

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FINDER: FEATURE INFERENCE ON NOISY DATASETS USING EIGENSPACE RESIDUALS

Anonymous authors

Paper under double-blind review

ABSTRACT

“Noisy” datasets (regimes with low signal to noise ratios, small sample sizes, faulty data collection, etc) remain a key research frontier for classification methods with both theoretical and practical implications. We introduce FINDER, a rigorous framework for analyzing generic classification problems, with tailored algorithms for noisy datasets. FINDER incorporates fundamental stochastic analysis ideas into the feature learning and inference stages to optimally account for the randomness inherent to all empirical datasets. We construct “stochastic features” by first viewing empirical datasets as realizations from an underlying random field (without assumptions on its exact distribution) and then mapping them to appropriate Hilbert spaces. The Karhunen-Loèv (KL) transform breaks these stochastic features into computable irreducible components, which allow classification over noisy datasets via an eigen-decomposition: data from different classes resides in distinct regions, identified by analyzing the spectrum of the associated operators. We validate FINDER on several challenging, data-deficient scientific domains, producing state of the art breakthroughs in: (i) Alzheimer’s Disease stage classification, (ii) Remote sensing detection of deforestation. We end with a discussion on when FINDER is expected to outperform existing methods, its failure modes, and other limitations.

1 INTRODUCTION

Classification problems are of significant interest across a variety of scientific and commercial fields, especially when concerned with “noisy” datasets: settings where the nominal data dimension $F \gg N$, datasets with poor signal to noise ratios, etc. Deep/Machine Learning (ML) methods are particularly known to be susceptible in data-deficient settings LeCun et al. (2014); Ng (2004) and thus techniques for performance improvements in these regimes remain of strong interest.

We present a multi-faceted novel development within these contexts: a generic and versatile theory for discussing classification problems with applications in treating noisy datasets, validated over a collection of challenging and significant scientific datasets. Broadly speaking, we blend standard feature inference/construction methods with the Kosambi-Karhunen-Loèv theorem Loèv (1978) from stochastic analysis, by rigorously defining and building “stochastic features” that can help classify the underlying structures while seeing through the inherent “blurriness” of noisy datasets. We begin with binary classification since many classification problems reduce to a set of binary ones.

Binary classification involves classifying an input object into one of two classes, $\{A, B\}$, $\{0, 1\}$, etc, based on a list of numeric quantities associated with that object. For large F , this becomes computationally intractable as N may be too limited for machine training. Principal component analysis (PCA) was developed largely as a way to effectively reduce the nominal dimension of a given dataset with minimal information loss Kokoszka and Reimherr (2017). Further developments involved viewing data not as a vector in \mathbb{R}^F , but as a function from a closed interval $[a, b]$ to \mathbb{R} , sampled at F points. Such methods for analyzing, constructing machines from, and making predictions based on data comprise the field of functional data analysis (FDA) Kokoszka and Reimherr (2017); Horváth and Kokoszka (2012). FDA is often preferred when $F \gg N$: even linear discriminant analysis can be outperformed by the much simpler naive Bayesian classification Bickel and Levina (2004).

The Kosambi-Karhunen-Loèv expansion (KLE) Schwab and Todor (2006) is a fundamental result in FDA, mildly generalized by us as Thm. 2.1. It implies that our stochastic features admit a Fourier series like expansion in terms of simpler, computable elements. We pair Thm. 2.1 with novel

algorithms for constructing/finding stochastic features with in-built class separability (to the extent such underlying features can exist for the available data). We further prove that digitization does not limit the usefulness of these results and show how optimal choices for truncation may be made.

We test our approach on noisy datasets of significant scientific interest, with major improvements on existing state of the art results. FINDER is generic, but geared towards such data-deficient or otherwise noisy settings, its relative performance advantages expectedly increasing with the “noise”.

Another advantage lies in the efficiencies it may unlock for otherwise computationally intensive tasks. The inherent robustness to noise and in-built class separability implies nominally intractable datasets can become amenable even to fundamental ML algorithms like support vector machines (SVM) or hidden Markov models (HMM), which can then be used with dramatic improvements in accuracy. Hence, while FINDER comes with additional construction costs of its own, the fact that it can be packaged with simpler methods like SVM provides a pathway to manageable computational costs.

FINDER is also relatively robust to unbalanced data: it is a functional analytic schema and the number of available samples per class is a matter of concern only insomuch that the “noisiness” of the class changes with that number. Numerical experiments validating our claims are provided in Sec. 3.

2 A MATHEMATICAL FRAMEWORK FOR FEATURE INFERENCE

FINDER is a 3-step framework: 1) Dataset acquisition, 2) Feature construction, 3) Classification.

We begin by assuming that the dataset \mathcal{D} , a subset of some nominal space U , is a random realization of a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, without any assumptions on the underlying data distribution. U is usually a Euclidean space, but could be a manifold, spatio-temporal domain, etc. Formally, we view this realization of the random field through a map $v_1 : \Omega \rightarrow U$. We then use another map v_2 to map \mathcal{D} to some apt Hilbert space \mathcal{H} , such that different classes get mapped to disjoint regions in \mathcal{H} . Readers may recognize this as a standard feature construction task or kernel trick. The composition $v := v_1 \circ v_2$ is called a **stochastic feature** (and is Bochner measurable^{A.1}), if $v \in L^2(\Omega, \mathcal{H})$.

Classifiers are then simply maps from \mathcal{H} to $\{0, 1\}$: usually via a machine from \mathcal{H} to $[0, 1]$, with a separatrix $t \in (0, 1)$. Figure 1 summarizes FINDER as a whole, but good features make Step 3 trivial, so our focus is on the composed Steps 1 and 2: the creation and computability of stochastic features.

The novelty of our work is in that our features directly incorporate the stochasticity through which \mathcal{D} is generated. Thus, most binary classification problems fall within the ambit of our framework, while it becomes especially well-suited to handling noisy datasets. FINDER is agnostic to the choice of $(\Omega, \mathcal{F}, \mathbb{P})$ if it is a complete probability space. $\mathcal{H} = L^2([a, b])$ or \mathbb{R}^F are usual choices if F is large.

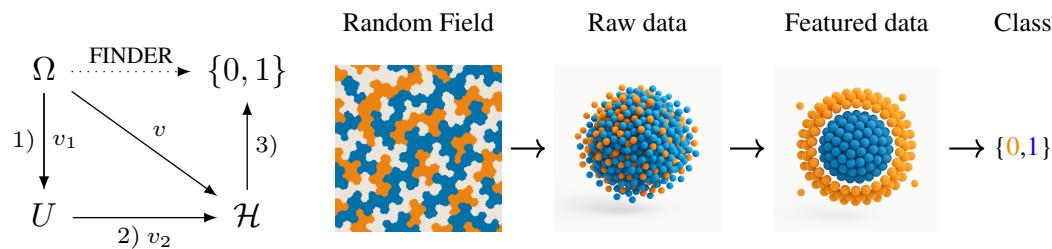


Figure 1: A schematic for FINDER and a visual perspective on classification as a multi-stage process.

Unfortunately, constructing stochastic features v can be prohibitively expensive. However, our goal is classification and the eigen-decomposition of v via the KLE provides an optimally efficient short-cut.

2.1 A GENERALIZED KOSAMBI-KARHUNEN-LOÈVE EXPANSION THEOREM

We will first need to define the notions of expectation and covariance to formally discuss the KLE:

Definition 2.1. Let $\langle u, v \rangle_{\mathcal{H}}$ and $\int_{\Omega} \langle u, v \rangle_{\mathcal{H}} d\mathbb{P}$ be the inner products on \mathcal{H} and $L^2(\Omega, \mathcal{H})$ respectively. The Expectation Operator for v is the Bochner integral: $\mathbb{E} : L^2(\Omega, \mathcal{H}) \rightarrow \mathcal{H}$, $\mathbb{E}(v) = \int_{\Omega} v(\omega) d\mathbb{P}$. The Covariance Operator is given by: $\mathcal{C}_v : \mathcal{H} \rightarrow \mathcal{H}$, $\mathcal{C}_v(e) = \mathbb{E}(\langle v - \mathbb{E}(v), e \rangle_{\mathcal{H}} (v - \mathbb{E}(v)))$.

108 For example, if $\mathcal{H} = L^2([a, b])$, \mathcal{C}_v is the kernel operator whose kernel is $\mathcal{K}(x, y) = \mathbb{E}[(v(x, \omega) - \mathbb{E}[v(x, \omega)])(v(y, \omega) - \mathbb{E}[v(y)])]$ and produces a map $\mathcal{C}_v(f)$ s.t. $\mathcal{C}_v(f)(x) := \int_a^b \mathcal{K}(x, y) f(y) dy$.

112 We now state a mildly generalized KLE (App. A), dropping the usual separability assumptions on \mathcal{H} .

113 **Theorem 2.1.** *Let $v \in L^2(\Omega, \mathcal{H})$ be Bochner measurable. Then, there exists $R \in \mathbb{N} \cup \mathbb{N}_0$ such that*

$$115 \quad v(\omega) = \mathbb{E}(v) + \sum_{r=1}^R \lambda_r^{1/2} Y_r(\omega) \phi_r, \quad \lambda_r \in (0, \infty), \quad \sum_r \lambda_r < \infty, \quad \lambda_1 \geq \lambda_2 \geq \dots \quad (1)$$

118 where $\{Y_r\}_{r=1}^R, \{\phi_r\}_{r=1}^R$ are orthonormal sets in $L^2(\Omega), \mathcal{H}$ respectively, with $\mathbb{E}[Y_r] = 0$ for all r .

120 For example, if $\mathcal{H} = L^2([a, b])$, then v is simply a measurable map $v : [a, b] \times \Omega \rightarrow \mathbb{R}$, such that

$$122 \quad v(x, \omega) = \mathbb{E}(v) + \sum_{r=1}^R \lambda_r^{1/2} Y_r(\omega) \phi_r(x), \quad Y_r \in L^2(\Omega), \quad \phi_r \in L^2([a, b])$$

125 Thm. 2.1 justifies $L^2(\Omega, \mathcal{H})$ as the setting to source stochastic features from. We will need some
126 intermediate results to better understand its proof and the computability of KLE. We begin by showing
127 the isomorphism of $L^2(\Omega, \mathcal{H})$ to the space of Hilbert-Schmidt operators $\text{HS}(\mathcal{H}, L^2(\Omega))$ in App. A.2:

129 **Lemma 2.1.** *Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and \mathcal{H} be a Hilbert space. Then,
130 $L^2(\Omega, \mathcal{H})$ is isometrically isomorphic to $\text{HS}(\mathcal{H}, L^2(\Omega))$.*

131 Lemma 2.1 implies there is an Hilbert-Schmidt operator $H_v \in \text{HS}(\mathcal{H}, L^2(\Omega))$ in correspondence
132 with every v . H_v is Hilbert-Schmidt means it is compact: the spectral theorem then generates our
133 KLE directly through a generalized Singular Value Decomposition (SVD), discussed in App. A.3.

135 Let H_v be the map $e \mapsto \langle v - \mathbb{E}(v), e \rangle_{\mathcal{H}}$. We promptly see that $\mathcal{C}_v = H_v^* H_v$. Thus, $\lambda_r^{1/2}, \phi_r$ are just
136 the singular values and right singular vectors of H_v (App. A.4), while Y_r are the left singular vectors.

137 However, we have established properties over infinite dimensional spaces that no computer can
138 directly make use of. Fortunately, these properties pass over to the truncations we will necessarily
139 make: instead of having to build a possibly infinite dimensional Hilbert space \mathcal{H} and projecting onto
140 a subspace \mathcal{H}_M , we can work directly on our chosen \mathcal{H}_M (see Sec. A.5). Let P_S represent projection
141 onto some subspace $\mathcal{S} \subset \mathcal{H}$. Lemma 2.2 tells us the optimal M dimensional subspace to work in:

142 **Lemma 2.2.** *Let $v \in L^2(\Omega, \mathcal{H})$ and $\mathcal{S} \subset \mathcal{H}$ be an arbitrary M dimensional subspaces. Then
143 $\mathcal{S}^* = \text{Span} \{\phi_r\}_{r=1}^M = \underset{\mathcal{S}}{\text{argmin}} \|v - P_{\mathcal{S}} v\|_{L^2(\Omega, \mathcal{H})}$.*

145 We are now ready to present the class separation identities that turn these results into applications.

148 2.2 CLASSIFICATION AS FEATURED SEPARATION

149 We begin by viewing all class **A** elements in \mathcal{H} as images of some stochastic feature $v^{\mathbf{A}}$ and class **B**
150 elements as images of some $v^{\mathbf{B}}$. FINDER centers the dataset on class **A** by setting $v^{\mathbf{A}} \rightarrow v^{\mathbf{A}} - \mathbb{E}(v^{\mathbf{A}})$
151 and $v^{\mathbf{B}} \rightarrow v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{A}})$, using the training data to do so. The inherent assumption here is that the
152 training set data allows an adequate estimation of $\mathbb{E}(v^{\mathbf{A}})$. Immediately:

$$154 \quad v^{\mathbf{A}} = \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A} 1/2} Y_r^{\mathbf{A}} \phi_r^{\mathbf{A}}, \quad v^{\mathbf{B}} = \mathbb{E}(v^{\mathbf{B}}) + \sum_{r=1}^{R_{\mathbf{B}}} \lambda_r^{\mathbf{B} 1/2} Y_r^{\mathbf{B}} \phi_r^{\mathbf{B}} \quad (2)$$

158 Let $\mathcal{H}_{\mathbf{A}} = \text{Span} \{\phi_r^{\mathbf{A}}\}_{r=1}^{M_{\mathbf{A}}}$. In practice, we choose some finite $M_{\mathbf{A}} \in \mathbb{N}$ by truncating the KLE
159 (Lemma 2.2), based on the acceptable error tolerance for the problem at hand. Our goal is to construct
160 a residual subspace $\mathcal{H}_{\text{res}} \subset \mathcal{H}_{\mathbf{A}}^{\perp}$ such that class **B** elements present a different profile in \mathcal{H}_{res} compared
161 to class **A**: the usual choice is to have $v_{\mathbf{B}}$ concentrate in \mathcal{H}_{res} and/or have a different spectral profile
over \mathcal{H}_{res} than $v^{\mathbf{A}}$ (for example, in Figure 1, both classes share mean, but not distribution).

\mathcal{H}_{res} is generated from $\mathcal{H}_{\mathbf{A}}^\perp$ with some truncated subspace dimension M_{res} . Intuitively, \mathcal{H}_{res} represents the portion of $\text{Span}\{\phi_r^{\mathbf{B}}\}$ that is **not** overlapping with $\text{Span}\{\phi_r^{\mathbf{A}}\}$: in short, portions that make class \mathbf{A}, \mathbf{B} "different" in some distributional sense (otherwise they are indistinguishable in \mathcal{H} anyway).

Thus, we need a formal result/algorithm that shows stochastic features that map distinct classes to distinct regions in \mathcal{H} have spectral profiles concentrating with computable differences within some probability. We invoke Markov's inequality to establish the following Lemma (App. B.1):

Lemma 2.3. *Let $\mathcal{S} \subset \mathcal{H}$ be a finite-dimensional subspace with orthonormal basis $\{s_m\}_{m=1}^{M_{\text{res}}}$. Then*

$$\begin{aligned} \Pr(\|P_{\mathcal{S}}(v^{\mathbf{A}} - \mathbb{E}(v^{\mathbf{A}}))\|_{\mathcal{H}}^2 \geq \varepsilon^2) &\leq \varepsilon^{-2} \sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \langle \phi_r^{\mathbf{A}}, s_m \rangle_{\mathcal{H}}^2 \\ \Pr(\|P_{\mathcal{S}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{\mathcal{H}}^2 \geq \varepsilon^2) &\leq \varepsilon^{-2} \sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{B}}} \lambda_r^{\mathbf{B}} \langle \phi_r^{\mathbf{B}}, s_m \rangle_{\mathcal{H}}^2 \end{aligned} \quad (3)$$

for any $\varepsilon > 0$, where $\{\lambda_r^{\mathbf{A}}, \phi_r^{\mathbf{A}}\}_{r=1}^{R_{\mathbf{A}}}$, $\{\lambda_r^{\mathbf{B}}, \phi_r^{\mathbf{B}}\}_{r=1}^{R_{\mathbf{B}}}$ are the eigen-pairs of $\mathcal{C}_{v^{\mathbf{A}}}$ and $\mathcal{C}_{v^{\mathbf{B}}}$ respectively.

Lemma 2.3 suggests that if both RHS of (3) are small for $\mathcal{S} \subseteq \mathcal{H}$, then mapped stochastic features (i.e. $P_{\mathcal{S}}v^{\mathbf{A}}$ or $P_{\mathcal{S}}v^{\mathbf{B}}$) concentrate around their respective mapped class expectation with high probability.

