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ABSTRACT

The information bottleneck (IB) principle is an important framework that provides
guiding principles for representation learning. Most works on representation
learning and the IB principle focus only on classification and neglect regression. Yet
the two operate on different principles to align with the IB principle: classification
targets class separation in feature space, while regression requires feature continuity
and ordinality with respect to the target. This key difference results in topologically
different feature spaces. Why does the IB principle impact the topology of feature
space? In this work, we establish two connections between them for regression
representation learning. The first connection reveals that a lower intrinsic dimension
of the feature space implies a reduced complexity of the representation Z, which
serves as a learning target of the IB principle. This complexity can be quantified
as the entropy of Z conditional on the target space Y, and it is shown to be an
upper bound on the generalization error. The second connection suggests that to
better align with the IB principle, it’s beneficial to learn a feature space that is
topologically similar to the target space. Motivated by the two connections, we
introduce a regularizer named PH-Reg, to lower the intrinsic dimension of feature
space and keep the topology of the target space for regression. Experiments on
synthetic and real-world regression tasks demonstrate the benefits of PH-Reg.

1 INTRODUCTION

Regression is a fundamental task in machine learning in which input samples are mapped to a
continuous target space. Representation learning is important for regression as it empowers models
to automatically extract, transform, and leverage relevant information from data, leading to improved
performance. The information bottleneck principle (Shwartz-Ziv & Tishby, 2017) provides a the-
oretical framework and guiding principle for learning the representation. It suggests that neural
network aims to learn a representation Z which contains sufficient information about the target Y but
minimal information about the input X. For representation Z, the sufficiency retains the necessary
information about Y, while the minimality reduces Z’s complexity and prevents overfitting. The
optimal representation, as specified by Achille & Soatto (2018a;b), is the most useful(sufficient),
minimal, and invariant to nuisance factors, and the minimality is deeply linked to the invariance.
However, the studies of (Achille & Soatto, 2018a;b) are only specified for classification. In fact,
many works study representation learning from a classification point of view (Ma et al., 2018; Zhu
et al., 2018) but ignore the equally important task of regression.

While both regression and classification follow the minimal and sufficient representation learning
target as suggested by the IB principle, there are some fundamental differences. For example,
regression representations are commonly continuous and form an ordinal relationship to align with
the IB principle (Zhang et al., 2023). By contrast, classification shortens the distance of features
belonging to the same class to learn minimal representation and increases the distance of features
belonging to different classes to learn sufficient representation (Boudiaf et al., 2020), which leads to
disconnected representations (Brown et al., 2022a). The continuity represents the 0th Betti number
in topology, influencing the ‘shape’ of the feature space. We thus wonder what the connections are
between the topology of the feature space and the IB principle for regression representation learning.

In this work, we establish two connections between the topology of the feature space and the IB
principle for regression representation learning. To establish the connections, we first demonstrate
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Figure 1: (a) Visualization of the feature space (left) and the ‘Mammoth’ shape target space (right),
see Sec. 5.1 for details. The feature space is topologically similar to the target space . (b) Visualization
of the feature space from depth estimation task. As shown in the gray quadrilateral, enforcing a lower
intrinsic dimension can reduce the unnecessary H(Z|Y = yi) corresponding to the solution space of
f(z) = ŷi. Here, ŷi is the predicted depth and the black arrow is a linear regressor.

that the IB principle can be formulated as an optimization problem minimizing both H(Y|Z) and
H(Z|Y). Specifically, for regression, the H(Z|Y) is linked to the minimality of Z and serves as an
upper-bound on the generalization error.

The first connection suggests that decreasing the intrinsic dimension of the feature space results
in a lower H(Z|Y), indicating improved generalization performance. The intrinsic dimension is a
fundamental topology property of data representation, which can be regarded as the minimal number
of coordinates to describe the representation without significant information loss (Ansuini et al., 2019;
Gong et al., 2019). Figure 1(b) provides a visualization of the feature space for depth estimation.
In this figure, the predicted depth ŷ is obtained by mapping the features (represented as dots) to
the black arrow (indicating a linear regressor). The gray quadrilateral in Figure 1(b) represents the
solution space of f(z) = ŷi, which is closely related to the H(Z|Y = yi). Enforcing a lower
intrinsic dimension can encourage this solution space squeezed to be a point, which implies a lower
H(Z|Y = yi). Encourage a lower H(Z|Y = yi) for all the i will result in a lower H(Z|Y). The
first connection suggests learning a lower intrinsic dimension feature space for a lower H(Z|Y).

The second connection shows the representation Z is homeomorphic to the target space Y when
both the H(Y|Z) and the H(Z|Y) are minimal. The homeomorphic between two spaces can be
intuitively understood as one can be continuously deformed to the other, and in the topology view, two
spaces are considered the same if they are homeomorphic. Figure 1(a) provides a t-SNE visualization
of the 100-dimensional feature space with a ’Mammoth’ shape target space. This feature space is
topologically similar to the target space, which indicates regression potentially captures the topology
of the target space. The second connection suggests improving such similarity.

These connections naturally inspire us to learn a regression feature space that is topologically similar
to the target space while also having a lower intrinsic dimension. To this end, we introduce a
regularizer called Persistent Homology Regression Regularizer (PH-Reg). In classification, interest
has grown in regulating the intrinsic dimension. For instance, Zhu et al. (2018) explicitly penalizes
intrinsic dimension as regularization, while Ma et al. (2018) uses intrinsic dimensions as weights
for noise label correction. However, a theoretical justification for using intrinsic dimension as a
regularizer is lacking, and they overlook the topology of the target space. Experiments on various
regression tasks demonstrate the effectiveness of PH-Reg. Our main contributions are three-fold:

• To our best knowledge, we are the first to explore topology in the context of regression
representation learning. We establish novel connections between the topology of the fea-
ture space and the IB principle, which also provides justification for exploiting intrinsic
dimension as a regularizer.

