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Figure 1: We propose PhysGame, an instruction-tuning dataset constructed from gameplay videos with
glitch-induced question-answer pairs. Our method demonstrates consistent performance improvements on
downstream benchmarks for both real-world physical understanding (Game2Real) and general video under-
standing (Game2General) tasks.

Abstract

Understanding the physical world, including object dynamics, material properties, and
causal interactions, remains a core challenge in artificial intelligence. Although recent
multi-modal large language models (MLLMs) have demonstrated impressive general rea-
soning capabilities, they still fall short of achieving human-level understanding of physical
principles. Existing datasets for physical reasoning either rely on real-world videos, which
incur high annotation costs, or on synthetic simulations, which suffer from limited realism
and diversity. In this paper, we propose a novel paradigm that leverages glitches in game-
play videos, referring to visual anomalies that violate predefined physical laws, as a rich
and scalable supervision source for physical world understanding. We introduce PhysGame,
an instruction-tuning dataset containing 140,057 glitch-centric question–answer pairs across
five physical domains and sixteen fine-grained categories. To ensure data accuracy, we de-
sign a meta-information–guided prompting strategy that utilizes gameplay metadata such as
titles and descriptions to guide high-quality QA generation. Complementing PhysGame, we
construct GameBench, an expert-annotated benchmark with 880 glitch-identified gameplay
videos designed to evaluate physical reasoning capabilities. Extensive experiments show that
PhysGame significantly enhances both Game2Real transferability, improving the real-world
physical reasoning performance of Qwen2.5-VL by 2.5% on PhysBench, and Game2General
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Question: How would you describe the glitch in the video?
Option:
A: Blocked by a tree, the car's speed instantly surged from zero to over 200 mph.
B: While the player's car is on the bridge, it casts no shadow.
C: On the left lane of the tree-lined road, there are flickering red light patches.
D: The clouds in the sky exhibit an unusual green hue.

Question: Is there any notable glitch in the video that affects the gameplay?
Answer: While navigating the course, the car door is oddly hanging open, which does 
not seem to affect its speed or performance. This could be considered a minor glitch, 
as such damage should typically impact aerodynamics or handling in a realistic 
scenario. There is no major collision effect noticeable when cars collide, suggesting 
the physics might not fully replicate real-world damage

Figure 2: Sampled examples in the proposed PhysGame instructing dataset (left) and the GameBench
evaluation benchmark (right).

transferability, yielding a 1.9% gain on the MVBench benchmark. Moreover, PhysGame-
tuned models achieve a 3.7% absolute improvement on GameBench, demonstrating enhanced
robustness in detecting physical implausibilities. These results indicate that learning from
gameplay anomalies offers a scalable and effective pathway toward advancing physical world
understanding in multimodal intelligence.

1 Introduction

“In all chaos there is a cosmos, in all disorder a secret order."
— Carl Jung, Archetypes and the Collective Unconscious

Physical world understanding McCloskey et al. (1983); Melnik et al. (2024); Duan et al. (2022) represents
a fundamental challenge in artificial intelligence, encompassing the understanding of physical properties,
object interactions, and temporal dynamics. Even before language acquisition, children begin to grasp
fundamental principles of the physical world by observing the environment around them Hespos & Spelke
(2004). While recent multi-modal large language models (MLLMs) Achiam et al. (2023); Reid et al. (2024);
Brown et al. (2020); Touvron et al. (2023) have achieved remarkable advancements across various domains,
their capabilities in physical world understanding remain substantially inferior to human-level intelligence
Wang et al. (2024c); Zheng et al. (2024); Chow et al. (2025); Zhao et al. (2025); Xiang et al. (2025).
For example, on the physical understanding benchmark PhysBench Chow et al. (2025), the state-of-the-art
MLLM GPT-4o OpenAI (2024) achieves merely 49.49% average accuracy, falling far short of the human-level
performance (95.87%).

The majority of existing physical world understanding datasets can be categorized into two types: 1) Real-
world video data Chow et al. (2025); Zhao et al. (2025); Xiang et al. (2025): While capable of capturing
complex backgrounds and heterogeneous compositional elements for physical reasoning, such data typically
requires high annotation costs involving careful curation of specific video types and time-consuming question-
answering (QA) annotation processes; 2) Simulator-generated synthetic data Yi et al. (2020); Zheng et al.
(2024); Chen et al. (2022); Bear et al. (2021): These datasets employ physical simulators (e.g., Blender
Conlan (2017) and Unity Haas (2014)) to create controllable scenarios for physical reasoning. However,
they often exhibit uniform backgrounds and simplistic visual primitives (e.g., cube, cylinder), leading to a
substantial domain gap between synthetic representations and complex real-world physical scenarios Wang
et al. (2024c). Based on the preceding analysis, we contend that neither data type is well-suited as a source
for generating large-scale instruction-tuning datasets aimed at physical world understanding.

