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Abstract

In order to capture a larger range of decision rules,
this paper extends the seminal work of [Friedman
and Halpern, 1995, Chu and Halpern, 2003, 2004]
about Generalized Expected Utility. We introduce
the notion of algebraic mass function (and of alge-
braic Möbius transform) and provide a new alge-
braic expression for expected utility based on such
functions. This utility, that we call “XEU”, general-
izes Chu and Halpern’s GEU to non-decomposable
measures and allows for the representation of sev-
eral rules that could not be captured up to this point,
and noticeably, of the Choquet integral. A repre-
sentation theorem is provided that shows that only
a very weak condition is needed for a rule in order
to be representable as an XEU.

1 INTRODUCTION

Many different rules for decision making under uncertainty
have been introduced and characterized in the literature,
following the seminal work of [Savage, 1954] and [Morgen-
stern and Von Neumann, 1944]. Halpern et al. [Friedman
and Halpern, 1995, Chu and Halpern, 2003, 2004] have pro-
posed in the early twenty first century a general algebraic
expression that captures many of them, namely the rules
that “respects utility” (a form of Savage third axiom) and
“uniformity”. This algebraic generalization enables to con-
sider several decision rules at a glance, e.g. to compare one
to another one, to identify which (axiomatic) characteristics
of the decision behavior of the decision maker lead to a
rule or to another one, and to express general algorithms
the soundness of which can be proved once and for all from
the properties of the decision rule [Perny et al., 2005, Pralet
et al., 2007].

Chu and Halpern’s algebraic decision rule, called General-
ized Expected Utility (GEU), suits decision problems were

the knowledge about the possible states of the world can be
captured by a decomposable measure (that i.e. a measure
that derives from a distribution). Nevertheless, it cannot cap-
ture a range of situations that do not obey this assumption,
and noticeably many decision rules based on the Choquet
Expected Utility [Choquet, 1954]–nor general Sugeno inte-
grals [Sugeno, 1974].

In order to capture a larger scope of decision rules, and in
particular Choquet integrals, the present paper extends the
seminal work of Halpern et al. It introduces the notion of
algebraic mass function (and of algebraic Möbius transform)
and provides a new algebraic expression of expected utility.
This expression, that we call “XEU”, generalizes GEU to
measures that are not necessarily decomposable. A represen-
tation theorem is provided that shows that only very weak
conditions are needed for a rule in order to be representable
as an XEU.

The paper is organized as follows. Section 2 details the
background and motivations of this work. Section 3 then
introduces the two main contributions of this paper: alge-
braic mass functions and the XEU decision rule. Section 4 is
devoted to the exact representation (in terms of utility value)
by XEU instances of several rules proposed in the literature.
For the sake of readability, all the proofs are deferred to the
Appendix.

2 BACKGROUND AND MOTIVATIONS

2.1 ALGEBRAIC CAPACITIES

The knowledge and/or belief of an agent about the actual
state of the world is classically captured by a monotone
set-function or “capacity measure”. This function is not nec-
essarily real-valued and may range over a partially ordered
scale (for instance [Wilson, 1995]’s order of magnitude cal-
culus). Hence the definition of algebraic capacities (called
“Plausibility measures” in [Friedman and Halpern, 1995])
that map each event to the confidence degree the agent has



in the realization of that event. Formally:

Definition 1. A plausibility domain is a set W equipped
with a reflexive, antisymetric and transitive relation ⪰W

(⪰W is a partial order) admitting a minimum element
⊥W and a maximal element ⊤W (i.e. such that ∀w ∈ W ,
⊤W ⪰W w ⪰W ⊥W ).

In the following, the subscripts and superscripts W are
omitted when clear from the context, e.g. we shall write
⊤ ⪰ ⊥.

Given a finite set of states Ω, an algebraic capacity is a
set-function µ : 2Ω → W which is monotone and pointed.1

Definition 2 (Monotonicity). A set-function µ : 2Ω → W is
monotone iff for any events A ⊆ B ⊆ Ω, µ(A) ⪯W µ(B).

Definition 3 (Pointedness). A set-function µ : 2Ω → W is
pointed iff µ(∅) = ⊥ and µ(Ω) = ⊤.

Definition 4 (Algebraic capacity). An algebraic capacity
on Ω with co-domain W is a set-function µ : 2Ω → W that
is both monotone and pointed.

As shown by Friedman and Halpern [1995], several com-
mon measures are captured by algebraic capacities: prob-
ability measures, lower and upper probabilities [Walley
and Fine, 1982], belief functions [Dempster, 1967, Shafer,
1976], fuzzy (Sugeno) measures [Sugeno, 1974], κ-rankings
[Spohn, 1988], parameterized probability distributions
[Goldszmidt and Pearl, 1992], among others.

Example 1 (Algebraic capacities). Let Ω = {ω1, ω2, ω3}
and Pr, Bel and Π be the three set-functions listed in Table 1.
Notice that Pr, Bel and Π are respectively a probability

A Pr(A) Bel(A) Π(A)
∅ 0 0 impossible

{ω1} 1/3 0 totally possible
{ω2} 1/3 0 somewhat possible
{ω3} 1/3 0 impossible

{ω1, ω2} 2/3 1 totally possible
{ω1, ω3} 2/3 0 totally possible
{ω2, ω3} 2/3 0 somewhat possible

{ω1, ω2, ω3} 1 1 totally possible

Table 1: Three capacities

measure, a belief function and a possibility measure.

• Pr is an algebraic capacity, using W = [0, 1], ⊥ = 0,
⊤ = 1 and ⪰W= ≥;

• Bel is an algebraic capacity, using the same settings;

1Throughout the paper we assume that Ω is finite. This as-
sumption echoes Chu and Halpern’s assumption that the space of
possible outcomes is finite.

• Π is also an algebraic capacity, using W =
{impossible, somewhat possible, totally possible},
⊤ = totally possible, ⊥ = impossible with
impossible ≺W somewhat possible ≺W

totally possible.

Some algebraic capacities are decomposable, in the sense
that the values they yield for an event can be retrieved from
the values they yield for singletons only. Formally:

Definition 5 (Decomposable capacity). An algebraic ca-
pacity µ : 2Ω → W is decomposable by an operator ⊞ on
W (or “⊞-decomposable”) iff for any disjoint events A and
B, it holds that µ(A ∪B) = µ(A)⊞ µ(B).

From this definition, it follows ⊞ is necessarily commuta-
tive and admits ⊥ as a neutral element. All the information
contained in a decomposable capacity is captured by its
restriction to singletons – when µ is decomposable then
for any A, µ(A) = ⊞ω∈Aµ({ω}). This is the principle at
work when computing a probability measure (resp. a pos-
sibility measure) on events from a probability distribution
(resp. a possibility distribution). In other terms, probabil-
ity measures (resp. possibility measures) are decomposable
according to ⊞ = + (resp. ⊞ = max).

Example 2 (Decomposable capacities). Two of the capac-
ities of Example 1 are decomposable, namely Pr (decom-
posable by +) and Π (decomposable by max).
On the contrary, Bel is not decomposable. Suppose indeed
that there exists ⊞ such that Bel({ω1, ω2}) = Bel({ω1})⊞
Bel({ω2}) = 0⊞0 = 1 and also such that Bel({ω1, ω3}) =
Bel({ω1}) ⊞ Bel({ω3}) = 0 ⊞ 0 = 0, thus 0 = 1: the hy-
pothesis of decomposition of Bel leads to a contradiction.

2.2 GENERALIZED EXPECTED UTILITY

In accordance with Savage’s model [Savage, 1951, 1954],
an act (a potential decision) is represented by a function χ :
Ω → X, mapping each state of the world to a consequence
(or “outcome”): χ(ω) is the outcome that will be obtained
if the actual state of the world is ω.