• Based on the IB principle, we show that reducing H(Z|Y) is the key to learning the minimal
representation, and it is upper-bound on the generalization error in regression.

• Based on the established connections, we designed a regularizer named PH-Reg, which
achieves significant improvement on synthetic datasets for coordinate prediction as well as
real-world regression tasks, including super-resolution, age estimation and depth estimation.
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2 RELATED WORKS

Intrinsic dimension. Input data and representations often live in lower intrinsic dimension manifolds
but are embedded within a higher-dimensional ambient space (Bengio et al., 2013). The intrinsic
dimension of the last hidden layer of a neural network has shown a strong connection with the
network generalization ability (Ansuini et al., 2019); commonly, the generalization ability increases
with the decrease of the intrinsic dimension. Several widely used regularizers like weight decay and
dropout effectively reduce the last hidden layer’s intrinsic dimension (Brown et al., 2022b). Among
the relevant studies, Birdal et al. (2021) is the most closely related to ours. This work demonstrates
that the generalization error can be bounded by the intrinsic dimension of training trajectories, which
possess fractal structures, and thus regulating its intrinsic dimension. However, their analysis is based
on the parameter space, while ours is on the feature space, and we regulate the intrinsic dimension
while preserving the topology of the target space.

Topological data analysis. Topological data analysis has recently emerged in machine learning. It
can be coupled with feature learning to ensure that learned representations are robust and reflect the
training data’s underlying topological and geometric information. By doing so, it has benefitted a
diverse set of tasks ranging from fMRI data analysis (Rieck et al., 2020) to classification of 3D surface
meshes (Reininghaus et al., 2015) and graphs (Zhao & Wang, 2019). Topology-based regularizers
aim to control properties like connectivity (Hofer et al., 2019) and topological complexity (Chen et al.,
2019). Topology-preserving representations can be learned by preserving 0-dimensional (Moor et al.,
2020) and 1-dimensional (Trofimov et al., 2023) topologically relevant distances of the input space
and the feature space. We follow these works to preserve topology information. However, unlike
classification, regression’s target space is naturally a topology space, rich in topology information
crucial for the detailed task. Consequently, we leverage the topology of the target space, marking the
first exploration of topology in the context of regression representation learning.

3 LEARNING DESIRABLE REGRESSION REPRESENTATION

From a topology point of view, what kind of representation is desirable for regression? Or, more
simply, what shape or structure should the feature space have for effective regression? In this work,
we suggest a desirable regression representation should (1) have a feature space topologically similar
to the target space and (2) the intrinsic dimension of the feature space should be the same as the target
space. We arrive at this conclusion by establishing connections between the topology of the feature
space and the Information Bottleneck principle.

Consider a dataset S = {xi,yi}Ni=1 with N samples xi , which typically is an image (xi ∈
Rdx1

×dx2 ) or video (xi ∈ Rdx1
×dx2

×dx3 ) in computing vision, sampled from a distribution P ,
and the corresponding label yi ∈ Rdy . To predict yi, a neural network first encodes the input xi to a
representation zi ∈ Rd before apply a regressor f , i.e., ŷi = f(zi). The encoder and the regressor
f are trained by minimizing a task-specific regression loss Lm based on a distance between ŷi and
yi, i.e., Lm = g(||ŷi − yi||2). Typically, an L2 loss is used, i.e., Lm = 1

N

∑
i ||ŷi − yi||2, though

more robust variants exist such as L1 or the scale-invariant error (Eigen et al., 2014). Note that the
dimensionality of yi is task-specific and need not be limited to 1.

We denote X,Y, Z as random variables representing x,y, z, respectively. The Information Bottleneck
tradeoff is a practical implementation of the IB principle in machine learning. It suggests a desirable
representation Z should contain sufficient information about the target Y, i.e., maximize the mutual
information I(Z;Y), but minimal information about the input X, i.e., minimize I(Z;X). The
tradeoff between the two aims is typically formulated as an optimization problem with the associated
Lagrangian to be minimized IB := I(Z;X)− βI(Z;Y), where β > 0 is the Lagrange multiplier.

To connect the topology of the feature space to the Information Bottleneck principle, we first formulate
the IB principle into relationships purely between Y and Z.
Theorem 1 Optimizing the Information Bottleneck trade-off Lagrangian is equivalent to minimizing
the conditional entropies H(Y|Z) and H(Z|Y).

The detailed proof of Theorem 1 is provided in Appendix A.1. Here, we provide a brief overview of
the terms. The conditional entropy H(Y|Z) encourages the learned representation Z to be informative
about the target variable Y. When considering I(Z;Y) as a signal, the term H(Z|Y) in Theorem
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1 can be thought of as noise, since it equals the total information H(Z) minus the signal I(Z;Y),
consequently, minimizing H(Z|Y) can be seen as learning a minimal representation by reducing
noise. The minimality can reduce the complexity of Z and prevent neural networks from overfitting.
Below, we show the connection between H(Z|Y) and the generalization ability.
Theorem 2 We are given dataset S = {xi, zi,yi}Ni=1 sampled from distribution P , where xi is the
input, zi is the corresponding representation, and yi is the label. Let dmax = maxy∈Y minyi∈S ||y−
yi||2 be the maximum distance of y to its nearset yi. Assume (Z|Y = yi) follows a disribution D
and the following holds:

Ez∼D[||z− z̄||2] ≤ Q(H(D)), (1)
where z̄ is the mean of the distribution D and Q(H(D)) is some function of H(D). The above implies
the dispersion of the distribution D is bounded by its entropy, which usually is the case, like the
multivariate normal distribution and the uniform distribution. Assume the regressor f is L1-Lipschitz
continuous, then as dmax → 0, we have

E{x,z,y}∼P [||f(z)− y||2] ≤ E{x,z,y}∼S(||f(z)− y||2) + 2L1Q(H(Z|Y)) (2)

Proposition 1 If D is a multivariate normal distribution N (z̄,Σ = kI), where k > 0 is a scalar
and z̄ is the mean of the distribution D. Then, the function Q(H(D)) in Theorem 2 can be selected

as Q(H(D)) =

√
d(e2H(D))

1
d

2πe , where d is the dimension of z. If D is a uniform distribution, then the

Q(H(D)) can be selected as Q(H(D)) = eH(D)
√
12

.

The detailed proof of Theorem 2 and Proposition 1 are provided in Appendix A.2. Theorem 2 states
that the generalization error |EP [||f(z)−y||2]−ES [||f(z)−y||2]|, defined as the difference between
the population risk EP [||f(z) − y||2] and the empirical risk ES [||f(z) − y||2], is bounded by the
H(Z|Y) in Theorem 1. Proposition 1 provides examples of the function Q for various distributions.

Theorem 2 suggests minimizing H(Z|Y) will improve generalization performance. Now, we can
establish our first connection between the topology of the feature space and the IB principle.
Theorem 3 Assume that z lies in a manifold M and the Mi ⊂ M is a manifold corresponding to
the distribution (z|y = yi). Assume for all features zi ∈ Mi, the following holds:∫

||z−zi||≤ϵ

P (z)dz = C(ϵ), (3)

where C(ϵ) is some function of ϵ. The above imposes a constraint where the distribution (z|y = yi)
is uniformly distributed across Mi. Then, as ϵ → 0+, we have:

H(Z|Y) = Eyi∼YH(Z|Y = yi) = Eyi∼Y [− log(ϵ)DimIDMi + log
K

C(ϵ)
], (4)

for some fixed scalar K. DimIDMi is the intrinsic dimension of the manifold Mi.

The detailed proof of Theorem 3 is provided in Appendix A.3. Theorem 3 states that if the distribution
(z|y = yi) lies on a manifold Mi and is uniformly distributed across Mi, then the H(Z|Y) is
positively related (− log(ϵ) > 0 as ϵ → 0+) to the expected intrinsic dimension of the Mi.

Since Mi ⊂ M, Theorem 3 suggests that reducing the intrinsic dimension of the feature space M
will lead to a lower H(Z|Y), which in turn implies a better generalization performance based on
Theorem 2. On the other hand, the intrinsic dimension of M should not be less than the intrinsic
dimension of the target space to guarantee sufficient representation capabilities. Thus, a M with an
intrinsic dimension equal to the dimensionality of the target space is desirable.

Below, we establish the second connection: topological similarity between the feature and target
spaces. We first define the optimal representation following Achille & Soatto (2018b).
Definition 1 (Optimal Representation). The representation Z is optimal if H(Y|Z) = H(Z|Y) = 0.

Proposition 2 If the representation Z is optimal and the mapping f ′ between Z and Y and its
inverse f ′−1 are continuous, then Z is homeomorphic to Y.

The detailed proof of the Proposition 2 is provided in Appendix A.4. Proposition 2 shows that
the optimal Z is homeomorphic to Y, which suggests encouraging Z and Y to be homeomorphic.
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Figure 2: Illustration of the (a) the use of PH-Reg for regression, and (b) calculating of PH0(VR(S)).
Here S = {s1, s2, s3}. We say three connected components, i.e., β0, ({{s1}, {s2}, {s3}}) ‘birth’
when α = 0, one ‘death’ (two left ({{s1, s3}, s2})) when α = α1, and another one ‘death’ (one left
({{s1, s3, s2})) when α = α2. Thus PH0(VR(S)) = {[0, α1], [0, α2]}.

However, achieving this directly is challenging since the representation Z typically lies in a high-
dimensional space that cannot be modeled without sufficient data samples. As such, we opted
to enforce the topological similarity between the target and feature spaces. The two established
connections imply that the desired Z should exhibit topological similarity to the target space and
share the same intrinsic dimension as the target space.

4 PERSISTENT HOMOLOGY REGRESSION REGULARIZER

Our analysis in Sec. 3 inspires us to learn a lower intrinsic dimension feature space that is topologically
similar to the target space. To this end, we propose a regularizer named PH-Reg, which contains an
intrinsic dimension term Ld to lower the intrinsic dimension and a topology term Lt to encourage the
topological similarity. The design of PH-Reg is inspired by the topology autoencoder (Moor et al.,
2020) and Birdal’s regularizer (Birdal et al., 2021). To better understand the mechanics, we first
introduce some preliminaries on topology before outlining our proposed regularizer (Sec. 4.2).

4.1 PRELIMINARIES

The simplicial complex is a central object in algebraic topological data analysis, and it can be
exploited as a tool to model the ‘shape’ of data. Given a set of finite samples S = {si}, the simplicial
complex K can be seen as a collection of simplices σ = {s0, · · · , sk} of varying dimensions: vertices
(|σ| = 1), edges(|σ| = 2), and the higher-dimensional counterparts(|σ| > 2). For each S, there exist
many ways to build simplicial complexes and the Vietoris-Rips Complexes are widely used:
Definition 2 (Vietoris-Rips Complexes). Given a set of finite samples S sampled from the feature
space or target space and a threshold α ≥ 0, the Vietoris-Rips Complexes VRα is defined as:

VRα(S) = {{s0, · · · , sk}, s ∈ S|d(si, sj) ≤ α}, (5)

where d(si, sj) is the Euclidean distance between samples si and sj .

