Under review as a conference paper at ICLR 2024

CODESCORE: EVALUATING CODE GENERATION BY
LEARNING CODE EXECUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

A proper code evaluation metric (CEM) profoundly impacts the evolution of code
generation, which is an important research field in NLP and software engineering.
Prevailing match-based CEMs (e.g., BLEU, Accuracy, and CodeBLEU) suffer
from two significant drawbacks. 1. They primarily measure the surface differ-
ences between codes without considering their functional equivalence. However,
functional equivalence is pivotal in evaluating the effectiveness of code generation,
as different codes can perform identical operations. 2. They are predominantly
designed for the Ref-only input format. However, code evaluation necessitates
versatility in input formats. Aside from Ref-only, there are NL-only and Ref&NL
formats, which existing match-based CEMs cannot effectively accommodate. In
this paper, we propose CodeScore, a large language model (LLM)-based CEM,
which estimates the functional correctness of generated code on three input types.
To acquire CodeScore, we present UniCE, a unified code generation learning frame-
work, for LLMs to learn code execution (i.e., learning PassRatio and Executability
of generated code) with unified input. Extensive experimental results on multiple
code evaluation datasets demonstrate that CodeScore absolutely improves up to
58.87% correlation with functional correctness compared to other CEMs, achieves
state-of-the-art performance, and effectively handles three input formats.

1 INTRODUCTION

Automatic evaluation of code generation is significant and promising in the fields of natural language
processing (NLP) and software engineering. Due to the great potential of code generation in reducing
development costs and revolutionizing programming modes, both industry and academia have devoted
substantial attention to it|Li et al.| (2022); [Mukherjee et al.| (2021); |Yin and Neubig| (2018); |Chen
et al.| (2021); [Shen et al. (2022); [Dong et al.| (2022). Code generation has achieved remarkable
developments in the past few years [Fried et al.|(2022); [Nijkamp et al.|(2022); |Dong et al.|(2023a);
Jiang et al.|(2023)), but CEMs still need to catch up. It is challenging to evaluate the competitiveness
of various approaches without proper CEM, which hampers the development of advanced techniques
for code generation. A range of code generation subtasks would benefit from valid code evaluation,
including code completion|Guo et al.[(2022a); Lu et al.|(2022), code translationRoziere et al. (2020);
Zhu et al.|(2022), code search |Sun et al. (2022); Arakelyan et al. (2022), etc. Therefore, research on
code evaluation is necessary and should be put on the agenda.

Some commonly used match-based CEMs treat code as text, such as BLEU [Papinent et al.|(2002)
and Accuracy, which focus on basic and lexical-level features. They compute scores mainly based
on n-gram co-occurrence statistics. CodeBLEU [Ren et al. (2020) additionally takes into account
the structure of code, i.e., abstract syntax tree and data flow. However, the preceding CEMs have
deficiencies in identifying code relationships, because code is mainly evaluated based on functional
correctness rather than exact/fuzzy match to reference code, and match-based CEMs cannot account
for the large and complex space of code functionally equivalent to reference code [Inala et al.| (2022).
For example, in Fig. [T, code (a) and code (b) have a much higher similarity of tokens or structures
than code (c). But through execution, we realize that code (a) and code (c) are different renderings
of the same function. By contrast, the execution result of code (b) differs dramatically from both
other codes, and code (b) even fails to compile. As a result, merely measuring the similarity of
token/structure is insufficient for code evaluation.

Under review as a conference paper at ICLR 2024

def bubbleSort(arr): Reference Code (a)

n = len(arr) = BLEU(a,b) = 0.961
for i in range(n): . =
for j in range(@, n-i-1): CodeBLEU(DEC o
if arr[jl >larr[j+1]: = (a) bubbleSort([5,3,2,1,4]) - [1,2,3,4,5]
arr[jl, arrlj+1] = arr[j+1], arr[j]
def bubbleSort(arr): Generated Code (b)
n = len(arr) * BLEU(b,c) = 0.202
for i in range(n): . _
for j in range(@, n-i-1): CodeBLEU(b,c) = 0.260
if arrl[jl =larr[j+1]: = (b) bubbleSort([5,3,2,1,4]) — error
arr[jl, arrlj+1] = arr[j+1], arr[jl
def sortBubble (num_list): Generated Code (c)
num_len = len(num_list)
for j in range(num_len):
sign = False * BLEU(a,c) = 0.204
for i in range(num_len - 1 - j):
if ali]l > ali+1]: = CodeBLEU(a,c) = 0.265

alil, ali+1] = a[i+1], alil
sign = True
if not sign:
break

* (c) sortBubble([5,3,2,1,4]) - [1,2,3,4,5]

Figure 1: Results of evaluating the generated code implementing bubble sort using different CEMs.
BLEU and CodeBLEU score the truly functional correct code (c) lower than the incorrect code (b).