In this paper, we propose an alternative perspective by learning from glitches in gameplay videos Chen et al.
(2021); Ling et al. (2020); Nantes et al. (2008), i.e., inconsistencies between pre-defined physical rules and
observed visual manifestations caused by rendering errors, physics engine limitations, or unexpected object
interactions. For example, Figure 1 illustrates an implausible scenario in which a motorcycle unrealistically
propels a car into the air, violating basic physical laws. Our motivation is inspired by the philosophical
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notion of Order from Chaos, which emphasizes that understanding often emerges more clearly by identifying
and characterizing deviations from expected regularities. In other words, explicitly modeling violations of
physical rules enables a sharper grasp of the principles that normally govern the physical world. To this
end, we introduce PhysGame, an instruction-tuning dataset constructed by harvesting gameplay videos
with glitches to advance physical world understanding. PhysGame contains 140,057 question–answer pairs
targeting glitch-related content across five key physical domains (i.e., mechanics, optics, material properties,
thermodynamics, and electromagnetism) and sixteen fine-grained categories (e.g., gravity and velocity). To
ensure the accuracy of the generated QA pairs, we propose a meta-information–guided prompting strategy,
which incorporates video-associated metadata (e.g., content-summarizing video titles) when prompting lead-
ing MLLMs such as GPT-4o OpenAI (2024). Furthermore, we introduce GameBench, a complementary
evaluation benchmark comprising 880 glitch-identified gameplay videos, each accompanied by expert-curated
multiple-choice questions that explicitly probe glitch characteristics. The sampled examples of PhysGame
instruction dataset and GameBench evaluation benchmark are presented in Figure 2. Compared to existing
approaches, our proposed PhysGame captures dynamic and diverse scenes that resemble real-world physical
complexity, while remaining highly scalable due to the abundance of online data and reduced annotation
cost through glitch identification. In addition, incorporating previously unseen glitches from the PhysGame
dataset during post-training further enhances generalization and remedies the deficiencies of current MLLMs
in glitch identification within gameplay videos. For example, built upon Qwen2-VL Wang et al. (2024a),
post-training with the PhysGame dataset yields an absolute improvement of 6.3% in average accuracy on
our constructed GameBench benchmark (cf . Table 3).

In terms of the aforementioned advantages, we demonstrate that PhysGame consistently enhances down-
stream benchmark performance across both physical understanding and general video understanding tasks.
Specifically, two transferability characteristics of PhysGame are highlighted: 1) Game2Real Transferabil-
ity: Despite being constructed from simulated gameplay videos, PhysGame finetuning significantly improves
real-world physical reasoning. As shown in Figure 1, Qwen2-VL Bai et al. (2025) achieves 2.5% absolute im-
provement (46.6% vs. 49.1%) on PhysBench benchmark Chow et al. (2025) after finetuning on the proposed
PhysGame dataset; 2) Game2General: Physical knowledge acquired from gameplay videos can generalize
to broader and general-purpose video understanding tasks. For example, the PhysGame-enhanced Qwen2.5-
VL Bai et al. (2025) shows 1.3% performance gain (58.0% vs. 59.3%) on Video-MME Fu et al. (2024)
benchmark. This dual transferability paradigm demonstrates that gameplay-derived training bridges both
simulation-to-reality and physical-to-general understanding, offering new pathways for scalable and effective
multi-modal intelligence development.

In summary, our contributions are in three-folds:

• We pioneer the use of gameplay videos as a novel training medium for physical world understanding,
which overcomes the simplified settings in synthetic data while avoiding the high annotation costs of
real-world video curation.

• We introduce PhysGame and GameBench, establishing a suite of scalable datasets for physics-oriented
instruction tuning and evaluation, respectively.

• Experimental results validate the Game2Real and Game2General transferabilities of the proposed Phys-
Game dataset, bridging the simulated physics data and real-world physical understanding tasks as well
as general video understanding tasks.

2 Related Work

Physical World Understanding. Recent advances in physical understanding have driven interdisciplinary
research spanning psychology Bobrow (1984); Hespos et al. (2016); McCloskey et al. (1983), language rea-
soning Bisk et al. (2020); Forbes et al. (2019), visual reasoning Lerer et al. (2016); Yi et al. (2020), video
generation Meng et al. (2024); Bansal et al. (2024), robotics Agrawal et al. (2016); Byravan et al. (2017),
etc. The primary datasets for physical understanding Battaglia et al. (2016); Chang et al. (2016) employ
symbolic representation by encoding physical knowledge through textual descriptors (e.g., object attributes
and interaction rules). However, such representations fundamentally lack the capacity to capture complex
visual information, resulting in compromised perception. The recent datasets can be categorized into two
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Table 1: (a) Comparisons of physical understanding datasets; (b) Comparisons with existing
gameplay video benchmarks in terms of whether they are video-based, whether they follow an instruction-
following format, and support multi-modal evaluations.

Dataset Photo- Scalable Instruct
realistic to Collect Tuning

PhysBench Taesiri & Bezemer (2024) ✓ ✗ ✗

MMVU et.al Taesiri et al. (2022a) ✓ ✗ ✗

CLEVER Taesiri et al. (2022b) ✗ ✓ ✗

Comphy Chen et al. (2024e) ✗ ✓ ✗

PhysGame (Ours) ✓ ✓ ✓

(a)

Dataset Video- Instruct Multi-
Based Tuning modality

GameBunny Taesiri & Bezemer (2024) ✗ ✓ ✓

Taesiri et.al Taesiri et al. (2022a) ✓ ✗ ✓

GameBugDescript Taesiri et al. (2022b) ✓ ✓ ✗

GlitchBench Taesiri et al. (2024a) ✗ ✓ ✓

PhysGame (Ours) ✓ ✓ ✓

(b)

principal types: 1) Real-world observational datasets capturing natural physical phenomena Chow et al.
(2025); Zhao et al. (2025). This kind of dataset requires labor-intensive video curation, inherently limiting
scalability in physical scenario coverage; 2) Physics-simulated datasets generated through differentiable en-
gines Yi et al. (2020); Zheng et al. (2024); Chen et al. (2022); Bear et al. (2021). While offering controllable
physical environments, they are constrained to simplified geometric primitives (e.g., rigid cuboids/spheres)
and homogeneous backgrounds, leading to significant sim-to-real discrepancy in visual perception. Build-
ing on this analysis, we propose a novel approach to facilitate physical world understanding by analyzing
physics glitches in gameplay videos. This method establishes a scalable framework with closer alignment to
real-world physical scenarios, effectively bypassing the limitations of existing datasets.