Remark 2.1. *The value of λ_r is simply the variance of the real-valued random variable $\langle v, \phi_r \rangle_{\mathcal{H}}$. Because the KLE acts as a generalized SVD, the eigen-pairs (λ_r, ϕ_r) capture the subspace in which v tends to concentrate in, along with the spread of v within that subspace. This can be used, as in the Markov bound (3) above, to place deterministic bounds on the probability that v lies in certain regions of \mathcal{H} without knowing the underlying distribution of v . For many datasets, only the first few eigenvalues $\lambda_r^{\mathbf{A}}$ are non-negligible. Thus, if $\{s_m\}_{m=1}^{M_{\text{res}}}$ is an orthonormal set in $\mathcal{H}_{\mathbf{A}}^\perp$, then*

$$\sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \langle \phi_r^{\mathbf{A}}, s_m \rangle^2 \leq \sum_{r>M_{\mathbf{A}}} \lambda_r^{\mathbf{A}}.$$

This is the one of the rationales behind the three FINDER variants we will present later.

The Markov bounds hold regardless of the distribution of the stochastic components (the sequence Y_r in the KLE) of v . Y_r having 0 expectation essentially filters them out of the inequality. This distribution-agnostic aspect of FINDER serves to reduce computational complexity by eliminating the need to estimate the Y_r , a process which can be expensive in the absence of sufficient data and one that may need additional, potentially unrealistic, assumptions on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

However, the saved costs come with a large disadvantage: 3 is rarely a tight bound. So while we may not need assumptions on $(\Omega, \mathcal{F}, \mathbb{P})$, better understanding of Y_r can get more useful bounds than (3).

2.3 CONSTRUCTING RESIDUAL EIGENSPACES AND IMPLEMENTATIONS

FINDER comes with inherent flexibility of implementation since we may tile \mathcal{H}_{res} in a variety of ways (we may even nonlinearly parameterize \mathcal{H}_{res} using deep neural networks). However, in this work we use the following linearly parameterized approaches (complexity analysis in Sec. B.4):

- Direct Residual Subspaces: Initially proposed in Lakhina et al. (2004) in PCA contexts. We simply extend it to the KLE setting by taking $\mathcal{H}_{\text{res}} = \mathcal{H}_{\mathbf{A}}^\perp = (\text{Span}\{\phi_r^{\mathbf{A}}\}_{r=1}^{M_{\mathbf{A}}})^\perp$.
- Multi-Level Subspaces (MLS): This approach adapts the algorithm in Tausch and White (2003) for constructing a basis for the residual subspace. Class \mathbf{A} and \mathbf{B} are then projected onto this subspace and used to train the classifier. It is detailed in Sec. B.2.
- Anomalous Class Adapted (ACA-S and ACA-L): Results in Sec. 2.1, 3 lead to two novel, related methods, each relying on two successive projections to class \mathbf{A} and \mathbf{B} samples, as described in Alg. 1 and detailed in Section B.3.

FINDER variants are tested by training on both unbalanced and balanced datasets (SVMs will be our usual choice for conventional feature construction, but we will occasionally leverage HMMs too). For Balanced, $N_{\mathbf{A}} - N_{\mathbf{B}} - 1$ samples of Class \mathbf{A} are used to estimate $\mathcal{C}_{v^{\mathbf{A}}}$ and the remaining

Algorithm 1 ACA Algorithm for Residual Eigenspace Construction

```

216 Inputs:  $M_{\mathbf{A}} \in \{1, \dots, \dim(\mathcal{H})\}$ ,  $M_{\text{res}} \in \{1, \dots, \dim(\mathcal{H}) - M_{\mathbf{A}}\}$ 
217  $v_i \leftarrow P_{\mathcal{H}_{\mathbf{A}}^{\perp}} v_i$ 
218 if ACA-S then
219      $\mathcal{H}_{\text{res}} = \text{argmin} \left\{ \|P_{\mathcal{S}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{L^2(\Omega, \mathcal{H})}^2 \right\}$  s.t.  $\mathcal{S} \leq \mathcal{H}_{\mathbf{A}}^{\perp}$ ,  $\dim(\mathcal{S}) = M_{\text{res}}$ 
220 else if ACA-L then
221      $\mathcal{H}_{\text{res}} = \text{argmax} \left\{ \|P_{\mathcal{S}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{L^2(\Omega, \mathcal{H})}^2 \right\}$  s.t.  $\mathcal{S} \leq \mathcal{H}_{\mathbf{A}}^{\perp}$ ,  $\dim(\mathcal{S}) = M_{\text{res}}$ 
222 end if
223  $v_i \leftarrow P_{\mathcal{H}_{\text{res}}} v_i$ 
224
225 
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

```

231 $N_{\mathbf{B}} - 1$ Class **A** samples and $N_{\mathbf{B}} - 1$ Class **B** samples are used to train the SVM. For Unbalanced,
232 all $N_{\mathbf{A}} - 1$ Class **A** samples are used to estimate $\mathcal{C}_{v^{\mathbf{A}}}$ and all $N_{\mathbf{A}} - 1$ Class **A** samples and all $N_{\mathbf{B}} - 1$
233 Class **B** samples are used to train the SVM. In both the Balanced and Unbalanced regime, $\mathcal{C}_{v^{\mathbf{B}}}$ is
234 estimated using all $N_{\mathbf{B}} - 1$ Class **B** samples. See Section C.1 and Figure 4 for a detailed description.
235

3 APPLICATIONS AND NUMERICAL EXPERIMENTS

239 We exemplify FINDER on several noisy datasets, picked for their scientific significance and noted
240 resistance to a variety of standard classification methods. Performance on each problem will be
241 compared against the current state of the art results. We pair FINDER with simple ML methods,
242 allowing us to test the two-fold claims we made regarding its robustness to noise and its capacity
243 for making complex datasets more amenable to simpler ML methods. To assess classification
244 performance, we performed leave-(one)-pair-out cross-validation (LPOCV) on standardized data.

245 For comparative purposes, our benchmark methods will usually comprise of 1) a linear SVM, 2) SVM
246 with RBF (SVM Radial), 3) LogitBoost, 4) RUSBoost, and 5) random forest (BAG) trained on raw
247 features. We present and discuss two regimes where FINDER produced significant breakthroughs,
248 while App. D considers its impact and limitations across a wider variety of settings and applications.
249

3.1 AD CLASSIFICATION FROM BLOOD PLASMA PROTEIN DATA

252 Our first suite of tests employs proteomics data from the Alzheimer’s Disease Neuroimaging Initiative
253 (ADNI) Petersen et al. (2010). The features correspond to 146 blood plasma biomarkers. The final
254 cohort distribution includes 54 Cognitive Normal (CN), 96 Alzheimer’s Disease (AD), and a mix of
255 346 Mild Cognitive Impairment (MCI) to Late MCI participants, for simplicity referred to as LMCI.

256 Early and accurate AD state classification is critical for the tens of millions of people suffering from
257 or at risk of AD, particularly since early detection significantly improves prognosis. High accuracy
258 techniques to distinguish between CN and LMCI with minimally invasive methods like blood tests
259 are a prominent area of research, while tests for CN vs Early MCI would be even more significant.

260 In our experiments, we have $U = \mathcal{H} = \mathcal{H}_M = \mathbb{R}^{146}$. Furthermore, $\mathcal{H}_{\text{res}} \leq \mathcal{H}_{\mathbf{A}}^{\perp}$, where $\dim(\mathcal{H}_{\mathbf{A}}) =$
261 $M_{\mathbf{A}} = 5$. Table 1 summarizes the best AUC obtained on the ADNI dataset by various FINDER
262 variants and the best AUC performance by the entire set of benchmark learners.
263

264 We note that the AUC results we obtain with ACA and MLS are significantly higher under FINDER
265 than the benchmark approach. At the same time, the results in Table 1 demonstrate that the run
266 time under FINDER also improves significantly in all three cohorts. This efficiency is especially
267 remarkable in the AD vs. CN and AD vs. LMCI cohorts, for which LogitBoost obtains the best AUC
268 among the benchmark learners (see Figure 2).

269 In addition to the AUC, Section D reports the accuracy obtained across all three methods. In binary
classification problems, one metric is often insufficient to substantiate the classification capacity

270
 271 Table 1: Maximum AUC achieved for ADNI cohorts using MLS, ACA-S, and ACA-L variants across
 272 all values of M_{res} , compared against the best benchmark (See Figure 2 for the best performing bench-
 273 mark within each cohort). We also report the time needed to perform both the feature transformations
 274 and train the classifier for a single round of LPOCV. The AUCs reported across the different regimes
 275 within MLS and AUC demonstrate the sensitivity of different data sets to the type of SVM separating
 276 boundary. The difference in reported AUC for the ACA-S vs. ACA-L regimes also highlight the
 277 sensitivity of this dataset to the choice of residual subspace. Both the MLS and ACA methods are
 278 capable of elevating the AUC obtained by LogitBoost and SVM with linear separating boundary
 279 while also achieving a significant reduction in overall run time.
 280

Balanced							
Regime	MLS	MLS	ACA-S	ACA-S	ACA-L	ACA-L	Best
SVM	Linear	RBF	Linear	RBF	Linear	RBF	Benchmark
AD vs. CN	0.838	0.894	0.821	0.883	0.782	0.864	0.789
Time (ms)	116.1	130.3	70.6	87.8	74.0	78.7	1173.42
AD vs. LMCI	0.750	0.886	0.863	0.863	0.647	0.860	0.790
Time (ms)	212.1	287.0	81.8	109.4	85.8	112.1	2302.33
CN vs. LMCI	0.923	0.937	0.970	0.968	0.830	0.909	0.910
Time (ms)	178.2	247.5	80.1	93.8	79.7	89.1	246.69
Unbalanced							
Regime	MLS	MLS	ACA-S	ACA-S	ACA-L	ACA-L	Best
SVM	Linear	RBF	Linear	RBF	Linear	RBF	Benchmark
AD vs. CN	0.865	0.910	0.875	0.912	0.864	0.913	0.789
Time (ms)	114.6	129.5	76.2	93.0	77.0	81.9	1173.42
AD vs. LMCI	0.743	0.883	0.860	0.889	0.743	0.883	0.790
Time (ms)	212.6	289.8	115.3	179.1	121.8	178.1	2302.33
CN vs. LMCI	0.927	0.938	0.955	0.959	0.928	0.938	0.910
Time (ms)	175.3	237.9	91.4	135.9	94.6	146.2	246.69

297
 298 of a given method. Indeed, AUC can be sensitive to the interpolation method between thresholds
 299 Muschelli (2019). Furthermore, datasets with $N_A \gg N_B$ can yield a high AUC but a low accuracy.
 300

301 This is exemplified in the CN vs. LMCI cohort (see Table 3). For this cohort, we have $N_A = 346$
 302 and $N_B = 54$. An SVM with linear separating hypersurface obtains an AUC of 0.91 and an accuracy
 303 of only 0.71 on this dataset. With this in mind, we report that FINDER is also capable of elevating
 304 the accuracy of SVM classification compared to the benchmark learners on all three ADNI cohorts
 305 (see Table 4 and Figure 5).

306 Moreover, in Rehman et al. (2024) the authors propose several models that include a subset of the
 307 ADNI blood plasma proteins plus other features such as age, sex, education and the APOE4 gene.
 308 Although we used all of the proteomic blood plasma features, our results are significantly higher than
 309 those presented in Figure 2 in that paper.

310 3.2 DEFORESTATION DETECTION VIA RADAR AND OPTICAL REMOTE SENSING

311 For a second assessment of FINDER and to test its versatility, we applied the direct residual method to
 312 remote sensing/detection of deforestation using optical (Sentinel-2 Drusch et al. (2012)) and Synthetic
 313 Aperture Radar (SAR) (Sentinel-1 Torres et al. (2012)) data. We note that a similar approach was
 314 proposed in Lakhina et al. (2004) in the context of anomaly detection for network traffic.

315 These two datasets require us to consider two types of noise. SAR data contains noise due to the
 316 relatively weak sensors, but is unaffected by cloud cover. Optical data comes from higher quality
 317 and higher resolution sensors, but clouds can obstruct or completely block the ground, significantly
 318 reducing the amount of usable data. These datasets are critical in detecting deforestation, illegal
 319 logging, and quantifying the loss of carbon absorption in the atmosphere Initiative et al. (2016).

320 Our hybrid FINDER approach filters the SAR data, applies the direct residual method to the optical
 321 data, and combines the processed data in a complementary way that is very effective for highly
 322 cloudy regions such as the West African coast, Madagascar, and parts of the Amazon forest and

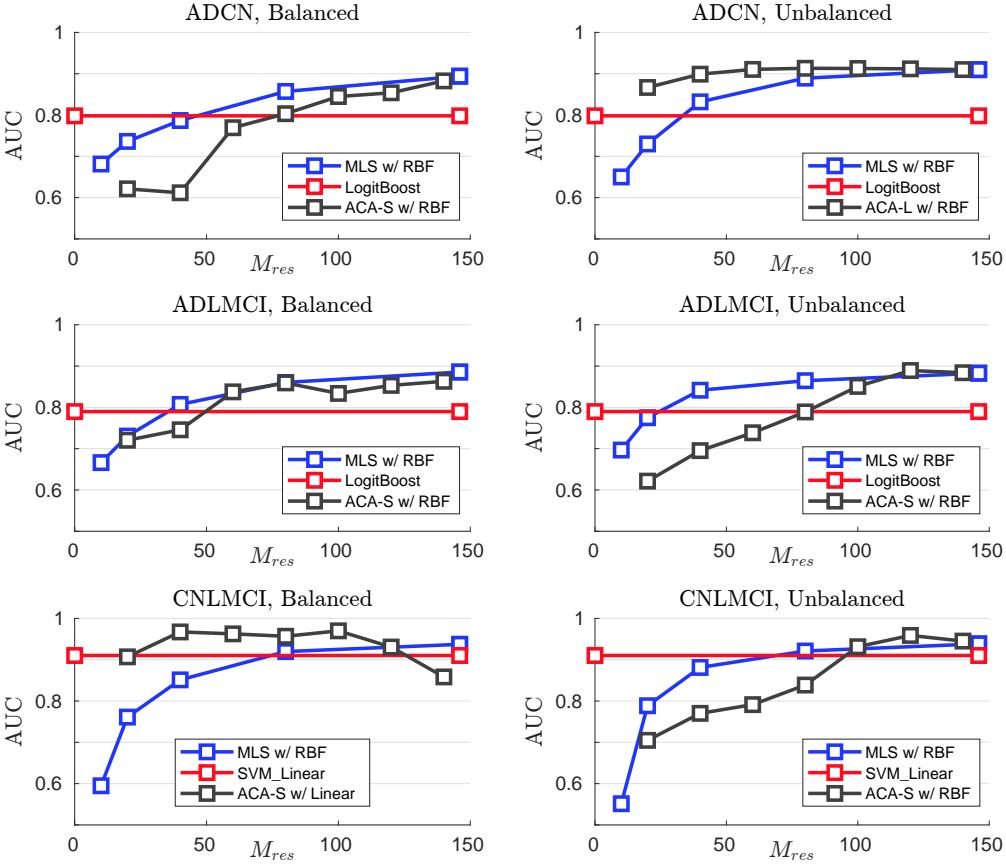


Figure 2: AUC obtained across all three methods for each of the three ADNI cohorts. Within each method (MLS, ACA, benchmark), the regime with the highest overall AUC obtained across all tested values of M_{res} is reported. AUC can improve significantly from the benchmark level when both FINDER methods are employed with an RBF separating boundary. While the MLS method remains robust with respect to the choice to pre-balance or not pre-balanced the data, the ACA method is highly dependent on this choice. For the AD vs. CN cohort, the Unbalanced regime within ACA performs consistently better than benchmark and MLS. However, for the CN vs. LMCI cohort, the Balanced regime within ACA performs consistently better than benchmark and MLS. The data also demonstrate that the performance of FINDER is sensitive to the choice of M_{res} . The overall trend appears to be that larger M_{res} achieve higher AUCs, though too large M_{res} can diminish AUCs.

Southeast Asia Tang et al. (2023); Zhang et al. (2022). In particular, it significantly out-performs state-of-the-art methods such as Fusion Near Real Time (FNRT) Tang et al. (2023). This is made clear by the results in Table 2, where FINDER compares well against FNRT while using roughly 45 percent less data when FNRT can be used, and retains a fair proportion of its performance in the data scarce environments where FNRT is not applicable/usable.

We choose a test region of approximately 92 km \times 92 km (corresponding to 9219 \times 9180 pixels) in the Amazon forest. The Sentinel-2 optical bands are converted to a scalar valued Enhanced Vegetation Index (EVI) Huete et al. (2002) measurement on the terrain. This is a common measure in remote sensing to detect vegetation on land cover and can be used to detect loss of forest vegetation. Each optical pixel has a resolution of 10 m \times 10 m. The optical Sentinel radar is resampled to same resolution as the optical EVI data and then filtered using a spatio-temporal Bayesian approach.