A decision situation describes the “objective” components
of a decision problem: it summarizes the possible choices a
decision maker (DM) can make.

Definition 6 (Decision situation). A decision situation is a
tuple A = (Ω,X,A) where:

• Ω is a finite set of states of the world;
• X is a finite set of outcomes;
• A is the finite set of feasible acts χ : Ω → X.

Any two DMs that are facing the same problem should
consider the same decision situation (they choose among
the same set of acts) but the two DMs may obviously differ
on their respective knowledge and preferences.



A decision rule is a function that captures the preferences
of the DM about the acts when the knowledge about the
world is pervaded with uncertainty. We have seen that the
knowledge of the DM can be captured algebraically by a
capacity µ : 2Ω 7→ W . The preferences about the outcomes
may be represented in the same way, by a utility function u
mapping each outcome to an domain of utility U (U can be
partially ordered, e.g. in applications involving several, non
commensurable, criteria).

So, a decision problem involves an objective part – the
decision situation–and a subjective part–the preferences of
the DM about the outcomes and the knowledge of the DM
about the state of the world.

Definition 7 (Decision problem). A decision problem is a
tuple D = (A, U,W, u, µ) where:

• A = (Ω,X,A) is a decision situation;
• U is a set equipped by a reflexive relation ⪰U ;
• W is a plausibility domain;
• u : X → U is a utility function;
• µ : 2Ω → W is an algebraic capacity.

Given a set of acts, a decision rule leads to a preference
order on acts, or equivalently to a function v mapping acts
to an (abstract) ordered scale Img(v):

Definition 8 (Decision rule). A decision rule v on a set
of decision problems Dom(v) is a function that maps any
decision problem D ∈ Dom(v) and any act χ of D to
a value vD(χ) in a set Img(v) equipped with a reflexive
relation ⪰v.

Notice that the decision rule does not necessarily use the
utility function u and the capacity µ. But many meaningful
rules are based on the aggregation of the confidence and
utility levels by means of some operators, say ⊗ and ⊕,
the first one combining utility levels to confidence levels,
the second one aggregating these elementary expected utili-
ties – hence the proposition by Chu and Halpern [2003] of
the "Generalized Expected Utility" induced by a decision
problem.

Definition 9 (Expectation domain). An expectation domain
is a tuple E = (U,W, V,⊕,⊗) where:

• W is a plausibility domain;
• U is a set ordered by a reflexive relation ⪰U (the utility

domain);
• V is a set ordered by a reflexive relation ⪰V (the valu-

ation domain);
• ⊕ : V × V → V is an associative and commutative

operator;
• ⊗ : W ×U → V is an operator such that ⊤⊗x = x.2

2⊤ is typically the confidence into the realization of the certain
events (of Ω). Condition ⊤⊗ x = x ensures that the global utility
of an act of constant utility x is equal to x.

An expectation domain is compatible with a decision prob-
lem as soon as they share the same utility domain (U ) and
the same plausibility domain (W ).

Definition 10 (GEU). Let D = (A, U,W, u, µ) be a deci-
sion problem and E = (U,W, V,⊕,⊗) be an expectation
domain compatible with D. The GEU of an act χ of D
according to E is:

GEUE
D(χ) =

⊕
x∈u(χ(Ω))

µ
(
{ω | u(χ(ω)) = x}

)
⊗ x,

where u(χ(Ω)) = {u(χ(ω)) | ω ∈ Ω} is the set of utility
degrees reached by χ.

Then χ is at least as good as χ′ iff GEUE
D(χ) ⪰V

GEUE
D(χ

′).

In [Chu and Halpern, 2004], the authors cope with the fol-
lowing issue: representing a particular decision rule as a
GEU instance–in more details, the problem is to find the
adequate expectation domain E = (U,W, V,⊕,⊗) for the
GEU to yield the same preference relation on acts than
the decision rule when provided with the same decision
problem, i.e. the same decision situation, the same utility
function and the same capacity. Since µ and u (and thus U
and W ) are given as inputs, the problem is actually to find
V , ⊕ and ⊗.

Definition 11 (GEU representation [Chu and Halpern,
2004]). Let v be a decision rule and E = (U,W, V,⊕,⊗)
an expectation domain. E is a GEU representation of v iff
for any decision problem D ∈ Dom(v) and for all acts χ
and χ′ of D:

vD(χ) ⪰v vD(χ
′) ⇐⇒ GEUE

D(χ) ⪰V GEUE
D(χ

′).

The authors show that the rules that admit an GEU represen-
tation are those that are “uniform” and “respect utility”:

Definition 12 (Respect of utility). A decision rule v respects
utility iff for any D ∈ Dom(v) and for any two constant
acts χ1, χ2 of D (χ1(ω) = x1 and χ2(ω) = x2 ∀ω):

vD(χ1) ⪰V vD(χ2) ⇐⇒ u(x1) ⪰U u(x2).

Definition 13 (Uniformity). A decision rule v is uniform iff
for all D ∈ Dom(v) and all acts χ1, χ2, χ

′
1, χ

′
2 of D such

that µ({ω | u(χi(ω)) = x}) = µ({ω | u(χ′
i(ω)) = x}) for

each x ∈ U , it holds that:

vD(χ1) ⪰V vD(χ2) ⇐⇒ vD(χ
′
1) ⪰V vD(χ

′
2).

Theorem 1 (Chu and Halpern [2004]). A decision rule
admits a GEU representation iff it is uniform and respects
utility.

This theorem outlines the generality of the framework. Ex-
pected utility is of course an instance of GEU, with U = R,



W = [0, 1], V = R , ⊕ = + and ⊗ = ×. It is also the case
of several rules working on decomposable measures, e.g. the
possibilistic utilities [Dubois and Prade, 1995] and [Wilson,
1995]’s order of magnitude calculus. Among the rules for
decision making under total ignorance, the maximin rule
is captured with U = R, W = {0, 1}, V = R, ⊕ = min
and ⊗ = ×: here all the states of Ω are totally and equally
possible, i.e. µ(A) = 1∀A ̸= ∅ and µ(∅) = 0.

The limitation of the formalism also is highlighted by this
theorem: the decision rules which are not uniform cannot ad-
mit a GEU representation. Among these rules, let us cite the
rules based on the Choquet integral or the Sugeno integral,
but for particular cases.3

3 GENERALIZING EXPECTED
UTILITY – A STEP FORWARD

Several frameworks that cannot be captured as an instance
of the GEU model, e.g. the Choquet integral in its full gen-
erality, involve non decomposable capacities, i.e. capacities
that cannot be summarized by a distribution on states. That
is why the model we propose is based on the notion of mass
function, that generalizes distributions by mapping elemen-
tary units of confidence to sets (and not only to singletons).

3.1 ALGEBRAIC MASS FUNCTIONS

As a matter of fact, let us refer to Dempster-Shafer the-
ory of evidence [Dempster, 1967, Shafer, 1976] where
the notion of mass function is seminal. In this theory, a
measure of belief, denoted Bel, is derived from a mass
function m : 2Ω → [0, 1] which maps atomic beliefs to
events: the total belief of an event A ⊆ Ω is defined by
Bel(A) =

∑
B⊆A m(B). Reciprocally, the mass function

can be deduced from the Bel measure (and more generally
from any real-valued capacity) thanks to the Möbius inverse
transform [Shafer, 1976].

Definition 14 (Möbius inverse transform). The Möbius in-
verse m : 2Ω → R of a real-valued capacity µ : 2Ω → R is
defined by:

m(A) =
∑
B⊆A

(−1)|A\B| × µ(B).

