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ABSTRACT

Polysemantic neurons – neurons that activate for a set of unrelated features – have
been seen as a significant obstacle towards interpretability of task-optimized deep
networks, with implications for AI safety. The classic origin story of polyseman-
ticity is that the data contains more “features" than neurons, such that learning
to perform a task forces the network to co-allocate multiple unrelated features to
the same neuron, endangering our ability to understand networks’ internal pro-
cessing. In this work, we present a second and non-mutually exclusive origin
story of polysemanticity. Specifically, we show that polysemanticity can arise
incidentally, even when there are ample neurons to represent all features in the data,
a phenomenon we term incidental polysemanticity. Using a combination of theory
and experiments, we show that incidental polysemanticity can arise due to multiple
reasons including regularization and neural noise; this incidental polysemantic-
ity occurs because random initialization can, by chance alone, initially assign
multiple features to the same neuron, and the training dynamics then strengthen
such overlap. Our paper concludes by calling for further research quantifying the
performance-polysemanticity tradeoff in task-optimized deep neural networks to
better understand to what extent polysemanticity is avoidable.

1 INTRODUCTION

Deep neural networks are widely regarded as difficult to mechanistically understand, especially at
the massive scales of modern frontier models. Such lack of interpretability is increasingly viewed
as a serious concern in AI Safety since highly capable models might behave in unpredictable and
undesirable ways (Hendrycks et al., 2023; Ngo et al., 2022). One outstanding challenge preventing
better mechanistic interpretability of networks is polysemanticity, a phenomenon whereby individual
neurons activate for unrelated input “features" (Olah et al., 2017; 2020). This phenomenon, why it
occurs and how to interpret networks’ computation nonetheless has also been studied for decades by
neuroscientists under the term of “mixed selectivity", e.g., (Asaad et al., 1998; Mansouri et al., 2006;
Warden & Miller, 2007; Rigotti et al., 2013; Barak et al., 2013; Raposo et al., 2014; Fusi et al., 2016;
Parthasarathy et al., 2017; Lindsay et al., 2017; Zhang et al., 2017; Johnston et al., 2020).

A leading hypothesis for why neural networks learn polysemanticitic representations is out of
necessity: if a task contains many more features than the number of neurons, then achieving high
performance at the task might force the network to co-allocate unrelated features to the same neuron
(Elhage et al., 2022). While intuitive and persuasive, in this work, we propose a second and non-
mutually exclusive hypothesis: that polysemanticity might be caused by non-task factors in the
training process. As such factors are not necessary to perform the task well, we call this form
incidental polysemanticity.

In this paper, we study two non-task factors that could produce incidentally polysemantic represen-
tations: l1 regularization and neural noise. We hypothesize that the mechanism of neural network
convergence from randomly initialized weight is contingent on the very slight correlation of certain
neurons with useful features 1. Gradient descent in the initial steps will amplify this correlation
until the feature is accurately represented in the model weights. Suppose activations are incen-
tivized to be sparse, as in the regularization setting. In thos case, features will be represented by

1Formally, the neuron’s activation is correlated with whether the feature is present in the input (where the
correlation is taken over the data points).
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Figure 1: A visualization of the non-linear autoencoder setup with tied weights W ∈ Rn×m, a single
hidden layer of size m, ℓ1 regularization with parameter λ, and a ReLU on the output layer.

a winner-take-all single neuron as opposed to a linear combination of neuronsOster et al. (2009).2
When a winner-take-all dynamic is present, the neuron that is initially most correlated with the given
feature will be the neuron that wins out and represents the feature when training completes. We term
single neuron multi-feature representation arising from the aforementioned mechanism as incidental
polysemanticity.

To illustrate the frequency at which incidental polysemanticity may arise, suppose that we have n
useful features to represent and m ≥ n neurons to represent them with (so that it is theoretically
possible for each feature to be represented by a different neuron). By symmetry, the probability that
the ith and jth feature are correlated with the same neuron, a collision, is exactly 1/m. As there are(
n
2

)
= n(n− 1)/2 pairs of features, we should expect

(
n
2

)
× 1

m = n(n−1)
2m = Θ

(
n2

m

)
collisions3.

Our experiments in small autoencoders demonstrate empirically this phenomenon, by which a
constant fraction of collisions results in polysemantic neurons, despite the abundance of neurons not
necessitating polysemanticity. Our main contributions are as follows:

• We describe two simple models which exhibit incidental polysemanticity: one based on l1
regularization (Section 2) and the other based on neural noise (Section 3).

• We study their sparsity and winner-take-all dynamics in mathematical detail, explore what
happens over training when features collide, and confirm experimentally that the number of
polysemantic neurons that are produced is a precise asymptotic match.

• In Section 4, we demonstrate that despite strong differences in their mathematical foundation
and polysemantic configurations, the models share similar overall qualitative behavior.

• Finally, in Section 5 we discuss implications for mechanistic interpretability and suggest
compelling future work.

2 INCIDENTAL POLYSEMANTICITY FROM REGULARIZATION

In this section, as a first step, we show how polysemanticity can arise from a push for sparsity that is
induced by l1 regularization term on the representations.