Using a simplified version of the residual eigenspace FINDER approach, an anomaly map is built from optical data that are fused with SAR with a Hidden Markov Model (HMM). The HMM then classifies the pixel as without change (forest), deforestation or cloud cover. For this experiment, the

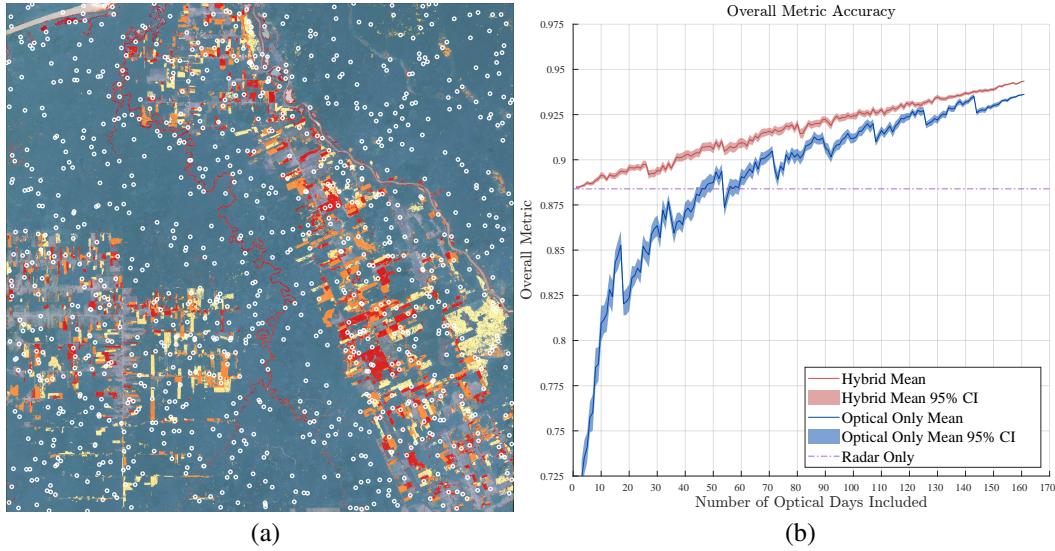


Figure 3: (a) Test region in the Amazon forest and validation samples. 1000 samples of the validation regions are selected. The region is formed by $9,219 \times 9,180$ pixels, each pixel a $10m \times 10m$ patch of land, representing the Enhanced Vegetation Index. The colored areas indicate the detection of deforestation with the Hybrid FINDER+HMM method by December 31 2022. (b) Overall metric accuracy with Hybrid and Optical only vs the number of available optical Sentinel-2 days.

FINDER spaces and parameters will be $\mathcal{H} = \mathcal{H}_M = \text{Span} \{ \mathbf{e}_k \}_{k=1, \dots, 9219 \times 9180}$, where \mathbf{e}_k is a unit vector such that $\mathbf{e}_i \cdot \mathbf{e}_j = \delta[i - j]$, and $\mathcal{H}_{\text{res}} = \mathcal{H}_{\mathbf{A}}^{\perp}$ where $M_{\mathbf{A}} = 29$.

The performance of the algorithms is measured by selecting 1000 validation data points in the test region (See Figure 3(a)). Of these, 740 are stable forest with no change and in 260 the forest has been removed. The final state of the forest (stable or deforestation) at the end date is visually checked, and this is our ground truth.

The remote sensing community relies on three kinds of metrics to quantify detection algorithm performance: i) Overall accuracy refers to the percentage of correctly classified pixels (stable or deforestation) in the validation test area. ii) User's accuracy represents the probability that a pixel classified as a particular class (stable forest or deforestation) in a map is actually the correct validation state. iii) Producer's accuracy measures how well a map maker correctly identifies areas on the ground that belong to a specific class. Specific formulae from the remote sensing community can be found in Olofsson et al. (2014).

In Figure 3(b) the overall accuracy of the hybrid and optical-only methods is simulated for all possible numbers of available optical days. More specifically, for all $n \leq 161$ days we randomly choose 100 sets of n Sentinel-2 EVI images and compute the hybrid and optical-only accuracies using the same sets, so as to get a direct comparison. The plot shows the mean and corresponding 95% confidence intervals from those 100 accuracies for each number of optical days. As this number decreases we clearly see that the optical-only accuracy reduces significantly. In contrast the hybrid method is robust to loss of optical data, limiting to the result from only using SAR data.

The remote sensing community has seen a recent surge in interest in combining optical and radar data to detect deforestation Chen et al. (2023). Table 2 summarizes the comparisons between the current state-of-the-art optical and radar hybrid approach and FINDER. The accuracy results presented are with common postprocessing remote sensing methods Chen et al. (2023) that give slightly higher accuracies for all the methods. We observe that FINDER achieves high accuracies for hybrid optical and radar data. For 71 days of optical training day an accuracy of 0.942 is achieved. If we reduce the training days to 35 the accuracy reduces only slightly to 0.933. In contrast, for the same training period with 71 days the performance of FNRT is poor. However, if we increase the training period for FNRT to 130 days (Jan 2018 to March 2020) the accuracy increases to 0.935.

432 Thus, we identify a strong use-case for FINDER here. Figure 3 and Table 2 show how well our
 433 method works under lack of optical data. Moreover, it can be used to track forest loss in almost real
 434 time. Many regions of the world are at the risk of deforestation, such as large sections of the Amazonas,
 435 coastal West Africa, Southeast Asia Tang et al. (2023); Zhang et al. (2022), etc, are too cloudy to
 436 supply FNRT methods with the data they need. In some cases, it can be years before sufficient data is
 437 assembled. Beyond the opportunity costs of not being able to act in time, this can also be a problem
 438 as deforestation during the data collection period can itself affect the performance of the algorithm.

439 **Remark 3.1.** *The necessity of applying FINDER to the optical data is discussed in Section D.2.*

440
 441 Table 2: Accuracy results after postprocessing. Sentinel-2 optical data with HMM + FINDER has
 442 the same accuracy as joint optical and SAR data with the HMM + Finder. For the joint optical
 443 + SAR data the user accuracy is superior and the producer’s accuracy is almost the same. Note
 444 that the state-of-the-art FNRT performs poorly when not enough optical training days exist, but
 445 improves significantly with more training data. Note that the timings for FNRT are 368 Google
 446 engine EECU-hours, which corresponds ≈ 3 or 4 wall hours. For the HMM + FINDER results the
 447 code was run using two 14-core 2.4 GHz Intel Xeon E5-2680v4 CPUs.

Algorithm (Data)	Train Days	Overall Acc.	User	Producer	Comp Time (h)
FNRT (Hybrid)	71	0.260	0.260	1.00 ^{NA}	368#
FNRT (Hybrid)	130	0.935	0.892	0.707	368#
HMM + FINDER (Optical)	71	0.936	0.801	0.748	13.95
HMM + FINDER (Hybrid)	35	0.933	0.839	0.718	49.34
HMM + FINDER (Hybrid)	71	0.942	0.865	0.752	49.47

4 LIMITATIONS AND CONCLUSION

456
 457 FINDER is generic, versatile, robust in noisy regimes, and blends well with simple ML methods.
 458 However, its advantages diminish as noise decreases: stochastic features are computationally unne-
 459 cessary in settings where data is “clean”, “simple”, or “ample” enough to easily learn the generalizing
 460 classes (see App. D.4 for an instructive example).

461
 462 Further, FINDER relies on judicious choices of the truncation parameters M_A and M_{res} . Empirically,
 463 the MLS method at least appears to demonstrate experimental predictability, with performance
 464 improving as M_{res} is increased.

465
 466 In contrast, the ACA methods demonstrate less obvious patterns in performance as M_{res} is varied.
 467 Some heuristics for choosing M_A in particular are informed by Scree plots and the intuition of the
 468 user for their dataset. We are currently researching methods to make these choices, but it remains a
 469 stark weakness.

470
 471 Another significant limitation lies in the Lemma 2.3 bounds being sub-optimal, as we eliminate
 472 the need to estimate Y_r in our implementations to save computational costs. Furthermore, if the
 473 eigen-pairs (λ_r^A, ϕ_r^A) and (λ_r^B, ϕ_r^B) are too similar, then classification becomes nearly impossible.

474
 475 Finally, FINDER is still only a binary classification regime: we offer no true breakthroughs on
 476 the question of multi-class problems, beyond decomposing them into a collection of costly binary
 477 problems.

478
 479 Mitigating these weaknesses will remain the core focus of our future work. However, FINDER’s
 480 initial results and applications are not just promising, but definitive evidence of its value.

REFERENCES

481 Dileep Bhattacharya. De novo Analytics. De novo Analytics, 2025.

482 Peter J. Bickel and Elizaveta Levina. Some theory for Fisher’s linear discriminant function, ‘naive
 483 bayes’, and some alternatives when there are many more variables than observations. Bernoulli,
 484 10(6):989–1010, 2004. doi: 10.3150/bj/1106314847. URL <https://doi.org/10.3150/bj/1106314847>.

486 Shijuan Chen, Pontus Olofsson, Thatheva Saphangthong, and Curtis E. Woodcock. Monitoring
 487 shifting cultivation in Laos with Landsat time series. *Remote Sensing of Environment*, 288:
 488 113507, 2023. ISSN 0034-4257. doi: <https://doi.org/10.1016/j.rse.2023.113507>. URL <https://www.sciencedirect.com/science/article/pii/S0034425723000585>.

489
 490 J. Diestel and J. J. Uhl. *Vector Measures*. American Mathematical Society, 1977.

491
 492 M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laber-
 493 inti, P. Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese, and P. Bargellini. Sentinel-2: Esa's
 494 optical high-resolution mission for gmes operational services. *Remote Sensing of Environment*,
 495 120:25–36, 2012. ISSN 0034-4257. doi: <https://doi.org/10.1016/j.rse.2011.11.026>. URL <https://www.sciencedirect.com/science/article/pii/S0034425712000636>. The
 496 Sentinel Missions - New Opportunities for Science.

497
 498 L. Horváth and P. Kokoszka. *Inference for Functional Data with Applications*. Springer, 2012. ISBN
 499 978-1-4614-3655-3.

500
 501 A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira. Overview of
 502 the radiometric and biophysical performance of the modis vegetation indices. *Remote
 503 Sensing of Environment*, 83(1):195–213, 2002. ISSN 0034-4257. doi: [https://doi.org/10.1016/S0034-4257\(02\)00096-2](https://doi.org/10.1016/S0034-4257(02)00096-2). URL <https://www.sciencedirect.com/science/article/pii/S0034425702000962>. The Moderate Resolution Imaging Spectroradiometer
 504 (MODIS): a new generation of Land Surface Monitoring.

505
 506 Tuomas Hytönen, Jan van Neerven, Mark Veraar, and Lutz Weis. *Analysis in Banach Spaces (Volume
 507 I): Martingales and Littlewood-Paley Theory*. Springer Cham, 2016. doi: <https://doi.org/10.1007/978-3-319-48520-1>.

508
 509 Global Forest Observations Initiative et al. Integration of remote-sensing and ground-based obser-
 510 vations for estimation of emissions and removals of greenhouse gases in forests: Methods and
 511 guidance from the global forest observations initiative, edition 2.0. *UN Food and Agriculture
 512 Organization*. 224 p., pages 1–224, 2016.

513
 514 P. Kokoszka and M. Reimherr. *Introduction to Functional Data Analysis*. CRC Press, 1 edition, 2017.
 515 ISBN 9781315117416.

516
 517 Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide traffic anom-
 518 alies. In *Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and
 519 Protocols for Computer Communications, SIGCOMM '04*, page 219–230, New York, NY, USA,
 520 2004. Association for Computing Machinery. ISBN 1581138628.

521
 522 Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. *Nature*, 521, 2014.

523
 524 M. Loève. *Probability Theory II*. Graduate text in Mathematics. 46. Springer, 1978.

525
 526 John Muschelli. Roc and auc with a binary predictor: a potentially misleading metric.
 527 *Journal of Classification*, 37(3):696–708, December 2019. ISSN 1432-1343. doi: 10.1007/
 528 s00357-019-09345-1. URL <http://dx.doi.org/10.1007/s00357-019-09345-1>.

529
 530 Andrew Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In *Proceedings of
 531 the Twenty-First International Conference on Machine Learning, ICML '04*, page 78, New York,
 532 NY, USA, 2004. Association for Computing Machinery. ISBN 1581138385.

533
 534 Pontus Olofsson, Giles M. Foody, Martin Herold, Stephen V. Stehman, Curtis E. Woodcock, and
 535 Michael A. Wulder. Good practices for estimating area and assessing accuracy of land change.
 536 *Remote Sensing of Environment*, 148:42–57, 2014. ISSN 0034-4257. doi: <https://doi.org/10.1016/j.rse.2014.02.015>.

537
 538 R. C. Petersen, P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C. Gamst, D. J. Harvey, Jr C. R. Jack,
 539 W. J. Jagust, L. M. Shaw, A. W. Toga, J. Q. Trojanowski, and M. W. Weiner. Alzheimer's disease
 540 neuroimaging initiative (adni). *Neurology*, 74(3):201–209, 2010. ISSN 0028-3878.

540 Sridhar Ramaswamy, Pablo Tamayo, Ryan Rifkin, Sayan Mukherjee, Chen-Hsiang Yeang, Michael
 541 Angelo, Christine Ladd, Michael Reich, Eva Latulippe, Jill P. Mesirov, Tomaso Poggio, William
 542 Gerald, Massimo Loda, Eric S. Lander, and Todd R. Golub. Multiclass cancer diagnosis using
 543 tumor gene expression signatures. *Proceedings of the National Academy of Sciences*, 98(26):
 544 15149–15154, 2001.

545 Habbibur Rehman, Ting Fang Alvin Ang, Qiushan Tao, Arielle Lauren Espenilla, Rhoda Au,
 546 Lindsay A Farrer, Xiaoling Zhang, Wei Qiao Qiu, and Alzheimer’s Disease Neuroimaging Initiative.
 547 Comparison of commonly measured plasma and cerebrospinal fluid proteins and their significance
 548 for the characterization of cognitive impairment status. *J. Alzheimers. Dis.*, 97(2):621–633, 2024.

550 Christoph Schwab and Radu Alexandru Todor. Karhunen–Loève approximation of random
 551 fields by generalized fast multipole methods. *Journal of Computational Physics*, 217(1):100–
 552 122, 2006. ISSN 0021-9991. doi: <https://doi.org/10.1016/j.jcp.2006.01.048>. URL <https://www.sciencedirect.com/science/article/pii/S0021999106000349>. Uncertainty
 553 Quantification in Simulation Science.

554 E. M. Stein and R. Shakarchi. Real analysis, princeton lectures in analysis. page 91, 2005.

555 T. J. Sullivan. Hille’s theorem for bochner integrals of functions with values in locally convex
 556 spaces. *Real Analysis Exchange*, 49(2), October 2024. ISSN 0147-1937. doi: 10.14321/
 557 realanalexch.49.2.1719547551. URL <http://dx.doi.org/10.14321/realanalexch.49.2.1719547551>.

558 Aik C. Tan, Daniel Q. Naiman, Lei Xu, Raimond L. Winslow, and Donald Geman. Simple decision
 559 rules for classifying human cancers from gene expression profiles. *Bioinformatics*, 21(20):3896–
 560 3904, 08 2005.

561 Xiaojing Tang, Kelsee H. Bratley, Kangjoon Cho, Eric L. Bullock, Pontus Olofsson, and Curtis E.
 562 Woodcock. Near real-time monitoring of tropical forest disturbance by fusion of landsat, sentinel-
 563 2, and sentinel-1 data. *Remote Sensing of Environment*, 294:113626, 2023. ISSN 0034-4257.
 564 doi: <https://doi.org/10.1016/j.rse.2023.113626>. URL <https://www.sciencedirect.com/science/article/pii/S0034425723001773>.

565 Johannes Tausch and Jacob White. Multiscale bases for the sparse representation of boundary integral
 566 operators on complex geometry. *SIAM Journal on Scientific Computing*, 24(5):1610–1629, 2003.
 567 doi: 10.1137/S1064827500369451.

568 Ramon Torres, Paul Snoeij, Dirk Geudtner, David Bibby, Malcolm Davidson, Evert Attema,
 569 Pierre Potin, Björn Rommen, Nicolas Flouri, Mike Brown, Ignacio Navas Traver, Patrick
 570 Deghaye, Berthyl Duesmann, Betlem Rosich, Nuno Miranda, Claudio Bruno, Michelangelo
 571 L’Abbate, Renato Croci, Andrea Pietropaolo, Markus Huchler, and Friedhelm Rostan. Gmes
 572 sentinel-1 mission. *Remote Sensing of Environment*, 120:9–24, 2012. ISSN 0034-4257.
 573 doi: <https://doi.org/10.1016/j.rse.2011.05.028>. URL <https://www.sciencedirect.com/science/article/pii/S0034425712000600>. The Sentinel Missions - New Opportunities
 574 for Science.