LLMs pre-trained on code have demonstrated outstanding results in code generation tasks |(Chen
et al.| (2021); Fried et al.| (2022); |Li et al. (2022); Dong et al. (2023b), which are fundamentally
dependent on exceptional code comprehension. Excellent code comprehension is a crucial element
for facilitating code evaluation. We hypothesize that LLMs pre-trained on code possess the ability to
evaluate code. However, due to the training strategy of predicting the next token according to context,
they lack awareness of evaluating code for functional correctness. Our objective is to instruct LLMs
to evaluate code effectively in terms of functional correctness.

Another issue that requires resolution is that the existing match-based CEMs are exclusively confined
to the Ref-only input format. This restriction presents three inherent disadvantages. First, for any
code generation task, the correct solutions are not finite, but rather, they are inexhaustible. In this
context, the provided reference code merely represents one correct solution among a vast multitude.
Therefore, it is overly narrow to compare the generated code solely with one correct solution. Second,
they neglect the natural language (NL) description, which is a rich repository of information and
a real requirement source. Third, these metrics are unusable in the absence of a reference code.
This situation is quite commonplace in real-world evaluations where a correct solution is not always
readily available. As a result, expanding the input format of CEM is necessary.

In this paper, we propose an effective LLM-based CEM, called CodeScore, which measures the
functional correctness of generated codes on three input formats (Ref-only, NL-only, and Ref&NL).
To obtain CodeScore, we present a code evaluation learning framework, UniCE, for tuning LLMs to
estimate execution similarities with unified input. Specifically, we finetune LLMs to learn PassRatio
and Executability of generated code, where Executability is devised to distinguish between compila-
tion errors and output errors for code with PassRatio equal to 0. Generally, codes exhibiting higher
functional correctness will pass more test cases, thereby achieving a higher PassRatio Consequently,
for unexecutable codes, the model tends to assign scores approaching zero. In contrast, for codes
demonstrating superior functional correctness, the model is likely to assign higher scores. CodeScore
has the following advantages: 1) CodeScore has excellent evaluation performance, which achieves
the state-of-the-art performance correlation with functional correctness on multiple code evaluation
datasets. 2) CodeScore provides three application scenarios (Ref-only, NL-only, and Ref&NL) for
code evaluation with unified input, while traditional CEMs only consider Ref-only.

Our major contributions can be summarized as follows: (1) We propose an efficient and effective
LLM-based CEM, CodeScore, that accommodates the functional correctness of generated codes from
execution viewpoint. (2) We present UniCE, a unified code evaluation learning framework based on
LLMs with unified input, which assists models in learning code execution and predicting an estimate
of execution PassRatio. (3) We construct three code evaluation datasets based on public benchmark

"Note that, although PassRatio varies across different test cases, it tends to yield a higher PassRatio for
high-quality code, since we generate a large number of test cases. This phenomenon is somewhat akin to the
process of human feedback. Despite the inherent variability in scores assigned by different human evaluators,
the overarching trend remains consistent.

Under review as a conference paper at ICLR 2024

1. Ref-only (g +1) 3.Ref&NL (g + 1 +n)

1. def first_repeated_char(stri): 1. def first_repeated_char(stri):

2 for index,c in enumerate(stril): 2 for index,c in enumerate(stri):

3L if stri[:index+1].count(c) > 1: 3. if stri[:index+1].count(c) > 1:
4 return c 4 return c

2. NL-only (g + n) Write a python function to find the first repeated
character in a given string.

Generated code (g)
. Reference code (r)

. NL description (n)
Write a python function to find the first repeated
character in a given string.

Figure 2: Examples of three input formats for code evaluation.

datasets in code generation, called APPS-Eval, MBPP-Eval, and HE-Eval, respectively. Each task
of them contains an NL description, several reference codes, 10+ generated codes, and 100+ test
cases. (4) CodeScore substantially outperforms match-based CEMs and achieves the state-of-the-art
performance on multiple code evaluation datasets.

2 METHODOLOGY

In this section, we first introduce our proposed CEM CodeScore, and then describe a unified code
evaluation learning framework (i.e., UniCE), which is used to yield the CodeScore.

2.1 CODESCORE
Given an unified input sequence x that admits the following three types, as shown in Fig. 2}

1. Ref-only (g + r): Generated code concatenated with its reference code,
2. NL-only (g + n): Generated code concatenated with its NL description of requirements.
3. Ref&NL (g + r + n): Generated code concatenated with both its reference code and NL.

UniCE yields a scalar CodeScore € [0, 1] and a binary number Exec:
CodeScore, Exec = UniCE(x),)

where Exec = 1 if g can be executed successfully with all given test inputs otherwise 0, UniCE is
our proposed learning framework, and details of UniCE are presented in Section [2.2]

To correlate predictions of UniCE with code execution, we first collect unified data U, then label the
data with PassRatio and Executability of g, and finally perform supervised learning with UniCE on
the preceding paired data and labels. U = {U*}}¥, contains N triplets, consisting of generated code,
reference code, and NL segments. U is formed as (g’, r’,n*), where V g # ¢, and V r' Un® # e.
In other words, for each U?, generated code cannot be empty and only one of reference code and NL
can be empty.