Network and data We consider a shallow nonlinear autoencoder similar to the setup described
by Elhage et al. (2022). The model is a shallow nonlinear autoencoder with n features (inputs or
outputs), a weight W ∈ Rn×m tying between the encoder and the decoder, and a single hidden
layer of size m with l1 regularization of parameter λ on the activations. The network has a ReLU
on the output layer with no biases, and is trained with the n standard basis vectors as data (so that

2Analogous phenomena are known under other names, such as “privileged basis".
3If there is a three-way collision between i, j and k, that would count as three collisions between i and j, i

and k, and j and k.
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the “features" are just individual input coordinates): that is, the input/output data pairs are (ei, ei)
for i ∈ [n], where ei ∈ Rn is the ith basis vector. The shallow nonlinear autoencoder’s output is
computed as y := ReLU

(
WWTx

)
.

The main difference compared to the shallow nonlinear autoencoder from Elhage et al. (2022) is
the addition of l1 regularization. The role of the l1 regularization is to push for sparsity in the
activations and therefore induce a winner-take-all dynamic. As a result, our model facilitates precise
and analytical study of incidental polysemanticity in particular. However, we believe our observations
generalize further (see Section 5 for more on this); for instance, even if l1 regularization is not widely
used in practice, recent work has also shown that other factors such as noisy data can implicitly
induce sparsity-favoring regularization (Bricken et al., 2023). We make the following assumptions on
parameter values:

• the weights Wik are initialized to i.i.d. normals of mean 0 and standard deviation Θ(1/
√
m)

so that the encodings Wi ∈ Rm start out with constant length.

• m ≥ n, such that, evidently, polysemanticity is not necessary in this setting.

• λ ≤ 1/
√
m such that l1 regularization does not impose total and degenerate sparsity on

weights.

Possible solutions Let Wi ∈ Rm be the ith row of W , which describes ith feature is encoded in
the hidden layer. When the input is ei, the output of the model can then be written as

(ReLU(W1 ·Wi), . . . ,ReLU(Wn ·Wi)),

To achieve perfect reconstruction of ei, we must have ∥Wi∥2 = 14 and Wi · Wj ≤ 0 for j ̸= i.
Letting fk ∈ Rm denote the kth basis vector in Rm. There are both monosemantic and polysemantic
solutions that satisfy these conditions:

• A monosemantic solution is to simply let Wi := fi: the ith hidden neuron represents the ith
feature.

• An example polysemantic solution is to have two features share the same neuron, with
opposite signs. For example, for each i ∈ [n/2], we could let W2i−1 := fi and W2i := −fi.
Such a setup satisfies the requisites as W2i−1 ·W2i = fi · (−fi) = −1 ≤ 0.

• In general, we can have a mixture of the above solutions in an arbitrary order, whereby each
neuron represents either 0, 1 or 2 features.

Learning dynamics and loss Let us consider total squared error loss L, which can be written as

∑
i

(1− ∥Wi∥2
)2

+
∑
j ̸=i

ReLU(Wi ·Wj)
2 + λ∥Wi∥1

 .

The training dynamics are:

dWi

dt
:= − ∂L

∂Wi

= 4
(
1− ∥Wi∥2

)
Wi (feature benefit)

− 4
∑
j ̸=i

ReLU (Wi ·Wj)Wj (interference)

− λ sign (Wi) (regularization)

where t is the training time (which corresponds to the learning rate multiplied by the number of
training steps). For simplicity, we’ll ignore the constants 4 going forward5.

4We use ∥·∥ to denote Euclidean length (l2 norm), and ∥·∥1 to denote Manhattan length (l1 norm).
5This is equivalent to making λ four times larger and making training time four times slower.
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The gradient can be decomposed into three intuitive “forces" acting on the encodings Wi: (1)“feature
benefit": encodings want to have unit length; (2) “interference": different encodings avoid pointing
in similar directions; (3) “regularization": encodings aim to have small l1-norm (which pushes all
nonzero weights towards zero with equal strength).

The winning neuron takes it all Setting aside the interference force momentarily, we aim to devise
out the mechanism and speed by which regularization will push towards sparsity in some encoding Wi.
As the only forces are feature benefit and regularization, the other encodings Wj have no influence

on Wi. Assuming ∥Wi∥ < 1, each weight Wik is pushed up with strength
(
1− ∥Wi∥2

)
Wik by the

feature benefit force and pushed down with strength λ sign(Wik) by the regularization force.

Crucially, the upwards push is relative to how large Wik is, while the downwards push is absolute.
This means that weights whose absolute value is above some threshold θ will grow, while those below
the threshold will shrink, creating a “rich get richer and poor get poorer" dynamic that will push for
sparsity. This threshold is determined by

(1− ∥Wi∥2)Wik = λ sign(Wi) ⇐⇒ |Wik| =
λ

1− ∥Wi∥2

By letting θ := λ
1−∥Wi∥2 , we have

d|Wik|
dt

= (1− ∥Wi∥2)|Wik|︸ ︷︷ ︸
feature benefit

−λ1[Wik ̸= 0]︸ ︷︷ ︸
regularization

=


(1− ∥Wi∥2)︸ ︷︷ ︸

constant in k

(|Wik| − θ)︸ ︷︷ ︸
distance from threshold

if Wik ̸= 0

0 otherwise.

