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Abstract

The field of Contextual Optimization (CO) inte-
grates machine learning and optimization to solve
decision making problems under uncertainty. Re-
cently, a risk sensitive variant of CO, known as
Conditional Robust Optimization (CRO), com-
bines uncertainty quantification with robust opti-
mization in order to promote safety and reliability
in high stake applications. Exploiting modern dif-
ferentiable optimization methods, we propose a
novel end-to-end approach to train a CRO model
in a way that accounts for both the empirical risk
of the prescribed decisions and the quality of con-
ditional coverage of the contextual uncertainty set
that supports them. While guarantees of success
for the latter objective are impossible to obtain
from the point of view of conformal prediction the-
ory, high quality conditional coverage is achieved
empirically by ingeniously employing a logistic re-
gression differentiable layer within the calculation
of coverage quality in our training loss. We show
that the proposed training algorithms produce deci-
sions that outperform the traditional “estimate then
optimize” approaches.

1 INTRODUCTION

In a standard machine learning setting, Ψ ⊆ Rm represent
the input set and Ξ ⊆ Rm represent the output sets and
we aim to learn a model Fθ parameterized by θ that ap-
proximates the relationship between the input and output by
minimizing a loss function L. In real-world applications, we
usually have a dataset of M samples, Dψξ := {(ψi, ξi)}Mi=1

which are used to approximate the underlying input-output
relationship learned by the model. For a new data sample
ψ ∈ Ψ, the model trained on Dψξ is used to predict a corre-
sponding target ξ = Fθ(ψ). Recently, there has been a grow-

ing interest in developing data-driven optimization solutions
that integrate this learning process with the subsequent opti-
mization process. In this context, one accounts for the fact
that the prediction is used within a cost minimization prob-
lem x̂∗(ψ) := argminx∈X c(x,Fθ(ψ)), where X ⊆ Rn is
the set of feasible decisions and c(x, ξ) the cost function.
The intent is to adapt the training procedure to produce
an adapted decision with low out-of-sample expected cost
E[c(x̂∗(ψ), ξ)].

When there is a mismatch between the training loss L and
the cost function c(x, ξ), a small error in predicting ξ for a
given ψ can lead to highly suboptimal x∗(ψ) (see Elmach-
toub and Grigas [2022]). Task-based (or decision-focused)
learning (c.f. Mandi et al. [2023], Donti et al. [2017]) ad-
dresses this issue by training the model Fθ directly on the
performance of the policy x∗(ψ). By trading off predictive
performance in favor of task performance, the task-based
approach can give near optimal decisions.

In high stakes applications, a Decision Maker (DM) usually
demonstrates a certain degree of risk aversion by requiring
some level of protection against a range of plausible future
scenarios. A natural risk averse variant of integrated learn-
ing and optimization takes the form of Conditional Robust
Optimization (CRO) (see Chenreddy et al. [2022]), which
integrates conformal prediction with robust optimization.
Specifically, machine learning is first used to estimate an
uncertainty set U(ψ) for an observed context ψ. This set
U(ψ), known to contain the realized ξ with a high probabil-
ity, is then inserted into the conditional robust optimization
model:

x∗(ψ) := argmin
x∈X

max
ξ∈U(ψ)

c(x, ξ) (1)

To this date, the methods proposed in the conditional robust
optimization literature follow an Estimate Then Optimize
(ETO) paradigm. Namely, data is first used to estimate the
contextual uncertainty sets which are then calibrated to meet
the required coverage levels. These sets are then used as
input to the CRO problem to get the adapted robust deci-
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sion x∗(ψ). However, the process of calibrating uncertainty
sets does not take into account the downstream optimiza-
tion task, potentially resulting in misalignment between the
loss function used in the initial estimation and the objective
of robust optimization. In this paper, we propose a novel
end-to-end learning framework for conditional robust opti-
mization that constructs the contextual uncertainty set by
accounting for the downstream task loss. Our contributions
can be described as follows:

• We propose for the first time an end-to-end training
algorithm to produce contextual uncertainty sets, U(ψ)
that lead to reduced risk exposure for the solution of
the down-stream CRO problem

• We introduce a novel joint loss function aimed at en-
hancing the conditional coverage of U(ψ) while im-
proving the CRO objective

• We demonstrate through a set of synthetic environ-
ments that our end-to-end approach surpasses ETO
approaches at the CRO task while achieving compara-
ble if not superior conditional coverage with its learned
contextual set

• We show empirically how our end-to-end learning ap-
proach outperforms other state-of-the-art methods on a
portfolio optimization problem using real world data
from the US stock market

Remark 1.1. It is worth noting that when the estimated un-
certainty set U(ψ) reduces to a singleton {Fθ(ψ)}, i.e. a
point prediction, the CRO problem simplifies to the de-
terministic contextual optimization problem: x∗(ψ) :=
argminx∈X c(x,Fθ(ψ)). For this special case, the train-
ing of Fθ(ψ) using an end-to-end paradigm has been more
heavily studied, see for instance Amos and Kolter [2017b],
Berthet et al. [2020], Elmachtoub and Grigas [2022]. End-
to-end CRO therefore constitutes a more general and un-
explored framework that can potentially address the need
to provide more robust decisions in situations where pa-
rameters cannot be perfectly estimated. This is particularly
noticeable in a portfolio optimization problem where a point
estimate of the return of assets will necessarily motivate
investing all available wealth in the one single asset with
highest predicted return. In contrast, it is rather easy to for-
mulate an uncertainty set U(ψ) such that the CRO problem
encourage diversification of the investment.

2 RELATED WORK

Estimate Then Optimize popularized by the initial work
of Hannah et al. [2010] is a framework that integrates ma-
chine learning and optimization tasks. Several approaches
are proposed to learn the conditional distribution from data.
Kannan et al. [2023], Sen and Deng [2018] propose using
residuals from the trained regression model to learn con-
ditional distributions. Bertsimas and Kallus [2020] assign

weights to the historical observations of the parameters and
solve the weighted SAA problem. We refer the readers to the
Mišić and Perakis [2020] survey for various applications of
the ETO framework. Besides the mentioned risk neutral ap-
plications, there is a growing interest in integrating machine
learning techniques to Robust Optimization to handle risk-
averse scenarios. Chenreddy et al. [2022] identify clusters of
the uncertain parameters based on the covariate data and cal-
ibrate the sets for these clusters. Patel et al. [2023] propose
using non-convex prediction regions to construct uncertainty
sets. Blanquero et al. [2023] construct contextual ellipsoidal
uncertainty sets by making normality assumptions. Ohmori
[2021] use a non-parametric K-nearest neighbors model to
identify the minimum volume ellipsoid to be used as an
uncertainty set. Sun et al. [2024] solve a robust contextual
LP problem where a prediction model is first learned, and
then uncertainty is calibrated to match robust objectives. It
is to be noted that all these CRO approaches follow the ETO
paradigm.