For a task p € P, let the test case set of p as Cp, = {(Zp.¢, Op.c)}ecc,. a set of paired test case
input Z,, . and test case output O, .. Although the potential program space can be boundless, test
cases permit automatic evaluation of code generation capability. Thus, in contrast to most other
text generation tasks, human judgment is unnecessary for code generation. We measure functional
correctness with PassRatio, which is defined as

1
@ Z H{Eval (gpaIp,c) = Op,c} .)
ceCy

where | - | indicates the element number of a set, I(-) is an indicator function, which outputs 1 if the
condition is true and 0 otherwise, and Eval (g,, Z,,) represents an evaluation function that obtains
outputs of code g, by way of executing it with Z,, . as input.

Under review as a conference paper at ICLR 2024

Our framework UniCE can learn existing CEMs, including PassRatio and Passability [} In this paper,
we choose PassRatio since we want to study execution similarity and continuous PassRatio can better
reflect the execution similarity of different codes than binary Passability. In the case of generated
code with PassRatio equal to 0, we also use binary Executability to distinguish whether the generated
code can be executed successfully with all given test cases, and thus measure its quality.

. 1, if code is executable,
Executability = 0. oth . 3)
, otherwise.

For each U?, we use the preceding metrics to derive its label L' as (PassRatio’, Executabilityi).
Dataset D is formed as a set of paired U and L, i.e., {(U?, L*)}¥.,. We encourage UniCE to learn
execution PassRatio by minimizing loss function £ = L& + Lg:

L=Lc+ Lg, 4)
Lo = (CodeScore — PassRaLtio)2 , 5)
Lr = —log p(Exec | Executability), 6)

where (Excc). if B bl)

- p(Exec), ¢ xecutability = 1,

E E 1 =
p(Exec | Executability) {1 — p(Exec), otherwise. @
2.2 UNICE

UniCE relies on LLMs to extract representations of x and can work with existing pre-trained LLMs,
such as CodeBERT |Feng et al.|(2020) and UniXcoder (Guo et al.|(2022b). The framework of UniCE
is illustrated in Fig.

2.2.1 POOLING LAYER

The work [Tenney et al.|(2019); [Zhang et al.|(2020); Rei] | ynice

et al.|(2020) show that exploiting information from dif- Score / Category
ferent layers of LLM generally results in superior per-)
formance than only the last layer. Therefore, following 4

Peters et al.|(2018), we pool information from different
layers by using a layer-wise attention mechanism, and
the final embedding of a token ¢ can be computed as:

Feedforward Neural Network

l Embeddings Concatenation
e =7 e/h, ®)
k=1 Pooling Layer

where [indicates the number of layers, and ~ and h* are
trainable weights.

LLM
2.2.2 UNIFIED EMBEDDING 4
There are two standard methods to extract total embed- Input Sequence

ding, i.e., averaging all token embeddings and using the g eEl e o)

first token embedding. Ranasinghe et al.| (2020); Wan
et al.|(2022) proves the superiority of using the first token
embedding compared to averaging all token embeddings.
Thus, we employ the final embedding of first token ey;,; as the representation of unified input .

Figure 3: Model architecture of UniCE.

2.2.3 UNIFIED TRAINING

efirst 1 fed to a feedforward neural network to output a score and/or a category. To unify three
evaluation input formats into UniCE, we apply multi-task learning for training. Specifically, for
each step, we assign three sub-steps for three input formats, yielding £%¢f, LN and £ef+NL,

Zﬁ [eco, H{Eval (g5, Zp.c) = Op.c} -

Under review as a conference paper at ICLR 2024

respectively. A Ref&NL data can be regarded as three input format data to yield three losses, while
Ref-only and NL-only data can only compute the corresponding £7¢/ and £V*. The final learning
objective of UniCE is to minimize £Y™:

EUni — ERef _,_ﬁNL +£Ref+NL7 (9)

where £7¢f LNL and £Eef+NL are compute via Eq. 4{using corresponding format data as input.

3 EXPERIMENT SETUP

In this section, we introduce datasets, baselines, correlation evaluation, and implementation details.
Details of the experiment setup (including datasets and baselines) can be found in Appendix [A.

Table 1: Statistics of datasets.

Dataset Examples Num Avg Num / Task Avg Length

Train Dev Test NL RefCode GenCode Extended (Original) TestCase NL RefCode GenCode
APPS-Eval 267,162 33,395 33,395 1 13 42 181 (13) 263.8 86.3 76.8
MBPP-Eval 15,679 3,000 3,000 1 1 24 102 (3) 155 325 26.7
HE-Eval - - 1641 1 1 10 108 (8) 61.9 244 47.4

3.1 DATASETS

We construct three new datasets (named APPS-Eval, MBPP-Eval, and HE-Eval) for code evaluation
based on three public benchmark datasets in code generation, i.e., MBPP|Austin et al. (2021), APPS
Hendrycks et al. (2021), and HumanEval (Chen et al. (2021). Statistics of datasets are shown in Table
[I. We ensured the correctness of test cases (See Appendix [A.), and then manually filtered some
illegal inputs. To avoid data leakage issues in the code evaluation dataset, we ensure that there is no
overlap of NL, reference code, and generated code among training, validation, and test sets.