Let Ck(VRα(S)) denote the vector space generated by its k-dimensional simplices over Z2
1.

The boundary operator ∂k : Ck(VRα(S)) → Ck−1(VRα(S)), which maps each simplex to its
boundary, is a homomorphism between Ck(VRα(S)) and Ck−1(VRα(S)). The kth homology group
Hk(VRα(S)) is defined as the quotient group Hk(VRα(S)) := ker∂k/im∂k+1. Rank Hk(VRα(S))
is known as the kth Betti number βk, which counts the number of k-dimensional holes and can be
used to represent the topological features of the manifold that the set of points S sampled from.

However, the Hk(VRα(S)) is obtained based on a single α, which is easily affected by small changes
in S. Thus it is not robust and is of limited use for real-world datasets. The persistent homology
considers all the possible α instead of a single one, which results in a sequence of βk. This is achieved
through a nested sequence of simplicial complexes, called filtration: VR0(S) ⊆ VRα1

(S) ⊆ · · · ⊆
VRαm

(S) for 0 ≤ α1 ≤ αm. Let γi = [αi, αj ] be the interval corresponding to a k-dimensional hole
‘birth’ at the threshold αi and ‘death’ at the threshold αj , we denote PHk(VR(S)) = {γi} the set of
‘birth’ and ‘death’ intervals of the k-dimensional holes. We only consider PH0(VR(S)) in this work,

1It is not specific to Z2, but Z2 is a typical choice.
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Figure 3: Visualization of the 3-dimensional feature space (we change the model’ last hidden layer
to dimension 3 for visualization) from the depth estimation task, based on a batch of 32 images.
The target space is a 1-dimensional line. (b) L′

d encourages a lower intrinsic dimension yet fails to
preserve the topology of the target space. (c) Ld takes the target space into consideration and can
further preserve its topology. (d) Lt can enforce the topological similarity between the feature and
target spaces. (e) Adding the Lt to Ld better preserves the topology of the target space.

and an illustration of its calculation is given in Figure 2(b). We define E(S) =
∑

γ∈PH0(VR(S)) |I(γ)|,
where |I(γ)| is the length of the interval γ.

4.2 PERSISTENT HOMOLOGY REGRESSION REGULARIZER

Birdal et al. (2021) suggests to estimate the intrinsic dimension as the slope between
logE(Zn) and log n, where Zn is the set of n samples from Z. Let e′ =
[logE(Zn1), logE(Zn2), · · · , logE(Znm)] , where Zni is the subset sampled from a batch, with
size ni = |Zni |. Let ni < nj for i < j, and n = [log n1, log n2, · · · , log nm]. We can encourage a
lower intrinsic dimension feature space by minimizing the slope between e′ and n, which can be
estimated via the least square method:

L′
d = (m

m∑
i=1

nie
′
i −

m∑
i=1

ni

m∑
i=1

e′i)/(m

m∑
i=1

n2
i − (

m∑
i=1

ni)
2). (6)

While L′
d does encourage the feature space to have a lower intrinsic dimension, it fails to preserve

the topology of the target space (see Figure 3(b)) and sometimes results in an intrinsic dimension
even lower than the target space (see Figure 4, Swiss Roll, where the target space is 2 dimensional
and the feature space is almost dimensional 1). As such, we opt to take the target space into
consideration when minimizing the slope above. Let Yn be the labels corresponding to Zn and
e = [e1, e2, · · · , em] where ei = logE(Zni

)/ logE(Yni
), we minimize slope between e and n:

Ld = |(m
m∑
i=1

niei −
m∑
i=1

ni

m∑
i=1

ei)/(m

m∑
i=1

n2
i − (

m∑
i=1

ni)
2)|. (7)

As shown in Figure 3(c) and Figure 4, Ld lowers the intrinsic dimension while better preserving the
topology of the target space. Calculating E1(Zn) involves the 0-dimensional persistent homology
PH0(VR(Zn)). Specifically, calculating PH0(VR(Zn)) turns out to find the minimum spanning
tree of Zn from its distance matrix AZn , where AZn

ij is the Euclidean distance between zi and zj .
Calculating E1(Yn) is same. We denote πZn , πYn the set of the index of edges in the minimum
spanning trees of Zn and Yn, respectively, and A∗[π∗] the corresponding length of the edges.

The topology autoencoder shows the topological similarity between the feature space and the target
space can be enforced by preserving 0-dimensional topologically relevant distances from the target
space and the label space. The topology part Lt is defined as:

Lt = ||AZnm [πZnm ]−AYnm [πZnm ]||22 + ||AZnm [πYnm ]−AYnm [πYnm ]||22 (8)
As shown in Figure 3(d) and Figure 4, Lt can preserve the topology of the target space, yet it fails
to encourage a lower intrinsic dimension. We define the persistent homology regression regularizer,
PH-Reg, as LR = Ld + Lt. As shown in Figure 3(e) and Figure 4, PH-Reg can both encourage a
lower intrinsic dimension and preserve the topology of target space. We show our regression with
PH-Reg (red dotted arrow) in Fig. 2(a). The final loss function Ltotal is defined as:

Ltotal = Lm + λtLt + λdLd, (9)

6



Under review as a conference paper at ICLR 2024

Table 1: Results (Lmse) on the synthetic dataset. We report results as mean ± standard variance over
10 runs. Bold numbers indicate the best performance.