End-to-end learning is a more recent stream of work that
integrates the Estimation and Optimization tasks and trains
using the downstream loss. Donti et al. [2017] proposed
using an end-to-end approach for learning probabilistic
machine learning models using task loss. Elmachtoub
and Grigas [2022] learn contextual point predictor by
minimizing the regret associated with implementing
prescribed action based on such a point predictor. Amos
and Kolter [2017a] use implicit differentiation methods
to train an end-to-end model. Butler and Kwon [2023]
solve large-scale QPs using the ADMM algorithm that
decouples the differentiation procedure for primal and
dual variables. Elmachtoub and Grigas [2022] and Mandi
et al. [2020] propose using a surrogate loss function to
train integrated methods to address loss functions with
non-informative gradients. Wang et al. [2023] propose
learning a non-contextual uncertainty set by maximizing
the expected performance across a set of randomly drawn
parameterized robust constrained problems while ensuring
guarantees on the probability of constraint satisfaction
with respect to the joint distribution over perturbance and
robust problems. Costa and Iyengar [2023] propose a
distributionally robust end-to-end system that integrates
residual based distribution estimation and robustness tuning
to the portfolio construction problem. We refer the reader
to Kotary et al. [2021], Qi and Shen [2022], Mandi et al.
[2023], and Sadana et al. [2023] for broader discussions on
both ETO and end-to-end approaches.

Uncertainty quantification methods are employed to esti-
mate the confidence of deep neural networks over their pre-
dictions (Kontolati et al. [2022]). Common uncertainty quan-
tification approaches include using Bayesian methods like
stochastic deep neural networks, ensembling over predic-
tions from several models to suggest intervals, and models



that directly predict uncertain intervals. Gawlikowski et al.
[2021]. Beyond estimating predictive uncertainty, ensuring
its statistical reliability is crucial for safe decision-making
Guo et al. [2017]. Conformal prediction has become popular
as a distribution-free calibration method Shafer and Vovk
[2008]. Although conformal prediction ensures marginal
coverage, attaining conditional coverage in the most gen-
eral case is desirable Vovk [2012]. Although considered
unfeasible, Romano et al. [2020] offers group conditional
guarantees for disjoint groups by independently calibrating
each group.

3 ESTIMATE THEN ROBUST OPTIMIZE

The concept of “Estimate Then Optimize” comes from the
contextual optimization literature (see Sadana et al. [2023]).
In the context of CRO, the role of the Estimation process
is to quantify the uncertainty about ξ given the observed
ψ. This is given as input to an Optimization problem that
prescribes an optimal contextual decision x∗(ψ).

When the downstream optimization problem is a CRO prob-
lem, the estimation step is required to produce a region
that adapts to the observed covariates ψ and is expected to
contain the response ξ with high confidence. This can be
executed in two steps: first, by learning a parametric condi-
tional distributional model denoted as Fθ(ψ), and second,
by calibrating an implied confidence region Uθ(ψ) to ensure
PFθ(ψ)(ξ ∈ Uθ(ψ)) = 1 − ϵ. For e.g., when one assumes
that ξ|ψ ∼ N (µ̂(ψ), Σ̂(ψ)), one can learn (µ̂(ψ), Σ̂(ψ))
by maximizing the log-likelihood function (see Barratt and
Boyd [2023])

−n
2
log(2π) +

n∑
j=1

logL(ψ)jj −
1

2
∥L(ψ)⊤(ξ − ν̂(ψ))∥22

where L(ψ) and ν̂(ψ) are the parametric mappings that
can be used to compose µ̂(ψ) := (L(ψ)−1)⊤ν(ψ) and
Σ̂(ψ) = (L(ψ)−1)⊤L(ψ)−1. Using the α quantile from
the chi-squared distribution with m degrees of freedom,
one can define Uθ(ψ) that satisfies P(ξ ∈ Uθ(ψ)) = 1− ϵ
asymptotically.

Some recent work completely circumvent the need for the
intermediary Fθ by calibrating some Uθ(ψ) directly on the
dataset. For example, Chenreddy et al. [2022] propose identi-
fying a k-class classifier, a : Rm → [K] to reduce Uθ(ψ) :=
Uθ(a(ψ)) such that P(ξ ∈ Uθ(k)|a(ψ) = k) ≥ 1 − ϵ ∀ k.
The literature on conformal prediction also belongs to the
family of distribution-free approaches. It separates the cali-
bration of the shape of Uθ(ψ) from the calibration of its size,
parameterized by a radius r > 0, on a reserved validation
set to provide out-of-sample marginal coverage guarantees
of the form P(ξ ∈ Uθ(ψ)) ≥ 1 − ϵ, where the probability
is taken over both the draw of the validation set and of the
next sample. According to the Lemma 4.2 in Chenreddy

et al. [2022], such a coverage guarantee is sufficient to en-
sure that the out-of-sample Value-at-risk of the robust policy
produced by CRO is bounded above by the worst-case value
of the in-sample problem.

4 END-TO-END CONDITIONAL ROBUST
OPTIMIZATION

While the ETO approach presented in the section 3 presents
an efficient way to quantify the uncertainty conditionally,
it does not take into account the quality of the decisions
x∗(ψ) that is prescribed by the downstream CRO model. In
practice, the quality of a robust decision is usually assessed
by measuring the risk associated with the cost produced
on a new data sample (a.k.a. out-of-sample). We assume
that this risk is measured by a risk measure that reflects
the amount of risk aversion experienced by the DM. For
instance, one can use conditional value-at-risk represented
by the function, ρα(X) := inft t+(1/(1−α))E[(X−t)+],
which computes the expected value in the right tail of the
random cost X for a certain risk aversion α and it covers
both expected value and the worst-case cost as special cases
(i.e. α = 0 and 1 respectively).

In the ETO framework, once the optimal decision x∗(ψ)
is determined, the DM can assess the associated risk, also
known as task loss, ρα(c(x∗(ψ), ξ)). This metric allows
for comparison across models to select the suitable one.
However, it is important to note that the model with the
best performance in terms of task loss may differ from the
optimal model based on prediction loss. Motivated by recent
evidence (see Elmachtoub and Grigas [2022]) indicating that
performance improvement can be achieved by employing a
decision-focused/ task-based learning paradigm, we propose
end-to-end conditional robust optimization.