3.2 BASELINES

We select typical match-based CEMs and LLM-based EMs as baselines. Match-based CEMs include
BLEU Papineni et al. (2002), Exact Matching Accuracy (Accuracy), CodeBLEU Ren et al. (2020),
and CrystalBLEU |[Eghbali and Pradel (2022). LLM-based EMs contain two well-known and widely
used text EMs (BERTScore [Zhang et al.| (2020) and COMET Rei et al.|(2020)) and a recently public
CEM (CodeBERTScore Zhou et al. (2023)). The input format of these baselines is Ref-only. Each of
the preceding baselines except COMET is in the range of O to 1.

3.3 CORRELATION EVALUATION

We use three major correlation coefficients in statistics (i.e., Kendall-Tau(7), Spearman R (r;), and
Pearson R (r},) to evaluate the correlation between each EM and functional correctness. Furthermore,
we use Mean Absolute Error (MAE) to assess the absolute error between them.

Kendall-Tau (7) Kendall| (1938) is a statistic used to measure the ordinal association between two

measured data:
_ Concordant — Discordant

T= : 10

Concordant + Discordant’ (10)
where Concordant indicates the number of occurrences that two evaluation data M ! and M? exist
either both M > M and M}? > M? orboth M} < M and M7 < M?, and Discordant indicates
the number of occurrences opposite to C'oncordant.

Spearman R (rs) Mood (1950) is a nonparametric measure of rank correlation (statistical dependence
between the rankings of two data):

1 2
= cov(R(MY),R(M))’ (11
OR(M1)OR(M?2)

Under review as a conference paper at ICLR 2024

Table 2: Correlation comparison of functional correctness on APPS-Eval.

Method Value T re T rp T MAE | Execution Time |
Match-based CEM

BLEU 0.0094 0.1055 0.1156 0.0959 0.1164 1.0 x (26.0s)
Accuracy 0.0001 0.0079 0.0095 0.0196 - 0.1 x
CodeBLEU 0.2337 0.1035 0.1533 0.1085 0.2005 7.8 x
CrystalBLEU 0.0242 0.0906 0.1347 0.0887 0.1709 0.3 x
LLM-based EM

BERTScore 0.8629 0.0916 0.1375 0.0718 0.6874 56.7 x
COMET 0.0165 0.0904 0.1126 0.1187 0.1751 84.0 x
CodeBERTScore 0.7583 0.1219 0.1801 0.1323 0.5885 27.8 x
CodeScore

Ref-only (g + 1)

UniCE with £/ 0.1996 0.4760 0.6473 0.6620 0.1202 337 %
UniCE with £U™ 0.1977 0.5033 0.6693 0.6929 0.1128 ’
NL-only(g+n) oo oo oo oo oo
UniCE with £V E 0.2035 0.4679 0.6359 0.6855 0.1189 379 x
UniCE with £U™ 0.2016 0.4901 0.6486 0.6905 0.1120 ’
Ref&NL (g +r+n) oo oo oo oo o To oo
UniCE with £LRe/+NL 0.1837 0.3865 0.5419 0.6152 0.1274

UniCE with £V™ 0.1820 0.5275 (1 40.56%) 0.7040 (1 55.07%) 0.7210 (1 58.87%) 0.1044

where R(M?) and R(M?) represent the rankings of M and M?, cov(-,-) means the covariance
function, and o, means the standard deviation of M.

Pearson R (rp,) Bravais|(1844) is a measure of linear correlation between two data:
cov(M?*, M?)

ry= A7 0) (12)
TNLO pr2

Mean Absolute Error (MAE) is a measure of errors between paired data:

S, [ME— M?
N 9

MAE = (13)

where | - | means the absolute-value function.

3.4 IMPLEMENTATION DETAILS

In this paper, UniXcoder |Guo et al. (2022b) is employed as the base LLM of UniCE, which has the
similar parameter size of LLMs in BERTScore |Zhang et al. (2020) and COMET [Rei et al. (2020),
and larger LLMs can usually lead to better results. We train UniCE with Adam Kingma and Ba
(2015) optimizer on a single GPU of Tesla A100-PCle-40G. Empirically, the learning rate is set to
0.001. The feedforward neural network of UniCE consists of 3 linear transitions with the hyperbolic
tangent (Tanh) activation functions, where the corresponding output dimensions are 3,072, 1,024,
and 2, respectively. The input token length is limited to 1024. To mitigate the instability of model
training, we exhibit the average performance of UniCE running five times.