Gameplay Video Understanding. Digital games Hu et al. (2024a); Xu et al. (2024b) are considered
pivotal in pursuing artificial general intelligence, as they act as controllable real-world simulators and create
complex problem-solving contexts. Therefore, gameplay videos are typically employed as benchmarks for
evaluating the capabilities of vision-language models from the perspectives of environment perception Hong
et al. (2023); Akoury et al. (2023), context reasoning Liu et al. (2023); Wang et al. (2023), decision-making
Chen et al. (2023); Qian et al. (2023), etc. The majority of existing games can be classified into two categories:
1) Competition games Ma et al. (2023); Shao et al. (2024); Hu et al. (2024b); Feng et al. (2024); Toshniwal
et al. (2022); Li et al. (2023); Gupta (2023); Huang et al. (2024); Guo et al. (2023); Zhang et al. (2024c) in
which players compete against one another, with the objective of outperforming others to achieve victory.
Notable examples include StarCraft II Ma et al. (2023); Shao et al. (2024), Pokémon Battles Hu et al.
(2024b), Chess Feng et al. (2024); Toshniwal et al. (2022); Li et al. (2023) and Poker Gupta (2023); Huang
et al. (2024); Guo et al. (2023); Zhang et al. (2024c). Ma et al. Ma et al. (2023) introduce TextStarCraft II,
a natural language-based interface that equips LLMs with the functionality to play StarCraft II, fostering
more effective reasoning and decision-making capabilities; 2) Cooperation games Carroll et al. (2019); Gong
et al. (2023); Wu et al. (2021); Puig et al. (2021); Chen et al. (2024a); Gan et al. (2021b); Puig et al. (2018);
Gan et al. (2021a) are structured around collaboration, requiring players to work together to achieve shared
goals. These games emphasize teamwork, communication, and joint problem-solving, where players must
coordinate efforts to succeed and reach mutual accomplishments. In Overcooked-AI Carroll et al. (2019),
the preparation of an onion soup requires two agents to collaborate by loading three onions into a cooking
pot, thereby initiating a cooking process that spans 20-time steps.

The most relevant line of research to ours is on the topic of game bug detection (Taesiri et al., 2022a;
2024a; 2022b; Taesiri & Bezemer, 2024; Taesiri et al., 2024b). Existing methods, however, either focus the
classification/retrieval tasks Taesiri et al. (2022a) or limited in the static image domain Taesiri & Bezemer
(2024); Taesiri et al. (2024a) (cf . Table 1b). The prior work GameBugDescriptions Taesiri et al. (2022b)
employs LLMs to detect bugs in game videos with the reliance on pre-extracted event-wise textual descriptions
and lacks support for multi-modal evaluations. In contrast, our PhysGame addresses all these limitations
and supports multi-modal instruction tuning in videos.
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Statistics of PhysGame Value
Total number of QA pairs 140,057
Unique Videos 38,957
Question Length (avg/max) 9.81 / 113
Answer Length (avg/max) 53.49 / 143
Video Length (Seconds, avg/max) 23.33 / 2611.17
Statistics of GameBench Value
Total number of QA pairs 880
Unique Videos 880
Question Length (avg/max) 9.06 / 17
Answer Length (avg/max) 14.46 / 38
Video Length (Seconds, avg/max) 25.82 / 239.57

(b)

Figure 3: (a) The taxonomy and (b) key statistics of the PhysGame and GameBench dataset.

3 Dataset Construction

3.1 PhysGame

Building on the intuitive cognition of physical understanding, PhysGame introduces a comprehensive tax-
onomy for task categorization including five primary domains, i.e., mechanics, optics, material properties,
thermodynamics, and electromagnetism, and sixteen fine-grained categories (cf . Figure 3a).

• Mechanics: This category deals with forces and torques as well as their effects on motion, which provides
the foundational principles to interpret and analyze the motion of objects in videos. Typical cases include
gravity, elasticity, friction, velocity and acceleration over time.

• Optics: It focuses on the behavior and properties of light as well as its interactions with matter. It
includes reflection, refraction, and absorption & transmission.

• Material properties: It refers to the inherent material characteristics including color, rigidity, object shape,
and human body gesture.

• Thermodynamics: This category involves the study of heat, temperature, and energy transfer between
systems. Typical cases include heat conduction and phase change.

• Electromagnetism: It encompasses phenomena related to the electric and magnetic fields and their inter-
actions with matter.

Video Collection. The videos of PhysGame dataset are curated from the GamePhysics subreddit1, a
community where users share gameplay videos exhibiting various unusual events and glitches across dif-
ferent games, accompanied by the users’ discussions (meta-information). This platform offers abundant
glitch-containing gameplay footage alongside meta-information that broadly describes glitch characteristics,
enabling the scalability of our proposed PhysGame dataset.

Instruction-following Generation. We follow the self-instruction paradigm Li et al. (2024a) to construct
PhysGame by prompting GPT-4o OpenAI (2024). In terms of the instruction generation, we aspire for
the questions to be as diverse as possible. We set up three question types, varying from direct to indirect
assessment of the glitches in videos: i) explicitly inquiring about glitches in the video, ii) probing anomalies
present in the video, iii) or merely straightforward questions regarding the video content. We provide three
examples corresponding to the mentioned three scenarios: i) What is the description of the glitch observed

1www.reddit.com/r/GamePhysics/
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Question: What is 
the description of 
the glitch observed 
in the video?