We call this combination of feature benefit and regularization force the sparsity force. It uniformly
stretches the gaps between (the absolute values of) different nonzero weights. Note that the threshold
θ is not fixed: as Wi gets sparser, ∥Wi∥2 will get closer to 1, which increases the threshold and allows
the elimination of larger and larger entries, until only one remains.

How quickly does sparsification occur? In order to determine the pace at which Wi sparsifies, we
will look at the l1 norm ∥Wi∥1 =

∑
k |Wik| as a proxy for how many nonzero coordinates are left.

Since we have ∥Wi∥ ≈ 1 throughout, if Wi has m′ nonzero values at any point in time, their typical
value will be ±1/

√
m′. This in turn implies ∥Wi∥1 ≈ m′ 1√

m′ =
√
m′.

Since the sparsity force is proportional to 1− ∥Wi∥2, we seek to determine the range of values ∥Wi∥
may take over time. As ∥Wi∥ changes relatively slowly, we can achieve useful insights by assuming
d∥Wi∥2

dt is 0:

0 ≈ d∥Wi∥2

dt
= 2

dWi

dt
·Wi = 2

(1− ∥Wi∥2
)
∥Wi∥2︸ ︷︷ ︸

from feature benefit

− λ∥Wi∥1︸ ︷︷ ︸
from regularization

 ,

which implies 1 − ∥Wi∥2 ≈ λ∥Wi∥1

∥Wi∥2 . Plugging this back into d∥Wi∥1

dt =
∑

k
d|Wik|

dt and using
reasonable assumptions about the initial distribution of Wi, we prove (see Appendix B for details)
that ∥Wi∥1 decreases proportionally to 1/λt with training time t:

∥Wi(t)∥1 =


Θ(

√
m) t ≤ 1

λ
√
m

Θ
(

1
λt

)
1

λ
√
m

≤ t ≤ 1
λ

Θ(1) t ≥ 1
λ .

Concretely, let us approximate the number m′ of nonzero cooordinates as ∥Wi∥21. Over the course of
training, m′ will start at m, decrease as 1/(λt)2, then reach 1 at training time t = Θ(1/λ).
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Figure 2: Number of non-zero coordinates m′ in Wi and the value of ||Wi||1 plotted with training
steps. The simulation confirms the speed of sparsification hypothesis.

Numerical simulations In Figure 2 we compare our theoretical predictions for ∥Wi∥1 and m′ (if
the constants hidden in Θ(·) are assumed to be 1) to their true values over training time when the
interference force is turned off. The specific values of parameters are m := 105 and λ := 10−5,
and the initial weights Wik were generated as independent mean-0 normals with standard deviation
0.9/

√
m.

2.1 INTERFERENCE ARBITERS COLLISIONS BETWEEN FEATURES

Resuming our consideration of the interference force in the gradient, we argue informally that the
interference is initially weak if m ≥ n, and only becomes significant later in training. In cases where
two of the encodings Wi and Wj have a coordinate k such that Wik and Wjk are both large and have
the same sign, the larger of the two wins out due to the interference force.

How strong is the interference? First, observe that in the expression for the interference force
on Wi is−

∑
j ̸=i ReLU(Wi ·Wj)Wj , and each Wj contributes only if the angle it forms with Wi is

less than 90◦. Thus, the force will primarily be in the same direction as Wi, but opposite. We can get
a good grasp on the strength of the force by measuring its component in the direction of Wi by taking
an inner product with Wi.

We have
(∑

j ̸=i ReLU(Wi ·Wj)Wj

)
·Wi =

∑
j ̸=i ReLU(Wi ·Wj)

2. Initially, each encoding is a

vector of m i.i.d. normals of mean 0 and standard deviation Θ(1/
√
m), so the distribution of the

inner products Wi ·Wj is symmetric around 0 and also has standard deviation Θ(1/
√
m). Therefore,

ReLU(Wi ·Wj)
2 has mean Θ(1/m), and the sum has mean Θ(n/m). As long as m ≥ n, this is

dominated by the feature benefit force: indeed, the same computation for the feature benefit gives((
1− ∥Wi∥2

)
Wi

)
·Wi =

(
1− ∥Wi∥2

)
∥Wi∥2 = Θ(1)

as long as Ω(1) ≤ ∥Wi∥2 ≤ 1− Ω(1).

Moreover, over time, the positive inner products Wi ·Wj > 0 will tend to decrease exponentially. This
is because the interference force on Wi includes the term −ReLU(Wi ·Wj)Wj and the interference
force on Wj includes the term −ReLU(Wi ·Wj)Wi. Together, they affect Wi ·Wj as

(−ReLU(Wi ·Wj)Wj)·Wj+(−ReLU(Wi ·Wj)Wi)·Wi = − (Wi ·Wj)
(
∥Wi∥2 + ∥Wj∥2

)
= −Θ(Wi ·Wj)

5
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Figure 3: Number of polysemantic neurons against the number of neurons in the hidden layer for 16
different training runs of the non-linear autoencoder with n = 256.

as long as ∥Wi∥2 , ∥Wj∥2 = Θ(1), which is the case at the start of training and persists throughout
training.