4 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to verify the effectiveness and generalization of
CodeScore. More comprehensive evaluations and discussions can be found in Appendix [B]-

4.1 EFFECT OF CODESCORE

As illustrated in Table [2, CodeScore exhibits a significantly stronger correlation with functional
correctness than existing match-based CEMs and LLM-based EMs, which display weak or extremely
weak correlations with Ground Truth on APPS-Eval. Compared with the top-performing EM among
other EMs, CodeScore achieved absolute improvements of 40.56%, 55.07%, and 58.87% on 7, r,
and 7, respectively. With an r, value greater than 0.6, it is evident that there is a strong correlation

Under review as a conference paper at ICLR 2024

Table 3: Correlation comparison of functional correctness on MBPP-Eval and HE-Eval.

MBPP-Eval HE-Eval

Method

Value re T Execution Time | Value rs T Execution Time |
Match-based CEM
BLEU 0.1186 0.1784 1.0 x (0.87s) 0.2249 0.0678 1.0 x (0.78s)
Accuracy 0.0004 0.0299 0.1 x 0.0006 0.0367 0.1 x
CodeBLEU 0.1827 0.2902 5.0 x 0.3826 0.4084 6.4x
CrystalBLEU 0.0295 0.1645 0.3 x 0.0158 0.2013 0.4 x
LLM-based EM
BERTScore 0.8842 0.1522 62.0 x 0.8862 0.0069 57.7x
COMET -0.5001 0.2681 69.0 x 0.0642 0.0716 58.6x
CodeBERTScore 0.7863 0.2490 44.9 x 0.7917 0.2604 47.5 x
CodeScore
Ref-only (g +r)
UniCE with £Ref 0.2975 0.5864 172 % 0.3115 0.5250 30.8x
UniCE with £U™ 0.3253 0.5999 ’ 0.4055 0.6009 '
NL-only(g+mn) T oo oo oo oo
UniCE with £NE 0.3364 0.4492 12.6 x 0.4748 0.5217 31.0x
UniCE with £Y™ 0.3327 0.5719 ’ 0.5357 0.5755 ’
Ref&NL (g +r+n) oo oo oo oo oo
UniCE with £fef+NL (.2905 0.5926 207 x 0.3866 0.5153 133 %
UniCE with £V™ 0.3247 0.6054 (1 31.52%) ' 0.4505 0.6048 (1 19.64%)

between CodeScore and Ground Truth. Furthermore, CodeScore has the lowest MAE compared
to other EMs. The execution time of CodeScore is similar to other LLM-based EMs and slightly
longer than existing Match-based CEMs. However, compared to the 20.7kx execution time of
execution-based CEMs (reported in Table[8 in Appendix), CodeScore reduces execution time by
three orders of magnitude.

We also sought to determine the generality of CodeScore. In Table[3] we utilize CodeScore, trained on
APPS-Eval, to evaluate the code in MBPP-Eval and HE-Eval with fine-tuning and zero-shot settings,
respectively. It is important to note that these three datasets are quite different, as evidenced by their
respective statistics shown in Table[T} Table [3|reveals the effectiveness of CodeScore on MBPP-Eval
and HE-Eval. Remarkably, CodeScore continues to achieve the best correlation compared to other
EMs in these two settings.

Another intriguing finding is that the quality of CodeBLEU inversely correlates with code length. In
other words, the longer code, the poorer correlation between CodeBLEU and Ground Truth. This is
likely due to the fact that longer codes tend to incorporate more variations in their syntactic structure.
Therefore, for longer codes, the evaluation effect of CodeBLEU gradually degrades to BLEU.

4.2 EFFECT OF LU™

As observed from Tables |Z and E, our proposed £Y™ demonstrates enhancements across all input
formats when compared to their respective losses on APPS-Eval, MBPP-Eval, and HE-Eval datasets.
With changes in the input format, both the correlation coefficients and MAE between CodeScore and
Ground Truth also vary. Generally, the Ref&NL input format yields superior results, which shows
that accommodating NL has a positive effect on evaluating the generated code, while the traditional
Ref-only input format omits the valuable information in NL. Additionally, according to the Avg
Length data presented in Table [T, we discovered that the execution time of CodeScore exhibits a
linear, positive relationship with the input length. Regardless of the input formats, our proposed
CodeScore provides a commendable evaluation of generated code. This is attributable to the fact that
LY™ aids in training a code evaluation model with a unified input.

4.3 HUMAN EVALUATION

In this section, we conduct a human evaluation to gauge the validity of our CodeScore. Considering
the costliness of human evaluation, we select only five representative EMs for this task, namely,
CodeScore, CodeBLEU, BERTScore, CodeBERTScore, and Ground Truth (PassRatio). All of these
EMs are continuous and range from O to 1. In accordance with previous work Hao et al. (2022)