Method Swiss Roll Mammoth Torus Circle
Baseline 3.46 ± 1.09 201 ± 72 3.33 ± 0.12 0.175 ± 0.004
+L′

d 2.53 ± 1.19 195 ± 57 5.29 ± 0.23 0.157 ± 0.027
+Ld 1.14 ± 0.63 163 ± 49 1.47 ± 0.07 0.134 ± 0.021
+Lt 2.04 ± 1.44 60 ± 63 0.78 ± 0.14 0.040 ± 0.009

+Ld + Lt 0.82 ± 0.14 31 ± 17 0.64 ± 0.06 0.007 ± 0.002

where Lm is the task-specific regression loss and λd, λt are trade-off parameters.

5 EXPERIMENTS

We conduct experiments on four tasks: points coordinate prediction based on a synthetic dataset and
three real-world regression tasks of depth estimation, super-resolution and age estimation. The target
spaces of the three real-world regression tasks are topologically different, i.e., a 1- dimensional line
for depth estimation, 3-dimensional space for super-resolution and discrete points for age estimation.

5.1 COORDINATE PREDICTION ON THE SYNTHETIC DATASET

To verify the topological relationship between the feature space and target space, we synthetic a
dataset that contains points sampled from topologically different objects, including swiss roll, torus,
circle and the more complex object “mammoth” (Coenen & Pearce, 2019). We randomly sample
3000 points with coordinate y ∈ R3 from each object, and the 3000 points are divided into 100
training points and 2900 testing points. Each point yi is encoded into a 100 dimensional vector
xi = [f1(yi), f2(yi), f3(yi), f4(yi), noise], where the dimensions 1− 4 are signal and the rest 96
dimensions are noise. The coordinate prediction task aims to learn the mapping G(x) = ŷ from x to
y, and the mean-squared error Lmse =

1
N

∑
i ||ŷi − yi||22 is adopted as the evaluation metric. We use

a two-layer fully connected neural network with 100 hidden units as the baseline architecture. The
trade-off parameters λd and λt are default set to 10 and 100, respectively, while λt is set to 10000 for
Mammoth, 1 for Swiss Roll, and λd is set to 1 for torus and circle. More details are in Appendix B.

Table 1 shows that encouraging a lower intrinsic dimension while considering the target space (+Ld)
enhances performance, particularly for Swiss Roll and Torus. In contrast, naively lowering the
intrinsic dimension (+L′

d) performs poorly and even worse than the baseline, i.e., Tours. Enforcing
the topology similarity between the feature space and target space(+L′

t) decreases the Lmse by more
than 70%, except for the Swiss roll. The best gains, however, are achieved by incorporating both Lt

and Ld, which decrease the Lmse even up to 96% for the circle coordinate prediction task. Figure 4
shows some feature space visualization results based on t-SNE (100 dimensions → 3 dimensions).
The feature space of the regression baseline shows a similar structure to the target space, especially
for Swiss roll and mammoth, which indicates regression potentially captures the topology of the
target space. Regression +Lt significantly preserves the topology of the target space. Regression
+Ld potentially preserves the topology of the target space, e.g., circle, while it primarily reduces
the complexity of the feature space by maintaining the same intrinsic dimension as the target space.
Combining both Ld and Lt in regression preserves the topology information while also reducing the
complexity of the feature space, i.e., lower its intrinsic dimension.

5.2 REAL-WORLD TASKS: DEPTH ESTIMATION, SUPER-RESOLUTION & AGE ESTIMATION

Super-resolutuion on DIV2K dataset: We exploit the DIV2K dataset (Timofte et al., 2017) for 4x
super-resolution training (without the 2x pretrained model) and we evaluate on the validation set
of DIV2K and the standard benchmarks: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2012),
BSD100 (Martin et al., 2001), Urban100 (Huang et al., 2015). We follow the setting of Lim et al.
(2017) and exploit their small-size EDSR model as our baseline architecture. We adopt the standard
metric PNSR and trade-off parameters λd and λt are set to 0.1 and 1, respectively. Table 2 shows that
both Ld and Lt contribute to improving the baseline and adding both terms has the largest impact.
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Figure 4: t-sne visualization of the 100-dimensional feature spaces with different target spaces.

Table 2: Quantitative comparison (PSNR(dB)) of super-resolution results with public benchmark and
DIV2K validation set. Bold numbers indicate the best performance.

Method Set5 Set14 B100 Urban100 DIV2K
Baseline (Lim et al., 2017) 32.241 28.614 27.598 26.083 28.997

+L′
d 32.252 28.625 27.599 26.078 28.989

+Ld 32.293 28.644 27.619 26.151 29.022
+Lt 32.322 28.673 27.624 26.169 29.031

+Ld + Lt 32.288 28.686 27.627 26.179 29.038

Table 3: Results on AgeDB. Bold numbers indicate the best performance.

Method MAE ↓ GM ↓
ALL Many Med. Few ALL Many Med. Few

Baseline (Yang et al., 2021) 7.77 6.62 9.55 13.67 5.05 4.23 7.01 10.75
+L′

d 7.81 6.96 8.88 12.91 4.95 4.45 5.54 9.91
+Ld 7.55 6.81 8.43 12.15 4.78 4.24 5.78 9.79
+Lt 7.50 6.58 8.79 12.67 4.84 4.22 6.12 9.12

+Ld + Lt 7.48 6.52 8.71 13.19 4.74 4.06 6.17 9.77

Age estimation on AgeDB-DIR dataset: We exploit the AgeDB-DIR (Yang et al., 2021) for age
estimation task. We follow the setting of Yang et al. (2021) and implement their regression baseline
model, which uses ResNet-50 as a backbone. The evaluation metrics are MAE and geometric
mean(GM), and the results are reported on the whole set and the three disjoint subsets, i.e., Many,
Med. and Few. The trade-off parameters λd and λt are set to 0.1 and 1, respectively. Table 3 shows
that both Lt and Ld can achieve more than 0.2 overall improvements (i.e., ALL) on both MAE and
GM. Combining Lt and Ld can further boost the performance, and L′

d does not work.