4.1 THE ECRO TRAINING PROBLEM

Formally, we let Ψ ⊆ Rm be an arbitrary support set for ψ
whereas Ξ ⊆ Rm is assumed for simplicity to be contained
within a ball centered at 0 of radius Rξ . We consider c(x, ξ)
to be convex in x and concave in ξ and let X (ψ) := {x ∈
Rn|g(x, ψ) ≤ 0, h(x, ψ) = 0} be a convex feasible set for
x, possibly dependent on ψ, and defined through a set of
convex inequalities, identified using g : Rn × Rm → RJ
and affine equalities, identified using an affine mapping
h : Rn × Rm → RJ . The conditional optimal policy then
becomes:

x∗(ψ,U) := arg min
x∈X (ψ)

max
ξ∈U(ψ)

c(x, ξ), (2)

where we make explicit how the decision depends on both
the contextual uncertainty set and the realized covariate.
Given a parametric family of contextual uncertainty set Uθ
with θ ∈ Θ and a dataset Dψξ := {(ψi, ξi)}Mi=1, the ECRO



training problem consists in identifying

min
θ∈Θ
LECRO(θ) := ρi∼M (c(x∗(ψi,Uθ), ξi)), (3)

where ρi∼M refers to the risk when i is drawn uniformly
from 1 to M , while, for simplicity, we assume ρ(·) to be
a conditional value-at-risk measure, and Uθ(ψ) to be ellip-
soidal for all ψ. Namely, we can assume that

Uθ(ψ) = E(µθ(ψ),Σθ(ψ), r) (4)

:= { ξ ∈ Rm : (ξ − µθ(ψ))TΣθ(ψ)−1(ξ − µθ(ψ)) ≤ 1} ,

for some µθ : Rm → Rm and Σθ : Rm → S+, where S+ is
the set of positive definite matrices, for all θ ∈ Θ. While the
robust optimization literature suggests various uncertainty
set structures that facilitate the resolution of the RO problem,
the ellipsoidal set stands out as a natural one to employ as it
retains numerical tractability (see Ben-Tal and Nemirovski
[1998]) and can easily be described to the DM.

Estimation

Optimization

Task loss

Dψξ

Uθ

x∗(·,Uθ)

Uθ∗ , x∗(·,Uθ∗)

∇θLECRO(θ)

Figure 1: Training pipeline for task-based learning

The training pipeline for the task-based learning approach
is illustrated in figure 1. In this pipeline, one starts from
an arbitrary θ0, the optimization problem (2) is solved first
for each data point, and the resulting optimal actions are
then implemented in order to measure the empirical risk
under Dψξ, which we call empirical ECRO loss of θ0. A
gradient of LECRO(θ) can then be used to update θ0 in a di-
rection of improvement. Key steps in this pipeline consist of
computing x∗(ψi,Uθ) efficiently and in a way that enables
differentiation with respect to θ.

4.2 REDUCING AND SOLVING THE ROBUST
OPTIMIZATION TASK

Given the convex-concave structure of c(x, ξ) and the con-
vexity and compactness of the ellipsoidal set, we can employ
Fenchal duality (see Ben-Tal et al. [2015]) to reformulate
the min-max problem as a simpler minimization form over

an augmented decision space. Specifically, we first replace
the original cost function with the equivalent cost

c̄(x, ξ) :=

{
c(x, ξ) if ∥ξ∥2 ≤ Rξ
−∞ otherwise ,

which integrates information about the domain of ξ. One
can then employ theorem 6.2 of Ben-Tal et al. [2015], to
show that problem (1) can be reformulated as:

min
x∈X (ψ),v

f(x, v, ψ) := δ∗(v|Uθ(ψ))− c̄∗(x, v) (5)

where the support function

δ∗(v|Uθ(ψ)) := sup
ξ∈Uθ(ψ)

ξT v = µθ(ψ)
T v +

√
vTΣθ(ψ)v,

(6)

while the partial concave conjugate function is defined as

c̄∗(x, v) := inf
ξ
vT ξ − c̄(x, ξ) = inf

ξ:∥ξ∥2≤Rξ
vT ξ − c(x, ξ).

This leads to x∗(ψ,U(ψ)) being the minimizer of the convex
minimization problem:

min
x∈X (ψ),v

f(x, v, ψ) (7)

with f(x, v, ψ) := µθ(ψ)
T v +

√
vTΣθ(ψ)v − c̄∗(x, v), a

jointly convex function of x and v and finite valued over its
domain, and with sub-derivatives:

∇vf(x, v, ψ) = µθ(ψ) + (1/
√
vTΣθ(ψ)v)Σθ(ψ)v − ξ∗(x, v)

∇xf(x, v, ψ) = ∇xc(x, ξ∗(x, v)),
where ξ∗(x, v) := argminξ:∥ξ∥2≤Rξ v

T ξ − c(x, ξ). Revis-
iting the procedure outlined in figure 1, one can observe
that the training process requires a forward pass to find the
optimal solutions and a backward pass to update the param-
eter vector θ. This requires the computation of the gradients
of the solution to the problem (3) with respect to the input
parameters that are passed through the reformulated CRO
problem. Furthermore, the minimization procedure in prob-
lem (3) entails navigating through the risk measure ρ. These
aspects will be further explored in the next section.

4.3 GRADIENT FOR PROBLEM (3)

In training problem (3), the gradient of LECRO(θ) with
respect to θ can be obtained using the chain rule:

∇θLECRO(θ) =
∑
i

∂ρi∼M (yi)

∂yi

∣∣
yi=c(x∗(ψi,Uθ),ξi)

·

∇xc(x)
∣∣
x=x∗(ψi,Uθ)

·(
∇µx∗(ψi, E(µ,Σθ(ψi)))

∣∣
µ=µθ(ψi)

∇θµθ(ψi)

+∇Σx
∗(ψi, E(µθ(ψi),Σ))

∣∣
Σ=Σθ(ψi)

∇θΣθ(ψi)
)



Based on Ruszczyński and Shapiro, when ρ(Y ) :=
CVaRα(Y ), one can employ the sub-differential:

∇yρi∼M (yi) = υ(y)

with υ(y) ∈ argmaxυ∈RM+ :1Tυ=1,υ≤((1−α)N)−1 υTy.

Given that ∇xc(x), ∇θµθ(ψ), and ∇θΣθ(ψ) can be read-
ily obtained using auto-differentiation Seeger et al. [2017]
when c(x), µθ(ψ), and Σθ(ψ) are differentiable, we focus
the rest of this subsection on the process of identifying
∇(µ,Σ)x

∗(ψ, E(µ,Σ)). Following the decision-focus learn-
ing literature (see Blondel et al. [2022]), one can identify
such derivatives by exploiting the fact that any optimal
primal-dual pair (x∗, v∗, λ∗, ν∗) of problem (7) must satisfy
the Karush-Kuhn-Tucker (KKT) conditions, which take the
form:

G(x∗, v∗, λ∗, ν∗, µ,Σ, ψ) = 0, g(x∗, ψ) ≤ 0, λ∗ ≥ 0.

where

G(x∗, v∗, λ∗, ν∗, µ,Σ, ψ) :=∇xf(x∗, v∗, ψ) +∇xg(x∗, ψ)Tλ∗ +∇xh(x∗, ψ)T ν∗λ∗ ◦ g(x∗, ψ)
h(x∗, ψ)


and ◦ denotes the Hadamard product of two vectors.

