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ABSTRACT

Neural populations exhibit complex recurrent structures that drive behavior, while
continuously receiving and integrating external inputs from sensory stimuli, up-
stream regions, and neurostimulation. However, neural populations are often mod-
eled as autonomous dynamical systems, with little consideration given to the influ-
ence of external inputs that shape the population activity and behavioral outcomes.
Here, we introduce BRAID, a deep learning framework that models nonlinear
neural dynamics underlying behavior while explicitly incorporating any measured
external inputs. Our method disentangles intrinsic recurrent neural population
dynamics from the effects of inputs by including a forecasting objective within
input-driven recurrent neural networks. BRAID further prioritizes the learning of
intrinsic dynamics that are related to a behavior of interest by using a multi-stage
optimization scheme. We validate BRAID with nonlinear simulations, showing
that it can accurately learn the intrinsic dynamics shared between neural and be-
havioral modalities. We then apply BRAID to motor cortical activity recorded
during a motor task and demonstrate that our method more accurately fits the
neural-behavioral data by incorporating measured sensory stimuli into the model
and improves the forecasting of neural-behavioral data compared with various
baseline methods, whether input-driven or not.

1 INTRODUCTION

Understanding the relationship between neural activity and behavior is a critical goal in neuroscience
and neurotechnology. Neural activity and its temporal structure, or “dynamics” during a behavior,
are formed by the interplay between (1) the recurrent networks within a brain area, i.e., intrinsic
dynamics, and the (2) temporally-structured inputs it receives during the behavior (Remington et al.}
2018 |Vyas et al.| 2020). A brain population may receive inputs from measurable sources such as
sensory stimuli, electrical/optogenetic neurostimulation (Buonomano & Maass| [2009; |Seely et al.,
2016; Susilaradeya et al.,|2019; [Sauerbrei et al., | 2020; Shenoy & Kao, 20215 |Vahidi et al., [2024), as
well as from other upstream brain areas (Sauerbrei et al.| 2020; Shenoy & Kao, [2021)), which could
be included in multi-regional recordings (Jun et al.l [2017; [Steinmetz et al., 2019). However, even
easily measurable external inputs (e.g., sensory stimuli) are often not explicitly considered when
modeling neural-behavioral activity, which can lead to a conflation of intrinsic and input-driven
contributions, creating challenges for interpretation (Seely et al., 2016} Sauerbrei et al.| [2020; |[Vahidi
et al.,|2024). Beyond disentangling intrinsic dynamics from input dynamics, incorporating measured
inputs into models can also enhance the behavior decoding performance in neurotechnologies such
as stimulation-based closed-loop controllers (Yang et al., 2021}

Another important challenge is to disentangle neural dynamics that are relevant to a specific behavior
from other neural dynamics, and to prioritize the former. This is critical because the majority of
neural variance may not be relevant to the behavior of interest (Churchland et al.,[2012;[Mante et al.
2013; Kobak et al., 2016; |Allen et al., 2019; Engel & Steinmetz, |2019; [Stringer et al., 2019; |Sani
et al.| [2021). While most prior works have used unsupervised approaches when modeling neural
activity as latent variable dynamical systems (Aghagolzadeh & Truccolol [2015; (Gao et al.l 2016
Wau et al., 2017} [Pandarinath et al., 2018; |[Hernandez et al., [2020; Rutten et al., 2020; |Kim et al.,
2021)), more recent works have shown improved learning of behaviorally relevant neural dynamics
by using behavior data during learning in a supervised manner (Hurwitz et al., 2021} |Sani et al.,
2021; Kramer et al., [2022; |Gondur et al., 2024} [Vahidi et al., [2024; |Sani et al., [2024).
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Yet another challenge is posed by the nonlinearities in neural-behavioral data. While linear models
have been extremely effective in approximating neural dynamics (Hastie et al., 2009; |Churchland
et al., 2012; Mante et al., [2013} |Cunningham & Yu, [2014} |[Kao et al., 2015} |Kobak et al.l 2016;
Abbaspourazad et al.| [2021}; |Sani et al., 2021)), they may require higher dimensional latent repre-
sentations compared to nonlinear models (Yang et al.l |2019; |[Nozari et al., 2024} Sani et al., [2024)),
and do not provide interpretability for nonlinear dynamical phenomena such as multi-stable fixed
points and limit cycles (Kim et al., 2021} |Durstewitz et al.,[2023). Moreover, unlike linear models,
for nonlinear models the relationship between the intrinsic dynamics and an inference model that is
fitted to estimate the latent states from observations is not analytically known, posing a challenge
for studying intrinsic dynamics (see section [3.1).