575 Yingtong Zhang, Curtis E. Woodcock, Paulo Arévalo, Pontus Olofsson, Xiaojing Tang, Radost
 576 Stanimirova, Eric Bullock, Katelyn R. Tarrio, Zhe Zhu, and Mark A. Friedl. A global analysis of
 577 the spatial and temporal variability of usable landsat observations at the pixel scale. *Frontiers in
 578 Remote Sensing*, 3, 2022. ISSN 2673-6187. doi: 10.3389/frsen.2022.894618.

590 A MATHEMATICAL DETAILS

591 We begin by assuming \mathcal{H} is some arbitrary Hilbert space over the field \mathbb{R} and $(\Omega, \mathcal{F}, \mathbb{P})$ is a complete
 592 probability space, substantially generalizing from the usual assumptions Schwab and Todor (2006).
 593 We will now derive Thm. 2.1 through a sequence of intermediate results. Let us first define:

594 A.1 BOCHNER SPACES
595

596 **Definition A.1** (Simple functions). *We say that $v : \Omega \mapsto \mathcal{H}$ is simple if there exists a finite set of*
597 *598 mutually disjoint measurable sets $\{E_n\}_{n=1}^N$ and vectors $\{e_n\}_{n=1}^N$ such that $v(\omega) = \sum_{n=1}^N \mathbb{I}_n(\omega)e_n$,*
599 *600 where $\mathbb{I}_n(\omega) \equiv \mathbb{I}_{E_n}(\omega)$ are the indicator functions.*

601 **Definition A.2** (Bochner-measurable). *We say that $v : \Omega \mapsto \mathcal{H}$ is Bochner-measurable if there exists*
602 *603 a sequence of simple functions $\{v_n\}_{n=1}^\infty$ such that for \mathbb{P} -a.e., we have $\lim_{n \rightarrow \infty} \|v_n(\omega) - v(\omega)\|_{\mathcal{H}} = 0$.*

604 Throughout this paper, we will assume the following conditions on v :

605 **Assumption A.1.** *$v(\omega)$ is a Bochner-measurable function from Ω to \mathcal{H} .*

606 **Assumption A.2.** $\int_{\Omega} \|v(\omega)\|_{\mathcal{H}}^2 d\mathbb{P} < \infty$
607

608 The set of all such $v : \Omega \rightarrow \mathcal{H}$ satisfying assumptions (A.1) - (A.2) is denoted $L^2(\Omega, \mathcal{H})$,
609 which constitutes a vector space under pointwise addition and scalar multiplication. The space
610 $L^2(\Omega, \mathcal{H})$ comprises all the distinct equivalence classes in $\mathcal{L}^2(\Omega, \mathcal{H})$ where two functions are
611 declared equivalent if they agree almost surely. We define an inner product on $L^2(\Omega, \mathcal{H})$ by
612 $\langle u, v \rangle_{L^2(\Omega, \mathcal{H})} := \int_{\Omega} \langle u(\omega), v(\omega) \rangle_{\mathcal{H}} d\mathbb{P}$. With this inner product, $L^2(\Omega, \mathcal{H})$ gains the structure
613 of a Hilbert space. The purpose of this section is to develop what is known as the *Karhunen-Loëve*
614 (*KL*) expansion of a random element v , given by
615

616

$$617 \quad v(\omega) = \mathbb{E}(v) + \sum_{r=1}^R \lambda_r^{1/2} Y_r(\omega) \phi_r \quad (4)$$

618

619 where $R \in \mathbb{N} \cup \{\infty\}$, $\mathbb{E}(v)$ is the expectation of v (made precise later), $\{\lambda_r\}_{r=1}^R$ is a non-increasing
620 sequence of positive real numbers with $\lambda_r \searrow 0$, $\{Y_r\}_{r=1}^R$ is an orthonormal set in $L^2(\Omega)$, and
621 $\{\phi_r\}_{r=1}^R$ is an orthonormal set in \mathcal{H} . The proof of this expansion, which will be developed in this
622 paper, relies on some elementary results about compact operators in Hilbert spaces.

623

624 By the Pettis theorem Diestel and Uhl (1977), $v : \Omega \rightarrow \mathcal{H}$ is Bochner-measurable if and only if v is
625 weakly measurable (i.e. the scalar-valued mapping $\omega \mapsto \langle v(\omega), e \rangle_{\mathcal{H}}$ is measurable for each $e \in \mathcal{H}$)
626 and essentially separably valued (i.e. $v(\Omega_1)$ is separable for some $\Omega_1 \in \mathcal{F}$ with $\mathbb{P}(\Omega_1) = 1$). If \mathcal{H} is
627 separable (which we do not necessarily assume), then we need only verify that $v : \Omega \rightarrow \mathcal{H}$ is weakly
628 measurable to assert its membership in $L^2(\Omega, \mathcal{H})$.
629

630

631 **Remark A.1.** *If $\mathcal{H} = L^2([a, b])$, then Assumption A.2 reduces to $\int_{\Omega} \int_a^b |v(x, \omega)|^2 dx d\mathbb{P} < \infty$ and*
632 *633 the $L^2(\Omega, \mathcal{H})$ inner product is given as $\langle u, v \rangle_{L^2(\Omega, \mathcal{H})} = \int_{\Omega} \int_a^b v(x, \omega) u(x, \omega) dx d\mathbb{P}$.*
634

635

636 A.2 HILBERT-SCHMIDT SPACES
637

638

639 Let \mathcal{G}, \mathcal{H} be two Hilbert spaces over \mathbb{R} . Given $g \in \mathcal{G}$ and $h \in \mathcal{H}$, we may define a rank-one operator
640 $\mathcal{H} \rightarrow \mathcal{G}$, symbolized by $g \otimes h$, given by $(g \otimes h)(x) = \langle h, x \rangle_{\mathcal{H}} g$ for all $x \in \mathcal{H}$.

641

642 We may define an inner product on two such operators as follows:

643

$$644 \quad \langle g_1 \otimes h_1, g_2 \otimes h_2 \rangle := \langle g_1, g_2 \rangle_{\mathcal{G}} \langle h_1, h_2 \rangle_{\mathcal{H}} \quad (5)$$

645

646 The space $\text{HS}(\mathcal{H}, \mathcal{G})$ is defined to be the Hilbert space formed by the closure of the linear span of the
647 operators of the form $g \otimes h$ w.r.t. the inner product (5). If $\mathcal{G} = L^2(\Omega)$, we can embed $\text{HS}(\mathcal{H}, L^2(\Omega))$
648 into $L^2(\Omega, \mathcal{H})$ via the correspondence $X \otimes e \mapsto Xe$. We prove that this inclusion is actually an
649 isometric isomorphism by adapting (Hytönen et al., 2016, Prop. 1.4.4)

648 **Lemma A.1.** $L^2(\Omega, \mathcal{H})$ is isometrically isomorphic to $\text{HS}(\mathcal{H}, L^2(\Omega))$.
 649

650 *Proof.* To first show that the inclusion $\iota : \text{HS}(\mathcal{H}, L^2(\Omega)) \rightarrow L^2(\Omega, \mathcal{H})$ is an isometry, let $X_1 \otimes$
 651 $e_1, X_2 \otimes e_2$ be two elements of $\text{HS}(\mathcal{H}, L^2(\Omega))$, whence we have:
 652

$$\begin{aligned} 654 \quad \langle X_1 \otimes e_1, X_2 \otimes e_2 \rangle_{\text{HS}(\mathcal{H}, L^2(\Omega))} &= \langle X_1, X_2 \rangle_{L^2(\Omega)} \langle e_1, e_2 \rangle_{\mathcal{H}} \\ 655 \quad &= \int_{\Omega} \langle X_1(\omega) e_1, X_2(\omega) e_2 \rangle_{\mathcal{H}} d\mathbb{P} \\ 656 \quad &= \langle X_1 e_1, X_2 e_2 \rangle_{L^2(\Omega, \mathcal{H})} \\ 657 \quad & \\ 658 \quad & \\ 659 \quad & \end{aligned}$$

660 To show that ι is an isomorphism, it suffices to show that each $v \in L^2(\Omega, \mathcal{H})$ may be written as a
 661 potentially infinite sum $\sum_{j=1}^N X_j e_j$ for appropriate $X_j \in L^2(\Omega)$, $e_j \in \mathcal{H}$. As v is essentially separably
 662 valued, we may assume v takes all of its values in a separable subset $Z \subseteq \mathcal{H}$. Letting $\{e_j\}_{j=1}^N$
 663 ($N \in \mathbb{N} \cup \aleph_0$) be an orthonormal basis of $\overline{\text{Span}\{Z\}}$, we may expand $v(\omega)$ in its Fourier series with
 664 respect to the basis $\{e_j\}_{j=1}^N$ as follows
 665

$$666 \quad v(\omega) := \sum_{j=1}^N X_j(\omega) e_j \\ 667 \quad \\ 668 \quad \\ 669 \quad \\ 670 \quad \\ 671 \quad$$

672 where $X_j(\omega) := \langle v(\omega), e_j \rangle_{\mathcal{H}}$. Each X_j is measurable (v is weakly measurable) and square summable
 673 (apply Cauchy-Schwarz inequality), and thus lies in $L^2(\Omega)$. If $N < \infty$, we are done. Other-
 674 wise, we must show that $\lim_{n \rightarrow \infty} \sum_{j=1}^n X_j e_j \rightarrow v$ in the $L^2(\Omega, \mathcal{H})$ norm. In this case, the remainder
 675

676 $\left\| v(\omega) - \sum_{j=1}^n X_j(\omega) e_j \right\|_{\mathcal{H}}^2 \rightarrow 0$ as $n \rightarrow \infty$ and is uniformly dominated by $\|v(\omega)\|_{\mathcal{H}}^2$ \mathbb{P} -a.e. The
 677 Dominated Convergence Theorem ensures that
 678

$$679 \quad \left\| v - \sum_{j > n} X_j e_j \right\|_{L^2(\Omega, \mathcal{H})}^2 = \int_{\Omega} \left\| v(\omega) - \sum_{j > n} X_j(\omega) e_j \right\|_{\mathcal{H}}^2 d\mathbb{P} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \\ 680 \quad \\ 681 \quad \square$$

682 A.3 BOCHNER INTEGRALS AND THEIR PROPERTIES

683 **Definition A.3** (Pettis integral). Let $v \in L^2(\Omega, \mathcal{H})$. The Pettis integral is the unique $\mu \in \mathcal{H}$ for which
 684 $\langle \mu, e \rangle_{\mathcal{H}} = \int_{\Omega} \langle v(\omega), e \rangle_{\mathcal{H}} d\mathbb{P}$ for all $e \in \mathcal{H}$.
 685

686 **Definition A.4** (Bochner integral). Let $v \in L^2(\Omega, \mathcal{H})$. We call $\mathbb{E}(v) := \int_{\Omega} v d\mathbb{P}$, the Bochner
 687 integral of v . Given an approximating sequence of simple functions $\{v_n\}_{n \in \mathbb{N}}$, the Bochner integral of
 688 v is the limiting value of $\int_{\Omega} v_n(\omega) d\mathbb{P}$ as $n \rightarrow \infty$ (provided it exists).
 689

690 With these preliminaries in mind, we can now prove Theorem 2.1
 691

692 *Proof.* Since all Hilbert spaces satisfy the Radon-Nikodým Property (RNP) and v is Bochner integrable,
 693 it is also Pettis integrable and the two integrals coincide (Diestel and Uhl, 1977, Ch. 2). Thus
 694

we may instead consider the element $v_0 := v - \mathbb{E}(v)$, which also lies in $L^2(\Omega, \mathcal{H})$. By our identification of $L^2(\Omega, \mathcal{H})$ with $\text{HS}(\mathcal{H}, L^2(\Omega))$, there exists a unique Hilbert-Schmidt corresponding to v_0 , which we will denote H_{v_0} . As all Hilbert-Schmidt operators are compact, we may invoke the spectral

theorem to write the SVD of H_{v_0} as $\sum_{r=1}^R \lambda_r^{1/2} Y_r \otimes \phi_r$ where $R \in \mathbb{N} \cup \{\aleph_0\}$. $\{\lambda_r^{1/2}\}_{r=1}^R$ comprises the non-increasing real-valued sequence of singular values of H_{v_0} with $\lambda_r \searrow 0$. $\{Y_r\}_{r=1}^R$ comprises the left singular vectors of H_{v_0} and forms an orthonormal set in $L^2(\Omega)$. $\{\phi_r\}_{r=1}^R$ comprises the right singular vectors of H_{v_0} and forms an orthonormal set in \mathcal{H} . Using the correspondence once more, we see

$$v_0 = v - \mathbb{E}(v) = \sum_{r=1}^R \lambda_r^{1/2} Y_r \phi_r \quad v_0 \in L^2(\Omega, \mathcal{H})$$

□

A.4 THE COVARIANCE OPERATOR

For each $v \in L^2(\Omega, \mathcal{H})$ the operator H_{v_0} may be constructed as the mapping $e \mapsto \langle v - \mathbb{E}(v), e \rangle_{\mathcal{H}}$. We define the *covariance operator* of v by $H_{v_0}^* H_{v_0}$ and denote it \mathcal{C}_v . We immediately obtain

$$\mathcal{C}_v(e) = \mathbb{E}(\langle v - \mathbb{E}(v), e \rangle_{\mathcal{H}} (v - \mathbb{E}(v)))$$

for each $e \in \mathcal{H}$. We obtain the sequences $\{\lambda_r\}_{r=1}^R$ and $\{\phi_r\}_{r=1}^R$ in the KL expansion of v as the descending sequence of eigenvalues and eigenvectors of \mathcal{C}_v . The sequence $\{Y_r\}_{r=1}^R$ comprises the left singular vectors of H_{v_0} , obtained as

$$Y_r := \lambda_r^{-1/2} H_{v_0} \phi_r$$

Furthermore, each Y_r has expectation zero, which results from the fact that the Bochner (and thus Pettis) integral of $v - \mathbb{E}(v)$ is zero. Indeed, for any $s \leq R$, we have

$$\begin{aligned} 0 &= \left\langle \lambda_s^{-1/2} \phi_s, \int_{\Omega} v(\omega) - \mathbb{E}(v) \, d\mathbb{P} \right\rangle_{\mathcal{H}} \\ &= \int_{\Omega} \left\langle \lambda_s^{-1/2} \phi_s, v(\omega) - \mathbb{E}(v) \right\rangle_{\mathcal{H}} \, d\mathbb{P} \\ &= \int_{\Omega} Y_s(\omega) \, d\mathbb{P} \end{aligned}$$

Remark A.2. If $\mathcal{H} = L^2([a, b])$, then $\mathbb{E}(v) = \int_{\Omega} v(-, \omega) \, d\mathbb{P}$. Furthermore, the covariance operator associated to v is a kernel operator whose kernel is

$$\mathcal{K}(x, y) = \int_{\Omega} [v(x, \omega) - \mathbb{E}((v(x, \omega)))] [v(y, \omega) - \mathbb{E}((v(y, \omega))] \, d\mathbb{P},$$

that is, for any $f \in L^2([a, b])$, $C_v(f)(x) = \int_a^b \mathcal{K}(x, y) f(y) dy$.

A.5 COMPUTABLE SUBSPACES

For the purposes of computation, only finite dimensional Hilbert spaces are admissible. Suppose $\mathcal{H}_M \leq \mathcal{H}$ is such a finite dimensional subspace and $P_{\mathcal{H}_M}$ is the projection onto \mathcal{H}_M operator. A desirable quality of FINDER, or any machine learning approach, would be that this finite dimensional digitization that occurs when replacing \mathcal{H} with \mathcal{H}_M also translates to replacing $L^2(\Omega, \mathcal{H})$ with $L^2(\Omega, \mathcal{H}_M)$ and $\text{HS}(\mathcal{H}, L^2(\Omega))$ with $\text{HS}(\mathcal{H}_M, L^2(\Omega))$. Mathematically, we would like to verify that $P_{\mathcal{H}_M}$ induces maps $P' : L^2(\Omega, \mathcal{H}) \rightarrow L^2(\Omega, \mathcal{H}_M)$ and $P'' : \text{HS}(\mathcal{H}, L^2(\Omega)) \rightarrow \text{HS}(\mathcal{H}_M, L^2(\Omega))$ such that the following diagram commutes:

$$\begin{array}{ccc}
L^2(\Omega, \mathcal{H}) & \xrightarrow{P'} & L^2(\Omega, \mathcal{H}_M) \\
\downarrow \eta & & \downarrow \eta \\
\text{HS}(\mathcal{H}, L^2(\Omega)) & \xrightarrow{P''} & \text{HS}(\mathcal{H}_M, L^2(\Omega))
\end{array}$$

where η is the correspondence $Xe \leftrightarrow X \otimes e$. In the language of category theory, if $L^2(\Omega, -)$ and $\text{HS}(-, L^2(\Omega))$ are functors from the category of Hilbert spaces over \mathbb{R} to itself, then η should act as a natural isomorphism between these two functors.