One can therefore apply implicit differentiation to the
constraints G(x∗, v∗, λ∗, ν∗, µ,Σ, ψ) = 0 to identify
∇(µ,Σ)x

∗(ψ, E(µ,Σ)) simultaneously with the derivatives
of v∗, λ∗, and ν∗ with respect to the pair (µ,Σ). Specifically,
one is required to solve the system of equations:

∂

∂x, v, λ, ν
G(x∗, v∗, λ∗, ν∗, µ,Σ, ψ)·

∂

∂(µ,Σ)
(x∗, v∗, λ∗, ν∗)(µ,Σ) =

− ∂

∂(µ,Σ)
G(x∗, v∗, λ∗, ν∗, µ,Σ, ψ),

where ∂
∂(x,v,λ,ν)G denotes the Jacobian of the mapping

G with respect to (x, v, λ, ν). We refer to Blondel et al.
[2022] and Duvenaud et al. [2020] for further details on the
computations of related to implicit differentiation.

4.4 TASK-BASED SET (TBS) ALGORITHM

In this section, we delve into the implementation details of
the ECRO training pipeline. Regarding the contextual ellip-
soidal set E(µθ(ψ),Σθ(ψ)), we follow the ideas proposed
in Barratt and Boyd [2023] and employ a neural network
that maps from Fθ : Rm → Rm×Rm(m+1)/2×R. The first
set of outputs is used to define µθ(ψ) while the second and
third set forms a lower triangular matrix Lθ(ψ) and scalar
rθ(ψ), which is made independent of ψ w.l.o.g., used to

produce Σθ(ψ) := rθ(ψ)Lθ(ψ)Lθ(ψ)
T . The positive def-

initeness of Σθ(ψ) is ensured by taking an exponential in
the last layer of the network for the output that appears in
the diagonal of L. The architecture of the neural network
can be found in appendix B.6.

The second set of notable details has to do with solving for
x∗(ψi, E(µiθ,Σiθ, rθ)) ∀i. In our implementation of end-to-
end learning for conditional robust optimization, we found
that a trust region optimization (TRO) method (see Byrd
et al. [2000]) could efficiently solve the reformulated robust
optimization problem (7) and provide primal-dual solution
pairs for this problem. Given that each episode of the train-
ing would pass through the same set of data points, we
further observed that the training accelerated significantly
(see figure 6 in appendix B.5) when the trust region was
interrupted early (after K = 5 iterations) as long as it would
be warm started at the solution found at the previous epochs.
Algorithm 1 presents our proposed training framework for
the ECRO approach.

Algorithm 1 ECRO Training with Trust Region Solver

1: input: dataset Dψξ, max epochs T , max TRO steps K,
batch size N , protection level α

2: Initialize a warm start buffer {x̄1, . . . , x̄M} with each
x̄i ∈ X (ψi)

3: Initialize network parameters θ and t = 1
4: while not converged and (t ≤ T ) do
5: Sample a batch of N indices B ⊂ {1, . . . ,M}
6: for i ∈ B do
7: //Run TRO for up to K steps
8: xti, λ

t
i, ν

t
i ← TRO(x̄i, µθ(ψi),Σθ(ψi),K)

9: x̄i ← xti ▷ Update warm start
10: end for
11: compute LECRO(θ) and∇θLECRO(θ) for i ∼ B
12: θ ← θ − step size · ∇θLECRO(θ)
13: t← t + 1
14: end while
15: return θ

5 END-TO-END CRO WITH
CONDITIONAL COVERAGE

Recall that the ETO framework summarized in section 3
focused on producing contextual uncertainty set with appro-
priate marginal coverage (of 1 − ϵ) of the realization of ξ.
The training pipeline in section 4 was at the other end of the
spectrum, disregarding entirely the objective of coverage to
increase task performance. In practice, coverage can be a
heavy price to pay to obtain performance as it implies a loss
in the explainability of the prescribed robust decision. It is
becoming apparent that many DMs suffer from algorithm
aversion (see [Burton et al., 2020]) and could be reluctant to
implement a robust decision produced from an ill covering



uncertainty set.

We further argue that traditional ETO might already face
resistance to adoption given the type of coverage property
attributed to the ETO sets, i.e. P(ξ ∈ U(ψ)) = 1−ϵ. Indeed,
marginal coverage guarantees only hold in terms of the joint
sampling of ψ and ξ. This implies that it offers no guarantees
regarding the coverage of ξ given the observed ψ for which
the decision is made. In fact, a 90% marginal coverage can
trivially be achieved if U(ψ) returns Ξ when ψ ∈ Ψ, for
some arbitrary set Ψ, and otherwise returns ∅, as long as
P(ψ ∈ Ψ) = 1− ϵ. This is clearly an issue for applications
with critical safety considerations and motivates seeking
conditional coverage in addition to the marginal coverage
when designing U(ψ). In this section, we outline a training
procedure that integrates a sub-procedure that enhances the
conditional coverage performance.

5.1 THE CONDITIONAL COVERAGE TRAINING
PROBLEM

We start by briefly formalizing the difference between the
two types of coverage in the definition below.

Definition 5.1. Given a confidence level 1− ϵ, a contextual
uncertainty set mapping U(·) is said to satisfy marginal
coverage if P(ξ ∈ U(ψ)) = 1−ϵ, and to satisfy conditional
coverage if P(ξ ∈ U(ψ)|ψ) = 1− ϵ almost surely.

The following lemma identifies a necessary and sufficient
condition for a contextual set to satisfy conditional coverage.

Lemma 5.2. A contextual uncertainty set U(ψ) satisfies
conditional coverage, at confidence 1− ϵ, if and only if

LCC(θ) := E[ (P(ξ ∈ U(ψ)|ψ)− (1− ϵ))2 ] = 0

Proof. For any random variable X , one can show that :

X = 1− ϵ a.s

⇒ E[(X − (1− ϵ))2] = 1 · (1− ϵ− (1− ϵ))2 = 0

and that, since y2 ≤ 0⇔ y = 0,

E[(X − (1− ϵ))2] = 0

⇒ (X − (1− ϵ))2 = 0 a.s. ⇒ X = 1− ϵ a.s..

By letting X := P(ξ ∈ Uθ(ψ)|ψ), we obtain our
result.