Depth estimation on NYU-Depth-v2 dataset: We exploit the NYU-Depth-v2 (Silberman et al.,
2012) for the depth estimation task. We follow the setting of Lee et al. (2019) and use ResNet50 (He
et al., 2016) as our baseline architecture. We exploit the standard metrics of threshold accuracy
δ1, δ2, δ3, average relative error (REL), root mean squared error (RMS) and average log10 error. The
trade-off parameters λd and λt are both set to 0.1. Table 4 shows that exploiting Lt and Ld results in
reduction of 6.7% and 8.9% in the δ1 and δ2 errors, respectively.
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Table 4: Depth estimation results with NYU-Depth-v2. Bold numbers indicate the best performance.
Method δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMS ↓ log10 ↓
Baseline (ResNet-50) 0.792 0.955 0.990 0.153 0.512 0.064
+L′

d 0.804 0.954 0.988 0.151 0.502 0.063
+Ld 0.795 0.959 0.992 0.150 0.497 0.063
+Lt 0.798 0.958 0.990 0.149 0.502 0.063
+Ld + Lt 0.807 0.959 0.992 0.147 0.494 0.062

(a) MSE with λt (b) MSE with λd (c) MSE with sample size

Figure 5: Ablation study based on the swiss roll coordinate prediction.

Table 5: Quantitative comparison of the time consumption and memory usage on the synthetic dataset
and NYU-Depth-v2, and the corresponding training times are 10000 and 1 epoch, respectively.

nm Regularizer Coordinate Prediction (2 Layer MLP) Depth Estimation (ResNet-50)
Training time (s) Memory (MB) Training time (s) Memory (MB)

0 no regularizer 8.88 959 1929 11821
100 Lt 175.06 959 1942 11833
100 Ld 439.68 973 1950 12211
100 Lt + Ld 617.41 973 1980 12211
300 Lt + Ld 956.97 1183 2370 12211

5.3 ABLATION STUDIES

Hyperparameter λt and λd: We maintain λd and λt at their default value 10 for Swiss roll coordinate
prediction, and we vary one of them to examine their impact. Figure 5(a) shows when λt ≤ 10,
the MSE decreases consistently as λt increases. However, it tends to overtake the original learning
objective when set too high, i.e., 1000. Regarding the λd, as shown in Figure 5(b), MSE remains
relatively stable over a large range of λd, with a slight increase in variance when λd = 1000.

Sample Size (nm): In practice, we model the feature space using a limited number of samples within
a batch. For dense prediction tasks, the available No. of samples is very large (No. pixels per image
× batch size), while it is constrained to the batch size for image-wise prediction tasks. We investigate
the influence of nm from Eq. 7 and 8 on Swiss roll coordinate prediction. Figure 5(c) shows our
PH-Reg performs better with a larger nm, while maintaining stability even with a small nm.

Efficiency: Efficiency-wise, the computing complexity equals finding the minimum spanning tree
from the distance matrix of the samples, which have a complexity of O(n2

m log nm) using the simple
Kruskal’s Algorithm, and it can speed up with some advanced methods (Bauer, 2021). The synthetic
experiments (Table 5) use a simple 2-layer MLP, so the regularizer adds significant computing time.
However, the real-world experiments on depth estimation (Table 5) use a ResNet-50 backbone, and
the added time and memory are negligible (18.6% and 0.3%, respectively), even with nm = 300.
Note that these increases are only during training and do not add computing demands for inference.

6 CONCLUSION

In this paper, we establish novel connections between topology and the IB principle for regression
representation learning. The established connections imply that the desired Z should exhibit topologi-
cal similarity to the target space and share the same intrinsic dimension as the target space. Inspired
by the connections, we proposed a regularizer to learn the desired Z. Experiments on synthetic and
real-world regression tasks demonstrate its benefits.
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A PROOFS

A.1 PROOF OF THE THEOREM 1

Theorem 1 Optimizing the Information Bottleneck trade-off Lagrangian is equivalent to minimizing
the conditional entropies H(Y|Z) and H(Z|Y).

Proof Optimizing the information bottleneck trade-off Lagrangian : minZ{I(Z;X)− βI(Z;Y)}
can be written as minZ

I(Z;X)
βI(Z;Y) , we note:

I(Z;X)

βI(Z;Y)
=

H(Z)−H(Z|X)

βI(Z;Y)
(10)

=
I(Z;Y) +H(Z|Y)−H(Z|X)

βI(Z;Y)
(11)

=
1

β
+

H(Z|Y)−H(Z|X)

β(H(Y)−H(Y|Z))
. (12)

Since the mapping from X to Z is deterministic, H(Z|X) is canceled to 0, based on the above
equation, we have:

min
Z

I(Z;X)

βI(Z;Y)
= min

Z

H(Z|Y)−H(Z|X)

β(H(Y)−H(Y|Z))
= min

Z

H(Z|Y)

β(H(Y)−H(Y|Z))
. (13)

Since H(Y) is a constant and H(Y|Z) < H(Y), minimizing I(Z;X)
βI(Z;Y) equals minimizing H(Y|Z)

and H(Z|Y). □

A.2 PROOF OF THE THEOREM 2 AND PROPOSITION 1

Theorem 2 We are given dataset S = {xi, zi,yi}Ni=1 sampled from distribution P , where xi is the
input, zi is the corresponding representation, and yi is the label. Let dmax = maxy∈Y minyi∈S ||y−
yi||2 be the maximum distance of y to its nearset yi. Assume (Z|Y = yi) follows a disribution D
and the following holds:

Ez∼D[||z− z̄||2] ≤ Q(H(D)), (14)
where z̄ is the mean of the distribution D and Q(H(D)) is some function of H(D). The above implies
the dispersion of the distribution D is bounded by its entropy, which usually is the case, like the
multivariate normal distribution and the uniform distribution. Assume the regressor f is L1-Lipschitz
continuous, then as dmax → 0, we have

E{x,z,y}∼P [||f(z)− y||2] ≤ E{x,z,y}∼S(||f(z)− y||2) + 2L1Q(H(Z|Y)) (15)

Proof For any sample {xi, zi,yi}, we define its local neighborhood set Ni as
Ni = {{x, z,y} : ||y − yi||2 < ||y − yj ||2, j ̸= i, p(y) > 0}. (16)

For each set Ni, we have
E{x,z,y}∼Ni

[||f(z)− y||2] = E{x,z,y}∼Ni
[||f(z)− f(zi) + f(zi)− yi + yi − y||2] (17)

≤E{x,z,y}∼Ni
[||f(z)− f(zi)||2] + E{x,z,y}∼Ni

[||f(zi)− yi||2] + E{x,z,y}∼Ni
[||yi − y||2] (18)

≤L1E{x,z,y}∼Ni
[||z− zi||2] + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax (19)

=L1E{x,z,y}∼Ni
[||z− z̄i + z̄i − zi||2] + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax (20)

≤L1E{x,z,y}∼Ni
[||z− z̄i||2 + ||z̄i − zi||2] + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax (21)

=L1E{x,z,y}∼Ni
[||z− z̄i||2] + L1||z̄i − zi||2 + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax (22)

We denote the probability distribution over {Ni} as P ′, where P (Ni) = P ({x, z,y} ∈ Ni}). Then,
we have
E{x,z,y}∼P [||f(z)− y||2] = ENi∼P ′E{x,z,y}∼Ni

[||f(z)− y||2] (23)

≤ENi∼P ′ [L1E{x,z,y}∼Ni
[||z− z̄i||2] + L1||z̄i − zi||2 + E{x,z,y}∼Ni

[||f(zi)− yi||2] + dmax]
(24)

=L1ENi∼P ′E{x,z,y}∼Ni
[||z− z̄i||2] + L1ENi∼P ′ ||z̄i − zi||2 + E{x,z,y}∼S(||f(zi)− yi||2) + dmax

(25)

12
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As dmax → 0, we can approximate ENi∼P ′E{x,z,y}∼Ni
[||z− z̄i||2] as Eyi∼YE{(x,z,y)|y=yi}[||z−

z̄i||2]. Since (Z|Y = yi) ∼ D, we have H(Z|Y) = Ey∼YH(Z|Y = y) = H(Z|Y = yi) =
H(Z|Y = yj) = H(D) for all 1 ≤ i, j ≤ N , and ENi∼P ′ ||zi − z̄i||2 can thus be approximate as
E{(x,z,y)|y=yi}||z− z̄i||2. We have:

E{x,z,y}∼P [||f(z)− y||2] (26)

≤ L1ENi∼P ′E{x,z,y}∼Ni
[||z− z̄i||2] + L1ENi∼P ′ ||z̄i − zi||2 + E{x,z,y}∼S(||f(zi)− yi||2) + dmax

(27)
= L1Eyi∼YE{(x,z,y)|y=yi}[||z− z̄i||2] + L1E{(x,z,y)|y=yi}||zi − z̄i||2 + E{x,z,y}∼S(||f(zi)− yi||2)

(28)
≤ L1Eyi∼Y [Q(H(Z|Y = yi))] + L1Q(H(Z|Y = yi)) + E{x,z,y}∼S(||f(zi)− yi||2) (29)

= 2L1Q(H(Z|Y)) + E{x,z,y}∼S(||f(zi)− yi||2) (30)

□

Proposition 1 If D is a multivariate normal distribution N (z̄,Σ = kI), where k > 0 is a scalar and
z̄ is the mean of the distribution D. Then, the function Q(H(D)) in Theorem 2 can be selected as

Q(H(D)) =

√
d(e2H(D))

1
d

2πe , where d is the dimension of z. If D is a uniform distribution, then the

Q(H(D)) can be selected as Q(H(D)) = eH(D)
√
12

.

Proof We first consider the case when D ∼ N (z̄,Σ = kI). Assume Z ∼ N (z̄,Σ), then
H(Z) = 1

2 log(2πe)
n|Σ|:

H(Z) = −
∫
z

p(z) log(p(z))dz (31)

= −
∫
z

p(z) log
1

(
√
2π)d|Σ| 12

e
−1
2 (z−z̄)TΣ−1(z−z̄)dz (32)

= −
∫
z

p(z) log
1

(
√
2π)d|Σ| 12

dz−
∫
z

p(z) log e
1
2 (z−z̄)TΣ−1(z−z̄)dz (33)

=
1

2
log(2π)d|Σ|+ log e

2
E[
∑
i,j

(zi − z̄i)(Σ
−1)ij(zj − z̄j)] (34)

=
1

2
log(2π)d|Σ|+ log e

2
E[
∑
i,j

(zi − z̄i)(zj − z̄j)(Σ
−1)ij ] (35)

=
1

2
log(2π)d|Σ|+ log e

2

∑
i,j

E[(zi − z̄i)(zj − z̄j)](Σ
−1)ij (36)

=
1

2
log(2π)d|Σ|+ log e

2

∑
j

∑
i

Σji(Σ
−1)ij (37)

=
1

2
log(2π)d|Σ|+ log e

2

∑
j

(ΣΣ−1)j (38)

