA 0.9668 0.8565 0.9105 9.82
HMM (Raw Optical + Radar) NA 0.9614 0.8391 0.889 45.34
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(a) (b)

Figure 8: (a) Hybrid datemap using anomaly values. (b) Hybrid datemap using unprocessed optical
data. Application of the KL expansion results in better class separation between wet forest and
deforested land, which both have low EVI values in the unprocessed optical data. This can be seen in
the marshy land at the top right. Almost all of the detections in the black rectangles are removed, and
the detections in the blue regions are reduced.

D.3 ALZHEIMER’S DISEASE (AD) CLASSIFICATION FROM GENE EXPRESSION DATA (NEWAD)

The newAD dataset comprises the gene expression levels of 2053 enumerated genes from a cohort of
184 patients not afflicted with AD (Class A, Normal) and 145 patients afflicted with AD (Class B,
AD). We put U = H = HM = R2053 withMA = 8. This data was provided to us from Bhattacharya
(2025). It is confidential at the moment and will not be made available to the public. Both the ACA
and MLS methods are capable of elevating the AUC of binary prediction relative to the highest
performing benchmark learner (SVM Linear), as detailed in Table 6 at the cost of a longer running
time. At the same time, the ACA and MLS approaches also elevate the accuracy of binary prediction
and reduce the run time compared to RUSBoost.

Method Score Time (s) Regime
AUC

Benchmark 0.761 0.51 SVM Linear
MLS 0.786 1.57 Balanced, RBF

ACA-L 0.785 1.21 Balanced, RBF
Accuracy

Benchmark 0.697 6.84 RUSBoost
MLS 0.715 1.52 Balanced, RBF

ACA-L 0.725 0.76 Balanced, RBF

Table 6: Maximum AUC and accuracy achieved for newAD data by benchmark learners and both
FINDER methods. Both metrics are improved marginally by the usage of FINDER. The FINDER
methods more than double the run time to generate a comparable AUC with respect to benchmark,
but significantly reduce the run time to generate a comparable accuracy with respect to benchmark.
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(b) newAD Accuracy.

Figure 9: The MLS method appears robust to the choice of pre-balancing versus not pre-balancing
the data (if Mres is sufficiently large). In contrast, ACA is highly sensitive to this choice, performing
more consistently if the data is pre-balanced, although improvement upon the benchmark level is
attained in both regimes. For both FINDER methods, this dataset tends to favor pre-balancing the
data and the usage of an RBF separating boundary.

D.4 CANCER CLASSIFICATION VIA GENE EXPRESSION DATA

The problem of cancer classification using gene expression datasets such as in Tan et al. (2005) is
considered essentially solved: existing state of the art methods already perform at levels expected to
be near optimal. Since it is a conventional example with an established corpus of results and analysis
behind it, we will use it to sketch out how FINDER loses its relative advantages when features are
aplenty or data is already well-behaved.

We consider the GCM gene expression dataset introduced by Ramaswamy et al. (2001). The data
used in that paper is described in Tan et al. (2005). The dataset comprises gene expression profiles
for NA = 190 tumor samples (Class A) and NB = 90 normal tissue samples (Class B), with
each sample containing expression levels for F = 16, 063 genes. The underlying domain U is
modeled as a one-dimensional interval U := [0, F − 1], and gene expression signals are interpreted
as discrete functions on U , represented by shifts of a Haar function χ. We thus have H = L2(U),
HM = Span {χ(x− k)}16,062k=0 , andHres = H⊥

A. The computation will be in the space R16,063.

Incorporating the multiscale features extracted by the FINDER method yields a marginal improvement
in classification accuracy, as detailed in Table 7.
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Method Score Time (s) Regime
AUC

Benchmark 0.966 1.81 SVM Linear
MLS 0.966 5.49 Balanced, Linear

AC-LA 0.969 12.37 Unbalanced, Linear
Accuracy

Benchmark 0.931 1.83 SVM Linear
MLS 0.940 5.41 Balanced, Linear

ACA-L 0.934 12.34 Unbalanced, Linear

Table 7: Maximum AUC and accuracy achieved for GCM data by benchmark learners and both
FINDER methods. The GCM data exhibit an inherent geometric separation such that an SVM with
linear separating boundary can reliably segregate Class A from B. As such FINDER methods are
capable of achieving a similar AUC and accuracy, but only offer a marginal improvement on both
metrics at the cost of a significantly longer running time.
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Figure 10: Best performing regimes among the three categories of learners for GCM data. The MLS
method appears more robust the Balance vs. Unbalanced regimes as compared to the ACA method,
in that the change in AUC and accuracy is not greatly affected by the choice to pre-balance the data or
not. If the data is not pre-balanced, the ACA method performs at the benchmark level across several
different residual subspace dimensions Mres, suggesting that this dataset is amenable to dimension
reduction via the ACA-L regime.

D.5 AD CLASSIFICATION FROM CSF DATA

The third and final AD-related dataset is the SOMAscan dataset, comprising a list of 7008 proteins
obtained from the cerebrospinal fluid (CSF) of 167 AD patients (Class A) and 138 CN patients (Class
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B). The raw data was imputed using a 5-nearest neighbors regression. We put U = H = HM =
R7008 with MA = 8. While the two FINDER methods fail to outperform LogitBoost on this dataset
(see Table 8), they do provide an advantage vis a vis cost efficiency. Note that as expected, FINDER
does augment results achieved by the conventional SVM methods, allowing them to reach AUC and
accuracy levels that are closer to LogitBoost in less than half the time.

The AUC obtained by LogitBoost exceeds 0.95. For datasets with this level of separability, any
noise typically comes from the collection and manual classification of the data itself, rather than any
inherent variability in the underlying features. As such, the separability of this particular dataset may
not be amenable to improvement by our FINDER methods. This is in contrast to datasets, such as the
ADNI data cohorts, in which the baseline AUC/accuracy is well below the desirable 0.90 level.

Method Score Time (s) Regime
AUC

0.957 11.75 LogitBoost
Benchmark 0.922 2.122 SVM w/ Linear

0.899 1.927 SVM w/ RBF
MLS 0.930 4.51 Balanced, RBF

ACA-S 0.935 4.46 Balanced, Linear
Accuracy

0.894 11.75 LogitBoost
Benchmark 0.847 2.122 SVM w/ Linear

0.819 1.927 SVM w/ RBF
MLS 0.862 3.34 Unbalanced, RBF

ACA-S 0.878 5.16 Balanced, RBF

Table 8: Maximum AUC and accuracy achieved for CSF data by benchmark learners and both
FINDER methods. The FINDER methods more than halve the run time of Logitboost at the cost of a
marginally lower AUC and accuracy. At the same time, the FINDER methods elevate the AUC and
accuracy obtained by the SVM (with linear and RBF separating hypersurface) with the caveat of a
longer run time.
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Figure 11: Both FINDER methods achieve a lower accuracy and AUC compared to the best benchmark
(LogitBoost). The performance of MLS remains robust to pre-balancing versus not pre-balancing
the data, while the ACA method is more sensitive to this choice. Within the Unbalanced regime,
the ACA achieves a more consistent AUC and accuracy across different values of Mres, suggesting
that this method is better suited to dimension reduction. However, the highest AUC and accuracy is
achieved within the ACA-S, Balanced regime
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