Whatever the real-valued set function µ considered one can
recover µ’s values from its Möbius inverse transform m: it
holds that for any event A: µ(A) =

∑
B⊆A m(B).

3Uniformity requires that any two acts which reach the same
utility degrees with identical beliefs must be considered as equiva-
lent. A consequence of this requirement is that the capacity must
be decomposable - in other terms, GEU cannot deal with non
decomposable ones. Hence its incapacity to capture most of the
Sugeno and Choquet integrals.

Such a notion of mass function has also been proposed
for qualitative approaches: from monotonicity, any capacity
µ : 2Ω → W can be encoded by a (non-unique) qualitative
mass function γ : 2Ω → W such that ∀A ⊆ Ω, µ(A) =
maxB⊆A γ(B). A qualitative mass function called the qual-
itative Möbius Inverse may be deduced from the original
capacity [Mesiar, 1997, Grabisch, 2016]:

Definition 15 (Qualitative Möbius inverse transform). The
qualitative Möbius inverse γ : 2Ω → W of a monotone
capacity µ : 2Ω → W is defined, for any A ⊆ Ω, by:

γ(A) =

{
µ(A) if ∀ω ∈ A,µ(A \ {ω}) < µ(A)

⊥ otherwise.

Let us now generalize the approach and propose the notion
of algebraic mass function with regard to a given operator
⊞ : W ∗ × W ∗ → W ∗, where W ∗ is a superset of the
plausibility domain considered.

Definition 16 (Algebraic mass function). Given a capacity
µ on a domain W , a function m : 2Ω → W ∗ with W ⊆ W ∗

and an operator ⊞ : W ∗ ×W ∗ → W ∗, a function m is a
⊞-based mass function of µ iff for any A ⊆ Ω:

µ(A) = ⊞
B⊆A

m(B)

It often happens that the domains of the capacity and the
mass function coincide (this is the case when considering
the max-transform of a possibility measure or the Möbius
inverse transform of a Bel measure) but not necessarily –
for instance, the Möbius inverse transform of a measure of
lower probability may involve negative masses.

Since ⊞ iterates over subsets in an arbitrary order, ⊞ must be
associative and commutative. It is a commutative monoid iff
it also admits a neutral element 0⊞ (an element 0⊞ such that
∀w,w ⊞ 0⊞ = w). Finally, since µ is an algebraic capacity,
it holds that:

• for any A ⊆ B, ⊞C⊆A m(C) ⪯W ⊞C⊆B m(C)
(from the condition of monotonicity);

• m(∅) = ⊥ and ⊞A⊆Ω m(A) = ⊤
(from the pointedness condition).

These conditions suggest that ⊥ might be a neutral element
of ⊞—this is generally the case (e.g. 0 for [0, 1]-capacities
when decomposed by the classical, +-based, Möbius trans-
form). But the condition is not necessary.

Definition 17 (Focal element). An event B ⊆ Ω is a focal
element of m : 2Ω → W ∗ for ⊞ iff m(B) ̸= 0⊞.

When there isn’t any neutral element 0⊞, all events are focal
elements. The values of a capacity which admits a ⊞-based
mass function can be recovered by considering only the



focal elements of this mass function: when m is a ⊞-based
mass function of µ,

µ(A) = ⊞
B⊆A,m(B) ̸=0⊞

m(B).

In other terms, the existence of a neutral element 0⊞ en-
ables a shorter encoding of the mass function (among the
2|Ω| subsets of Ω, only those receiving a non-zero mass are
recorded).

⊞-based distributions are mass functions the focal elements
of which are singletons:

Definition 18 (Distribution). m is a ⊞-based distribution
iff ∀B ⊆ Ω,m(B) ̸= 0⊞ =⇒ |B| = 1.

Notice that the existence of a ⊞-based distribution for µ
supposes the existence of a neutral element.

As a matter of fact, a probability distribution is obviously the
+-based mass function of the associated probability measure
(and is a +-based distribution) and a possibility distribution
is the max-based mass function of the corresponding possi-
bility measure (and is a max-based distribution).

Example 3. Consider a capacity µ on Ω = {ω1, ω2, ω3}
described in Table 2. In this example the scale W =
{0, 2, 4, 6} is used, with ⊥ = 0 and ⊤ = 6 and it is easy to
check that µ is a possibility measure.

A µ(A) m1(A) m2(A) m3(A)
∅ 0 0 0 0

{ω1} 6 6 6 6
{ω2} 4 4 4 4
{ω3} 2 2 2 2

{ω1, ω2} 6 0 -4 1/4
{ω1, ω3} 6 0 -2 1/2
{ω2, ω3} 4 0 -2 1/2

{ω1, ω2, ω3} 6 0 2 2

Table 2: A capacity µ and some of its mass functions.

Firstly, like all capacities, µ is a max-based mass function
of itself. This follows from its monotonicity property. Sec-
ondly, let us observe that m1 is another max-based mass
function of µ. Furthermore, it is a distribution (since 0
is neutral for max on W and only singletons are focal);
it is indeed the possibility distribution obtained through
the qualitative Möbius transform. Lastly, m2 : 2Ω → N
and m3 : 2Ω → Q+ are two other mass functions with
codomains W ∗ ̸= W . Specifically, m2 is the +-based mass
function obtained through the Möbius transform, and m3

is a ⊞-based mass function, where ⊞ is the pseudo-product
defined as x⊞ 0 = 0⊞ x = x and x⊞ y = x · y otherwise.

Recovering a capacity from its mass function according to
⊞ is an easy task: simply apply Definition 16. On the con-
trary, computing a ⊞-based mass function from a capacity

is generally not an easy task. Depending on µ and ⊞, there
may be zero, one or several ⊞-based mass functions of µ.
As to get such a m from µ, one shall develop the expression
of µ(A) (Definition 16) over the proper subsets of A:

Proposition 1. m is a ⊞-based mass function of µ iff:

µ(∅) = m(∅), and

µ(A) = m(A)⊞ ⊞
B⊊A

m(B) ∀A ̸= ∅.

Given a capacity µ Proposition 1 provides a system of equa-
tions the unknowns of which are the masses. One may be
tempted to inductively build m from µ from this system.
However, it is not certain whether this is possible (the equa-
tions may be inconsistent for some µ and ⊞), nor that there
is a unique way to do it. However, as long as ⊞ has an in-
verse operation ⊟ (such that w ⊞ w′ ⊟ w′ = w), the mass
function always exists and is unique. It can be provided by
a deterministic inductive algorithm:

Definition 19 (Mass function based on a commutative
group). Let µ : 2Ω → W be a capacity and (W ∗,⊞) be
a commutative group such that W ⊆ W ∗. Let 0⊞ denote
the neutral element of ⊞ and ⊟ its inverse. The ⊞-Möbius
transform of µ, denoted m⊞

µ , is the mass function recursively
defined by:

m⊞
µ (∅) = µ(∅) = ⊥

m⊞
µ (A) = µ(A)⊟ ⊞

B⊂A

m⊞
µ (B) ∀A ̸= ∅.

Theorem 2. When (W ∗,⊞) is a commutative group, m⊞
µ

is the unique ⊞-mass function of µ.

The quantitative and qualitative Möbius inverses are of
course special cases of algebraic mass functions (with
⊞ = + and ⊞ = max). Applying Theorem 2, we re-
cover the result of [Shafer, 1976] about the unicity of the
+-mass function for real-valued capacities. On the contrary,
some capacities may admit several qualitative (max-based)
mass functions—among them, the qualitative Möbius in-
verse transform which is, as shown by [Grabisch, 1997], the
one which has the fewest number of, and smallest, focal
elements.