=
1

2
log(2π)d|Σ|+ log e

2

∑
j

Ijj (39)

=
1

2
log(2π)d|Σ|+ log e

2
(40)

=
1

2
log(2πe)d|Σ| (41)

We have the following:

E[||z− z̄||22] = tr(Σ) = dk. (42)
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The following also holds:

|Σ| = kd. (43)

Thus, we have:

(E[||z− z̄||2])2 ≤ E[||z− z̄||22] = d|Σ| 1d = d(
e2H(Z)

(2πe)d
)

1
d =

d(e2H(Z))
1
d

2πe
(44)

Finally,

E[||z− z̄||2] ≤

√
d(e2H(Z))

1
d

2πe
(45)

Thus, Q(H(D)) in Theorem 2 can be selected as Q(H(D)) =

√
d(e2H(D))

1
d

2πe , when D ∼ N (z̄,Σ =
kI).

Similarly, if D is a uniform distribution U(a, b), then its variance is given by:

E[||z− z̄||22] =
(b− a)2

12
, (46)

and its entropy is given by:
H(D) = log(b− a). (47)

We have:

(E[||z− z̄||2])2 ≤ E[||z− z̄||22] =
(b− a)2

12
=

e2H(D)

12
(48)

Finally,

E[||z− z̄||2] ≤
eH(D)

√
12

(49)

Thus, Q(H(D)) in Theorem 2 can be selected as Q(H(D)) = eH(D)
√
12

, when D is a uniform distribution

□

A.3 PROOF OF THE THEOREM 3

Theorem 3 Assume that z lies in a manifold M and the Mi ⊂ M is a manifold corresponding to
the distribution (z|y = yi). Assume for all features zi ∈ Mi, the following holds:∫

||z−zi||≤ϵ

P (z)dz = C(ϵ), (50)

where C(ϵ) is some function of ϵ. The above imposes a constraint where the distribution (z|y = yi)
is uniformly distributed across Mi. Then, as ϵ → 0+, we have:

H(Z|Y) = Eyi∼YH(Z|Y = yi) = Eyi∼Y [− log(ϵ)DimIDMi + log
K

C(ϵ)
], (51)

for some fixed scalar K. DimIDMi is the intrinsic dimension of the manifold Mi.

Proof By using the same proof technique as [Ghosh & Motani (2023), Proposition 1], we can show

H(Z|Y = yi) = − log(ϵ)DimIDMi + log
K

C(ϵ)
, (52)

Since H(Z|Y) = Eyi∼YH(Z|Y = yi), the result follows. □
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A.4 PROOF OF THE PROPOSITION 2

Proposition 2 If the representation Z is optimal and the mapping f ′ between Z and Y and its inverse
f ′−1 are continuous, then Z is homeomorphic to Y.

Proof If Z is optimal, then we have H(Y|Z) = 0. Thus, for each zi ∈ Z, there exists and only
exists one yi corresponding to the zi, and thus the mapping function f exists. Z is optimal also means
H(Z|Y) = 0, and thus for each yi, there exist and only exist one zi corresponding to the yi. Thus,
the mapping function f ′ is a bijection, and since f ′ and f ′−1 are continuous, Z is homeomorphic to
Y. □

B DETAILS ABOUT THE SYNTHETIC DATASET

We encode coordinates y ∈ R3 into 100 dimensional vectors xi =
[f1(yi), f2(yi), f3(yi), f4(yi), noise], where the dimensions 1 − 4 are signal and the rest 96
dimensions are noise. The encoder functions fi are defined as:

• f1(yi) = yi1 + yi2 + yi3

• f2(yi) = yi1 + yi2 − yi3

• f3(yi) = yi1 − yi2 + yi3

• f4(yi) = −yi1 + yi2 + yi3

As shown above, the accurate coordinates yi can be obtained correctly when
f1(yi), f2(yi), f3(yi), f4(yi) are given. We introduce noise to the remaining 96 dimen-
sions by using f1, f2, f3, f4 on other randomly selected samples yj . The proximity of yj to yi can
be intuitively seen as an indicator of the noise’s relationship to the signal.

C EVALUATION METRICS

Definition of the evaluation metrics for depth estimation and age estimation are given below.

Depth Estimation. We denote the predicted depth at position p as yp and the corresponding ground
truth depth as y′p, the total number of pixels is n. The metrics are: 1) threshold accuracy δ1 ≜ %

of yp, s.t.max(
yp

y′
p
,
y′
p

yp
) < t1, where t1 = 1.25; 2) average relative error (REL): 1

n

∑
p

|yp−y′
p|

yp
; 3)

root mean squared error (RMS):
√

1
n

∑
p(yp − y′p)

2; 4) average (log10 error): 1
n

∑
p | log10(yp)−

log10(y
′
p)|.

Age Estimation. Given N images for testing, yi and y′i are the i-th prediction and ground-truth,
respectively. The evaluation metrics include 1)MAE: 1

N

∑N
i=1 |yi − y′i|, and 2)Geometric Mean

(GM): (
∏N

i=1 |yi − y′i|)
1
N .

15


	Introduction
	Related Works
	Learning Desirable Regression Representation
	Persistent Homology Regression Regularizer
	preliminaries
	Persistent Homology Regression Regularizer

	Experiments
	Coordinate Prediction on the Synthetic dataset
	Real-World Tasks: Depth Estimation, Super-resolution & Age Estimation
	Ablation Studies

	Conclusion
	Proofs
	Proof of the Theorem 1
	Proof of the Theorem 2 and Proposition 1
	Proof of the Theorem 3
	Proof of the Proposition 2

	Details about the synthetic dataset
	Evaluation Metrics