Equipped with lemma 5.2, we formulate the “theoretical”
conditional coverage training problem as minθ∈Θ LCC(θ).
Since the true conditional distribution P(ξ ∈ Uθ(ψ)|ψ) is
typically inaccessible to the DM, we propose an approxima-
tion that will make LCC(θ) practical.

5.2 REGRESSION-BASED CONDITIONAL
COVERAGE LOSS

Given a set U , one can define a binary random variable
y(ψ, ξ,U) := 1{ξ ∈ U(ψ)}, and rewrite the conditional
probability distribution P(ξ ∈ U(ψ)|ψ) as P(y(ψ, ξ,U) =
1|ψ). Using the i.i.d sample data in Dψξ, one can approxi-
mate this conditional probability using a parametric model,
i.e. P(y(ψ, ξ,U) = 1|ψ) ≈ gϕ(ψ) for some ϕ ∈ Φ. The
parameters ϕ can be calibrated by minimizing the negative
conditional log-likelihood of {y(ψi, ξi,U)}Mi=1:

ϕ∗(U) := argmin
ϕ∈Φ
− 1

M

M∑
i=1

log gϕ(ψ
i)y

i

(1− gϕ(ψi))1−y
i

,

(8)

where yi := y(ψi, ξi,U). Using the parametric approxi-
mation gϕ∗(U)(ψ) ≈ P(ξ ∈ U(ψ)|ψ) and replacing the
unknown true distribution of (ψ, ξ) with the empirical one,
we obtain our regression-based conditional coverage loss
function

L̂CC(θ) := EDψξ [(gϕ∗(Uθ)(ψ)− (1− ϵ))2].

The gradient of L̂CC(θ) can be obtained using simi-
lar decision-focused training methods as employed for
LECRO(θ) given that:

∇θL̂CC =

M∑
i=1

2(gϕ∗(Uθ)(ψ
i)− (1− ϵ))∇ϕgϕ∗(Uθ)(ψ

i)·

M∑
j=1

∂ϕ∗(E(µ,Σθ(ψi)))/∂yj ·(
∇µyj(ψj , ξj , E(µ,Σθ(ψj)))

∣∣
µ=µθ(ψj)

∇θµθ(ψj)

+∇Σy
j(ψj , ξj , E(µθ(ψj),Σ))

∣∣
Σ=Σθ(ψj)

∇θΣθ(ψj)
)
,

where the main challenges reside again in the step of differ-
entiating through the minimizer of problem (8).

5.3 DUAL TASK BASED SET (DTBS) ALGORITHM

We conclude this section with the presentation of our novel
integrated algorithm that learns the contextual uncertainty
set network Fθ by incorporating both the risk mitigation and
conditional coverage tasks in the training. Indeed our DTbS
training algorithm minimizes the following double task loss
function that trades off between the two task objectives:

LDT (θ) = γLECRO(θ) + (1− γ)L̂CC(θ). (9)
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Figure 2: Training pipeline for dual task based learning

The training pipeline for this algorithm can be seen in figure
2. It closely mirrors the structure of the TbS algorithm, with
additional crucial steps to compute the necessary compo-
nents of the loss presented in (9). Within each epoch, the
predicted uncertainty set Uθ serves two purposes: i) Optimiz-
ing CRO to find the optimal policy x∗(·,Uθ) and assessing
its associated risk; and ii) producing the binary variable
y(ψ, ξ,Uθ), which regression leading to gϕ∗(Uθ)(·) serves
to quantify the quality of the conditional coverage. The sum
of task losses produces LDT (θ), which can be differentiated
using decision-focused learning methods. The regression
model gϕ(ψ) takes the form of a feed-forward neural net-
work with a sigmoid activation in the final layer and is
optimized using stochastic gradient descent. Algorithm 2 in
appendix A presents the details of this DTbS algorithm.

Remark 5.3. It is to be noted that achieving distribution-free
finite sample conditional coverage guarantees is known to
be impossible in the conformal prediction literature (see
Barber et al. [2020]). Recently, some progress has been
made towards partial forms of conditional coverage guaran-
tees (see Gibbs et al. [2023]) yet it is unclear what are the
implications of exploiting such partial coverage properties
for the downstream CRO decisions. It is also unclear how
such conditional conformal prediction procedures could be
integrated within an end-to-end CRO approach.

6 EXPERIMENTS

This section outlines our experimental framework devised to
demonstrate the advantages of the ECRO method in learning
the uncertainty sets tailored to covariate information. Our fo-
cus lies in assessing the utility of the model in i) improving
the CRO performance; and ii) achieving conditional cover-

age. We conduct a comparative analysis between our two
end-to-end approaches, TbS and DTbS, and three state-of-
the-art ETO approaches to formulate contextual ellipsoidal
sets. We first consider a Distribution-based contextual el-
lipsoidal uncertainty Set (ETO-DbS) recently introduced in
Blanquero et al. [2023], where the conditional distribution
of ξ given ψ is presumed to follow a multivariate normal
distribution. Additionally, we explore two distributional-free
approaches. A vanilla Conformal Prediction Set (ETO-CPS)
uses conformal prediction on the output of a point predictor
for ξ given ψ, after shaping the ellipsoid (through an in-
variant Σ) using the residual errors (see Johnstone and Cox
[2021]). An Adapted version of Conformal Prediction Set
(ETO-ACPS) (proposed in Messoudi et al. [2022]) adapts
the shape Σ using local averaging around the observed ψ.
The code can be found on the github1 repository.

6.1 THE PORTFOLIO OPTIMIZATION
APPLICATION

We explore the effectiveness of the proposed methodolo-
gies in addressing a classic robust portfolio optimization
problem. In this context, we define the cost function c(x, ξ)
as −ξTx, where x represents a portfolio comprising in-
vestments in m different assets, with their respective re-
turns denoted in the random vector ξ. Additionally, we
impose constraints on x, encapsulated within X , defined
as X := {x ∈ Rm|∑m

i=1 xi = 1, x ≥ 0}. For this cost
function, we obtain the partial concave conjugate function:

c̄∗(x, v) = inf
ξ:∥ξ∥2≤Rξ

vT ξ − ξTx = −Rξ∥v − x∥2 (10)

Thus leading to problem (7) becoming

min
x∈X

f(x, ψ) := xTµθ(ψ) +
√
xTΣθ(ψ)x (11)

when Rξ →∞, thus capturing Ξ := Rm.