Under review as a conference paper at ICLR 2024

NL Write a fi ion to find b divisible by m and n from a list of numbers using lambda function.
def div_of_nums(nums,m,n):
Reference Code result = list(filter(lambda x: (x % m == @ and x % n == @), nums))
return result
Generated Code I.1 Generated Code 1.2
def :;Z*Zﬁ[?”m("”ms'm'”): Ground Truth: 0.4215 Ground Truth: 1.0
for n in nums: CodeScore: 0.4159 def div_of_nums(nums,m,n): CodeScore: 0.9971
if nem :'0, CodeBLEU: 0.2283 return [x for x in nums CodeBLEU: 0.2456
ans appénd(n) BERTScore: 0.8862 if x%m==0and x % n == 0] BERTScore: 0.9005
: CodeBERTScore: 0.8615 CodeBERTScore: 0.8484
return ans
(a) Case 1
NL Write a function to return true if the given number is even else return false.
def even_num(x):
if x%2==0:
Reference Code return True
else:
return False
Generated Code llIl.1 Generated Code IIl.2
def even_num(n,count = 0):
if (n == 0):) i
return False Ground Truth: 0.3529 Ground Truth: 1.0
if (count % 2 == 101): CodeScore: 0.3590 def even_num(x): CodeScore: 0.9904
return (n % 2 == é) CodeBLEU: 0.3582 return True if x %2 == 0 CodeBLEU: 0.3421
else: ¢ BERTScore: 0.8882 else False BERTScore: 0.8665
; CodeBERTScore: 0.7764 CodeBERTScore: 0.8345
return (2 * n - 1) +
(n%s4-1)>1
(b) Case I1

Figure 4: Case Study on MBPP-Eval.

and our experimental setup, we manually assess the validity of each EM in gauging the functional
correctness of the generated code. The score for this evaluation is an integer ranging from O to 5,
where 0 denotes poor and 5 signifies excellent performance. The details of the human evaluation are
outlined in Appendix[D. Table 4: Human evaluation for func-

We present the results of the human evaluation in Table[] Re- tional correctness.

markably, our proposed CodeScore significantly outperforms

all other EMs. Relative to these, CodeScore shows an improve- EM Reasonableness
ment of at least 54.6% in the human evaluation. All p-values BERTScore 13+04
. . . CodeBLEU 2.1£05
are substantially le§s 'than O.'OOS', underscoring that these im- CodeBERTScore 22s0
provements are statistically significant. CodeScore 34 (154.6%) %03
Ground Truth 4.6+0.2

4.4 CASE STUDY

Fig. []displays a selection of generated codes and their corresponding EM scores (as per Section [4.3)
on MBPP-Eval. It becomes evident that CodeBLEU, BERT Score, and CodeBERT Score each exhibit
unique issues. From these examples, we glean the following insights: 1) CodeBLEU tends to assign
relatively low scores to generated code, even when the code is functionally correct. Furthermore, it
appears to favor generated codes that maintain structural consistency with the reference code. For
instance, even though Generated Code I1.2 is functionally correct, it receives a lower CodeBLEU
score than II.1, which is fundamentally incorrect. 2) Both BERTScore and CodeBERTScore have a
propensity to award relatively high scores to generated code, even when the code is essentially flawed.
Additionally, they often assign lower scores to better generated codes. For example, Generated Code
I1.2 has a lower BERTScore than II.1, and Generated Code 1.2 has a lower CodeBERTScore than I.1.
In contrast, CodeScore performs admirably in both scenarios. In summary, our proposed CodeScore
aligns more closely with Ground Truth compared to other EMs. This suggests that CodeScore is
more effective in estimating the functional correctness of generated code.

5 DISCUSSION

While we have demonstrated that CodeScore is an effective LLM-based metric for code evaluation,
we acknowledge that it still has certain limitations. First, our current version of CodeScore only
supports the most popular PL, i.e., Python. Nevertheless, our work establishes the viability of

Under review as a conference paper at ICLR 2024

code evaluation based on UniCE, and this approach can feasibly be extended to other PLs. We
aim to broaden CodeScore to encompass multiple PLs in our future work. Second, learning code
execution for code evaluation requires collecting a certain amount of data, including sufficient test
cases, generated codes, reference codes, and NL descriptions. However, collecting this data is far
less expensive than performing human evaluation. Third, employing CodeScore for code evaluation
entails additional computation and time. However, we maintain that this is still within an acceptable
range, considering the benefits it provides in terms of the accuracy and reliability of code evaluation.

6 RELATED WORK

Match-based CEMs. Besides these commonly used BLEU |Papineni et al. (2002), Accuracy, and
CodeBLEU [Ren et al.|(2020), some niche CEMs |Popovic (2015) are also applied to code evaluation,
e.g., METEOR [Banerjee and Lavie (2005), ROUGE [Lin (2004), and CrystalBLEU Eghbali and
Pradel (2022). However, these aforementioned match-based CEMs merely measure the surface-level
differences in code and do not take into account the functional correctness of the generated code.