In the video, when the player pilots a helicopter to land on the water surface, the spinning rotor blades create a 
realistic disturbance, pushing the water away and forming a clear circular pattern beneath the aircraft. …... At 
specific moments, the surface of the water lacks believable wave propagation, especially when interacting with 
nearby objects or terrain. These inconsistencies slightly detract from the realism …

Answer
w/ title

[GTA IV] I hope they bring back the water physics.Title:

Glitch content:
No realistic 

wave propagation

The glitch involves a helicopter interacting with water in an unrealistic and physically implausible way. After descending 
and making contact with the water's surface, instead of behaving like a damaged or crashing aircraft—sinking, breaking 
apart, or stopping—it begins to bounce erratically and spin uncontrollably. The helicopter skims and ricochets across the 
water as if it were a rubber ball, completely ignoring expected aerodynamic drag or water resistance. …

Answer
w/o title

Figure 4: The generated responses in PhysGame dataset with or without meta-information hints (i.e.,
titles). The title indicates a glitch related to water physics. With the title hints, the generated responses
accurately identify that the surface of the water lacks realistic wave propagation; in contrast, the response
contains hallucinated content without the title hints.

Table 2: Quality validation for the proposed PhysGame dataset.

Meta Data Acc QA Acc w/ Meta QA Acc w/o Meta
86% 91% 64%

in the video? ii) Are there any abnormalities present in the videos? iii) Please provide a description of the
video content.

As for the response generation, the preliminary experiments suggest that the intuitive prompting method
leads to remarkable errors. To alleviate this, we propose a meta-information guided prompting strategy.
Specifically, we found that the meta-information (e.g., title) associated with each video offers insight into
the fundamental content. Therefore, we propose to incorporate video-wise meta-information in the prompt,
resulting in more accurate instruction-following generation. As shown in Figure 4, the meta-information
helps GPT-4o to detect the “water physics" glitch, while its absence leads to the degradation of physical
commonsense understanding. The key statistics of the constructed PhysGame are presented in Table 3b.

Quality Control. Given the scale of our instruction dataset, per-sample manual verification proves infea-
sible. We implement a systematic quality validation framework by sampling 2,000 instances and conducting
two-tier manual verification: 1) metadata relevance to video semantics, and 2) QA alignment with observed
physical anomalies. The experiments in Table 2 show 86% metadata accuracy and 91% QA accuracy, demon-
strating the overall reliability of our PhysGame. In addition, the comparison between QA accuracy with
and without metadata (91% vs. 64%) confirms that incorporating meta-information improves the quality of
generated instruction data.

3.2 GameBench

Video Collection and Filter. The video collection procedure of GameBench follows the same process
as that in PhysGame. To prevent data leakage, we diligently exclude any videos included in PhysGame.
We conduct manual checks based on the following two criteria: 1) Duplicate check: The Reddit1 discussion
forum may feature multiple references to the same video, resulting in duplicate downloading. We manually
check to confirm that each video in GameBench is distinct; 2) Content check: The pool of downloaded videos
may incorporate non-game elements, which we rigorously filter out of our GameBench benchmark.
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Annotation Scheme. Based on the collected gameplay videos, we create the question-answer pairs in a
four-way multiple-choice format to facilitate convenient evaluation. Specifically, the correct options describe
the video-specific glitches that contravene physical commonsense principles. It is important to note that
some videos may exhibit multiple glitches. We therefore instruct expert annotators to review the entire
video to ensure all the appearing glitches are included in the correct answer.

To enhance the plausibility of the distractor options, we have provided expert annotators with three guiding
principles: 1) Instead of imagining arbitrary glitches, the glitch in the distractor options should be highly
correlated to the individuals or actions observed in the videos. For example in Figure 2 (right), the distractor
option B includes “car" and “shadow" that are genuinely present in the video. This annotation principle forces
MLLMs to comprehend the glitchy content, rather than merely selecting answers by identifying contained
objects or actions; 2) The four choice options should be of similar length, which helps prevent any preference
biases in MLLMs; 3) To mitigate choice bias, the distribution of the correct option among the four choices
should be equitable, (i.e., 25% likelihood for each option).

Quality Control. To guarantee the quality of our dataset, we conduct a two-fold quality control process:
1) LLM-assisted inspection: We exclude question-answering pairs that can be correctly answered by GPT-4o
OpenAI (2024) solely based on the question and options without the need to view the video. By statistics,
we limit the accuracy of GPT-4o in the question-only scenario to less than 25%; 2) Human inspection:
All the initially annotated question-answering pairs undergo rigorous cross-inspection by different human
annotators. For the correct options, the inspectors must assess whether they comprehensively and accurately
describe all instances of physical commonsense violations present. For the distractor options, the inspectors
are required to evaluate whether they are sufficiently deceptive, specifically by including objects or actions
depicted in the video. Through the rigorous construction and review process, we present the GameBench
benchmark which is of high quality and well-balanced. The specific statistics are available in Table 3b.

4 Experiments

4.1 Experimental Settings

Baseline and Implementation Details. To evaluate the efficiency of the PhysGame dataset, we per-
formed supervised fine-tuning on three MLLMs: Qwen2-VL-7B Wang et al. (2024a), Qwen2.5-VL-7B Bai
et al. (2025), and InternVL2.5-8B Chen et al. (2024c). To prevent the model from becoming overly biased
toward the gameplay video domain during fine-tuning, we additionally incorporated 20K samples from the
general video instruction tuning dataset LLaVA-Hound Zhang et al. (2024b), forming a total training set of
160K samples. The Qwen series models Wang et al. (2024a); Bai et al. (2025) were trained for one epoch
with a batch size of 128 and a learning rate of 2e-7, whereas InternVL2.5-8B Chen et al. (2024c) employed
a higher learning rate of 1e-6 with an equivalent batch size. All models processed 32-frame video sequences
as input. Experiments were conducted on 8 NVIDIA A100 GPUs.