Proof. In fact, we put P' as the map $v \mapsto P_{\mathcal{H}_M}v$ and P'' as the map $H \mapsto HP_{\mathcal{H}_M}$ and compute for each element of the form $Xe \in L^2(\Omega, \mathcal{H})$

$$\eta(P'(Xe)) = \eta(X(P_{\mathcal{H}_M}e)) = X \otimes (P_{\mathcal{H}_M}e) = P''(X \otimes e) = P''\eta(Xe)$$

□

B APPLICATIONS TO BINARY CLASSIFICATION

Consider two random elements of $L^2(\Omega, \mathcal{H})$, $v^{\mathbf{A}}$ and $v^{\mathbf{B}}$, whose instantiations $v^{\mathbf{A}}(\omega)$ and $v^{\mathbf{B}}(\omega)$ are thought of as belonging to Class **A** or Class **B**. This section presents a method for determining whether or not an observed random element $u \in \mathcal{H}$ belongs to Class **A** or Class **B**.

Definition B.1 (Equality (in distribution)). $v, \tilde{v} \in L^2(\Omega, \mathcal{H})$ are said to be equal in distribution, denoted $v \stackrel{d}{=} \tilde{v}$, if $\Pr(v \in B) = \Pr(\tilde{v} \in B)$ for all Borel-measurable subsets B of \mathcal{H} .

Remark B.1. We can restrict to the cases where B is an open set in \mathcal{H} .

Corollary B.1. Let $v \stackrel{d}{=} \tilde{v}$. Then \mathcal{C}_v and $\mathcal{C}_{\tilde{v}}$ share the same spectrum, i.e., $\{\lambda_r\}_{r=1}^R = \{\tilde{\lambda}_r\}_{r=1}^R$. Further, $\ker(\mathcal{C}_v - \lambda_r I) = \ker(\mathcal{C}_{\tilde{v}} - \tilde{\lambda}_r I)$ for each $r = 1, 2, \dots, R$.

Note the converse need not be true; if $\mathcal{C}_v = \mathcal{C}_{\tilde{v}}$, the it need not be the case that $v \stackrel{d}{=} \tilde{v}$. In fact, if \mathcal{C}_v possesses eigen-pairs $\{\lambda_r, \phi_r\}_{r=1}^R$, then for any zero mean, orthonormal sequence $\{\tilde{Y}_r(\omega)\}_{r=1}^R \subseteq L^2(\Omega)$, the random element $\tilde{v} := \sum_{r=1}^R \lambda_r^{1/2} \tilde{Y}_r(\omega) \phi_r$ admits covariance operator $\mathcal{C}_{\tilde{v}}$ equal to \mathcal{C}_v .

Although knowledge of the sequence of singular values $\{\lambda_r^{1/2}\}_{r=1}^R$, right singular vectors $\{\phi_r\}_{r=1}^R$, and left singular vectors (random variables) $\{Y_r\}_{r=1}^R$ are all needed to fully describe the distribution of the random element v , we describe a classification method which does not require knowledge of the sequence of random variables $\{Y_r\}_{r=1}^R$ present in the KL expansion of v . This is particularly advantageous, since the $\{Y_r\}_{r=1}^R$ are not necessarily independent, just uncorrelated, thus estimation of the joint distribution of $\{Y_r\}_{r=1}^R$ requires a high dimensional estimation problem which is quite difficult to do from even a moderately sized empirical dataset $\{v_i\}_{i=1}^N$ without additional assumptions on v .

In contrast, the estimation of the eigen-pairs $\{\hat{\lambda}_r^{1/2}, \hat{\phi}_r\}_{r=1}^R$ from the empirical covariance operator $\widehat{\mathcal{C}}_v := \frac{1}{N-1} \sum_{i=1}^N (v_i - \bar{v}) \otimes (v_i - \bar{v})$ (with $\bar{v} := \frac{1}{N} \sum_{i=1}^N v_i$) is relatively easy. In particular, if $\mathcal{H} = \mathbb{R}^P$, then $\widehat{\mathcal{C}}_v$ is just the empirical covariance matrix, and the eigen-pairs $\{\hat{\lambda}_r^{1/2}, \hat{\phi}_r\}_{r=1}^R$ are just the square roots of the eigenvalues and the eigenvectors of this matrix.

810 B.1 CLASS CONCENTRATION BOUNDS
811812 Throughout the remainder of this paper, assume that $\mathbb{E}(v^{\mathbf{A}}) = 0$, since we can impose this by setting
813 $v^{\mathbf{A}} \rightarrow v^{\mathbf{A}} - \mathbb{E}(v^{\mathbf{A}})$ and $v^{\mathbf{B}} \rightarrow v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}})$. Let $v^{\mathbf{A}}$ and $v^{\mathbf{B}}$ have KL expansions:

814
815
$$v^{\mathbf{A}} = \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} 1/2 Y_r^{\mathbf{A}} \phi_r^{\mathbf{A}}$$

816
817
$$v^{\mathbf{B}} = \mathbb{E}(v^{\mathbf{B}}) + \sum_{r=1}^{R_{\mathbf{B}}} \lambda_r^{\mathbf{B}} 1/2 Y_r^{\mathbf{B}} \phi_r^{\mathbf{B}}$$

818
819
820
821
822

823 We will also make use of following corollaries of Hille’s theorem (Sullivan, 2024, Thm. 1) throughout:
824825 **Lemma B.1.** *Let $K : \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator. For any $v \in L^2(\Omega, \mathcal{H})$, we have that:*

826
$$\mathbb{E}(Kv) = K\mathbb{E}(v), \quad \mathcal{C}_{Kv} = K\mathcal{C}_v K^*$$

827

828 The method of classification consists of computing an orthonormal basis $\{s_m\}_{m=1}^{M_{\text{res}}}$ of a finite
829 dimensional subspace $\mathcal{H}_{\text{res}} \leq \mathcal{H}_M$ for which the projections $P_{\mathcal{H}_{\text{res}}} v^{\mathbf{A}}$ and $P_{\mathcal{H}_{\text{res}}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))$
830 (which equals by $P_{\mathcal{H}_{\text{res}}} v^{\mathbf{B}} - \mathbb{E}(P_{\mathcal{H}_{\text{res}}} v^{\mathbf{B}})$ Lemma B.1) concentrate in distinct regions of \mathcal{H} with
831 high probability (recall that we’ve assumed that $\mathbb{E}(v^{\mathbf{A}})$ has been pre-subtracted from both $v^{\mathbf{A}}$ and
832 $v^{\mathbf{B}}$). To this end, we establish the following bounds for the quantities $\int_{\Omega} \|P_{\mathcal{H}_{\text{res}}} v^{\mathbf{A}}\|_{\mathcal{H}}^2 d\mathbb{P}$ and
833 $\int_{\Omega} \|P_{\mathcal{H}_{\text{res}}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{\mathcal{H}}^2 d\mathbb{P}$.

834
835
$$\int_{\Omega} \|P_{\mathcal{H}_{\text{res}}} v^{\mathbf{A}}\|_{\mathcal{H}}^2 d\mathbb{P} = \int_{\Omega} \sum_{m=1}^{M_{\text{res}}} \langle s_m, v^{\mathbf{A}} \rangle_{\mathcal{H}}^2 d\mathbb{P}$$

836
837
$$= \sum_{m=1}^{M_{\text{res}}} \int_{\Omega} \langle \langle s_m, v^{\mathbf{A}} \rangle_{\mathcal{H}} v^{\mathbf{A}}, s_m \rangle_{\mathcal{H}} d\mathbb{P}$$

838
839
$$= \sum_{m=1}^{M_{\text{res}}} \langle \mathbb{E}(\langle s_m, v^{\mathbf{A}} \rangle_{\mathcal{H}} v^{\mathbf{A}}), s_m \rangle_{\mathcal{H}}$$

840
841
$$= \sum_{m=1}^{M_{\text{res}}} (\langle \mathcal{C}_{v^{\mathbf{A}}} s_m, s_m \rangle_{\mathcal{H}})$$

842
843
$$= \sum_{m=1}^{M_{\text{res}}} \left(\left\langle \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \langle s_m, \phi_r^{\mathbf{A}} \rangle_{\mathcal{H}} \phi_r^{\mathbf{A}}, s_m \right\rangle_{\mathcal{H}} \right)$$

844
845
$$= \sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \langle \phi_r^{\mathbf{A}}, s_m \rangle_{\mathcal{H}}^2$$

846
847
848
849
850
851
852
853
854
855

856 A similar calculation proves that $\int_{\Omega} \|P_{\mathcal{H}_{\text{res}}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{\mathcal{H}}^2 d\mathbb{P} = \sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{B}}} \lambda_r^{\mathbf{B}} \langle \phi_r^{\mathbf{B}}, s_m \rangle_{\mathcal{H}}^2$. Hence
857 using Markov’s (or Chebyshev’s first) inequality Stein and Shakarchi (2005), we have for any $\varepsilon > 0$
858

859
860
$$\Pr(\|P_{\mathcal{H}_{\text{res}}} v^{\mathbf{A}}\|_{\mathcal{H}}^2 \geq \varepsilon^2) \leq \varepsilon^{-2} \sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \langle \phi_r^{\mathbf{A}}, s_m \rangle_{\mathcal{H}}^2 \quad (6)$$

861
862
863

and for Class **B**

864
865
866
867
868

$$\Pr(\|P_{\mathcal{H}_{\text{res}}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{\mathcal{H}}^2 \geq \varepsilon^2) \leq \varepsilon^{-2} \sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{B}}} \lambda_r^{\mathbf{B}} \langle \phi_r^{\mathbf{B}}, s_m \rangle_{\mathcal{H}}^2 \quad (7)$$

869 The two inequalities (6) and (7) imply that an upper bound for the probability that a random element
 870 v equal in distribution to $v^{\mathbf{A}}$ lies inside a ball centered at the origin with probability proportional to
 871 $\int_{\Omega} \|P_{\mathcal{H}_{\text{res}}} v^{\mathbf{A}}\|_{\mathcal{H}}^2 d\mathbb{P}$ and that v equal in distribution to $v^{\mathbf{B}}$ lies inside a ball centered at $P_{\mathcal{H}_{\text{res}}} \mathbb{E}(v^{\mathbf{B}})$
 872 with probability proportional to $\int_{\Omega} \|P_{\mathcal{H}_{\text{res}}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{\mathcal{H}}^2 d\mathbb{P} = \int_{\Omega} \|P_{\mathcal{H}_{\text{res}}} v^{\mathbf{B}} - \mathbb{E}(P_{\mathcal{H}_{\text{res}}} v^{\mathbf{B}})\|_{\mathcal{H}}^2 d\mathbb{P}$
 873

876 B.2 MULTILEVEL SUBSPACES (MLS)
877

878 The approach used in the MLS regime within FINDER endeavors to produce a subspace \mathcal{H}_{res} for
 879 which the quantity $\sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \langle \phi_r^{\mathbf{A}}, s_m \rangle_{\mathcal{H}}^2$ is small. For then, when the sampled features $v_i^{\mathbf{A}}$ are
 880 updated as $v_i^{\mathbf{A}} \rightarrow P_{\mathcal{H}_{\text{res}}} v_i^{\mathbf{A}}$, they will concentrate about the origin with high probability. An SVM
 881 (with an RBF kernel, if desired) is suitable to binary classification problems where the data is assumed
 882 to possess some sort of geometric separation; this method can reliably classify \mathbf{A} from \mathbf{B} .
 883

884 In fact, a sequence of nested subspaces $\{\mathbb{V}_{\ell}\}_{\ell=0}^L$ ($L \in \mathbb{N} \cup \{\mathfrak{N}_0\}$) is created to this end. To say that
 885 the sequence of subspaces is nested means that $\mathbb{V}_{\ell} \subseteq \mathbb{V}_{\ell+1}$ ($\ell \in \mathbb{N}$), and $\overline{\bigcup_{\ell=0}^L \mathbb{V}_{\ell}} = \mathcal{H}$. Of course,
 886 in computation L will be finite. Define \mathbb{W}_{ℓ} to be the orthogonal complement of $\mathbb{V}_{\ell-1}$ in \mathbb{V}_{ℓ} , which
 887 makes it so that $\mathcal{H} = \overline{\bigcup_{\ell=0}^L \mathbb{V}_{\ell}} = \mathbb{V}_0 \oplus \overline{\bigoplus_{\ell=1}^L \mathbb{W}_{\ell}}$.
 888

889 We introduce an integer $M_{\mathbf{A}}$ between 1 and $R_{\mathbf{A}}$, thinking of it as a “truncation parameter” for $v^{\mathbf{A}}$.
 890 Let $\mathcal{H}_{\mathbf{A}} := \text{Span} \{ \phi_r^{\mathbf{A}} \}_{r=1}^{M_{\mathbf{A}}}$. The MLS approach within FINDER sets $\mathbb{V}_0 = \mathcal{H}_{\mathbf{A}}$. The subspaces \mathbb{V}_{ℓ}
 891 are chosen such that each \mathbb{W}_{ℓ} are finite dimensional ($\mathbb{W}_{\ell} = \text{Span} \{ \phi_k^{\ell} \}_{k=1}^{M_{\ell}}, \phi_k^{\ell} \in \mathcal{H}$). The ϕ_k^{ℓ} are
 892 constructed to satisfy the orthonormality condition: $\langle \phi_{k_1}^{\ell_1}, \phi_{k_2}^{\ell_2} \rangle_{\mathcal{H}} = \delta[k_1 - k_2] \delta[\ell_1 - \ell_2]$. For any
 893 choice of ℓ , \mathbb{V}_{ℓ} satisfies the inequality
 894

$$\Pr(\|P_{\mathbb{V}_{\ell}} v^{\mathbf{A}}\|_{\mathcal{H}}^2 \geq \varepsilon^2) \leq \varepsilon^{-2} \sum_{r > M_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \quad (8)$$

900
 901 The MLS approach is tractable when $\mathcal{H} = L^2(U)$ for some $U \subseteq \mathbb{R}^D$. In this context, the ϕ_k^{ℓ} are
 902 chosen to be characteristic functions whose support is constructed by a kd-tree division of U (where
 903 $k = D$). In computation, the ϕ_k^{ℓ} are chosen to be vectors in \mathbb{R}^F with relatively few nonzero entries,
 904 which lends well to efficient memory usage. Explicit construction of the ϕ_k^{ℓ} , the choice of M_{ℓ} and L
 905 are an adaption of a construction detailed in Tausch and White (2003).
 906

907 B.3 ANOMALOUS CLASS ADAPTED SPACES
908

909 The Anomalous Class Adapted (ACA) approach differs from the MLS approach in that the latter
 910 does not consider the specific eigen-structure of $\mathcal{C}_{v^{\mathbf{B}}}$, only that it is assumed to be distinct from the
 911 eigen-structure of $\mathcal{C}_{v^{\mathbf{A}}}$. Our choice of constructing such a finite-dimensional subspace \mathcal{H}_{res} endeavors
 912 to make both the RHS of (6) and (7) “small” such that $P_{\mathcal{H}_{\text{res}}} v^{\mathbf{A}}$ and $P_{\mathcal{H}_{\text{res}}} v^{\mathbf{B}}$ lie in separate parts of \mathcal{H}
 913 with high probability.
 914

915 B.3.1 ACA -S
916

917 Like the MLS approach, we consider \mathcal{H}_{res} to be a subspace of $\mathcal{H}_{\mathbf{A}}^{\perp}$. Then the first $M_{\mathbf{A}}$ terms in (6)
 918 vanish such that

918
919
920
921
922

$$\Pr(\|P_{\mathcal{H}_{\text{res}}} v^{\mathbf{A}}\|_{\mathcal{H}}^2 \geq \varepsilon^2) \leq \varepsilon^{-2} \sum_{m=1}^{M_{\text{res}}} \sum_{r=M_{\mathbf{A}}+1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \langle \phi_r^{\mathbf{A}}, s_m \rangle_{\mathcal{H}}^2 \leq \varepsilon^{-2} \sum_{r=M_{\mathbf{A}}+1}^{R_{\mathbf{A}}} \lambda_r^{\mathbf{A}} \quad (9)$$

923
924
925
926

To minimize the RHS of (7), subject to $\mathcal{H}_{\text{res}} \leq \mathcal{H}_{\mathbf{A}}^{\perp}$, let $\{\psi_i\}_{i \in I}$ be an orthonormal basis for $\mathcal{H}_{\mathbf{A}}^{\perp}$, let $V_{M_{\mathbf{A}}} : \ell^2(I) \rightarrow \mathcal{H}_{\mathbf{A}}^{\perp}$ be the isometry $V_{M_{\mathbf{A}}} f = \sum_{i \in I} f(i) \psi_i$, whence

927
928
929
930
931

$$\min_{s_m} \sum_{m=1}^{M_{\text{res}}} \sum_{r=1}^{R_{\mathbf{B}}} \lambda_r^{\mathbf{B}} \langle \phi_r^{\mathbf{B}}, s_m \rangle_{\mathcal{H}}^2 = \min_{s_m} \sum_{m=1}^{M_{\text{res}}} \langle s_m, \mathcal{C}_{v^{\mathbf{B}}} s_m \rangle_{\mathcal{H}} = \min_{t_m} \sum_{m=1}^{M_{\text{res}}} \langle t_m, V_{M_{\mathbf{A}}}^* \mathcal{C}_{v^{\mathbf{B}}} V_{M_{\mathbf{A}}} t_m \rangle_{\mathcal{H}}. \quad (10)$$

932
933

where $t_m = V_{M_{\mathbf{A}}}^* s_m$. It follows that the minimum occurs when t_m are the eigenvectors corresponding to the smallest M_{res} eigenvalues of $V_{M_{\mathbf{A}}}^* \mathcal{C}_{v^{\mathbf{B}}} V_{M_{\mathbf{A}}}$. Then we set $s_m = V_{M_{\mathbf{A}}} t_m$.