Benign and malign collisions By contrast, the interference between two encodings Wi and Wj

starts to matter significantly when one coordinate is affected much more strongly than the others
(rather than affecting all coordinates proportionally, as with the feature benefit force). This is the
case when Wi and Wj share only one nonzero coordinate: a single k such that Wik,Wjk ̸= 0. Under
this scenario, the interference force −ReLU(Wi ·Wj)Wj only affects the coordinates of Wi that are
nonzero in j, and likely is not strong enough to counter the l1-regularization and revive coordinates
of Wi that are currently zero. Therefore, only Wik can be affected by this force.

When this happens, there are two cases:

• If Wik and Wjk have opposite signs, we have Wi ·Wj = WikWjk < 0. Due to the ReLU
clipping the value to 0, there is no effect and we term this case a benign collision.

• If Wik and Wjk have the same sign, we have Wi ·Wj = WikWjk > 0, and both weights
will be under pressure to shrink, with strength −WikW

2
jk and −W 2

ikWjk respectively.
Depending on the relative size of the weights, one or both of them will rapidly decay to 0.
As a result, kth neuron cannot represent the corresponding features and we term this case a
malign collision.

Polysemanticity will happen when the largest6 coordinates in encodings Wi and Wj get into a benign
collision. This event occurs with probability

1

m︸︷︷︸
largest weight in Wi is also largest in Wj

× 1

2︸︷︷︸
opposite signs

=
1

2m
,

And therefore we should expect the number of polysemantic neurons to be, by the end, roughly:(
n

2

)
× 1

2m
∼ n2

4m

Experiments: Training networks on n ≈ 256 and m ranging from 256 to 4096 shows that this
trend of Θ

(
n2

m

)
does hold, and the constant 1

4 seems to be fairly accurate as well (Figure 3).

6This would not necessarily be the largest weight at initialization, since there might be significant collisions
with other encodings, but the largest weight at initialization is still the most likely to win the race all things
considered.
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3 ANOTHER INCENTIVE FOR SPARSITY: NOISE IN THE HIDDEN LAYER

In the toy model considered thus far, the encodings were incentivized to be sparse by an explicit l1
regularization term that was added into the loss. While this choice made the toy model simple to
work with, this is not the most common reason why sparse representations occur in practice. In this
section, loosely inspired by Blanc et al. (2020) and Bricken et al. (2023), we show that sparsity can
arise when certain types of noise are present in the hidden layer.

3.1 MODIFIED MODEL

We now consider a model identical to the previous one except that:

• the loss no longer contains the l1 regularization term λ
∑

i∥Wi∥1;

• every time the auto-encoder is run, noise from some noise distribution D is added to each
neuron in the hidden layer.

The output is computed as y := ReLU
(
W
(
WTx+ ξ

))
for ξ ∈ Rm, where each coordinate ξj is

independently drawn from D, and the loss for each input x is defined as

L := ∥y − x∥2 =
∥∥ReLU(W (WTx+ ξ

))
− x
∥∥2 .

Throughout, we will assume that the noise distribution D is symmetric around 0, has variance σ2,
and fourth central moment µ4. Note that this loss is fully rotationally symmetric in terms of the
hidden layer’s space Rm, except for possibly the noise ξ: if a rotation were applied right before the
hidden layer and undone right after, the space would be invariant. In particular, if D was a normal
distribution N

(
0, σ2

)
, the rotational symmetry would be conserved and there would be no privileged

directions for the encoding vectors to align to. In the remainder of this section, we show through
both mathematical analysis and experiments that when the noise ξj has negative excess kurtosis
(which includes many bounded distributions, such as bipolar noise or the uniform distribution over
any interval), then the encodings are pushed towards sparsity.

3.2 MATHEMATICAL ANALYSIS

Concretely, we compute the update after the tth step of training, and show that the expected loss at
the (t+ 1)th step has a term which involves both the fourth norms ∥Wi∥4 of the encodings and the
excess kurtosis of the noise distribution D.

Since the computations are rather lengthy, we defer the details to Appendix C due to space constraints,
but the summary is that:

• if D is bipolar noise ±σ, which has excess kurtosis −2, then this would push towards
sparsity;

• if D is normal noise N (0, σ2), which has excess kurtosis 0, then this will not push towards
sparsity (and indeed this would maintain the rotational symmetry of the hidden space Rm,
and sparsity is not rotationally symmetric).

4 COMPARING l1 REGULARIZATION AND NOISE

In this section, we compare the ways that l1 regularization and noise induce sparsity and polyseman-
ticity through various experiments. In Figure 4 we train autoencoders bipolar and normal noise of
various intensities and plot the average fourth norms ∥Wi∥44 of the encodings as a proxy for how
sparse they are. We observe that as expected,

• bipolar noise pushes encodings towards sparsity, and the higher the standard deviation σ is,
the faster this is;

• on the other hand, in the presence of normal noise, there is no observable effect on sparsity,
and it only makes the fourth norms oscillate.