Evaluation Benchmarks. To demonstrate the broad applicability of our PhysGame dataset, we conducte
experiments across both physical world understanding and general video understanding tasks:

• Physical World Understanding: Depending on the video data source, we evaluate on two categories of
benchmarks: gameplay-based dataset (i.e., our self-constructed GameBench) and real-world datasets (i.e.,
PhysBench Chow et al. (2025) and MMVU Zhao et al. (2025)).

• General Video Understanding: We further validate the broad value of PhysGame through evaluations on
established general video understanding benchmarks including MVBench Li et al. (2024b), VideoMME
Fu et al. (2024) and LongVideoBench Wu et al. (2024).

4.2 Physical Understanding

Evaluation Results on GameBench. For comparisons, we benchmark the proposed GameBench on
both proprietary MLLMs (i.e., Claude3.5-Sonnet Anthropic (2024), Claude3.5-SonnetV2 Anthropic (2024),
Gemini-1.5-pro Team et al. (2024), Gemini-1.5-pro-flash Team et al. (2024), GPT-4V Achiam et al. (2023),
GPT-4o-0806 OpenAI (2024), GPT-4o-mini-0718 OpenAI (2024) and Qwen-VL-max Bai et al. (2023)) and
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Table 3: Evaluation (%) results on the proposed GameBench benchmark including the domains of
mechanics, optics, material properties, thermodynamics, and electromagnetism.

Models AVG Mechanics Optics Material Thermo Electro

Claude3.5-Sonnet Anthropic (2024) 54.3 53.7 49.6 54.5 71.4 55.3
Claude3.5-SonnetV2 Anthropic (2024) 47.6 47.0 42.1 51.9 53.1 46.8
Gemini-1.5-pro Team et al. (2024) 55.2 55.0 49.6 58.7 63.3 51.1
Gemini-1.5-pro-flash Team et al. (2024) 48.5 50.4 41.4 50.3 49.0 42.6
GPT-4V Achiam et al. (2023) 45.9 45.9 43.6 43.9 53.1 53.2
GPT-4o OpenAI (2024) 56.1 55.4 48.9 60.3 67.3 55.3
GPT-4o-mini OpenAI (2024) 40.3 40.7 39.1 41.3 36.7 40.4
Qwen-VL-Max 50.9 46.8 52.6 55.0 69.4 51.1
LLaVA-Next-Video Liu et al. (2024b) 32.2 31.8 25.6 37.0 42.9 23.4
Video-LLaVA Lin et al. (2023) 29.0 29.2 28.6 31.2 30.6 17.0
LLaVA-OneVision 47.7 46.3 48.1 49.2 59.2 42.6
InternVL2 Chen et al. (2024c) 33.4 34.2 37.6 29.1 30.6 34.0
VideoChat2 34.3 33.1 31.6 37.0 44.9 31.9
ST-LLM 32.8 30.3 30.8 38.6 49.0 23.4
Chat-UniVi Jin et al. (2024) 29.5 30.7 30.1 30.7 20.4 21.3
PPLLaVA 38.4 37.7 38.3 36.0 51.0 42.6
Qwen2-VL-7B Wang et al. (2024a) 37.5 35.5 34.6 37.0 34.7 34.0
w/ PhysGame 43.8 45.5 47.4 48.7 40.8 36.2

∆ +6.3 +10.0 +12.8 +11.7 +6.1 +2.2
Qwen2.5-VL-7B Bai et al. (2025) 44.4 46.5 40.6 46.0 34.7 38.3
w/ PhysGame 48.1 51.5 42.1 48.1 34.7 44.7

∆ +3.7 +5.0 +1.5 +2.1 0.0 +6.4
InternVL2.5-8B Chen et al. (2024c) 38.6 35.9 33.1 43.4 59.2 40.4
w/ PhysGame 48.0 44.4 43.6 56.6 67.3 40.4

∆ +9.4 +8.5 +10.5 +13.2 +8.1 +0.0

open-source models including LLaVA-Next-Video Liu et al. (2024b), Video-LLaVA Lin et al. (2023), LLaVA-
OneVision Li et al. (2024a), InternVL2 Chen et al. (2024d), VideoChat2 Li et al. (2024b), ST-LLM Liu et al.
(2024c), Chat-UniVi Jin et al. (2024) and PPLLaVALiu et al. (2024d). We follow Video-MME Fu et al.
(2024) to utilize the official frame configurations provided for each MLLM. We employ the selection accuracy
as the evaluation metric for our curated multi-choice questions.

The evaluation results on the GameBench benchmark are presented in Table 3. Key observations include: 1)
Current methods struggle on GameBench: Among proprietary models, GPT-4o OpenAI (2024) and Gemini-
1.5-pro Team et al. (2024) achieve the best performance with average accuracy scores of only 56.1% and
55.2%, respectively. As a reminder, the GPT-4o score of 56.1% is achieved on GameBench after filtering
out questions that were found to be answerable by text alone (using GPT-4o itself during quality control),
which further underscores the challenging nature of the benchmark. This indicates persistent challenges
in understanding physical commonsense within complex, dynamically evolving scenarios; 2) Instruction
tuning on PhysGame benefits: Baseline models (Qwen2-VL-7B Wang et al. (2024a), Qwen2.5-VL-7B Bai
et al. (2025), InternVL2.5-8B Chen et al. (2024c)) show substantial improvements after PhysGame-based
instruction tuning. For instance, the PhysGame-tuned Qwen2-VL achieves an 6.3% higher average accuracy
on GameBench compared to its baseline version, demonstrating the dataset’s value for gameplay-based
physical reasoning; 3) Inconsistent improvements: An interesting observation is that InternVL2.5-8B exhibits
the most significant improvement in average accuracy after fine-tuning on PhysGame, achieving a gain of
9.4%, with consistent performance increases across all subcategories. In contrast, the Qwen-series models
Wang et al. (2024a); Bai et al. (2025) show relatively limited improvement, likely because their pretrained
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Table 4: Evaluation (%) of Game2Real transferability on PhysBench and MMVU. “w/ PhysGame"
denotes finetuning baseline models on the proposed PhysGame dataset.