More generally, if ⊞ hasn’t any inverse, there may be zero
or several ⊞-based mass functions.

Example 4. In Example 3 two max-based mass functions
are identified for µ: m1 and µ itself. This is not surprising,
given that max has no inverse. In contrast, addition over N
does have an inverse; therefore, m2 is the unique +-based
mass function of µ and can be built using the inductive
algorithm sketched in Definition 19. Finally, the pseudo-
product defined in Example 3 lacks an inverse (due to its
behaviour for the value 0). As a consequence m3, which



was also constructed following this algorithm, comes with
no guarantee of uniqueness.

It is worthwhile noticing that, when the capacity is decom-
posable according to ⊞, the computation of its ⊞-inverse
transform is easy. We can indeed show that:

Theorem 3. A capacity is ⊞-decomposable iff it admits a
⊞-based distribution.

3.2 THE XEU DECISION RULE

Let us now extend the GEU decision rule (under the name
XEU) in order to let it work on algebraic mass functions. To
this extent, we first generalize the definition of expectation
domains.

Definition 20 (Extended expectation domain).
An extended expectation domain is a tuple E =
(U∗,W ∗, V ∗,⊞, f ,⊕,⊗) where:

• U∗ is ordered by some reflexive ⪰U∗
;

• W ∗ is ordered by some ⪰W∗
which is reflexive, anti-

symmetric and transitive;
• V ∗ is ordered by some reflexive ⪰V ∗

;
• ⊞ : W ∗ ×W ∗ → W ∗ is an associative and commuta-

tive operator and admits a neutral element 0⊞;
• f : MS(U∗) → U∗ is a function which aggregates

multisets of utility degrees into a single utility value
such that ∀x, f({x}) = x;4

• ⊕ : V ∗ × V ∗ → V ∗ is a commutative and associative
operator;

• ⊗ : W ∗ × U∗ → V ∗.

This definition extends Definition 9 by adding to the frame-
work the ⊞ operator (in order to handle mass functions).
Moreover, since a mass function involves sets of states, the
focal elements, an act yields a multiset of utility degrees
for each of them. The role of function f is to aggregate
these utility degrees into a single one; of course, when the
knowledge can be captured by a distribution, we must have
f({x}) = x.

We can now set the definition of the XEU of an act:

Definition 21 (XEU). Let D = (A, U,W, u, µ) be a de-
cision problem and E = (U∗,W ∗, V ∗,⊞, f ,⊕,⊗) be
an extended expectation domain such that U ⊆ U∗ and
W ⊆ W ∗. The XEU of an act χ of D by E is:5

4MS(U) denotes the set of all multisets in U (i.e. subsets of
U with possibly multiple occurrences of the same element).

5When ⊞ has no inverse, there may be several ⊞-based mass
functions of µ, hence Definition 21 should be written:

XEUE
D(χ) = min

m∈M⊞
µ

⊕
B⊆Ω

m(B)⊗ f(u(χ(B)))

where M⊞
µ is the set of all ⊞-based mass functions of µ. However,

XEUE
D(χ) =

⊕
B⊆Ω

m⊞
µ (B)⊗ f(u(χ(B))),

where u(χ(B)) = {{u(χ(ω)) | ω ∈ B}} is the image of B
by χ and u, i.e. the multiset of utility degrees that χ reaches
for some state of B.

Definition 22 (XEU-representation). Let v be a decision
rule and E = (U∗,W ∗, V ∗,⊞, f ,⊕,⊗) be an extended
expectation domain. E is an XEU-representation of v iff for
any decision problem D ∈ Dom(v) and any two acts χ and
χ′ of D:

v(χ) ⪰v v(χ′) ⇐⇒ XEUE
D(χ) ⪰V ∗

XEUE
D(χ

′).

When µ is a probability measure, the EU expression is
recovered as EEU = (R, [0, 1],R,+, f ,+,×), where f is
any function satisfying the condition f({x}) = x. In this
context, function f is not directly involved.

Another series of examples is provided by decision rules tai-
lored for situations of total ignorance, where the knowledge
asserts that the real world lies within a subset Q of Ω (and
does not assert anything more). In other terms, the range
of application of these rules is limited to capacities µQ de-
fined by µQ(A) = 1 if Q ⊆ A and µQ(A) = 0 otherwise.
For the sake of simplicity, let E = (R, [0, 1],R,+, f ,+,×)
be the expectation domain. We then derive m+

µQ
(Q) = 1

and m+
µQ

(A) = 0 for any A ̸= Q; hence XEU(χ) =
f(u(χ(Q))) for any act χ.

Wald’s rule [Wald, 1949] is recovered when f(X) =
min(X): f amounts to consider the worst-case utility.
Laplace’s rule is obtained by setting f(X) =

∑
x∈X x/|X|:

f captures an average utility approach. Hurwicz’s rule [Hur-
wicz, 1951] is recovered when f(X) = αmin(X) + (1−
α)max(X): f makes a trade off between optimistic and
pessimistic attitudes towards ignorance.

More generally, when µ encodes a situation of total igno-
rance, i.e. involves an single focal element Q, XEUE

D(χ) =
f(u(χ(Q))). Function f is the way to capture the behav-
ior of the decision maker under ignorance. With the XEU
rule, this principle is extended to sets B: f(u(χ(B))) is the
utility of χ when the DM knows that the real world is in
B and nothing more. We shall for instance set f = min,
⊞ = ⊕ = + and ⊗ = ×: we will see in Section 4 that this
domain captures the Choquet integral.

Before entering in the details of particular rules, let us estab-
lish the following representation theorem which shows that
the only necessary condition for a rule to be representable

most of the rules proposed in the literature either lead to commu-
tative groups, in which case the transform is unique, or can be
expressed as Sugeno integrals, in which case the same value is
provided whatever the max-based mass function considered. For
the sake of readability, we omit the minimization in Definition 21.



as an XEU is that acts that lead to the same utility with the
same beliefs have to be ordered in the same way – this condi-
tion is less demanding (and implied by) Chu and Halpern’s
condition of uniformity.

Definition 23 (Restricted uniformity). A decision rule v
satisfies restricted uniformity iff for all D ∈ Dom(v) and
all acts χ1, χ2, χ

′
1, χ

′
2 of D such that for any subset B

of U , µ({ω | u(χi(ω)) ∈ B}) = µ({ω | u(χ′
i(ω)) ∈ B}),

it holds that:

vD(χ1) ⪯V vD(χ2) ⇐⇒ vD(χ
′
1) ⪯V vD(χ

′
2).

Theorem 4. Any decision rule that satisfies restricted uni-
formity admits an XEU-representation.

Restricted uniformity weakens uniformity (Definition 13)
in order to address both atomic utility degrees and sets of
utility degrees. Notably, as uniformity—a prerequisite for
a rule to have a GEU representation—implies restricted
uniformity, decision rules which admit GEU representations
also admit XEU representations.

Theorem 5. Any decision rule which has a GEU-
representation has an XEU-representation.

Some rules satisfy restricted uniformity without being
uniform—this is the case of many rules based on the Cho-
quet integral. Hence XEU is more expressive than GEU.

4 EXACT XEU-REPRESENTATIONS OF
DECISION RULES

Finally, in order to highlight the generality of the XEU
rule, let us explore decision rules proposed in the litera-
ture. Because restricted uniformity is a very weak condition,
XEU-representations exist for a large range of these rules.
In the following we look for exact representations in the
sense that the XEU computation provides the same score
than the rule—this is important when the utility scores carry
relevant information about the satisfaction of the DM (e.g.
an expected gain or a guaranteed level of security).