Execution-based CEMs. They attempt to handle these issues by running tests for generated code
to verify its functional correctness |Kulal et al. (2019); [Hendrycks et al.|(2021); Hao et al.| (2022).
However, they come with several caveats: 1) It assumes that test cases have been given and all
dependencies have been resolved. For each code generation task, supplying adequate test cases is
a burden in practice, and the dependencies required vary from task to task. 2) Enormous compu-
tational overhead needs to be afforded. All generated code requires execution separately for each
corresponding test case, which leads to enormous CPU and I/O overhead. 3) Execution with isolation
mechanisms. The generated code could have some security risks, such as deleting files on the disk or
implanting computer viruses, especially if the training data of code generation models is attacked.
In a word, they are usually costly, slow, and insecure, which are often unavailable or ineffective in
real-world scenarios.

LLM-based EMs. Effective evaluation of generated results is hard for both text and code generation.
They likewise face the same issue of poor evaluation metrics (EMs). A recent popular trend in
evaluating text generation is the design of automatic EMs based on LLMs. A part of LLM-based
EMs [Rei et al.|(2021); [Wan et al.| (2022); Rei et al. (2022) follows COMET [Rei et al.| (2020) to
learn high-quality human judgments of training data, which is a problem for code evaluation to
obtain. Another part relies on LLM extracting token embeddings to calculate scores like BERTScore
Zhang et al.[(2020), such asZhao et al.|(2019);|Sellam et al. (2020); [Yuan et al.|(2021); Reimers and
Gurevych|(2019). They also perform poorly in code evaluation. CodeBERTScore Zhou et al.|(2023)
tries to use the same way as BERTScore with LLM pre-trained on code. However, simply relying on
LLMs to extract the hidden layer to calculate the correlation cannot fundamentally solve the problem
that LLMs are confused with how to evaluate code. Therefore, CodeBERTScore does not perform
very well in our experiments.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a code evaluation learning framework based on LLMs with a unified
input, which we refer to as UniCE. UniCe is designed to learn the code execution of generated
code. In response to the imprecise evaluations provided by existing match-based CEMs and LLM-
based EMs, we introduced CodeScore based on UniCE, which is an effective CEM to measure
the functional correctness of generated code. Furthermore, our CodeScore can be applied to three
application scenarios (Ref-only, NL-only, and Ref&NL) for code evaluation with a unified input.
This is in contrast to traditional CEMs, which typically only consider the Ref-only scenario. To
validate CodeScore, we constructed three code evaluation datasets (i.e., APPS-Eval, MBPP-Eval, and
HE-Eval), which correspond to three popular benchmark datasets in code generation (i.e., MBPP,
APPS, and HumanEval). Experimental results affirm the efficacy of CodeScore, which achieves
state-of-the-art performance on multiple code evaluation datasets.

We hope this work sheds light on future work in the direction of LLM-based code evaluation. Our code
evaluation dataset can serve as a benchmark for evaluating the functional correctness of generated
code. Furthermore, our work can be applied to facilitate the training of code generation models by
providing positive feedback.

Under review as a conference paper at ICLR 2024

REFERENCES

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092—-1097, 2022.

Rohan Mukherjee, Yeming Wen, Dipak Chaudhari, Thomas W. Reps, Swarat Chaudhuri, and
Christopher M. Jermaine. Neural program generation modulo static analysis. In NeurIPS, pages
18984-18996, 2021.

Pengcheng Yin and Graham Neubig. TRANX: A transition-based neural abstract syntax parser for
semantic parsing and code generation. In EMNLP, pages 7-12, 2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021.

Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo, Yankun Zhen, and Ge Li. Incorporating domain
knowledge through task augmentation for front-end javascript code generation. In ESEC/SIGSOFT
FSE, pages 1533-1543. ACM, 2022.

Yihong Dong, Ge Li, and Zhi Jin. Antecedent predictions are dominant for tree-based code generation.
CoRR, abs/2208.09998, 2022.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Yihong Dong, Ge Li, and Zhi Jin. CODEP: grammatical seq2seq model for general-purpose code
generation. In ISSTA, 2023a.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning code generation
with large language model. CoRR, abs/2303.06689, 2023.

Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan, Marc Brockschmidt, and Miltiadis Allamanis.
Learning to complete code with sketches. In ICLR. OpenReview.net, 2022a.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. Reacc:
A retrieval-augmented code completion framework. In ACL, pages 6227-6240. Association for
Computational Linguistics, 2022.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In NeurIPS, 2020.

Ming Zhu, Karthik Suresh, and Chandan K. Reddy. Multilingual code snippets training for program
translation. In AAAI, pages 11783-11790. AAAI Press, 2022.

Weisong Sun, Chunrong Fang, Yuchen Chen, Guanhong Tao, Tingxu Han, and Quanjun Zhang. Code
search based on context-aware code translation. In ICSE, pages 388—400. ACM, 2022.

Shushan Arakelyan, Anna Hakhverdyan, Miltiadis Allamanis, Christophe Hauser, Luis Garcia, and
Xiang Ren. NS3: neuro-symbolic semantic code search. CoRR, abs/2205.10674, 2022.