Models PhysBench MMVU

Average Property Relationships Scene Dynamics Val

GPT-4V Achiam et al. (2023) 41.3 49.6 45.8 26.3 42.2 –
GPT-4o OpenAI (2024) 49.5 56.9 64.8 30.2 47.0 67.4
GPT-4o-mini OpenAI (2024) 43.2 53.5 44.2 30.6 42.9 61.6
Gemini-1.5-flash Team et al. (2024) 46.1 57.4 52.2 34.3 40.9 58.8
Gemini-1.5-pro Team et al. (2024) 49.1 57.3 63.6 36.5 41.6 65.4
Llava-Next-Video Liu et al. (2024b) 35.4 38.3 30.8 34.0 37.2 28.6
Phi-3V Abdin et al. (2024) 38.4 43.7 37.9 34.9 36.9 –
VILA-1.5-8B Lin et al. (2024) 32.9 33.4 29.9 30.9 35.9 –
VILA-1.5-13B Lin et al. (2024) 37.2 40.5 40.2 32.0 36.1 –
Video-LLaVA Lin et al. (2023) 37.0 36.8 36.1 33.7 40.5 –
Chat-Univi-7B Jin et al. (2024) 22.2 19.3 21.0 18.9 28.5 –
Chat-Univi-13B Jin et al. (2024) 10.4 4.3 11.5 15.7 11.5 –
Claude-3.5-sonnet Anthropic (2024) 38.1 46.5 41.1 27.9 37.6 65.2
InternVL-Chat1.5-26B Chen et al. (2024d) 47.5 53.1 70.1 37.0 44.8 –
Qwen2-VL-7B Wang et al. (2024a) 46.6 54.3 60.4 39.4 47.0 42.1

w/ PhysGame 49.1 57.5 63.2 41.8 49.1 48.6
∆ (vs. Qwen-2VL-7B) +2.5 +3.2 +2.8 +2.4 +2.1 +6.5
Qwen2.5-VL-7B Bai et al. (2025) 45.9 54.6 63.2 37.0 46.9 48.8

w/ PhysGame 47.6 57.7 64.1 38.3 48.2 50.5
∆ (vs. Qwen-2.5-VL-7B) +1.7 +3.1 +0.9 +1.3 +1.3 +1.7
InternVL2.5-8B Chen et al. (2024c) 43.9 55.9 48.7 29.4 41.2 41.1

w/ PhysGame 46.0 57.9 66.6 30.7 51.2 49.6
∆ (vs. InternVL2.5-8B) +2.1 +2.0 +17.9 +1.3 +10.0 +8.5

vision-language alignment and reasoning capabilities are already highly optimized through large-scale multi-
modal instruction tuning, leaving limited room for further enhancement from task-specific physical reasoning
data.

Game2Real Transferability. In addition to gameplay and simulator datasets, our PhysGame dataset
demonstrates the Game2Real transferability on real-world physical understanding benchmarks including
PhysBench Chow et al. (2025) and MMVU Zhao et al. (2025). PhysBench is proposed to evaluate MLLMs’
physical world understanding capabilities, which integrates QAs regarding property, relationships, scene,
and dynamics. MMVU assesses knowledge-intensive reasoning on specialized-domain videos. We conduct
experiments on its validation set.

The Game2Real transfer performance is shown in Table 4. Across four subcategories of PhysBench and
MMVU, fine-tuning models on PhysGame (denoted by “w/ PhysGame" in Table 4) consistently improves
their performance over the baselines, demonstrating the effectiveness of our proposed PhysGame in enhancing
physical understanding and generalization. For example, Qwen2-VL-7B and InternVL2.5-8B see significant
absolute gains of +2.5% and +2.1% respectively on average after fine-tuning, while Qwen2.5-VL-7B achieves
the minimal improvement of +1.7%. These results confirm the strong Game2Real transferability facilitated
by the PhysGame dataset.

4.3 General Video Understanding Results

We investigate the transferability of physics knowledge learned from PhysGame to general video under-
standing (Game2General transferability). Our experiments span MV-Bench Li et al. (2024b), Video-MME
Fu et al. (2024), and LongVideoBench Wu et al. (2024), where MV-Bench focuses on multifaceted video un-
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Table 5: Evaluation (%) of Game2General transferability on MVBench, Video-MME and
LongVideoBench. “w/o subs" denotes results without subtitles. “w/ PhysGame" denotes finetuning baseline
models on the proposed PhysGame dataset.