Definition 24 (Exact XEU-representation). Let E =
(U,W, V,⊞, f ,⊕,⊗) be an extended expectation domain
and v be decision rule compatible with U and W . E is an
exact XEU-representation of v iff for any D ∈ Dom(v) and
any act χ of D:

XEUE
D(χ) = vD(χ).

That is, XEU assigns the same scores to acts than v.
Of course, any exact XEU-representation is an XEU-
representation in the sense of Definition 22.

4.1 EXACT XEU-REPRESENTATIONS OF
UNIFORM DECISION RULES

We know that a uniform decision rule does admit a GEU rep-
resentation, and, thanks to Theorem 4, that it also admits an
XEU representation. But an XEU and a GEU representation
of the same rule are not necessarily exact representations of
the rule, nor exact representations of each other in the sense
that they do not necessarily provide the same value (but the
same preference order on acts). What Theorem 4 guarantees
is that if a GEU representation does exist for a rule, then an
XEU representation can always be built for this rule. To get
an equality between XEUE∗

D (χ) and GEUE
D(χ) (an exact

representation of GEU by XEU based on the same ⊕ and
⊗ operators) we need a form of distributivity property:

Theorem 6. Let E = (U,W, V,⊕,⊗) be an expectation
domain and E∗ = (U,W, V,⊞,min,⊕,⊗) be an extended
expectation domain which share the same domains, the
same ⊕ operator and the same ⊗ operator. For any de-
cision problem D = (A, U,W, u, µ) such that µ is ⊞-
decomposable, it holds that XEUE∗

D (χ) = GEUE
D(χ) iff

∀w1, w2 ∈ W, ∀x ∈ U :

(w1 ⊗ x)⊕ (w2 ⊗ x) = (w1 ⊞ w2)⊗ x.

Hence if E = (U,W, V,⊞,min,⊕,⊗) is an XEU-
representation of a decision rule and if the distributivity-
like condition holds, then E′ = (U,W, V,⊕,⊗) is a GEU-
representation of it and both provide the same value. The
condition obviously holds if ⊕ = ⊞ and ⊗ distributes over
⊕: if µ is ⊕-decomposable and ⊗ is distributive over ⊕ then
for any χ, XEUE

D(χ) = GEUE
D(χ); i.e. the usual general-

ized expected utilities are XEUs.

It is worthwhile noticing that the equality between ⊞ and
⊕ is not necessary. For instance, consider the possibilistic
pessimistic decision rule proposed in [Dubois and Prade,
1995]. This rule works on a possibility measure Π : 2Ω → Λ
and utility degrees in Λ (scale Λ = [0, 1] is classically
used but any totally ordered scale can be handled as long
as Λ is equipped with a reverse operator r : Λ → Λ, eg.
r(x) = 1− x for Λ = [0, 1]):

UPess(χ) = min
ω∈Ω

max
(
r(Π({ω})), u(χ(ω))

)
.

Notice that the measure is decomposable (by max), that
its qualitative Möbius inverse γ (Definition 15) is a distri-
bution and that the rule is uniform. Letting nmax(x, y) =
max(r(x), y), UPess can be rewritten twofold:

UPess(χ) = min
x∈u(χ(Ω))

nmax
(
Π({ω | u(χ(ω)) = x}), x

)
,

UPess(χ) = min
B⊆Ω

nmax
(
γ(B), max

x∈u(χ(B))
x
)
.



Hence, the possibilistic pessimistic decision rule has an
exact GEU representation (from first equation):

EPess = (Λ,Λ,Λ,min,nmax)

and admits the following exact XEU-representation (from
second equation) among others:

EPess′ = (Λ,Λ,Λ,max,max,min,nmax).

In this example ⊞ = max while ⊕ = min.

Among other uniform rules working with decomposable
measures, that can thus be exactly captured by XEU and by
GEU, let us cite expected utility (of course), the possibilistic
optimistic rule proposed by [Dubois and Prade, 1995], and
Wilson’s order of magnitude decision rule [Wilson, 1995].

4.2 XEU-REPRESENTATIONS OF NON UNIFORM
DECISION RULES

In order to highlight the generality of the XEU rule, let
us now focus on some non uniform rules proposed in
the literature—more precisely on rules that deal with non-
decomposable measures. We show that even if they haven’t
any GEU representation, they have XEU representations,
that are moreover exact.

Choquet-like decision rules

Choquet Expected Utility (CEU) is a general decision rule
that can handle any kind of capacity ranging on the [0, 1]
interval, and in particular measures of lower probability
[Gilboa and Schmeidler, 1994] (CEU thus captures the
Ellsberg paradox [Ellsberg, 1961]), belief functions and
of course probability measures. It also captures the rank-
dependent utility rule [Quiggin, 1982] (that suits the Allais’s
paradox [Allais, 1953]) or the rule proposed by [De Campos
et al., 1994] to handle probability intervals.

To any decision problem D = (A,R, [0, 1], u, µ) and any
act χ of D, let us label the utility values reached by χ on Ω
in such a way that xχ

0 ≤ · · · ≤ xχ
n. CEU is defined by:

CEUD(χ) = xχ
0+

n∑
i=1

(xχ
i −xχ

i−1)µ({ω | u(χ(ω)) ≥ xχ
i }).

Proposition 2.

CEUD(χ) =
∑
B⊆Ω

m+
µ (B)×min

ω∈B
u(χ(ω)),

It follows that the Choquet decision rule has an exact XEU
representation:

Proposition 3. CEU has an exact XEU-representation:

EChoq = (R,R,R,+,min,+,×);

Let us cite two other decision rules closely related to CEU—
both dedicated to the Dempster-Shafer theory of evidence.
In the Transferable Belief Model [Smets and Kennes, 1994]
the idea is to derive a probability distribution from m by
applying the Laplace principle to each focal element (set-
ting p(ω) =

∑
B,ω∈B

m(B)
|B| ) and to compute the expected

utility w.r.t. this distribution. This is perfectly equivalent to
compute, for each focal set, the mean of the series of values
obtained on this set. Formally, it holds that:

Proposition 4. TBEU has an exact XEU-representation:

ETBM = (R,R,R,+,mean,+,×);

where mean : MS(R) → R is defined by mean(X) =∑
x∈X x/|X| if X ̸= ∅ and mean(∅) yield an arbitrary

value.

The second rule, Jaffray’s rule [Jaffray, 1989], deals with
a family of parameters α : 2U → [0, 1]. The α(X) are
pessimism indexes in the sense of Hurwicz’s but expressed
in the context of each set X of utility values – Hurwicz
index is recovered when α is a constant function.

Proposition 5. For any α : 2U → [0, 1], JEUα has an
exact XEU-representation:

EJaff
α = (R,R,R,+,minmaxα,+,×);

where minmaxα : MS(R) → R is defined by
minmaxα(X) = α(X)min(X) + (1 − α(X))max(X)
for all X ̸= ∅.

EChoq is a special case of EJaff (letting α(X) = 1 ∀X) -
which coheres with the fact that the CEU rule, when applied
to belief functions, is a special case of Jaffray’s.

Those three expectation domains EChoq, ETBM and EJaff

share the same domains, orders and operators (⊞ = +,
⊗ = × and ⊕ = +). They differ on the f function only. Of
course, for singletons, f({x}) = x in the three rules: we
recover the fact that when µ is a probability measure, the
three rules do coincide and simply come down to expected
utility.

Sugeno Decision Rules

The Sugeno integral [Sugeno, 1974] is an ordinal counter
part of the Choquet integral, based on max and min ag-
gregations rather than on sums and products. Let D =
(A,Λ,Λ, u, µ) be a decision problem where Λ is totally
ordered. The Sugeno value of an act is defined by:

SUGD(χ) = max
B⊆Ω

min
(
µ(B),min

ω∈B
u(χ(ω))

)
.