7
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Figure 4: Sparsification process under bipolar and normal noise of various magnitudes. The line 3/m
is added in as a reference since for large m it is asymptotic to the fourth norm of a random unit vector.

Figure 5: Final fourth norms under l1 regularization and bipolar noises of various magnitudes. The
line 3/m is the asymptotical value of the fourth norm of a random unit vector.

In Figure 5, we dig deeper into the effect of the regularization coefficient λ (Section 4) and the
standard deviation σ (Section 4) on the sparsity after a fixed number of steps. We confirm that
regularization and noise of small magnitudes have almost no effect on sparsity and the effect generally
grows with magnitude, but the effect from σ is much stronger since it appears as a 4th power in the
implicit regularization, whereas l1 regularization is linear in λ. When the regularization and noise get
extremely large, we see a drop in the fourth norms due to an overall drop in the magnitudes ∥Wi∥2 of
the encodings, but the reasons differ slightly:

• when λ is very high, the l1 regularization pushes down on all coordinates of each encoding
Wi strongly, and once that threshold becomes large enough, the feature benefit force is no
longer strong enough to counteract it, even if the encoding Wi is perfectly sparse;

• when σ is very high, the direct corruption that the noises induces on the pre-ReLU outputs
becomes significant, so the lengths ∥Wi∥2 of the encodings are incentivized to shorten.

In Figure 6, we consider a the training dynamics of a typical instance under bipolar noise. In Section 4,
we separately plot the fourth-norm of each encoding Wi, and observe that even though most of the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Sparsification process for a specific instance at σ = 0.01 of bipolar noise, and the final
weight matrix after 1M training steps.

encodings reach almost perfect sparsity (indicated by ∥Wi∥44 ≈ 1), the encoding corresponding
to the orange curve seems to be stuck below ∥Wi∥44 = 0.2. This can be explained by looking at
Section 4, which visualizes the corresponding final weight matrix W . The second encoding row W2

has significant weights in the 7 coordinates that were chosen by the other encodings, and that these
weights all have comparable absolute values. What’s happening is a fascinating interplay between the
interference and the push for sparsity.

• On the one hand, the push for sparsity should incentivize W2 to “pick” one of these 7
coordinates and increase its absolute value at the detriment of the other 6. Indeed, in all
cases, the sign of W2j is the opposite of the sign of Wij for the encoding i which maximizes
|Wij |, so naively, this shouldn’t cause any interference.

• But the smaller weights in the matrix W provide a hint to what is actually happening: in
each column j for which there is some i with |Wij | ≈ 1, the other encodings Wi′ have a
small but non-negligible weight with the opposite sign. This is detrimental in terms of the
implicit regularization term, but it ensures that the dot product Wi′ ·Wi remains negative
(or at least small) even after a small amount of noise is applied to the hidden layer on input
ei′ . If W2 were to choose one of these coordinates j, then there would be no such strategy
available: indeed, if Wi and W2 were equal the basis vectors ej and its opposite −ej , then
one of Wi′ ·Wi or Wi′ ·W2 must be nonnegative, and changing the value of Wi′j in either
direction would only make things worse. So W2 is kept from applying this strategy, and is
instead forced to compromise between all 7 coordinates in order to keep interference at a
minimum.

This phenomenon is strikingly different from the type of polysemanticity that we studied in the
previous sections. It also explains why the fourth norms were not quite approaching 1 in Figure 4.

5 DISCUSSION AND FUTURE WORK

Until now, the mechanistic interpretability literature has mostly studied polysemanticity in settings
where the encoding space has no privileged basis: the space can be arbitrarily rotated without
changing the dynamics, and in particular the corresponding layer doesn’t have non-linearities or
any regularization other than l2. In such settings, the features can be represented arbitrarily in the
encoding space, and we only observe superposition (non-orthogonal encodings) when there are more
features than dimensions.

When there is no privileged basis, it is always technically feasible to get rid of superposition by
simply increasing the number of neurons so that it matches the number of features. Eliminating
polysemanticity that is due to non-task factors could require completely different tools, and seems

9
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particularly challenging given that (as we saw in Figure 6), that kind of polysemanticity can happen
for a wide variety of sometimes surprisingly hard-to-predict incidental reasons.

In particular, it is much less realistic to do away with the kind of incidental polysemanticity that we
demonstrate in Section 2 by simply increasing the number of hidden neurons, since we saw that it
can happen until the number of hidden neurons is roughly equal to the number of features squared.
For instance, here is one possible way one might get rid of incidental polysemanticity in a neuron
that currently represents two features i and j: Duplicate that neuron, divide its outgoing weights by 2
(so that this doesn’t affect downstream layers), add a small amount of noise to the incoming weights
of each copy, then run gradient descent for a few more steps. This might cause the copies to diverge
away from each other, with one of the copies eventually taking full ownership of feature i while the
other copy takes full ownership of feature j.