Models MVBench Video-MME (w/o subs) LongVideoBench

AVG Short Medium Long Val

GPT-4V Achiam et al. (2023) 43.5 59.9 70.5 55.8 53.5 –
Video-LLaVA Lin et al. (2023) – 39.9 45.3 38.0 36.2 39.1
LLaVA-1.5 Liu et al. (2024a) 36.0 – – – – 40.3
PLLaVA Xu et al. (2024a) 46.6 – – – – 40.2
Qwen-VL-Max Bai et al. (2023) – 51.3 55.8 49.2 48.9 –
ShareGPT4Video-8B Chen et al. (2024b) 51.2 39.9 48.3 36.3 35.0 39.7
InternVL-Chat-V1.5 Chen et al. (2024d) – 45.6 50.7 60.2 46.4 51.2
VideoChat2 Li et al. (2024b) 51.1 39.5 48.3 37.0 33.2 39.3
LongLLaVA-9B Wang et al. (2024b) 49.1 43.7 52.4 42.2 36.4 –
Video-CCAM-9B Fei et al. (2024) 64.6 50.3 61.9 49.2 39.6 –
NVILA Liu et al. (2024e) 68.1 64.2 75.7 62.2 54.8 57.7
Apollo Zohar et al. (2024) – 61.3 – – – 58.5
LongVA-7B Zhang et al. (2024a) – 52.6 61.1 50.4 46.2 51.3
LLaVA-Video-7B Zhang et al. (2024d) 58.6 63.3 – – – 58.2
Qwen2-VL-7B Wang et al. (2024a) 64.5 58.0 70.2 55.8 48.1 55.3

w/ PhysGame 66.4 59.3 70.7 57.6 49.7 56.1
∆ (vs. Qwen-2VL-7B Wang et al. (2024a)) +1.9 +1.3 +0.5 +1.8 +1.6 +0.8
Qwen2.5-VL-7B Bai et al. (2025) 66.0 64.7 76.2 63.3 54.6 56.0

w/ PhysGame 67.3 65.8 76.6 65.7 55.2 58.3
∆ (vs. Qwen-2.5-VL-7B Bai et al. (2025)) +1.3 +1.1 +0.4 +2.4 +0.6 +2.3
InternVL2.5-8B Chen et al. (2024c) 72.0 64.0 75.8 62.8 53.4 57.2

w/ PhysGame 72.8 64.2 76.8 62.6 53.3 59.5
∆ (vs. InternVL2.5-8B Chen et al. (2024c)) +0.8 +0.2 +1.0 -0.2 -0.1 +2.3

derstanding capabilities in short videos while Video-MME and LongVideoBench emphasize long-form video
comprehension. All evaluations follow the official protocols.

As shown in Table 5, finetuning models on PhysGame consistently boosts their performance across all bench-
marks. For example, Qwen-2-VL-7B achieves a 1.9% improvement on MVBench and sees gains across all
three temporal scopes of Video-MME, with a notable 1.8% gain on medium-length videos. Qwen-2.5-VL-7B
also benefits from PhysGame, attaining a 2.3% accuracy boost in LongVideoBench. Similarly, InternVL2.5-
8B improves from 72.0% to 72.8% on MVBench, marking a new state-of-the-art result. We also observe a
slight performance drop on the medium and long video splits of the Video-MME dataset after fine-tuning
on PhysGame, which may be attributed to the fact that most videos in PhysGame are short, leading
InternVL2.5-8B to develop a bias toward short-duration videos. Overall, these findings confirm that physics-
oriented pretraining via PhysGame not only improves physical reasoning but also enhances the generalization
of video-language models to diverse and longer-duration video tasks.

4.4 Ablation Studies

Data-scaling effects. To quantify the data-scaling behavior of our PhysGame dataset, we conduct addi-
tional experiments using Qwen2.5-VL-7B fine-tuned with different amounts of PhysGame data (0K, 40K,
80K, 140K) to analyze the scaling trends. As noted in Section 4.1, for real-world and general-video tasks
(PhysBench, MMVU, MVBench, Video-MME, LongVideoBench), we mix PhysGame with 20K LLaVA-
Hound samples to maintain domain balance. The results in Figure 5 demonstrate that the performance
consistently improves as more PhysGame data is used. The gains are monotonic and do not plateau even at
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Figure 5: Data-scaling effects of our PhysGame dataset.

Table 6: Ablation study on meta-data and training data mixture based on Qwen2.5-VL.

Method PhysBench MMVU MVBench Video-MME LongVideoBench

Baseline 45.9 48.8 66.0 64.7 56.0
Full Mode 47.6 50.5 67.3 65.8 58.3

w/o meta-data 42.9 46.7 65.2 63.5 55.2
w/o data mixture 45.1 49.2 66.7 65.1 57.4

140K samples, indicating that the dataset’s scaling potential has not been saturated. This trend validates
the scalability of PhysGame and suggests that further expansion could yield additional improvements.

Ablations on dataset mixture. In Section 4.1, we constructed the overall training set by combining
PhysGame-140K with 20K data from LLaVA-Hound Zhang et al. (2024b). We ablate on this dataset mix-
ture strategy by fine-tuning using only PhysGame (140K) dataset without any LLaVA-Hound data. The
experimental results in Table 6, the data mixing strategy plays a clear role, particularly in enhancing gen-
eralization to real-world benchmarks (e.g., +2.5% on PhysBench compared to using only PhysGame).

Ablations on training dataset composition. We conduct fixed-budget and seed-controlled resampling
to ablate on the training dataset configuration. Specifically, we fix the total training budget to 160K samples
and systematically vary the mixing ratio between PhysGame (PG) and LLaVA-Hound (LH) as [0K/160K,
40K/120K, 80K/80K, 140K/20K]. A fixed random seed ensures the same LH subset is used across runs,
eliminating sampling randomness.