Using the qualitative Möbius transform γ one gets
SUGD(χ) = maxB⊆Ω min

(
γ(B),minω∈B u(χ(ω))

)
. It

follows that SUG has an exact XEU representation.



Proposition 6. SUG has an exact XEU-representation

ESugn = (Λ,Λ,Λ,max,min,max,min);

Incomplete preference relations

All the previous rules involve classical capacities, on the
[0, 1] interval, and yield complete orders of the acts, using
a score in R—they are summarized in Table 3, each rule
deriving from the choice of a type of capacity (lines) and of
an expectation domain (columns).

EChoq ETBM EJaff ESugn

[0, 1]-capa Choquet – – SUG
Belief f. CEU TBEU JEU –

Proba. EU EU EU –
Possi. CEU – – UOpt

Nec. – – – UPess

Total Ign. Wald Laplace Hurwicz Max

Table 3: XEU-representations of common real-valued deci-
sion rules; the type of capacity used is specified in lines, the
expectation domain in columns.

XEU shall also capture less classical rules, that do not pro-
duce complete relations. The first example is Wilson’s order
of magnitude decision rule [Wilson, 1995] which leads to a
incomplete preference relation among acts—the extended
domain simply relies on the domain Ro and on the operators
⊕ and ⊗ defined by Wilson (for the shake of brevity, we let
the reader refer to [Wilson, 1995]) – we simply let ⊞ = ⊕
and, because the measure is decomposable, f can be any
function such that f({x}) = x.

Another example is the decision rule proposed in [Denœux
and Shenoy, 2020] for belief functions (here denoted as
DSEU) – this rule is not uniform and thus cannot be cap-
tured by the GEU model. As for JEU, local pessimism in-
dexes are considered. Indeed, DSEU involves two families
of contextual indexes: α : 2U → [0, 1] and β : 2U → [0, 1].
DSEU considers real-valued utility functions and real-
valued capacities (belief functions). However, unlike the
rules presented in the previous sections, DSEU produces
scores that are not real numbers, but intervals. In more de-
tails, let [a, b] be the interval associated with some act χ and
[a′, b′] that of χ′; then χ ⪰DSEU χ′ ⇐⇒ (a ≥ a′) ∧ (b ≥
b′). Relation ⪰DSEU is not complete in the general case. In
order to cast DSEU in the XEU model, we will consider any
real value x as equal to the interval [x, x]: this allows us to
properly define the function fDSEU

α,β .

Proposition 7. For any α : 2U → [0, 1] and β : 2U →
[0, 1] such that ∀X, 0 ≤ α(X) ≤ β(X) ≤ 1, DSEUα,β

has an exact XEU representation:

EDS
α,β = (R, [0, 1],R2,+, fDS

α,β ,⊕DS,⊗DS);

where:

• x⊗DS [a, b] = [x× a, x× b];
• [a, b]⊕DS [a′, b′] = [a+ a′, b+ b′];
• fDS

α,β(X) = [α(X)min(X),
. α(X)min(X) + β(X)max(X)].

5 CONCLUSION

This paper has proposed a generalization of Chu and
Halpern’s GEU algebraic framework, enabling the repre-
sentation of non uniform decision rules, and in particular of
the Choquet and Sugeno integrals. The XEU formulation we
propose puts forward the notion of algebraic mass functions
as a way to capture elementary knowledge and highlights the
use of a utility aggregator, the function f , that captures the
behavior of the decision maker when facing ignorance. This
allows us for instance to compare at a glance several rules
based on belief functions: the difference between the pig-
nistic approach, the pessimistic integral, and the optimistic
integral does not lay in the treatment of the knowledge (it’s
always the same knowledge, the mass function m), but in
the compensatory/pessimistic/optimistic attitude: in the first
case, f computes the mean value over each focal set, in the
second, the decision-maker is cautious/robust and f = min
while in the third case, he/she would be (very) adventurous
and f = max. From this, many variants of the Choquet
integral can then be foreseen depending on the function f
they may use, for instance a median or any other OWA. An
orthogonal direction deriving from such an homogeneous
approach is the design of interactive elicitation process that,
through proposals for decision comparisons, allows the pa-
rameterization of function f (e.g. as done in [Adam and
Destercke, 2021] for the elicitation of OWAs).

Algebraic approaches provide efficient frameworks to ex-
press general theoretical results, but also to specify the range
of application of algorithms, as done e.g. in [Schiex et al.,
1995, Pralet et al., 2007, Perny et al., 2005]. From a more
practical point of view, our aim is to study optimization prob-
lems and to relate their tractability to the kind of information
handled and to the way it is represented: a mass function
may involve exponentially less focal elements that the mea-
sure. A complexity analysis and empirical measurements
could help identify the benefit of algebraic mass functions
and of XEU-representations in terms of computational effi-
ciency.

From this point, the next step is of course to build a com-
prehensive axiomatics, in the sense of Savage in particular,
which will derive the decision rule from the behavior ex-
pected when facing total ignorance—and to extend the XEU
framework to the infinite case. In addition to its theoreti-
cal significance, such an extension may potentially broaden
the applicability of XEU to domains where continuous or
unbounded information is prevalent.
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A PROOFS FOR SECTION 2 (BACKGROUND AND MOTIVATIONS)

Theorem 1 (Chu and Halpern [2004]). A decision rule admits a GEU representation iff it is uniform and respects utility.

Proof. From [Chu and Halpern, 2004, Theorem 3.5].

B PROOFS FOR SECTION 3 (GENERALIZING EXPECTED UTILITY – A STEP
FORWARD )

Proposition 1. m is a ⊞-based mass function of µ iff:

µ(∅) = m(∅), and

µ(A) = m(A)⊞ ⊞
B⊊A

m(B) ∀A ̸= ∅.

Proof. It directly follows from Definition 16.

Theorem 2. When (W ∗,⊞) is a commutative group, m⊞
µ is the unique ⊞-mass function of µ.

Proof. By definition, m⊞
µ exists and is a ⊞-mass function of µ. Uniqueness is shown by induction on the cardinality of µ’s

argument. Let m be a ⊞-based mass function of µ. For n = 0, by definition, m(∅) = µ(∅) = m⊞
µ (∅). Now, suppose that

m(B) = m⊞
µ (B) when |B| < n, n > 0. Then, for any A such that |A| = n, we have µ(A) = m⊞

µ (A) +⊞B⊊A m⊞
µ (B) =

m(A) +⊞B⊊A m(B), implying m⊞
µ (A) = m(A) since ⊞ has an inverse. By induction, m⊞

µ (A) = m(A) for all A, i.e.,
m⊞

µ is unique.

Theorem 3. A capacity is ⊞-decomposable iff it admits a ⊞-based distribution.

Proof. To prove the theorem, we establish both the "if" and "only if" directions.

• (if) Assume that µ is a capacity admitting a distribution m. For any two disjoint events A and B, it holds that
µ(A ∪B) =⊞ω∈A∪B m({ω}) = µ(A)⊞ µ(B), hence µ is ⊞-decomposable.

• (only if) Conversely, let µ be a ⊞-decomposable capacity. From [Friedman and Halpern, 1995], µ(∅) = ⊥ is neutral
for ⊞. Let m : 2Ω → W be the distribution such as m({ω}) = µ({ω}) for all ω and m(A) = ⊥ otherwise.
Also, let P (n) ⇐⇒ (∀|A| ≤ n, µ(A) =⊞ω∈A m(A)) be the predicate that m is a ⊞-distribution of µ “up to
sets of size n”. Clearly, P (0) and P (1) hold. Now suppose P (n) for n > 0 and A ⊆ Ω such that |A| = n + 1
and let ω∗ ∈ A. The sets {ω∗} and A \ {ω∗} are disjoint, their cardinalities are ≤ n. From µ is decomposable,
µ(A) = µ({ω∗})⊞ µ(A \ {ω∗}) = m({ω∗})⊞⊞ω∈A\{ω∗} m({ω}) =⊞ω∈A m({ω}), hence P (n+ 1) holds. By
induction, m is a ⊞-distribution of µ.