In addition, it would be interesting to find ways to distinguish incidental polysemanticity from
necessary polysemanticity in practice. Can we distinguish them based only on the final, trained state
of the model, or do we need to know more about what happened during training? Is “most" of the
polysemanticity in real-world neural networks necessary or incidental? How does this depend on the
architecture and the data?

In this paper, we presented a new challenge for mechanistic interpretability beyond traditional super-
position, demonstrating that polysemanticity can be an inherent outcome even in overparameterized
networks. Since polysemantic neurons may emerge due to incidental factors rather than task-related
constraints, this work opens up the possibility to understand complex feature representations in
deep neural networks, where training dynamics decrease our ability to interpret and predict network
behavior.

10
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A GENERALITY OF THE MODEL

We chose the toy model in Section 2 to be as simple as possible (and to match Elhage et al. (2022) as
closely as possible) while still exhibiting incidental polysemanticity. Nevertheless, in this section, we
want to point out that some of these choices are actually without loss of (much) generality.

Tied weights In our model, the encoding and decoding matrices are tied together (i.e. the encoding
matrix WT is forced to be the transpose of the decoding matrix W ). This assumption makes sense
because even if they were kept independent and initialized to different values, they would naturally
acquire similar values over time because of the learning dynamics. Indeed, the ith column of the
encoding matrix and the ith row of the decoding matrix “reinforce each other" through the feature
benefit force until they have an inner product of 1, and as long as they start out small or if there is
some weight decay, they would end up almost identical by the end of training.

Basis vectors as inputs If the input features are not the canonical basis vectors but are still
orthogonal (and the outputs are still basis vectors), then we could apply a fixed linear transformation
to the encoding matrix and recover the same training dynamics. And in general it makes sense to
consider orthogonal input features, because when the features themselves are not orthogonal (or
at least approximately orthogonal), the question of what polysemanticity even is becomes quite
confused.

B RIGOROUS ANALYSIS OF THE SPEED OF SPARSIFICATION UNDER l1
REGULARIZATION

For m′ := #{k | Wik ̸= 0}, one can write that

−d∥Wi∥1
dt

= λm′︸︷︷︸
regularization

−
(
1− ∥Wi∥2

)
∥Wi∥1︸ ︷︷ ︸

feature benefit

=
λ

∥Wi∥2
(
m′∥Wi∥2 − ∥Wi∥21

)
(by balance condition)

=
λ(m′)2

∥Wi∥2

(
∥Wi∥2

m′ −
(
∥Wi∥1
m′

)2
)

=
λ(m′)2

∥Wi∥2
×

∑
k:Wik ̸=0

|Wik| −
∥Wi∥1
m′︸ ︷︷ ︸

“deviation from mean”


2

m′︸ ︷︷ ︸
“sample variance over nonzero weights”

,

where the last inequality is essentially the identity

E
[
X2
]
− E[X]2 = Var[X]

where the random variable X is drawn by picking a k at uniformly at random in {co{k} | Wik ̸= 0}
and outputting |Wik|.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 7: We plot the relative variance over time in the numerical simulation, showing that these
lower and upper values for Wi(0) itself (in red) and for an idealized version of Wi(0) that hits regular
percentiles (in pink, dashed).

If X’s relative variance Var[X]

E[X]2
is a constant, then

−d∥Wi∥1
dt

=
λ(m′)2

∥Wi∥2
Var[X]

=
λ(m′)2

∥Wi∥2
Θ
(
E[X]2

)
= Θ

(
λ

∥Wi∥2
∥Wi∥21

)
= Θ

(
λ∥Wi∥21

)
, (assuming ∥Wi∥2 = Θ(1))

or if we define w := 1
∥Wi∥1

(which is a proxy for the “typical nonzero weight", and is ≈ θ when
∥Wi∥2 ≈ 1), this becomes

dw

dt
= Θ(λ),

so w(t) = w(0) + Θ(λt) and

∥Wi(t)∥1 =
1

Θ (w(0) + λt)
=

1

Θ
(

1√
m

+ λt
)

with high probability in m.

Empirically, the relative variance is indeed a constant not too far from 1 (see Figure 7). But why is
that?

Suppose that currently Wi1 ≥ Wi2 ≥ · · · ≥ Wim ≥ 0, and let’s look at the relative difference
between the biggest weight Wi1 and some other weight Wik > 0, i.e.

γk :=
Wi1 −Wik

Wi1
= 1− Wik

Wi1
.

Using logarithmic derivatives, we have

dγk
dt

= −d(Wik/Wi1)

dt
= −Wik

Wi1

(
dWik/dt

Wik
− dWi1/dt

Wi1

)

14
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Since feature benefit is a relative force, it contributes nothing to the difference of the relative
derivatives of Wik and Wi1, so we just have the contribution from regularization

dγk
dt

= −Wik

Wi1

(
−λ

Wik
− −λ

Wi1

)
=

λWik

Wi1

(
1

Wik
− 1

Wi1

)
=

λ

Wi1

(
1− Wik

Wi1

)
=

λ

Wi1
γk.