6.2 CRO PERFORMANCE USING SYNTHETIC
DATA

We first consider a simple synthetic experiment environment
where m = 2 and where the pair (ψ, ξ) is drawn from a
mixture of three 4-d multivariate normal distributions. We
sample N = 2000 observations and use 600 observations to
train 400 as validation and 1000 observations for testing. All
our results present statistics that are based on 10 simulations,
each of which employed a slightly modified mixture model
(see section B.1 for details). The TbS and DTbS algorithms
leverage deep neural networks with the corresponding task
losses to learn the necessary components (µθ(ψ),Σθ(ψ))
of Uθ(ψ). All sets are calibrated for a probability coverage
of 90% and the risk of decisions is measured using CVaR

1https://github.com/Achenred/End-to-end-CRO

https://github.com/Achenred/End-to-end-CRO
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Figure 3: Comparison of uncertainty set (α = 0.9) coverage for different ψ realizations: (a) [2.5,−0.2]T , (b) [−2.6, 0.5]T ,
(c) [2.7, 1.9]T . The shade indicate the true conditional distribution.
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Figure 4: Average cumulative distribution of conditional
coverage frequency when ψ is sampled uniformly from
dataset over 10 simulated environments. Shaded region rep-
resent 90% CI

at risk level α = 0.9. We also consider an “oracle” method
that leverages the exact knowledge of the underlying distri-
bution as an additional benchmark. The method is based on
formulating a scenario tree approximation of the joint dis-
tribution of ψ and ξ in order to obtain an investment policy
that minimizes the CVaR objective (3) directly. More details
can be found in the Appendix section C. The average CVaR
objective values and marginal coverages of the uncertainty
sets can be found in the table 1.

One can notice that the end-to-end based methods, TbS and
DTbS significantly outperform the ETO methods on the
CVaR performance. It appears that in order to maintain the
required marginal coverage, the ETO approaches learned
sets that resulted in overly conservative RO solutions. We
also observe that the TbS and DTbS models achieve a CVaR
performance that is very close to our estimate of the best
achievable performance, i.e. the oracle method’s perfor-
mance.

Additionally, all the models except TbS appear to have the
marginal coverage 90% which corresponds to the α level
they are trained for. By disregarding the aspect of coverage,

METHOD CVAR MARGINAL COVERAGE

ETO-CPS 1.59± 0.03 91± 1.8%
ETO-ACPS 1.68± 0.04 91± 1.4%
ETO-DBS 1.66± 0.06 85± 7.8%
TBS 1.05± 0.09 23± 6.1%
DTBS 1.07± 0.09 92± 1.5%
ORACLE 1.06± 0.10 −

Table 1: Avg. CVaR and marginal coverage for α = 1− ϵ =
0.9 over 10 simulated environments, error represent 90% CI.
Note that the oracle method exploits full information about
the Gaussian mixture model.

TbS was able to improve on the CVaR task but performs
poorly in terms of coverage. Comparatively, the dual task
based approach DTbS was able to improve on the CVaR per-
formance over the ETO approaches while still maintaining
the necessary coverage.

As pointed out earlier, conditional coverage is a highly de-
sirable property. Given that a synthetic environment gives
us access to exact measurements of conditional coverage,
figure 4 presents the cumulative distribution of the observed
conditional coverage frequencies when ψ is sampled uni-
formly from the data set. One can notice from the plot that
ETO-DbS, despite being closer to the required marginal
coverage, failed to provide accurate conditional coverage.
Among the methods that use conformality score to calibrate
the radius, ETO-ACPS method which uses localized covari-
ance matrices has better conditional coverage. However, this
comes at the price of CVaR performance. The advantages
of the dual task-based approach, DTbS, over the single task
one are obvious. While DTbS appears to have overshot the
coverage compared to ETO-ACPS, which aligns closer to
90%, we argue that this is not an issue as it ends up pro-
viding more coverage than needed while generating nearly
the best average CVaR value. In figure 3 which overlays the
various sets learned on the conditional distribution of ξ, one
can notice that the sets adapt to the covariate information ψ
to provide the necessary conditional coverage.
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Figure 5: Avg. CVaR of returns across 10 portfolio trajectory simulations. Error bars report 95% CI.

6.3 CRO USING US STOCK DATA

We follow the experimental design methodology proposed
in Chenreddy et al. [2022]. Our experiments utilize histori-
cal US stock market data, comprising adjusted daily closing
prices for 70 stocks across 8 economical sectors from Jan-
uary 1, 2012, to December 31, 2020, obtained via Yahoo!
Finance’s API. Each year contains 252 data points, and we
calculate percentage gain/loss relative to the previous day
to construct our dataset, denoted as ξ. We incorporate the
trading volume of individual stocks and other market in-
dices as covariates. We test the robustness of all the model’s
performance by solving the portfolio optimization problem
on randomly selected stock subsets across different periods.
Utilizing 15 stocks in each window, we ran the experiment
ten times over three moving time frames. We maintain con-
sistent parameters (learning rate lr, number of epochs T ,
step size K, γ). Further implementation and parameter tun-
ing details can be found in appendix B.3. Figure 5 compares
the avg. CVaR of returns and table 2 presents the marginal
coverage across different confidence levels for models.

It is evident from the CVaR comparison that the task based
methods TbS and DTbS consistently perform better over
the ETO models. Among ECRO approaches, we can clearly
observe an advantage for DTbS over TbS, which has on par
CVaR performance while having out of sample marginal
coverage closer to the expected target level. Conformal-
based ETO methods have good marginal coverage as they
are designed to have the desired coverage. Especially, ETO-
ACPS and ETO-CPS, being calibrated using conformal pre-
diction which produces statistically valid prediction regions
have near target coverage levels.

7 CONCLUSION

In summary, the paper introduces a novel framework for con-
ditional robust optimization by combining machine learning
and optimization techniques in an end-to-end approach. The
study focuses on enhancing the conditional coverage of un-

MODEL YEAR MARGINAL COV. (%)
TARGET 1− ϵ

70% 80% 90%
ETO-CPS

2017

68 78 87
ETO-ACPS 68 77 89
ETO-DBS 54 72 85
TBS 22 26 28
DTBS 72 79 88
ETO-CPS

2018

67 79 88
ETO-ACPS 68 78 87
ETO-DBS 59 75 87
TBS 23 24 29
DTBS 71 80 93
ETO-CPS

2019

69 78 88
ETO-ACPS 71 78 89
ETO-DBS 61 76 86
TBS 26 30 32
DTBS 69 78 92

Table 2: Marginal Coverage

certainty sets and improving CRO performance. Through
comparative analysis and simulated experiments, the pro-
posed methodologies show superior results in robust port-
folio optimization. The findings point to the importance of
uncertainty quantification and highlight the effectiveness
of an end-to-end approach in risk averse decision-making
under uncertainty.

Acknowledgments

The authors gratefully acknowledge support from the Institut
de Valorisation des Données (IVADO), the Canadian Natural
Sciences and Engineering Research Council [RGPIN-2022-
05261], and the Canada Research Chair program [CRC-
2018-00105].