Theorem 4. Any decision rule that satisfies restricted uniformity admits an XEU-representation.

Proof. Let v be a decision rule that satisfies restricted uniformity. We first induce from v a relation ⪰M on “utility-based
capacities”. Using it, we then define a naive XEU representation in which all computations are deferred to ⪰V that finally
compare acts. Lastly, we ensure this XEU representation is properly defined.

Let D ∈ Dom(v) be a decision problem. For any act χ of D, let µχ : 2U → W denote the capacity induced from
χ such that µχ(X) = µ({ω | u(χ(ω)) ∈ X}). Hence it follows from v’s restricted uniformity that ∀χ1, χ

′
1, χ2, χ

′
2

such that ∀i, µχi = µχ′
i
, we have vD(χ1) ⪰v vD(χ2) ⇐⇒ vD(χ

′
1) ⪰v vD(χ

′
2). That is, v orders acts with respect

to the capacity they induce. In particular, for χ1 and χ′
1 such that µχ1

= µχ′
1
, it holds that vD(χ1) ∼v vD(χ

′
1) and

∀χ2,vD(χ1) ⪰v vD(χ2) ⇐⇒ vD(χ
′
1) ⪰v vD(χ2). Hence one can induce the relation ⪰M on the set of capacities

M = {µχ | χ ∈ A} defined, for any acts χ1 and χ2, by µχ1
⪰M µχ2

⇐⇒ vD(χ1) ⪰v vD(χ2). Note that ⪰M is well
defined since we have shown that acts inducing the same capacity are equivalent and equally related to others acts.

Now, let E = (U∗,W ∗, V ∗,⊞, f ,⊕,⊗) be the extended expectation such as:



• U∗ = 2U \ {∅} is the extension of v’s utility domain (we equate values x ∈ U to singletons {x} ∈ U∗). It is ordered
by ⪰U∗

such that X ⪰U∗
Y ⇐⇒ minx∈X x ⪰U miny∈Y y;

• W ∗ = W is ordered by ⪰W ;
• V ∗ = 2W

∗×U∗
is ordered by ⪰V ∗

such that

X ⪰V ∗
Y ⇐⇒

C 7→ max
(w,B)∈X

B⊆C

w

 ⪰M

C 7→ max
(w,B)∈Y
B⊆C

w

 ;

• ⊞ = max;
• f is the identity function (∀B ∈ U∗, f(B) = B);
• ⊗ : W × U∗ → V ∗ is defined by w ⊗X = {(w,X)};
• ⊕ : U∗ × U∗ → U∗ is defined by X ⊕ Y = {(w,B) | (w,B) ∈ X ∪ Y ∧ w ̸= ⊥}.

We still have to check that E is a proper extended expectation domain and that it defines an XEU representation of v. First
note that:

• (W,max,⊥) is a commutative monoid;
• ∀x ∈ U, f({x}) = {x} (which is equated with x);
• ⊕ is a commutative and associative.

So E = (U,W, V,⊞, f ,⊕,⊗) is a proper extended expectation domain. Finally, note that:

XEUE
D(χ) =

⊕
B⊆Ω

mmax
µ (B)⊗ f(u(χ(B)))

=
⊕
B⊆Ω

{(
mmax

µ (B), u(χ(B))
)}

=
{(

mmax
µ (B), u(χ(B)

)
| B ⊆ Ω ∧mmax

µ (B) ̸= ⊥
}
.

Hence for any D and any χ of D:C 7→ max
(w,B)∈XEUE

D(χ)
B⊆C

w

 =

C 7→ max
(w,B)∈XEUE

D(χ)
B⊆C

mmax
µ (B)

 = µχ

It then follows that XEUE
D(χ) ⪰V ∗

XEUE
D(χ

′) ⇐⇒ µχ ⪰M µχ′ ⇐⇒ vD(χ) ⪰v vD(χ
′), hence E is an XEU

representation of v.

Theorem 5. Any decision rule which has a GEU-representation has an XEU-representation.

Proof. We first show that uniformity implies restricted uniformity.

Let v be a uniform decision rule. For any decision problem D ∈ Dom(v) and for all acts χ1, χ
′
1, χ2, χ

′
2 of D such that

µ({ω | u(χi(ω)) = x}) = µ({ω | u(χ′
i(ω)) = x}) for all x ∈ U and i = 1, 2, it holds that:

v(χ1) ⪰ v(χ2) ⇐⇒ v(χ′
1) ⪰ v(χ′

2).

Now, suppose four acts χ3, χ
′
3, χ4, χ

′
4 of D such that µ({ω | u(χi(ω)) ∈ X}) = µ({ω | u(χ′

ii(ω)) ∈ X}) for all X ⊆ U
and i = 3, 4. Since this equality holds for any singleton X = {x} (x ∈ U ), one can rewrite µ({ω | u(χi(ω)) = x}) =
µ({ω | u(χ′

ii(ω)) = x}) for i = 3, 4. Hence, from v’s uniformity, we have v(χ3) ⪰ v(χ4) ⇐⇒ v(χ′
3) ⪰ v(χ′

4), that is,
uniformity implies restricted uniformity.

The proof is now straightforward: suppose v has a GEU representation; hence it satisfies uniformity (from Theorem 1),
hence it satisfies restricted uniformity, hence it has an XEU representation (from Theorem 4).



C PROOFS FOR SECTION 4 (EXACT XEU-REPRESENTATIONS OF DECISION RULES)

Theorem 6. Let E = (U,W, V,⊕,⊗) be an expectation domain and E∗ = (U,W, V,⊞,min,⊕,⊗) be an extended
expectation domain which share the same domains, the same ⊕ operator and the same ⊗ operator. For any decision problem
D = (A, U,W, u, µ) such that µ is ⊞-decomposable, it holds that XEUE∗

D (χ) = GEUE
D(χ) iff ∀w1, w2 ∈ W, ∀x ∈ U :

(w1 ⊗ x)⊕ (w2 ⊗ x) = (w1 ⊞ w2)⊗ x.

Proof. Firstly, note that according to [Friedman and Halpern, 1995], ⊞ have a neutral element 0⊞, and according to
Theorem 2, m⊞

µ exists and is unique.

• (if) Let w2 = 0⊞. For any w1 and x, (w1 ⊗ x) ⊕ (0⊞ ⊗ x) = (w1 ⊞ 0⊞) ⊗ x = (w1 ⊗ x). Let χ be an act of
D and let Px(B) = (x = minω∈B u(χ(ω))). Since u ◦ χ defines a partition of Ω, it follows that GEUE

D(χ) =⊕
x∈Img(u◦χ) µ({ω | Px({ω})}) ⊗ x =

⊕
x∈Img(u◦χ)

(
⊞ω∈Ω,Px({ω}) m

⊞
µ ({ω})

)
=

⊕
ω∈Ω m⊞

µ (B) ⊗ u(χ(ω)).

Then, since ⊕ is associative and commutative, one can rewrite XEUE
D(χ) =

⊕
x∈Img(u◦χ)

⊕
B⊆Ω,Px(B) m

⊞
µ (B)⊗ x.