Note that this differential equation doesn’t involve Wik at all! This means that there is a single
function γ(t) defined by 

γ(0) = 1

dγ

dt
(t) =

λ

Wi1(t)
γ(t)

such that for all k, as long as Wik(t) > 0,

1− Wik(t)

Wi1(t)
= γ(t)

(
1− Wik(0)

Wi1(0)

)
⇒ Wik(t) = Wi1(t) (1− γ(t))︸ ︷︷ ︸

doesn’t depend on k

+
γ(t)Wi1(t)

Wi1(0)︸ ︷︷ ︸
doesn’t depend on k

Wik(0).

In other words, the relative spacing of the nonzero weights never change: their change between times
0 and t is a single affine transformation.

Since the relative variance is scaling-invariant, we can think of this affine transformation as a simple
translation. The value of the relative variance of the remaining nonzero weights Wi1(t), . . . ,Wim′(t)
at some point in time must be of the following form:

• take the initial values Wi1(0), . . . ,Wim(0),

• translate them left by some amount which leaves m′ weights positive,

• drop the values that have become ≤ 0,

• then compute the relative variance of what’s left.

In particular, the relative variance when m′ weights are left must lie between the relative variance of(
Wi1(0)−Wi(m′+1)(0), . . . ,Wim′(0)−Wi(m′+1)(0)

)
and the relative variance of

(Wi1(0)−Wim′(0),Wi2(0)−Wim′(0), . . . , 0)

(since these extremes have the same variance but the latter has a smaller mean).

These relative variances are functions of m′ and the initial value of Wi only, and (when Wi is made
of mean-0 normals) they will be Θ(1) with high probability in m′. See the plot (see Figure 7) for
a depiction of the lower and upper values for Wi(0) itself (shown in red), and also for an idealized
version of Wi(0) that hits regular percentiles (in pink, dashed). The orange curve lies within the red
curves, and that the red and pink curves only start to diverge significantly at later time steps when m′

is smaller, for reasons detailed above.
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C GRADIENT AND LOSS COMPUTATIONS UNDER NOISE

C.1 GRADIENT AT THE PREVIOUS STEP

To simplify analysis, we assume that after t steps of training, the representations are fully learned and
there is no interference. More precisely,

1. each encoding Wi has norm ∥Wi∥2 = 1;
2. dot product Wi ·Wi′ between pairs of different encodings (i ̸= i′) is sufficiently negative

the noise ξ will not “accidentally turn on” the ReLU’s at output coordinate i′ when the input
is the ith basis vector: (Wi + ξ) ·Wi′ with high probability.

Let’s compute the gradient at the tth step. To make the math easier to follow, let’s temporarily rename
the encoding matrix to W e and the decoding matrix to W d, even though these are the same matrix W .
For a input x, let’s consider the values of the hidden layer h, the output y, the error ϵ and the loss L:

h := (W e)
T
x+ ξ ∈ Rm

y := ReLU
(
W dh

)
∈ Rn

ϵ := y − x ∈ Rn

L := ∥ϵ∥2 ∈ R.

Let x is the ith basis vector ei. Then

• h = (W e)Tei + ξ = W e
i + ξ;

• the output y is 0 everywhere (with ReLUs turned off) except for the ith coordinate, which is
yi = W d

i ·W e
i +W d

i · ξ = 1 +W d
i · ξ, so ϵi = W d

i · ξ;

• ∂L
∂oi

= 2ϵi so ∂L
∂Wd

i

= ∂L
∂oi

∂oi
∂Wd

i

= 2ϵih = 2
(
W d

i · ξ
)
(W e

i + ξ);

• ∂L
∂h = ∂L

∂oi
∂oi
∂h = 2

(
W d

i · ξ
)
W d

i so ∂L
∂W e

i
= ∂L

∂h
∂h

∂W e
i
= ∂L

∂h In = 2
(
W d

i · ξ
)
W d

i .

Overall, recalling that W e = W d = W , we have ∂L
∂Wi

= 2(Wi · ξ)(2Wi + ξ), and all other gradients
are zero on this input. We will see that the part which will push for sparsity is 2(Wi · ξ)ξ; everything
else will either cancel out, almost cancel out, or give rotationally symmetric terms.

By gradient descent, we have W (t+1) := W (t) − η ∂L
∂W , so that for each i ∈ [n],

W
(t+1)
i = W

(t)
i − 2η(Wi · ξ)(2Wi + ξ).