934
935
936
937
938
939

Remark: If $\mathcal{H} = \mathbb{R}^F$, then let $\{\phi_r^{\mathbf{A}}\}_{r=1}^F$ denote orthonormalized eigenvectors of the matrix $\mathcal{C}_{v^{\mathbf{A}}}$. Then $V_{M_{\mathbf{A}}} = [\phi_{M_{\mathbf{A}}+1}^{\mathbf{A}} \dots \phi_F^{\mathbf{A}}]$, and we set the vectors $\{t_m\}_{m=1}^{M_{\text{res}}}$ as the unit eigenvectors corresponding to the M_{res} smallest eigenvalues of the matrix $V_{M_{\mathbf{A}}}^* \mathcal{C}_{v^{\mathbf{B}}} V_{M_{\mathbf{A}}}$. Note that $t_m \in \mathbb{R}^{F-M_{\mathbf{A}}}$. Then we set $s_m = V_{M_{\mathbf{A}}} t_m$ and $\mathcal{H}_{\text{res}} = \text{Span} \{s_m\}_{m=1}^{M_{\text{res}}}$. This choice of \mathcal{H}_{res} constitutes the ACA-S method of FINDER.

940
941
942
943
944
945
946
947

Lemma B.1 offers a simple generalization of a property of random vectors: namely if $v \in L^2(\Omega, \mathbb{R}^F)$ is a random vector and $K \in \mathbb{R}^{q \times F}$ is an arbitrary matrix then the covariance matrix of Kv is simply $K \mathcal{C}_v K^{\top}$. From Lemma (B.1), it follows that upon projection onto \mathcal{H}_{res} , the covariance operators update as $\mathcal{C}_{v^{\mathbf{C}}} \rightarrow P_{\mathcal{H}_{\text{res}}} \mathcal{C}_{v^{\mathbf{C}}} P_{\mathcal{H}_{\text{res}}}^*$. In computation, the operator $Q_{\text{res}} := \sum_{m=1}^{M_{\text{res}}} \mathbf{e}_m \otimes s_m$ is used in place of $P_{\mathcal{H}_{\text{res}}}$, where \mathbf{e}_m is the m th standard basis vector of $\mathbb{R}^{M_{\text{res}}}$

948
949

B.3.2 ACA-L

950
951
952
953
954
955
956
957
958
959
960

The tendency of the projected v_i to concentrate in different regions of \mathcal{H} makes an SVM with RBF kernel a particularly attractive choice of machine, though we test a linear kernel as well. However, if the within-class spread of the two classes is large, relative to the distance between the class means, then the above projection Q_{res} may fail to reliably separate the two classes. If it is the case that the two class means are particularly close, it may be more desirable to choose a subspace \mathcal{H}_{res} with the property that $Q_{\text{res}} v^{\mathbf{A}}$ concentrates about the origin with low spread and $Q_{\text{res}} v^{\mathbf{B}}$ also concentrates about the origin but with large spread, as in Figure 1. Since concentration bound (9) holds as long as $\mathcal{H}_{\text{res}} \leq \mathcal{H}_{\mathbf{A}}^{\perp}$, one can instead set the t_m to be the eigenvectors of $V_{M_{\mathbf{A}}}^* \mathcal{C}_{v^{\mathbf{B}}} V_{M_{\mathbf{A}}}$ corresponding to the *largest* eigenvalues of this operator, thereby *maximizing* $\|P_{\mathcal{S}}(v^{\mathbf{B}} - \mathbb{E}(v^{\mathbf{B}}))\|_{L^2(\Omega, \mathcal{H})}^2$ over all possible subspaces of dimension M_{res} . This choice of \mathcal{H}_{res} constitutes the ACA-L method of FINDER. Furthermore, we employ several, equally spaced values of M_{res} in experimentation.

961
962

B.4 COMPLEXITY ANALYSIS FOR FEATURE CONSTRUCTION

963
964
965
966
967
968
969
970

Suppose that class $\mathbf{A} \in \mathbb{R}^{F \times N_{\mathbf{A}}}$ consists of F features and $N_{\mathbf{A}}$ samples. Similarly $\mathbf{B} \in \mathbb{R}^{F \times N_{\mathbf{B}}}$ with F features and $N_{\mathbf{B}}$ samples. Suppose we have $M_{\mathbf{A}}$ principal components truncation parameters of Class \mathbf{A} . There are three basic modules for computing the training data: (i) KL module that computes the covariance matrix. (ii) Construction module that constructs the basis for the residual subspace. This module varies according to the type of residual subspace of the basis that is constructed. (iii) Feature module that computes the projection on the residual subspace and thus the novel features.

971

Direct calculations estimate the nominal computational complexity of each FINDER variant as:

Direct residual subspace: (i) KL and Construction modules: If $N_{\mathbf{A}} < F$ then $\mathcal{O}(N_{\mathbf{A}}^2 M_{\mathbf{A}}) + \mathcal{O}(F N_{\mathbf{A}}^2 M_{\mathbf{A}})$ else $\mathcal{O}(F^2 M_{\mathbf{A}})$. (ii) Feature module: $\mathcal{O}(F N_{\mathbf{B}} M_{\mathbf{A}})$

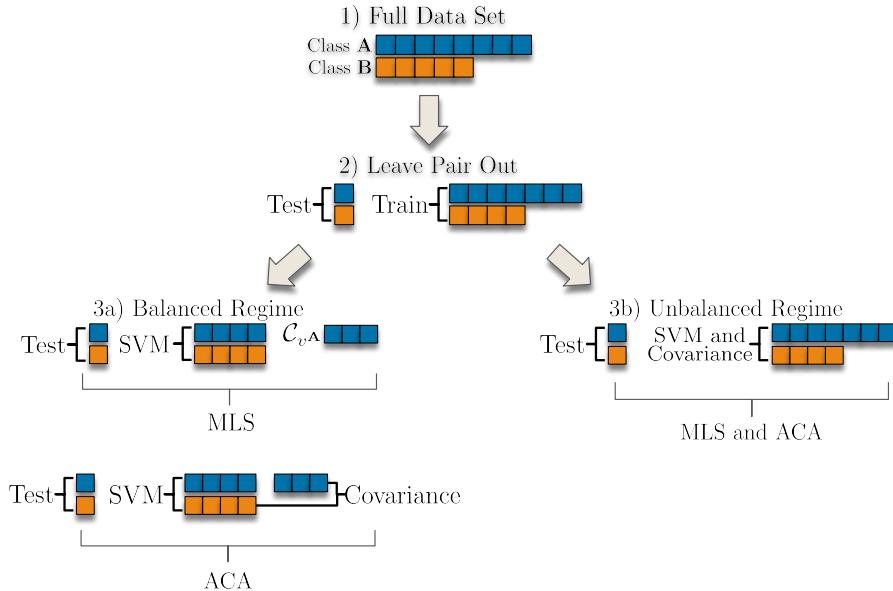
972 **MLS:** (i) KL module: If $N_A < F$ then $\mathcal{O}(N_A^2 M_A) + \mathcal{O}(F N_A^2 M_A)$ else $\mathcal{O}(F^2 M_A)$.
 973 (ii) Construction module: $\approx \mathcal{O}(F \log F)$ (iii) Feature module: $\approx \mathcal{O}((N_A + N_B)F \log F)$)
 974

975 **ACA:** (i) KL & Construction modules: $\mathcal{O}(F \log F)$. (ii) Feature module: $\mathcal{O}((F - M_A)F(N_A + N_B))$.
 976

978 C TESTING

980 C.1 ESTIMATES

982 For LPOCV, the datasets $\{v_i^A\}_{i=1}^{N_A}$, $\{v_i^B\}_{i=1}^{N_B}$ are both divided into training sets $\mathcal{T}_A^{\text{Train}}$, $\mathcal{T}_B^{\text{Train}}$ and
 983 testing sets $\mathcal{T}_A^{\text{Test}}$, $\mathcal{T}_B^{\text{Test}}$. Further, the set $\mathcal{T}_A^{\text{Train}}$ is further divided into two, not necessarily disjoint,
 984 subsets $\mathcal{T}_A^{\text{Cov}}$ and $\mathcal{T}_A^{\text{SVM}}$, used to estimate \mathcal{C}_{v^A} and the separating hypersurface respectively. We
 985 consider the performance of FINDER for balanced and unbalanced training sub-cohorts for the
 986 SVM estimation. In the Balanced regimes, $\mathcal{T}_A^{\text{SVM}}$ contains the first $N_B - 1$ samples of $\mathcal{T}_A^{\text{Train}}$
 987 and $\mathcal{T}_A^{\text{Cov}}$ contains the remaining $N_A - N_B - 1$ samples of $\mathcal{T}_A^{\text{Train}}$. In the Unbalanced regimes,
 988 $\mathcal{T}_A^{\text{SVM}} = \mathcal{T}_A^{\text{Cov}} = \mathcal{T}_A^{\text{Train}}$. Figure 4 illustrates the procedure for partitioning the data into training
 989 and testing subsets.



1010 Figure 4: The division of the dataset \mathcal{D} into training (which includes SVM separating hypersurface
 1011 and covariance operator estimation) and validation (testing) subsets for one round of LPOCV.
 1012

1013 In either regime, the aggregated dataset $\mathcal{T}_A^{\text{SVM}} \cup \mathcal{T}_B^{\text{Train}}$ is used to estimate the SVM.
 1014

1015 We assume that all observations have had the empirical Class A expectation (computed as
 1016 $\frac{1}{|\mathcal{T}_A^{\text{Cov}}|} \sum_{v_i^A \in \mathcal{T}_A^{\text{Cov}}} v_i^A$) subtracted.
 1017

1018 For both FINDER methods, the covariance operator of v^A is estimated by

$$1021 \quad \widehat{\mathcal{C}}_{v^A} := \frac{1}{|\mathcal{T}_A^{\text{Cov}}| - 1} \sum_{v_i^A \in \mathcal{T}_A^{\text{Cov}}} v_i^A \otimes v_i^A$$

1025 The eigen-pair estimates $\{\widehat{\lambda}_i^A, \widehat{\phi}_i^A\}_{i=1}^{|\mathcal{T}_A^{\text{Cov}}|}$ are computed as the eigen-pairs of $\widehat{\mathcal{C}}_{v^A}$.

1026 For ACA only, $\hat{\mathcal{C}}_{v^B}$ is calculated as
 1027

1028
$$\hat{\mathcal{C}}_{v^B} = \frac{1}{|\mathcal{T}_B^{\text{Train}}| - 1} \sum_{v_i^B \in \mathcal{T}_B^{\text{Train}}} (v_i^B - \bar{v}_i^B) \otimes (v_i^B - \bar{v}_i^B)$$

 1029
 1030

1031 where $\bar{v}_i^B = \frac{1}{|\mathcal{T}_B^{\text{Train}}|} \sum_{v_i^B \in \mathcal{T}_B^{\text{Train}}} v_i^B$. Note that unlike $\mathcal{T}_A^{\text{Train}}$, the entirety of $\mathcal{T}_B^{\text{Train}}$ in both the
 1032
 1033

1034 Balanced and Unbalanced regimes within ACA, is used to compute $\hat{\mathcal{C}}_{v^B}$ and the SVM.
 1035

1036 For the chosen value of truncation parameter $M_A < |\mathcal{T}_A^{\text{Cov}}|$, the isometry V_{M_A} as described in
 1037 section B.1 is estimated by the operator satisfying

1038
$$\hat{V}_{M_A} f := \sum_{i \in I} f(i) \hat{\psi}_i$$

 1039
 1040

1041 where $\{\hat{\psi}_i\}_{i \in I}$ is an orthonormal basis for $\left(\text{Span}\{\hat{\phi}_i^A\}_{i=1}^{M_A}\right)^\perp$ created by adapting the algorithm
 1042 detailed in Tausch and White (2003) as in MLS, or by a full SVD if F is small enough that a full
 1043 SVD is faster.
 1044

1045 The eigenvectors $\{\hat{t}_m\}_{m=1}^{M_{\text{res}}}$ corresponding to the smallest (largest if ACA-L) M_{res} eigenvalues of the
 1046 operator $\hat{V}_{M_A}^* \hat{\mathcal{C}}_{v^B} \hat{V}_{M_A}$ are computed. Finally, the training data is updated as
 1047

1048
$$v_i^A \rightarrow \sum_{m=1}^{M_{\text{res}}} \langle v_i^A, \hat{V}_{M_A} \hat{t}_m \rangle_{\mathcal{H}} \mathbf{e}_m, \quad v_i^B \rightarrow \sum_{m=1}^{M_{\text{res}}} \langle v_i^B, \hat{V}_{M_A} \hat{t}_m \rangle_{\mathcal{H}} \mathbf{e}_m$$

 1049
 1050

1051 With $\{\mathbf{e}_m\}_{m=1}^{M_{\text{res}}}$ the standard basis of $\mathbb{R}^{M_{\text{res}}}$.
 1052

1053 **Remark C.1.** *The leave-one-out cross validation approach is applied to both classes. If we have two
 1054 classes \mathbf{A} and \mathbf{B} with number of samples N_A and N_B , one sample is removed from each class as
 1055 validation and the rest as training. All possible combinations are removed for each class. This leads
 1056 to a total of $N_A N_B$ training-validation tests.*
 1057

1058 D EXPERIMENTAL DETAILS

1059 We conduct a set of experiments spanning various kinds of inherently noisy datasets, sourcing data
 1060 from bio-medical and geo-sensing contexts. For each setting, we pick datasets with high and low
 1061 noise contents respectively, so we can compare performances of conventional vs our methods and
 1062 how they each scale with an increase in noise. We give a brief description of each dataset below:
 1063

1064 D.1 AD USING BLOOD PROTEINS

1065 To assess the performance of the FINDER framework, we employed proteomic data from the
 1066 Alzheimer’s Disease Neuroimaging Initiative (ADNI), a longitudinal, multi-center observational
 1067 study initiated in 2003 to facilitate the discovery and validation of biomarkers for Alzheimer’s
 1068 disease progression. The ADNI dataset comprises multiple study phases—namely ADNI1, ADNIGO,
 1069 ADNI2, ADNI3, and ADNI4—with clinical and molecular data collected across time points Petersen
 1070 et al. (2010).
 1071

1072 Our analysis focused on the ADNI1 cohort, consisting of 209 subjects clinically diagnosed with
 1073 Alzheimer’s disease (AD), 742 with Late Mild Cognitive Impairment (LMCI), and 112 cognitively
 1074 normal (CN) controls. Peripheral blood samples were collected at baseline (BL) and at the 12-
 1075 month follow-up (M12). The experimental evaluation in this section is carried out using the plasma
 1076 proteomics subset M12, comprising quantitative measurements for 146 protein biomarkers. This
 1077 final cohort distribution includes 54 CN, 96 AD, and 346 LMCI participants. Note that the LMCI
 1078 participants are actually a combination of LMCI and MCI.
 1079

AUC					
Regime	SVM Linear	SVM w/ RBF	Logit Boost	BAG	RUS Boost
AD vs. CN	0.754	0.561	0.798	0.743	0.763
Time (ms)	127.66	102.79	1173.42	1335.89	599.03
AD vs. LMCI	0.768	0.590	0.790	0.781	0.768
Time (ms)	356.61	246.40	2302.33	2092.64	897.66
CN vs. LMCI	0.910	0.637	0.814	0.778	0.776
Time (ms)	246.69	179.36	2075.48	1339.35	796.28
Accuracy					
Regime	SVM Linear	SVM w/ RBF	Logit Boost	BAG	RUS Boost
AD vs. CN	0.644	0.486	0.684	0.684	0.657
Time (ms)	127.66	102.79	1173.42	1335.89	599.03
AD vs. LMCI	0.570	0.497	0.667	0.735	0.581
Time (ms)	356.61	246.40	2302.33	2092.64	897.66
CN vs. LMCI	0.717	0.497	0.586	0.721	0.513
Time (ms)	246.69	179.36	2075.48	1339.35	796.28

Table 3: Benchmark machine performance for ADNI blood protein data (raw data features), along with elapsed time to complete one round of LPOCV. Maximum AUC and accuracy and minimum run time are emboldened in each row.