10

Under review as a conference paper at ICLR 2024

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In ACL, pages 311-318. ACL, 2002.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
CoRR, abs/2009.10297, 2020.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andrés Codas, Mark Encarnacién, Shuvendu K.
Lahiri, Madanlal Musuvathi, and Jianfeng Gao. Fault-aware neural code rankers. CoRR,
abs/2206.03865, 2022.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. CoRR,
abs/2304.07590, 2023b.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming
and natural languages. In EMNLP (Findings), volume EMNLP 2020 of Findings of ACL, pages
1536-1547. Association for Computational Linguistics, 2020.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. In ACL (1), pages 7212—7225. Association for
Computational Linguistics, 2022b.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In ACL
(1), pages 4593-4601. Association for Computational Linguistics, 2019.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with BERT. In /CLR. OpenReview.net, 2020.

Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon Lavie. COMET: A neural framework for MT
evaluation. In EMNLP (1), pages 2685—-2702. Association for Computational Linguistics, 2020.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In NAACL-HLT, pages 2227-2237.
Association for Computational Linguistics, 2018.

Tharindu Ranasinghe, Constantin Orasan, and Ruslan Mitkov. Transquest: Translation quality
estimation with cross-lingual transformers. In COLING, pages 5070-5081. International Committee
on Computational Linguistics, 2020.

Yu Wan, Dayiheng Liu, Baosong Yang, Haibo Zhang, Boxing Chen, Derek F. Wong, and Lidia S.
Chao. Unite: Unified translation evaluation. In ACL (1), pages 8117-8127. Association for
Computational Linguistics, 2022.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. CoRR, abs/2108.07732, 2021.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with APPS. In NeurIPS Datasets and Benchmarks, 2021.

Aryaz Eghbali and Michael Pradel. Crystalbleu: Precisely and efficiently measuring the similarity of
code. In ASE, pages 28:1-28:12. ACM, 2022.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code
generation with pretrained models of code. CoRR, abs/2302.05527, 2023.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81-93, 1938.
Alexander McFarlane Mood. Introduction to the theory of statistics. 1950.

Auguste Bravais. Analyse mathématique sur les probabilités des erreurs de situation d’un point.
Impr. Royale, 1844.

11

Under review as a conference paper at ICLR 2024

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2015.

Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao, He Zong, Siyuan Jiang, Yang Liu, and He Wei.
Aixbench: A code generation benchmark dataset. CoRR, abs/2206.13179, 2022.

Maja Popovic. chrf: character n-gram f-score for automatic MT evaluation. In WMT@EMNLP,
pages 392-395. The Association for Computer Linguistics, 2015.

Satanjeev Banerjee and Alon Lavie. METEOR: an automatic metric for MT evaluation with im-
proved correlation with human judgments. In IEEvaluation @ACL, pages 65—72. Association for
Computational Linguistics, 2005.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pages 74-81. Association for Computational Linguistics, July 2004.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy
Liang. Spoc: Search-based pseudocode to code. In NeurIPS, pages 11883-11894, 2019.

Ricardo Rei, Ana C. Farinha, Chrysoula Zerva, Daan van Stigt, Craig Stewart, Pedro G. Ramos,
Taisiya Glushkova, André F. T. Martins, and Alon Lavie. Are references really needed? unbabel-ist
2021 submission for the metrics shared task. In WMT@EMNLP, pages 1030-1040. Association
for Computational Linguistics, 2021.

Ricardo Rei, José GC De Souza, Duarte Alves, Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André FT Martins. Comet-22: Unbabel-ist 2022 submission
for the metrics shared task. In WMT@EMNLP, pages 578-585. Association for Computational
Linguistics, 2022.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger. Mover-
score: Text generation evaluating with contextualized embeddings and earth mover distance. In
EMNLP/IJCNLP (1), pages 563-578. Association for Computational Linguistics, 2019.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh. BLEURT: learning robust metrics for text
generation. In ACL, pages 7881-7892. Association for Computational Linguistics, 2020.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text
generation. In NeurIPS, pages 27263-27277, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In EMNLP/IJCNLP (1), pages 3980-3990. Association for Computational Linguistics, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pages 4171-4186.
Association for Computational Linguistics, 2019.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I. Wang. Natural
language to code translation with execution. CoRR, abs/2204.11454, 2022.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. CoRR, abs/2207.10397, 2022.

OpenAl. ChatGPT: Optimizing Language Models for Dialogue. URL https://openai.com/
blog/chatgpt/.

12

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

	Introduction
	Methodology
	CodeScore
	UniCE
	Pooling Layer
	Unified Embedding
	Unified training

	Experiment Setup
	Datasets
	Baselines
	Correlation Evaluation
	Implementation Details

	Experimental Results
	Effect of CodeScore
	Effect of LUni
	Human Evaluation
	Case Study

	Discussion
	Related Work
	Conclusion and Future Work
	Details of Experimental Setup
	Details of Datasets
	Details of Baselines

	Effect of Binary CodeScore
	CodeScore for Reranking
	Details of Human Evaluation
	Comparison with Execution-based CEMs
	Additional Case Study
	Preliminary knowledge
	Test case generation via ChatGPT