Lastly, for any x ∈ Img(u ◦ χ), one may split the sum for |B| = 1 and |B| ̸= 1. Since |B| ̸= 1 =⇒ m⊞
µ (B) = 0⊞,

we have
⊕

B⊆Ω,px(B) m
⊞
µ (B) ⊗ x =

(⊕
B⊆Ω,px(B)∧|B|=1 m

⊞
µ (B)⊗ x

)
⊕ (0⊞ ⊗ x) =

⊕
ω∈Ω,Px({ω}) m

⊞
µ ({ω}).

Hence XEUE
D(χ) = GEUE

D(χ) for any act χ of D.
• (only if) Suppose w1, w2 ∈ W and x ∈ U such that (w1⊗x)⊕ (w2⊗x) ̸= (w1⊞w2)⊗x. Let D = (A, (U,W ), u, µ)

be a decision problem where Ω = {ω1, ω2}, where an act χ of D is such that u(χ(ω1)) = u(χ(ω2)) = x
and where µ({ω1}) = w1 and µ({ω2}) = w2. It follows that GEUE

D(χ) = µ({ω | Px({ω})}) ⊗ x =(
m⊞

µ ({ω1})⊞m⊞
µ ({ω2})

)
⊗ x ̸=

(
m⊞

µ ({ω1})⊗ x
)
⊞

(
m⊞

µ ({ω2}))⊗ x
)
= XEUE

D(χ).

Proposition 2.

CEUD(χ) =
∑
B⊆Ω

m+
µ (B)×min

ω∈B
u(χ(ω)),

Proof. The proof is quite simple but requires many rewritings. Let D = (A, (R, [0, 1]), u, µ) be a decision problem and χ
an act of D. Then let x1 < · · · < xn be the ordered utility level reached by χ and let Ai = {ω | u(χ(ω)) ≥ i} denote the
set of states leading to a utility greater of equal to xi. Notice that µ(A0) = 1 and let µ(An+1) = 0. Hence:

CEUD(χ) = x0 + (x1 − x0)µ(A1) + (x2 − x1)µ(A2) + · · ·+ (xn − xn−1)µ(An)

= x0µ(A0) + x1µ(A1)− x0µ(A1) + x2µ(A2)− x1µ(A2) + · · ·+ xnµ(An)− xn−1µ(An)

= x0

(
µ(A0)− µ(A1)

)
+ x1

(
µ(A1)− µ(A2)

)
+ · · ·+ xn

(
µ(An)− µ(An+1)

)
=

n∑
i=0

xi

(
µ(Ai)− µ(Ai+1)

)
.

Now, notice that ∀i, Ai+1 ⊊ Ai. Consider a set B ⊆ Ai. Any ω ∈ B leads to a utility u(χ(ω)) ≥ xi. It may or may not be
an ω ∈ B that leads to xi exactly. Let Pi denote this property, such that Pi(B) ⇐⇒ (B ⊆ Ai ∧ ∃ω ∈ B, u(χ(ω)) = xi).
Hence by definition, ∀B ⊆ Ω, Pi(B) ⇐⇒ min

ω∈B
u(χ(ω)) = xi. Moreover, it also holds that Pi(B) ⇐⇒ (B ⊆ Ai ∧B ⊈

Ai+1). Hence:

µ(Ai)− µ(Ai+1) =

 ∑
B⊆Ai

m(B)

−

 ∑
B⊆Ai+1

m(B)


=

 ∑
B s.t.Pi(B)

m(B)

+

 ∑
B⊆Ai+1

m(B)−m(B)

 =
∑

B s.t.Pi(B)

m(B).



Last, notice that there is a single i such that Pi(B) for any B ⊆ Ω. It thus defines a partition of 2Ω. Hence one can rewrite:

CEUD(χ) =

n∑
i=0

xi

(
µ(Ai)− µ(Ai+1)

)
=

n∑
i=0

xi ×
∑

B s.t. Pi(B)

m(B)

=

n∑
i=0

∑
B s.t.Pi(B)

m(B)×min
ω∈B

u(χ(B))

=
∑
B⊆Ω

m(B)×min
ω∈B

u(χ(B)).

Proposition 3. CEU has an exact XEU-representation:

EChoq = (R,R,R,+,min,+,×);

Proof. Direct from CEU’s expression on the Möbius inverse, since (R,+,×, 0, 1) is a semiring (with ⊥ = 0⊞ = 0) and
∀x,min({x}) = x.

Proposition 4. TBEU has an exact XEU-representation:

ETBM = (R,R,R,+,mean,+,×);

where mean : MS(R) → R is defined by mean(X) =
∑

x∈X x/|X| if X ̸= ∅ and mean(∅) yield an arbitrary value.

Proof. From its expression over the recovered probability distribution BetPµ defined by BetPµ(ω) =∑
ω∈B⊆Ω m+

µ (B)/|B|, it holds that:

TBEUD(χ) =
∑
ω∈Ω

BetPµ(ω)× u(χ(ω)) =
∑
B⊆Ω

m+
µ (B)×

∑
ω∈B

u(χ(ω))/|B|.

Furthermore, (R,+,×, 0, 1) is a semiring (with ⊥ = 0⊞ = 0) and ∀x,mean({x}) = x. Hence ETBM is an exact XEU
representation of TBEU.

Proposition 5. For any α : 2U → [0, 1], JEUα has an exact XEU-representation:

EJaff
α = (R,R,R,+,minmaxα,+,×);

where minmaxα : MS(R) → R is defined by minmaxα(X) = α(X)min(X) + (1− α(X))max(X) for all X ̸= ∅.

Proof. Direct from Jaffray’s rule’s expression, since (R,+,×, 0, 1) is a semiring (with ⊥ = 0⊞ = 0) and
∀x,minmaxα({x}) = x.

Proposition 6. SUG has an exact XEU-representation

ESugn = (Λ,Λ,Λ,max,min,max,min);

Proof. From Sugeno’s integral on the capacity: USugn
D (χ) = maxB⊆Ω min(µ(B),minω∈B u(χ(ω))), by noting that any

max-based mass function is such that mmax
µ (B) = µ(B) or mmax

µ (B) < µ(B) (in this latter case, there exists B′ ⊊ B
such that mmax

µ (B′) = µ(B)). Iterating over all B ⊆ Ω, one will consider either mmax
µ (B) = µ(B) and the minimal utility

xB reachable in B or mmax
µ (B′) = µ(B) and the minimal utility xB′ reachable in B′. Since xB′ ⪰U xB , it holds that

max
(
min(µ(B), xB),min(µ(B), xB′)

)
= min(µ(B), xB′), so USugn

D (χ) = XEUD′(χ).

Furthermore, (V,max,min, 0, 1) is a semiring (with ⊥ = 0⊞ = 0) hence ESugn is an exact XEU representation of
SUG.



Proposition 7. For any α : 2U → [0, 1] and β : 2U → [0, 1] such that ∀X, 0 ≤ α(X) ≤ β(X) ≤ 1, DSEUα,β has an
exact XEU representation:

EDS
α,β = (R, [0, 1],R2,+, fDS

α,β ,⊕DS,⊗DS);

where:

• x⊗DS [a, b] = [x× a, x× b];
• [a, b]⊕DS [a′, b′] = [a+ a′, b+ b′];
• fDS

α,β(X) = [α(X)min(X),
. α(X)min(X) + β(X)max(X)].

Proof. From [Denœux and Shenoy, 2020], we obtain the above definitions so it only remains to check that ⪰DSEU is
reflexive, antisymmetric and transitive. Recall that [a, b] ⪰DSEU [a′, b′] ⇐⇒ (a ≥ a′) ∧ (b ≥ b′), so ⪰DSEU is obviously
reflexive, transitive and antisymmetric since ≥ also is. Hence EDS is a proper XEU-representation of DSEU.
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