As the results in Table 7 indicate, using only LLaVA-Hound does not yield performance gains. For instance,
with Qwen2.5-VL, only using the general video instruction tuning dataset LLaVA-Hound maintains the same
results as the zero-shot evaluation (45.9%). Using only PhysGame leads to a performance drop (45.1% vs.
45.9%), likely because post-training solely on PhysGame induces a bias towards gameplay videos. Conse-
quently, we selected a mixing ratio of 140K samples from PhysGame and 20K samples from LLaVA-Hound
to achieve optimal performance. One interesting finding is that the performance of the pure PhysGame
configuration (140K/0K) is slightly lower than that of the pure general-data configuration (0K/160K). This
may be primarily due to two factors. First, the difference in total training samples (140K vs. 160K) gives the
general-data setting a scale advantage in learning diverse visual representations. Second, training solely on
PhysGame, which is visually centered on gameplay scenes, can induce a mild domain bias, slightly hindering
generalization to the broader visual distributions found in real-world benchmarks like PhysBench.
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Table 7: Ablation study on the configuration of PhysGame (PG) and LLaVA-Hound (LH) datasets.

Configuration of PG/LH 0K/160K 40K/120K 80K/80K 140K/20K 140K/0K

AVG on PhysBench 45.9% 46.9% 47.3% 47.6% 45.1%

Question: What is the main reason for the phenomenon in the video?
A. Temperature B. water C. dynamite D. human activity E. gravity

w/ PhysGame: E.

Qwen2.5-VL-7B: C.

(a)

Question: In the mechanism depicted, the system has ______ degree(s) of freedom.

w/ PhysGame: 1.

Qwen2.5-VL-7B : two.

(b)

Figure 6: Comparisons between the baseline Qwen2.5-VL-7B and its PhysGame fine-tuned counterpart on
MMVU benchmark.

Ablations of the meta-information-guided prompting. In Section 3.1, we conduct a manual quality
validation to demonstrate that meta-information enhances the quality of generated QA pairs. Here we
present quantitative experiments using Qwen2.5-VL trained on PhysGame with/without meta-information
guidance. Our experimental results in Table 6 demonstrate that integrating meta-information leads to a
4.7% absolute improvement (42.9% vs. 47.6%) on PhysBench, which further highlights the necessity of using
meta-information guidance during the prompt generation process.

Visualizations. Figure 6 presents qualitative comparisons between the baseline Qwen2.5-VL-7B and its
PhysGame fine-tuned counterpart on representative cases from the MMVU benchmark. In Figure 6a, the
baseline model incorrectly attributes the observed landslide phenomenon to dynamite, indicating a bias
toward surface-level visual cues (e.g., explosion-like motion and dust dispersion). In contrast, the PhysGame-
enhanced model correctly identifies gravity as the underlying cause, demonstrating an improved ability to
infer causal relationships grounded in physical principles. In Figure 6b, where the task involves determining
the degree of freedom of a linkage mechanism, the baseline model outputs two, failing to account for the
kinematic constraints imposed by joint connections. The PhysGame model, however, accurately infers
one, reflecting a stronger grasp of motion constraints and mechanical structure reasoning. Together, these
examples illustrate that PhysGame effectively bridges the gap between visual perception and intuitive physics
reasoning, enabling the model to generate more physically consistent interpretations of both natural and
synthetic scenes.
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Figure 7: Error type analysis.

Error type analysis. To investigate the bottlenecks of current MLLMs in physical world understanding,
we analyze the top-performing models on the proposed GameBench benchmark: Gemini 1.5 Pro Team et al.
(2024), GPT-4o OpenAI (2024), and Claude 3.5 Sonnet Anthropic (2024). We manually examine the error
distribution across 100 selected cases, categorizing errors into four types:

• Perception error : MLLMs fail to correctly recognize entities, characters, or actions in the video.
• Lack of knowledge: MLLMs correctly perceive the video content but make incorrect judgments about the

physical glitch.
• Reasoning error : MLLMs identifies both the video content and the glitch but fails to detect reasoning

flaws in the provided answer options (e.g., causal errors).
• Refusal to answer : MLLMs declines to respond due to limited capabilities.

Figure 7 presents a comparative analysis of error distributions across three leading MLLMs including Claude
3.5-Sonnet, GPT-4o, and Gemini 1.5-Pro. Across all models, the dominant error type is “Lack of Knowl-
edge", accounting for approximately 79–81% of total errors. This trend indicates that factual incompleteness
or outdated knowledge remains the principal bottleneck in current large-scale multimodal reasoning systems,
rather than perception or reasoning capabilities. Among the secondary categories, Reasoning Errors con-
tribute between 7–12%, with GPT-4o showing the highest proportion (12%). Perception Errors are relatively
minor (4–7%) across all models, reflecting the general maturity of visual grounding components. Refusal
to Answer occurs least frequently, with Claude 3.5-Sonnet exhibiting the most conservative behavior (2%),
while GPT-4o and Gemini 1.5-Pro show slightly higher refusal rates (5–7%), possibly due to stricter safety
or uncertainty calibration mechanisms. Overall, the results highlight a consistent pattern: while perception
and reasoning are gradually improving, the knowledge base’s coverage and retrieval precision remain the
dominant limitations shaping multimodal model reliability.

5 Conclusion

In this work, we propose PhysGame, a scalable and photo-realistic instruction-tuning dataset constructed
from gameplay videos to advance physical world understanding of MLLMs. By leveraging glitch-induced
annotations, PhysGame enables systematic discovery of physical inconsistencies across diverse scenarios
involving mechanics, optics, material properties, thermodynamics, and electromagnetism. Compared to
existing real-world or synthetic datasets, PhysGame achieves a better trade-off between realism and scal-
ability. Extensive experiments demonstrate that PhysGame not only improves real-world physical reason-
ing (Game2Real), but also enhances general-purpose video understanding (Game2General). We position
PhysGame as a scalable and effective paradigm for equipping MLLMs with robust physical reasoning and
generalizable understanding abilities.
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