References

Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Interna-
tional Conference on Machine Learning, pages 136–145.
PMLR, 2017a.

Brandon Amos and J Zico Kolter. OptNet: Differentiable op-
timization as a layer in neural networks. In International
Conference on Machine Learning, volume 70, pages 136–
145. PMLR, 2017b.

Rina Barber, Emmanuel Candès, Aaditya Ramdas, and Ryan
Tibshirani. The limits of distribution-free conditional pre-
dictive inference. Information and Inference: A Journal
of the IMA, 10, 08 2020. doi: 10.1093/imaiai/iaaa017.

Shane Barratt and Stephen Boyd. Covariance prediction via
convex optimization. Optimization and Engineering, 24
(3):2045–2078, 2023.

Aharon Ben-Tal and Arkadi Nemirovski. Robust convex
optimization. Mathematics of operations research, 23(4):
769–805, 1998.

Aharon Ben-Tal, Dick Den Hertog, and Jean-Philippe Vial.
Deriving robust counterparts of nonlinear uncertain in-
equalities. Mathematical programming, 149(1-2):265–
299, 2015.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco
Cuturi, Jean-Philippe Vert, and Francis Bach. Learning
with differentiable pertubed optimizers. Advances in
neural information processing systems, 33:9508–9519,
2020.

Dimitris Bertsimas and Nathan Kallus. From predictive
to prescriptive analytics. Management Science, 66(3):
1025–1044, 2020.

Rafael Blanquero, Emilio Carrizosa, and Nuria Gómez-
Vargas. Contextual uncertainty sets in robust linear opti-
mization. 2023.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy
Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian
Pedregosa, and Jean-Philippe Vert. Efficient and modular
implicit differentiation. Advances in neural information
processing systems, 35:5230–5242, 2022.

Jason W Burton, Mari-Klara Stein, and Tina Blegind Jensen.
A systematic review of algorithm aversion in augmented
decision making. Journal of Behavioral Decision Making,
33(2):220–239, 2020.

Andrew Butler and Roy H Kwon. Efficient differentiable
quadratic programming layers: an admm approach. Com-
putational Optimization and Applications, 84(2):449–
476, 2023.

Richard H Byrd, Jean Charles Gilbert, and Jorge Nocedal.
A trust region method based on interior point techniques
for nonlinear programming. Mathematical programming,
89:149–185, 2000.

Abhilash Reddy Chenreddy, Nymisha Bandi, and Erick De-
lage. Data-driven conditional robust optimization. Ad-
vances in Neural Information Processing Systems, 35:
9525–9537, 2022.

Giorgio Costa and Garud N Iyengar. Distributionally robust
end-to-end portfolio construction. Quantitative Finance,
23(10):1465–1482, 2023.

Priya Donti, Brandon Amos, and J Zico Kolter. Task-based
end-to-end model learning in stochastic optimization.
Advances in neural information processing systems, 30,
2017.

David Duvenaud, J. Zico Kolter, and Matthew Johnson.
Deep implicit layers tutorial - neural ODEs, deep equilib-
rium models, and beyond. Neural Information Processing
Systems Tutorial, 2020.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then
optimize”. Management Science, 68(1):9–26, 2022.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi,
Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang
Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana
Roscher, et al. A survey of uncertainty in deep neural
networks. arXiv preprint arXiv:2107.03342, 2021.

Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès.
Conformal prediction with conditional guarantees, 2023.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Interna-
tional conference on machine learning, pages 1321–1330.
PMLR, 2017.

Lauren Hannah, Warren Powell, and David Blei. Nonpara-
metric density estimation for stochastic optimization with
an observable state variable. Advances in Neural Infor-
mation Processing Systems, 23, 2010.

Chancellor Johnstone and Bruce Cox. Conformal uncer-
tainty sets for robust optimization. In Conformal and
Probabilistic Prediction and Applications, pages 72–90.
PMLR, 2021.

Rohit Kannan, Güzin Bayraksan, and James R Luedtke.
Residuals-based distributionally robust optimization with
covariate information. Mathematical Programming,
pages 1–57, 2023.

Katiana Kontolati, Dimitrios Loukrezis, Dimitrios G Giova-
nis, Lohit Vandanapu, and Michael D Shields. A survey
of unsupervised learning methods for high-dimensional
uncertainty quantification in black-box-type problems.
Journal of Computational Physics, 464:111313, 2022.



James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck,
and Bryan Wilder. End-to-end constrained optimization
learning: A survey. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence, page
4475–4482. International Joint Conferences on Artificial
Intelligence Organization, 2021.

Jayanta Mandi, Peter J Stuckey, Tias Guns, et al. Smart
predict-and-optimize for hard combinatorial optimization
problems. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 34, pages 1603–1610, 2020.

Jayanta Mandi, James Kotary, Senne Berden, Maxime
Mulamba, Victor Bucarey, Tias Guns, and Ferdinando
Fioretto. Decision-focused learning: Foundations, state
of the art, benchmark and future opportunities, 2023.

Soundouss Messoudi, Sébastien Destercke, and Sylvain
Rousseau. Ellipsoidal conformal inference for multi-
target regression. In Conformal and Probabilistic Predic-
tion with Applications, pages 294–306. PMLR, 2022.

Velibor V Mišić and Georgia Perakis. Data analytics in
operations management: A review. Manufacturing &
Service Operations Management, 22(1):158–169, 2020.

Shunichi Ohmori. A predictive prescription using minimum
volume k-nearest neighbor enclosing ellipsoid and robust
optimization. Mathematics, 9(2):119, 2021.

Yash Patel, Sahana Rayan, and Ambuj Tewari. Con-
formal contextual robust optimization. arXiv preprint
arXiv:2310.10003, 2023.

Meng Qi and Max Shen. Integrating Prediction/Estimation
and Optimization with Applications in Operations Man-
agement, pages 36–58. 10 2022. ISBN 978-0-9906153-
7-8. doi: 10.1287/educ.2022.0249.