Balanced							
Regime	MLS	MLS	ACA-S	ACA-S	ACA-L	ACA-L	Best
SVM	Linear	RBF	Linear	RBF	Linear	RBF	Benchmark
AD vs. CN	0.722	0.819	0.752	0.783	0.710	0.783	0.684
Time (ms)	116.1	130.9	68.8	86.7	74.0	78.4	1173.42
AD vs. LMCI	0.561	0.736	0.788	0.767	0.525	0.775	0.735
Time (ms)	212.1	287.0	81.8	109.4	84.9	100.1	2092.64
CN vs. LMCI	0.783	0.786	0.918	0.907	0.748	0.835	0.721
Time (ms)	164.7	231.3	74.8	92.5	79.7	89.1	1339.35
Unbalanced							
Regime	MLS	MLS	ACA-S	ACA-S	ACA-L	ACA-L	Best
SVM	Linear	RBF	Linear	RBF	Linear	RBF	Benchmark
AD vs. CN	0.788	0.857	0.796	0.855	0.790	0.857	0.684
Time (ms)	112.1	129.5	76.2	93.0	77.0	85.6	1173.42
AD vs. LMCI	0.559	0.735	0.784	0.778	0.558	0.734	0.735
Time (ms)	215.2	291.1	115.3	179.1	121.8	178.1	2092.64
CN vs. LMCI	0.761	0.791	0.897	0.841	0.715	0.790	0.721
Time (ms)	164.9	239.9	91.4	135.9	94.6	146.2	1339.35

Table 4: Maximum accuracy Achieved ADNI data sets along with elapsed time to complete one round of LPOCV. We observe that the benchmark accuracy is ameliorated across the three cohorts within the ACA-S regime (although the MLS w/ RBF regime offers the optimum accuracy in the AD vs. CN cohort, regardless of balancing). Additionally, each of the FINDER regimes offer a significant reduction in run time compared to benchmark.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

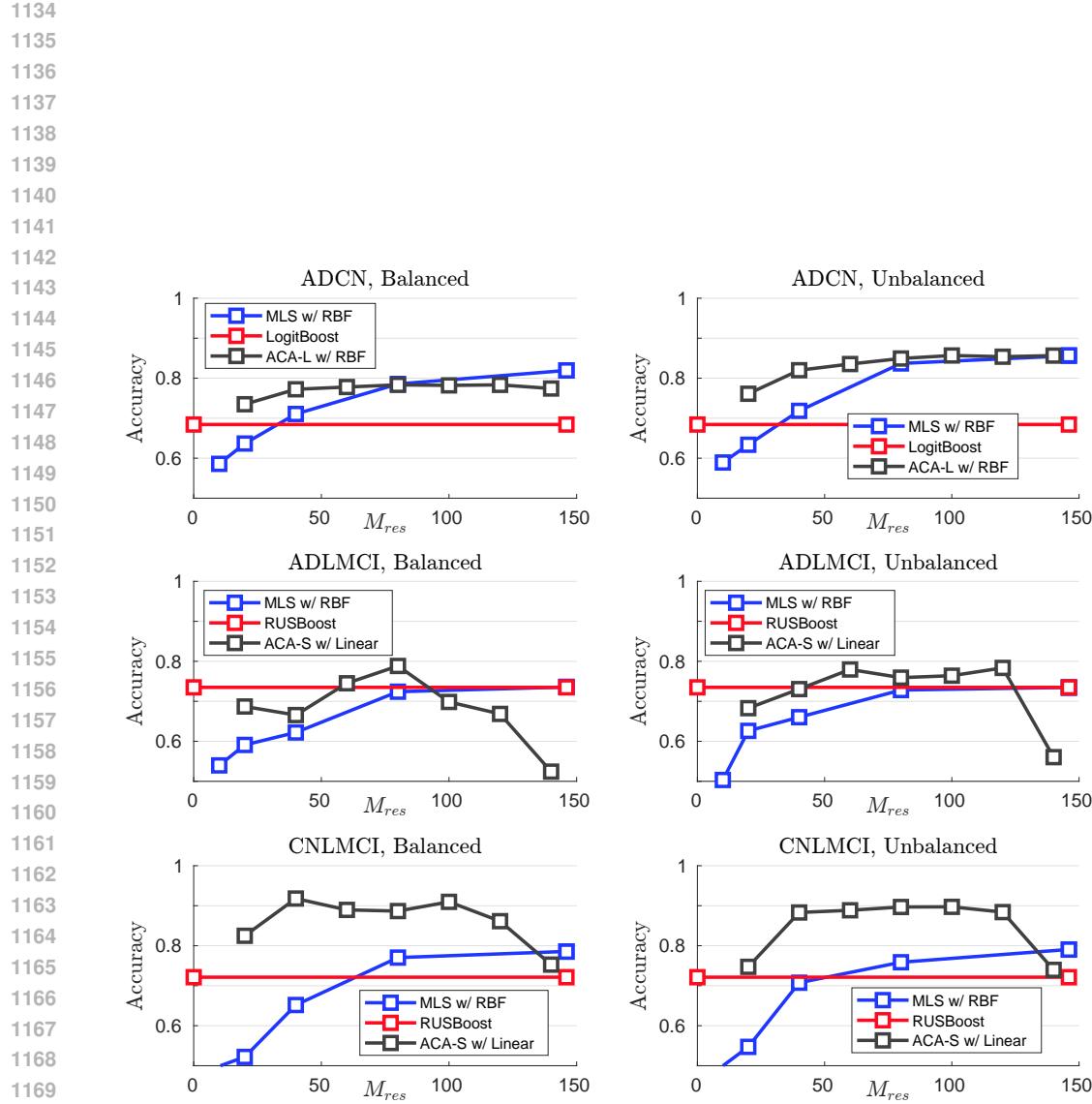


Figure 5: Accuracy obtained across all three methods for each of the three ADNI cohorts. Within each method (benchmark, MLS, ACA), we display the regime which obtains the maximum accuracy among the values of M_{res} tested. We observe that the ACA-S regime either outperforms or matches both the MLS method and the benchmark learners across all three cohorts. However, the performance of the ACA-S regime can be sensitive to the choice of M_{res} , as exemplified in the AD vs. LMCI and CN vs. LMCI cohorts. Values of M_{res} which are too high or too low can prevent the ACA-S regime from achieving maximum accuracy, and can even reduce the accuracy below benchmark level, as exhibited by the AD vs. LMCI cohort. The data demonstrate a significant improvement on the benchmark performance, prompting an ad-hoc analysis of the ratio of the FINDER and benchmark error rates as tabulated in Figure 6.

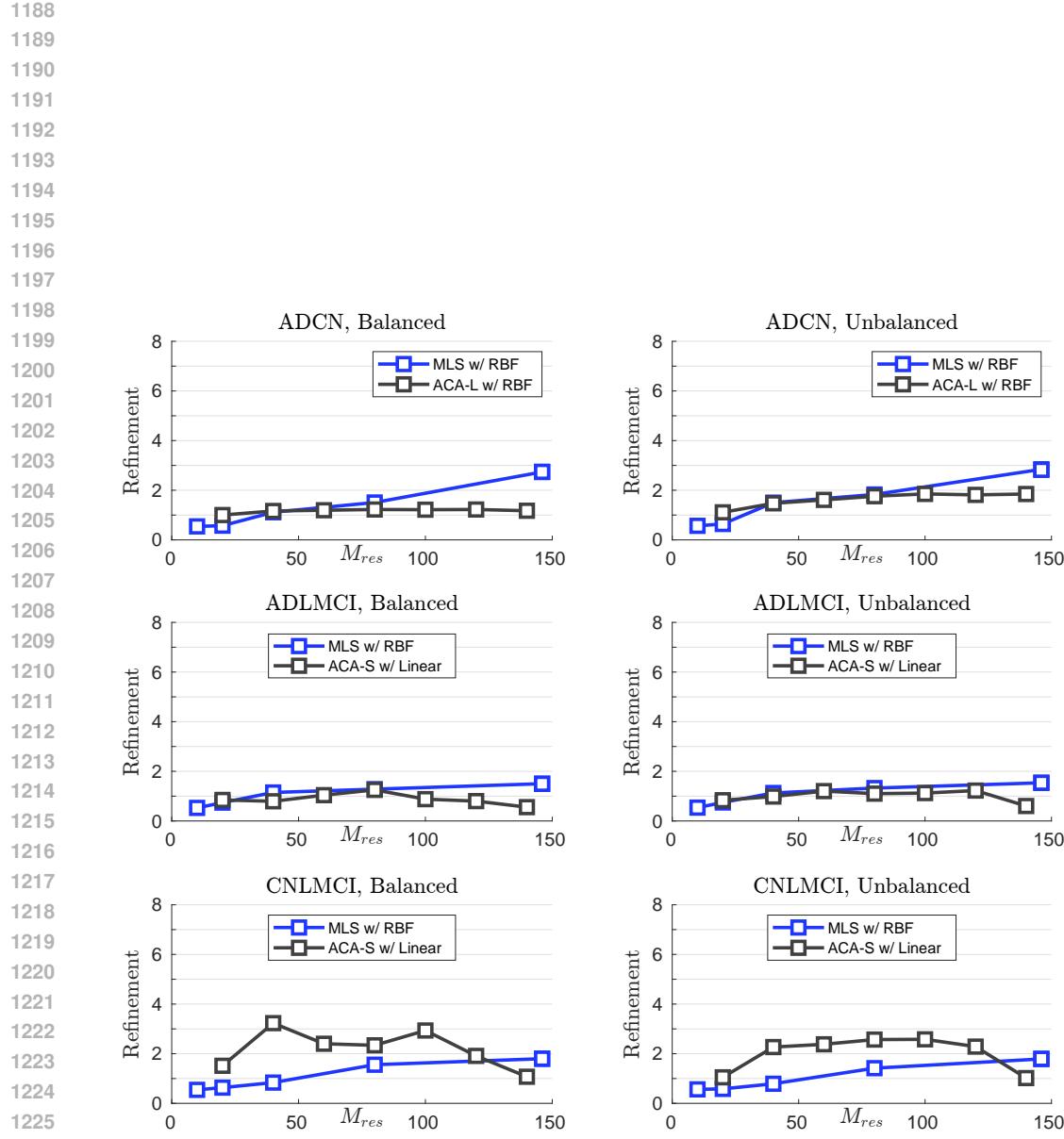
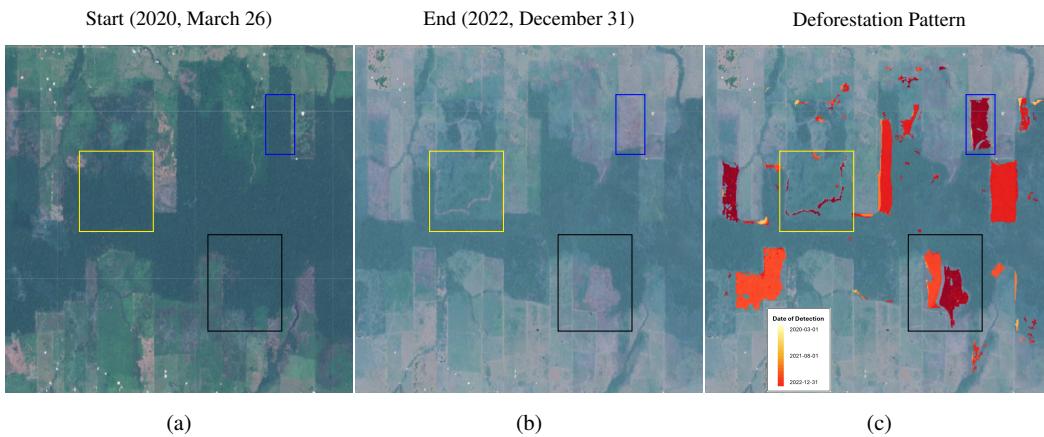


Figure 6: ADNI accuracy refinement with respect to best performing baseline, computed as $\frac{1 - \text{accuracy}_{\text{FINDER}}}{1 - \text{accuracy}_{\text{Benchmark}}}$. In both the Balanced and Unbalanced regimes, both the ACA and MLS methods offer a two fold (or near two fold) reduction in error across all three ADNI cohorts. In particular, the MLS method obtains an almost three fold error reduction in the AD vs. CN cohort, and the ACA method obtains an almost four fold error reduction in the CN vs. LMCI cohort.

1242 D.2 REMOTE SENSING (DEFORESTATION DETECTION)
1243

1244 The radar and optical data are provided by the Copernicus Sentinel data [2018-2022]'. From the
1245 optical Sentinel-2 the EVI data observations are split between training and validation. The training
1246 data consists of 71 optical Sentinel-2 EVI measurements between December 17, 2018 and March
1247 21, 2020. Sentinel-2 covers the Earth every 5 days. However, some days contain heavy clouds and
1248 are thus removed from the dataset. The validation dataset consists of 161 days between March 26,
1249 2020 to December 31, 2022. The SAR Sentinel-1 data consist of 234 samples between January 4th
1250 and December 28, 2022. In Figure 7, the detection capabilities of the FINDER approach with
1251 both optical and radar data are shown. This corresponds to a small region from the full testing region.
1252 Notice the regions where the forest is removed are detected with high accuracy. In particular, the
1253 road created by removing the trees in the yellow box is detected.
1254



1268 Figure 7: Multi-sensor hybrid optical and SAR tracking of deforestation during a cloudy period.
1269 In these images we examine the deforestation pattern from March 26, 2020 to December 31, 2022
1270 using the HMM model. (a) Due to the cloudy period, a composite image for the start is shown.
1271 (b) By the end date notice that many regions of the forest have been removed. (c) The color map
1272 shows the tracking of deforestation using the HMM with the optical and SAR data. There are many
1273 deforestation activities that are caught within the HMM hybrid model.
1274

1275 A natural question for the HMM + FINDER method is whether the anomaly filter is a necessary part
1276 of the pipeline. Table 5 compares the results from using the anomaly data against just using the raw
1277 optical data. Based on these values it would seem that using the raw optical data is better, however
1278 a closer inspection of the results illustrates a different picture. Figure 8 shows that while there is
1279 already good class separation in the unprocessed optical data between dry forest and dry bare ground,
1280 since water and bare ground both have low EVI values we get that wet forest and bare ground are
1281 classified together. This causes regions of false positives in marshy land, as can be seen in Figure
1282 8 in the top right. Applying the KLE allows us to better separate these classes. Note there are still
1283 some false positives in these regions when using the processed optical data due to the radar data,
1284 which is also affected by water. While these regions of false positives are relatively small in this
1285 example, using the raw optical data could cause serious problems for regions experiencing heavy
1286 rainfall/flooding or with a large portion of marshy land - the anomaly data is still the superior choice.
1287

1288 Table 5: Accuracy using optical anomaly data (HMM + FINDER) vs unprocessed optical data (HMM)
1289

1290 Algorithm (Data)	1291 Training Days	1292 Overall Acc.	1293 User Acc.	1294 Producer Acc.	1295 Computational Time (h)
HMM + FINDER (Optical)	71	0.931	0.823	0.718	13.95
HMM + FINDER (Optical + Radar)	71	0.942	0.878	0.745	49.47
HMM (Raw Optical)	NA	0.9668	0.8565	0.9105	9.82
HMM (Raw Optical + Radar)	NA	0.9614	0.8391	0.889	45.34

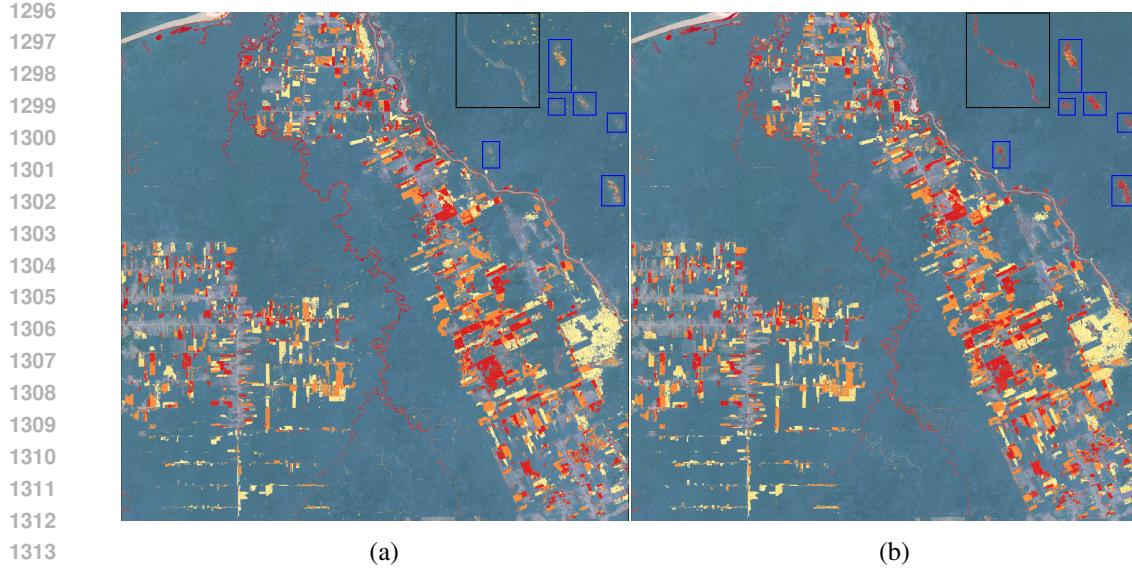


Figure 8: (a) Hybrid datemap using anomaly values. (b) Hybrid datemap using unprocessed optical data. Application of the KL expansion results in better class separation between wet forest and deforested land, which both have low EVI values in the unprocessed optical data. This can be seen in the marshy land at the top right. Almost all of the detections in the black rectangles are removed, and the detections in the blue regions are reduced.