Expected loss at the next step At the next step, we get error W
(t+1)
i ·

(
W

(t+1)
i + ξ′

)
− 1 =∥∥∥W (t+1)

i

∥∥∥2 − 1 +W
(t+1)
i · ξ′, where ξ′ is the new noise, so the expected loss on input ei is

E

[(∥∥∥W (t+1)
i

∥∥∥2 − 1 +W
(t+1)
i · ξ′

)2
]

= E

[(∥∥∥W (t+1)
i

∥∥∥2 − 1

)2
]
+ E

[(
W

(t+1)
i · ξ′

)2]

+ 2E

(∥∥∥W (t+1)
i

∥∥∥2 − 1

)
W

(t+1)
i · ξ′︸︷︷︸

E[·]=0


= E

[(∥∥∥W (t+1)
i

∥∥∥2 − 1

)2
]

︸ ︷︷ ︸
involves ξ only

+E

[(
W

(t+1)
i · ξ′

)2]
︸ ︷︷ ︸

involves ξ and ξ′

,
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and we can simplify the second part to

E

[(
W

(t+1)
i · ξ′

)2]
= σ2 E

[∥∥∥W (t+1)
i

∥∥∥2] .
Since we’ve reduced both terms to quantities that involve only

∥∥∥W (t+1)
i

∥∥∥2, let’s study it closer:∥∥∥W (t+1)
i

∥∥∥2 = ∥Wi − 2η(Wi · ξ)(2Wi + ξ)∥2

= ∥Wi∥2 − 4η(Wi · ξ)
(
2∥Wi∥2 + (Wi · ξ)

)
+ 4η2(Wi · ξ)2

(
4∥Wi∥2 + 4(Wi · ξ) + ∥ξ∥2

)
= 1− 4η(Wi · ξ)(2 + (Wi · ξ))

+ 4η2(Wi · ξ)2
(
4 + 4(Wi · ξ) + ∥ξ∥2

)
First, let’s deal with the part which involves the new noise ξ′. Because the noise distribution D is
symmetric around 0, we have E[(Wi · ξ)] = E

[
(Wi · ξ)3

]
= 0, so

E

[∥∥∥W (t+1)
i

∥∥∥2]
= 1− 4η(1− 4η) E

[
(Wi · ξ)2

]
+ 4η2 E

[
(Wi · ξ)2∥ξ∥2

]
and E

[
(Wi · ξ)2

]
= σ2∥Wi∥2 = σ2, while

E
[
(Wi · ξ)2∥ξ∥2

]
= E

[(∑
Wijξj

)2∑
ξ2j

]
= E

[(∑
W 2

ijξ
2
j

)∑
ξ2j

]
= ∥Wi∥2

(
µ4 + (m− 1)σ4

)
so the part of the expected loss involving both ξ and ξ′ is

σ2
(
1− 4η(1− 4η)σ2 ± 4η2

(
µ4 + (m− 1)σ4

))
,

which is constant and therefore will not push Wi towards or away from sparsity.

Let’s now move to the more interesting part, the error that involves only the old noise ξ. We have∥∥∥W (t+1)
i

∥∥∥2 − 1 = −4η
(
2(Wi · ξ) + η(Wi · ξ)2

)
±O

(
η2
)
,

so

E

[(∥∥∥W (t+1)
i

∥∥∥2 − 1

)2
]

= 16η2 E
[
4(Wi · ξ)2 + 4(Wi · ξ)3 + (Wi · ξ)4

]
±O

(
η3
)

= 16η2
(
4σ2 + E

[
(Wi · ξ)4

])
±O

(
η3
)
.

The only part which could significantly sway Wi is 16η2 E
[
(Wi · ξ)4

]
, and indeed it does:

E
[
(Wi · ξ)4

]
=
∑
j

W 4
ijµ4 + 6

∑
j ̸=j′

W 2
ijW

2
ij′σ

4

=
∑
j

W 4
ij

(
µ4 − 3σ4

)
+ 3

σ2
∑
j

W 2
ij

2

= 3σ4∥Wi∥42 + ∥Wi∥44
(
µ4 − 3σ4

)
.
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Eliminating the rotationally symmetric part, we obtain the implicit regularization-like term
16η2σ4∥Wi∥44

(
µ4

σ4 − 3
)
, where µ4

σ4 − 3 is the excess kurtosis of the noise distribution D. This
means that when D has negative excess kurtosis, this part of the loss will incentivize Wi to maximize
its fourth norm ∥Wi∥4, which under the constraint that ∥Wi∥2 = 1 means pushing towards sparsity:
indeed,

• if Wij = ± 1√
m

for all j then ∥Wi∥44 = 1/m,

• while if Wij = ±1 for some j and 0 elsewhere then ∥Wi∥44 = 1.

Thus, in summary we find that:

• Under our hypotheses, we easily obtain that the gradient on input ei at the tth step is
∂L
∂Wi

= 2(Wi · ξ)(2Wi + ξ) (details in ??), and therefore the update is given as W (t+1)
i =

W
(t)
i − 2η(Wi · ξ)(2Wi + ξ).

• Plugging this into the error W (t+1)
i ·

(
W

(t+1)
i + ξ′

)
− 1 at the (t+ 1)th step, we observe

that the expected loss at the (t+ 1)th is mostly made out of rotationally symmetric terms
(which involve only constants and l2 norms ∥Wi∥2) and lower-order terms, but there is one
significant and interesting term which appears due to an interaction with the noise at either
steps and takes the form 16η2 E

[
(Wi · ξ)4

]
= 3σ416η2

(
∥Wi∥42 + ∥Wi∥44

(
µ4 − 3σ4

))
.
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