Yaniv Romano, Rina Foygel Barber, Chiara Sabatti, and
Emmanuel Candès. With malice toward none: Assess-
ing uncertainty via equalized coverage. Harvard Data
Science Review, 2(2):4, 2020.
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A ALGORITHMS

A.1 DTBS ALGORITHM

Algorithm 2 Dual ECRO Training with Trust Region Solver

1: input: dataset Dψξ, max epochs T , max TRO steps K,
batch size N , protection level α

2: Initialize a warm start buffer {x̄1, . . . , x̄M} with each
x̄i ∈ X (ψi)

3: Initialize network parameters θ and t = 1
4: while not converged and (t ≤ T ) do
5: Sample a batch of N indices B ⊂ {1, . . . ,M}
6: for i ∈ B do
7: //Run TRO for up to K steps
8: xti, λ

t
i, ν

t
i ← TRO(x̄i, µθ(ψi),Σθ(ψi),K)

9: x̄i ← xti ▷ Update warm start
10: yti ← 1{ξi ∈ E(µθ(ψi),Σθ(ψi))}
11: end for
12: ϕt ← solve prob (8) for {(ψi, yti)}i∈B
13: compute LDT (θ) and∇θLDT (θ) for i ∼ B
14: θ ← θ − step size · ∇θLDT (θ)
15: end while
16: return θ

B SUPPLEMENTARY FOR
EXPERIMENTS

B.1 SYNTHETIC DATA GENERATION PROCESS

Our synthetic experiments rely on a set of mixtures of
three multivariate normal distributions created in a way
that produces a bimodal mixture of a normal distribution
with a possibly non-normal one with similar covariance
matrix. Specifically, each mixture model is constructed us-
ing the same three mean vectors µa =

[
0 0 0 0

]T
,

µb =
[
0 5 5 0

]T
, and µc = µb while the covariance

matrices take the form

Σa =


1 0 0.37 0
0 1.5 0 0

0.37 0 2 0.73
0 0 0.73 3

 ,
Σb = αΣa and Σc =

Σa
α for some α ∈ [0, 1], which con-

trols the non-normality of the second mode. Furthermore,
we introduce asymmetry in the mixture model by using the
mixing proportion pa = ϕ, pb = 1−ϕ

α+1 , and pc =
α(1−ϕ)
α+1 for

some ϕ ∈ [0, 1], which controls the dominance of the first
mode over the second. Furthermore, pb and pc are such that
the covariance matrix of the non-normal mixture is equal to
the covariance of the normal one, Σa.

B.2 SYNTHETIC CONDITIONAL DATA
GENERATION

To generate conditional samples for the synthetic data gen-
erated in section B.1, we first compute the conditional mean
µξ|ψ and covariance Σξ|ψ of ξ given the observed variables
ψ for each mixture component. Specifically, for each mean
vector µ and covariance matrix Σ associated with the mix-
ture components (denoted as a, b, and c in section B.1), we
calculate the conditional parameters as,

µξ|ψ = µξ +ΣξψΣ
−1
ψψ(ψ − µψ)

Σξ|ψ = Σξξ − ΣξψΣ
−1
ψψΣψξ

Next, we determine the conditional probability of each
mixture given the ψ observation using Bayes theorem as
P(mixture = i|ψ) ∝ P(ψ|mixture = i)P(mixture = i).
Finally, we can use these conditional probabilities to sample
new data points from the respective conditional distributions
of ξ given ψ.

B.3 PARAMETER TUNING PROCEDURE

In this section, we explore the parameter tuning methodol-
ogy applied to train the network introduced in section 6.3.
Given the time series nature of the data, we employ a rolling
window technique for network training. Our architecture de-
pends on a set of hyperparameters, defined as follows: lr for
learning rate, T for the maximum number of epochs, K for
the maximum TRO steps, B for the batch size, and α for the
target level. We partition the data into training and valida-
tion periods and examine the optimal combination through
grid search. For each combination, we train the network and
derive the optimal policy using the training data, then apply
it to the unseen validation data. The optimal combination is
selected based on the lowest CVaR on the validation dataset,
viewing this as a worst-case return minimization problem.

Regarding the DTbS algorithm, which balances between
two losses—the CRO objective and the conditional cov-
erage loss—we follow a specific strategy to identify the
best-performing model. At each epoch, we save the model
and initiate model selection only after achieving the required
training coverage. Subsequently, we retain the best models
meeting the coverage criteria until convergence conditions
are met. Among all saved models meeting the coverage re-
quirement, we choose the one with the best CVaR objective.

B.4 SENSITIVITY ANALYSIS

We conducted a sensitivity analysis of the validation per-
formance as a function of γ, which balances the CVaR loss
and the conditional coverage loss. The table below presents
the model performances on the validation data for different



values of γ. It illustrates how varying γ enables a trade-off
between the two loss objectives.

γ 0.01 0.1 0.5 0.9 0.99
avg. LECRO 1.30 1.05 1.04 1.06 1.05
avg. LCC 5.49 6.25 8.15 8.98 8.81

B.5 CONVERGENCE COMPARISON
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Figure 6: Convergence comparison between 5-steps TRO
(46 min) and full TRO (129 min).

B.6 ARCHITECTURE

...
...

...

...

...

input hidden

µ ∈ Rm

l d ∈ Rm

l tl ∈ R
m(m−1)

2

r ∈ R1

We construct a parametric model for µ and Σ using Cholesky
decomposition to ensure positive definiteness of Σ. We em-
ploy a shallow neural network architecture with m input
units, one hidden layer of size h, and 2m + m(m−1)

2 + 1
units in the output layer. We use tanh for activation functions
and softplus for diagonal elements of L to ensure strictly
positive values.

C ORACLE METHOD FOR SYNTHETIC
EXPERIMENTS

Given that experiments in section 6.2 are based on a syn-
thetic model, we can evaluate the level of sub-optimality of
the portfolio policies proposed by the different models. To
do so, we developed an “oracle”-based method that has ac-
cess to the true underlying joint distribution of ψ and ξ and
attempts to identify the “true” optimal value of the CVaR
objective, namely

min
x:Ψ→X

CVaR(−ξTx(ψ)).

We utilize a scenario tree {ψi, {ξij}Mj=1}Ni=1 to approximate
the joint distribution of (ψ, ξ), where ψi ∼ Fψ and ξij ∼
Fξ|ψi . Under such scenario tree, the CVaR optimization
problem reduces to a linear program:

min
{xi}Ni=1,λ,{sij}

N,M
i=1,j=1

λ+
1

NM(1− α)
N∑
i=1

M∑
j=1

sij (12a)

subject to sij ≥ 0 ,

∀i = 1, . . . , N, j = 1, . . . ,M
(12b)

sij ≥ −(ξij)Txi − λ ,
∀i = 1, . . . , N, j = 1, . . . ,M

(12c)

xi ≥ 0 , ∀i = 1, . . . , N (12d)

1Txi = 1 , ∀i = 1, . . . , N. (12e)

To be consistent we the test environment, we consider the
{ψi}Ni=1, with N = 1000, to take on the values of the test
set, while {ξij}Mj=1, for each i with M = 1000, are ran-
domly sampled from Fξ|ψi . This is repeated for the 10 prob-
lem instances. The average CVaR optimal value of problem
(12) is reported in Table 1 as the performance of the oracle
method.
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