D.3 ALZHEIMER’S DISEASE (AD) CLASSIFICATION FROM GENE EXPRESSION DATA (NEWAD)

The newAD dataset comprises the gene expression levels of 2053 enumerated genes from a cohort of 184 patients not afflicted with AD (Class A, Normal) and 145 patients afflicted with AD (Class B, AD). We put $U = \mathcal{H} = \mathcal{H}_M = \mathbb{R}^{2053}$ with $M_A = 8$. This data was provided to us from Bhattacharya (2025). It is confidential at the moment and will not be made available to the public. Both the ACA and MLS methods are capable of elevating the AUC of binary prediction relative to the highest performing benchmark learner (SVM Linear), as detailed in Table 6 at the cost of a longer running time. At the same time, the ACA and MLS approaches also elevate the accuracy of binary prediction and reduce the run time compared to RUSBoost.

Method	Score	Time (s)	Regime
AUC			
Benchmark	0.761	0.51	SVM Linear
MLS	0.786	1.57	Balanced, RBF
ACA-L	0.785	1.21	Balanced, RBF
Accuracy			
Benchmark	0.697	6.84	RUSBoost
MLS	0.715	1.52	Balanced, RBF
ACA-L	0.725	0.76	Balanced, RBF

Table 6: Maximum AUC and accuracy achieved for newAD data by benchmark learners and both FINDER methods. Both metrics are improved marginally by the usage of FINDER. The FINDER methods more than double the run time to generate a comparable AUC with respect to benchmark, but significantly reduce the run time to generate a comparable accuracy with respect to benchmark.

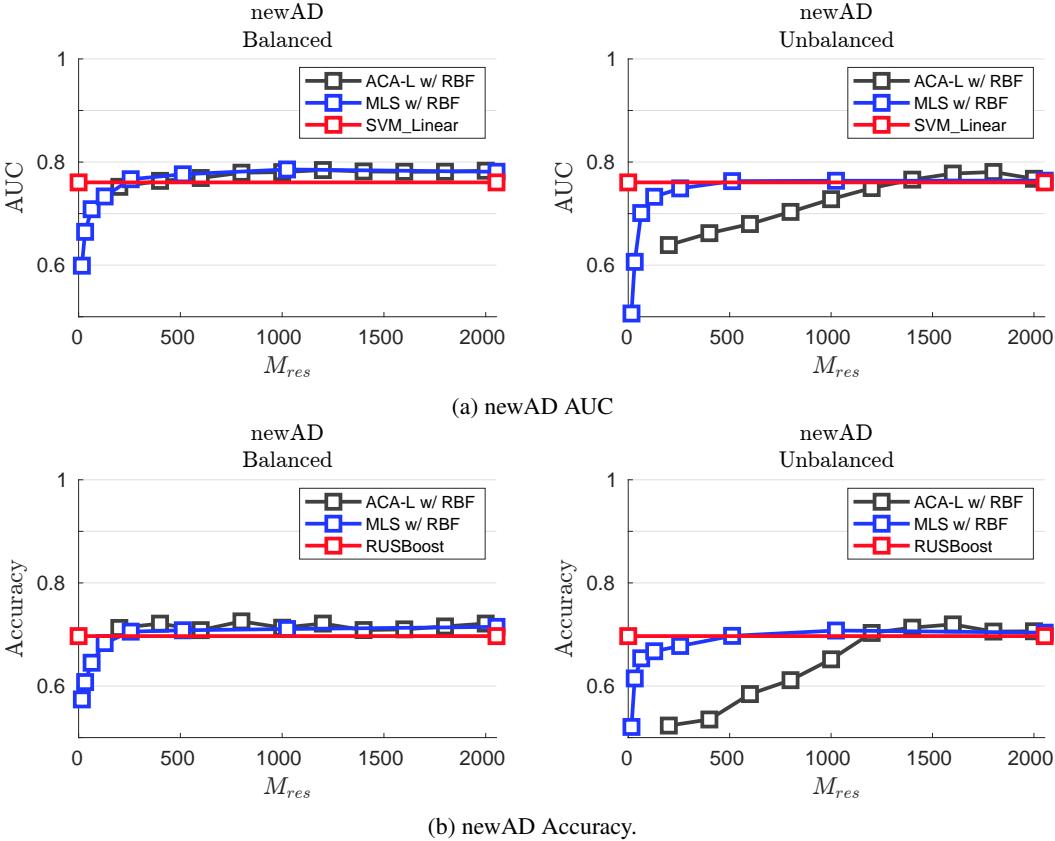


Figure 9: The MLS method appears robust to the choice of pre-balancing versus not pre-balancing the data (if M_{res} is sufficiently large). In contrast, ACA is highly sensitive to this choice, performing more consistently if the data is pre-balanced, although improvement upon the benchmark level is attained in both regimes. For both FINDER methods, this dataset tends to favor pre-balancing the data and the usage of an RBF separating boundary.

D.4 CANCER CLASSIFICATION VIA GENE EXPRESSION DATA

The problem of cancer classification using gene expression datasets such as in Tan et al. (2005) is considered essentially solved: existing state of the art methods already perform at levels expected to be near optimal. Since it is a conventional example with an established corpus of results and analysis behind it, we will use it to sketch out how FINDER loses its relative advantages when features are aplenty or data is already well-behaved.

We consider the GCM gene expression dataset introduced by Ramaswamy et al. (2001). The data used in that paper is described in Tan et al. (2005). The dataset comprises gene expression profiles for $N_A = 190$ tumor samples (Class A) and $N_B = 90$ normal tissue samples (Class B), with each sample containing expression levels for $F = 16,063$ genes. The underlying domain U is modeled as a one-dimensional interval $U := [0, F - 1]$, and gene expression signals are interpreted as discrete functions on U , represented by shifts of a Haar function χ . We thus have $\mathcal{H} = L^2(U)$, $\mathcal{H}_M = \text{Span} \{ \chi(x - k) \}_{k=0}^{16,062}$, and $\mathcal{H}_{\text{res}} = \mathcal{H}_A^\perp$. The computation will be in the space $\mathbb{R}^{16,063}$.

Incorporating the multiscale features extracted by the FINDER method yields a marginal improvement in classification accuracy, as detailed in Table 7.

Method	Score	Time (s)	Regime
AUC			
Benchmark	0.966	1.81	SVM Linear
MLS	0.966	5.49	Balanced, Linear
AC-LA	0.969	12.37	Unbalanced, Linear
Accuracy			
Benchmark	0.931	1.83	SVM Linear
MLS	0.940	5.41	Balanced, Linear
ACA-L	0.934	12.34	Unbalanced, Linear

Table 7: Maximum AUC and accuracy achieved for GCM data by benchmark learners and both FINDER methods. The GCM data exhibit an inherent geometric separation such that an SVM with linear separating boundary can reliably segregate Class A from B. As such FINDER methods are capable of achieving a similar AUC and accuracy, but only offer a marginal improvement on both metrics at the cost of a significantly longer running time.

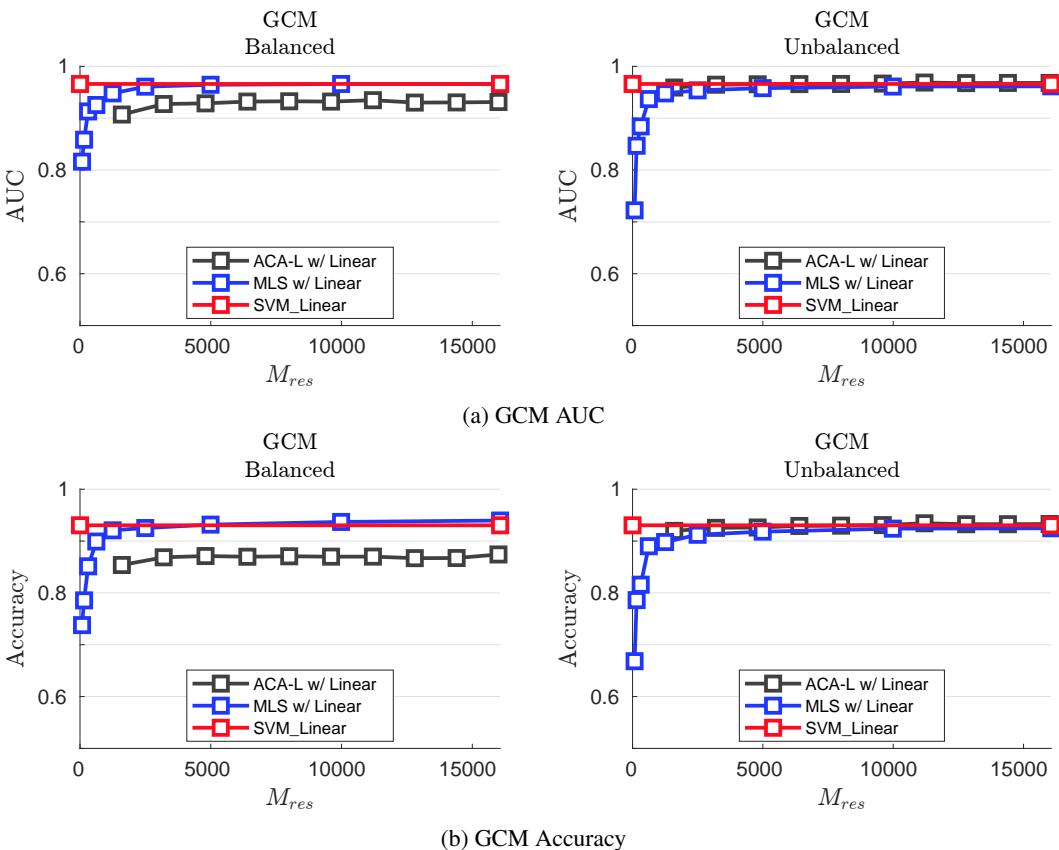


Figure 10: Best performing regimes among the three categories of learners for GCM data. The MLS method appears more robust the Balance vs. Unbalanced regimes as compared to the ACA method, in that the change in AUC and accuracy is not greatly affected by the choice to pre-balance the data or not. If the data is not pre-balanced, the ACA method performs at the benchmark level across several different residual subspace dimensions M_{res} , suggesting that this dataset is amenable to dimension reduction via the ACA-L regime.

D.5 AD CLASSIFICATION FROM CSF DATA

The third and final AD-related dataset is the SOMAscan dataset, comprising a list of 7008 proteins obtained from the cerebrospinal fluid (CSF) of 167 AD patients (Class A) and 138 CN patients (Class

1458 B). The raw data was imputed using a 5-nearest neighbors regression. We put $U = \mathcal{H} = \mathcal{H}_M =$
 1459 \mathbb{R}^{7008} with $M_A = 8$. While the two FINDER methods fail to outperform LogitBoost on this dataset
 1460 (see Table 8), they do provide an advantage vis a vis cost efficiency. Note that as expected, FINDER
 1461 does augment results achieved by the conventional SVM methods, allowing them to reach AUC and
 1462 accuracy levels that are closer to LogitBoost in less than half the time.

1463 The AUC obtained by LogitBoost exceeds 0.95. For datasets with this level of separability, any
 1464 noise typically comes from the collection and manual classification of the data itself, rather than any
 1465 inherent variability in the underlying features. As such, the separability of this particular dataset may
 1466 not be amenable to improvement by our FINDER methods. This is in contrast to datasets, such as the
 1467 ADNI data cohorts, in which the baseline AUC/accuracy is well below the desirable 0.90 level.

Method	Score	Time (s)	Regime
AUC			
Benchmark	0.957 0.922 0.899	11.75 2.122 1.927	LogitBoost SVM w/ Linear SVM w/ RBF
MLS	0.930	4.51	Balanced, RBF
ACA-S	0.935	4.46	Balanced, Linear
Accuracy			
Benchmark	0.894 0.847 0.819	11.75 2.122 1.927	LogitBoost SVM w/ Linear SVM w/ RBF
MLS	0.862	3.34	Unbalanced, RBF
ACA-S	0.878	5.16	Balanced, RBF

1482 Table 8: Maximum AUC and accuracy achieved for CSF data by benchmark learners and both
 1483 FINDER methods. The FINDER methods more than halve the run time of Logitboost at the cost of a
 1484 marginally lower AUC and accuracy. At the same time, the FINDER methods elevate the AUC and
 1485 accuracy obtained by the SVM (with linear and RBF separating hypersurface) with the caveat of a
 1486 longer run time.

1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

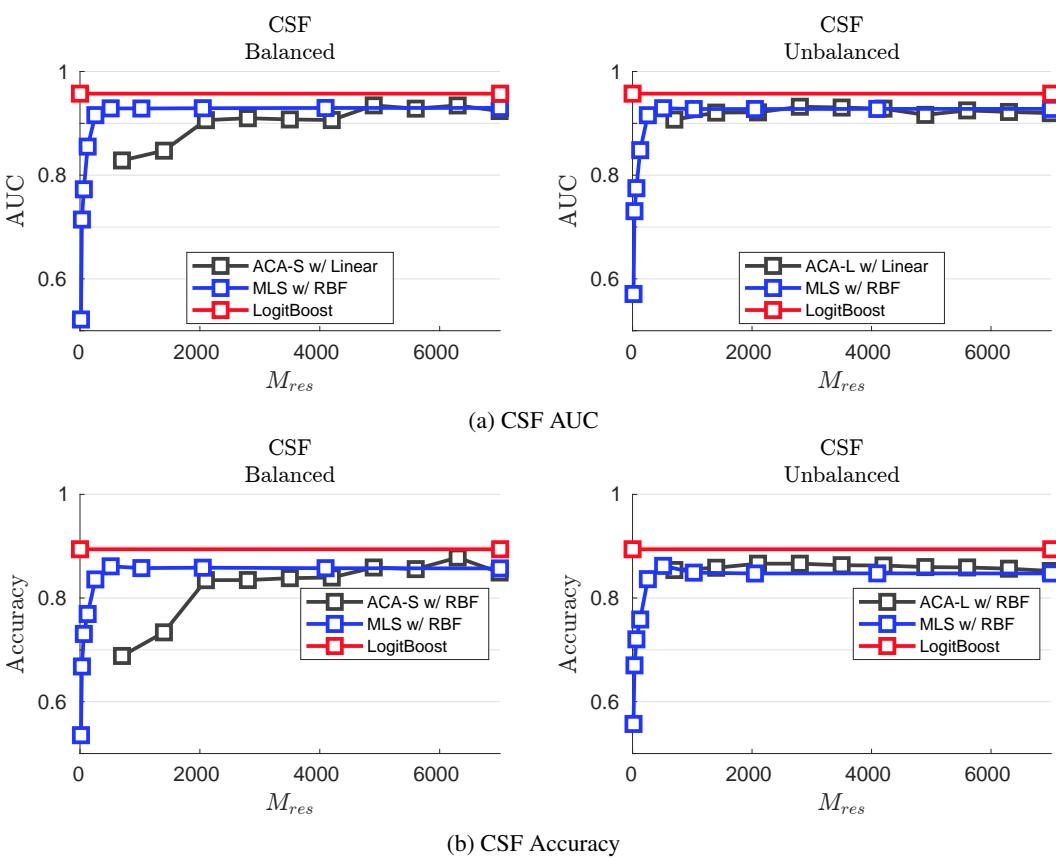


Figure 11: Both FINDER methods achieve a lower accuracy and AUC compared to the best benchmark (LogitBoost). The performance of MLS remains robust to pre-balancing versus not pre-balancing the data, while the ACA method is more sensitive to this choice. Within the Unbalanced regime, the ACA achieves a more consistent AUC and accuracy across different values of M_{res} , suggesting that this method is better suited to dimension reduction. However, the highest AUC and accuracy is achieved within the ACA-S, Balanced regime