Here, we address all aforementioned challenges by introducing Behaviorally Relevant Analysis of
Intrinsic Dynamics (BRAID), a new method with the following key contributions. First, BRAID
captures complex nonlinear structures in neural-behavioral-input data, offering greater expressiv-
ity than linear methods. Second, by optimizing multi-step-ahead forecasts of neural-behavior data,
BRAID simultaneously learns two representations for neural dynamics: the predictor and the gener-
ative form representations (see section , the latter of which describes intrinsic dynamics. Third,
by explicitly modeling the influence of measured inputs, BRAID disentangles their dynamics from
intrinsic dynamics, to more closely reflect the neuronal networks within the recorded brain region.
Fourth, we introduce a multi-stage learning framework that dissociates and prioritizes the learning
of intrinsic behaviorally relevant neural dynamics, while considering measured inputs (see section
[3.2). Fifth, we introduce additional prepossessing and post-hoc learning stages that allow behavior-
specific dynamics to be dissociated from behaviorally relevant neural dynamics (see section [3.3).

We validate BRAID in multiple simulated datasets with distinct nonlinear structures and show its
capability to accurately learn the underlying nonlinear model, resulting in an interpretable represen-
tation of intrinsic dynamics. We then apply our method to electrophysiological data recorded from a
non-human-primate (NHP) performing sequential reaches (O’ Doherty et al.,{2017). Our results indi-
cate that accounting for both nonlinearity and sensory inputs improves neural-behavioral prediction
suggesting a more accurate representation of intrinsic behaviorally relevant neural dynamics.

2 RELATED WORK

Our work addresses multiple problems simultaneously, which makes it related to various methods
that tackle a subset of these problems. A summary of related methods is provided in table

First, a key ability of BRAID is to incorporate measured inputs to disentangle intrinsic dynamics
from input dynamics. Other nonlinear modeling methods, including those based on deep learning
(Gao et al.,[2016; Sussillo et al., 20165 |Wu et al., [2017; [Pandarinath et al.l|[2018}; |Rutten et al., |[2020;
Hurwitz et al.| 2021} Kim et al.l 2021} |Abbaspourazad et al. [2024; |Sani et al., [2024), have not
addressed the problem of modeling measured external inputs and their impact on neural-behavioral
data. As demonstrated by|Vahidi et al.|(2024), not considering external inputs can lead to the dynam-
ics of these inputs being misinterpreted as intrinsic neural dynamics. To overcome this challenge,
Vahidi et al.[(2024)) introduce a linear dynamical modeling method, termed IPSID, which explicitly
incorporates measured external inputs into the model. However, IPSID is a projection-based ana-
Iytical approach (Van Overschee & De Moor, [1996), which is strictly linear and cannot capture any
nonlinearities in the neural-behavioral-input data. By incorporating the strengths of this linear mod-
eling work into BRAID, we can account for measured external inputs and dissociate their dynamics
while allowing every element of the model to be nonlinear. We use IPSID as a key baseline to show
the benefit of enabling nonlinearity in our method (see appendix [A.2] for details). We also show the
results for the special case of setting all model element as linear in our method (referred to as linear
BRAID), which fits in a linear model similar to that of IPSID.

Second, a key capability of BRAID is that it dissociates behaviorally relevant neural dynamics into
a distinct part of the latent states and prioritizes their learning, while also being able to learn neural-
specific and behavior-specific dynamics using additional latent states. Among prior works, two
recent nonlinear methods termed DPAD (Sani et al.,|2024) and TNDM (Hurwitz et al.,[2021)) aim to
dissociated behaviorally relevant dynamics from other neural dynamics, but neither method dissoci-
ates the third category of dynamics, i.e., the behavior-specific dynamics. More importantly, neither
DPAD nor TNDM incorporates external inputs into the model to dissociate intrinsic dynamics from
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input dynamics. Finally, DPAD learns models based on 1-step-ahead prediction of neural-behavioral
data and does not explicitly learn the intrinsic representation of dynamics, whereas BRAID adds m-
step-ahead predictions into the loss to optimize forecasting and also explicitly learns the intrinsic
representation of dynamic. TNDM on the other hand is in the class of sequential autoencoders
(similar to LFADS, |Pandarinath et al., 2018)), i.e., it optimizes a smoothing reconstruction loss by
reconstructing a window of data after ingesting the entire window as input. We compared our results
with both DPAD and TNDM, although DPAD’s architecture is closer to ours. In fact, the compar-
isons with DPAD can also be thought of as ablation studies that show the benefit of incorporating
external inputs and forecasting in our method.

Third, we learn behaviorally relevant neural dynamics, or in other words the shared neural-
behavioral dynamics, in an initial optimization focused on learning these dynamics, while leaving
the learning of other neural dynamics to a separate subsequent optimization. This approach, priori-
tizes behaviorally relevant neural dynamics in the sense that we can fit models with low dimensional
latent states that are purely focused on these dynamics. Besides DPAD, a few other works, includ-
ing TNDM, propose nonlinear approaches for learning dynamics shared between two modalities
(Hurwitz et al.| [2021; |Kramer et al.l [2022; |Gondur et al.l [2024)). However, these works, use a com-
bined loss to optimize the reconstruction of both modalities in the same optimization. While this
approach can capture the dynamics shared between modalities, it does not prioritize them over dy-
namics specific to either modality (Sani et al., [2024). Moreover, most multi-modal approaches do
not model the effect of external inputs (Hurwitz et al., 2021; Gondur et al., [2024)). One multi-modal
framework, termed mmPLRNN (Kramer et al |[2022), which models dynamics of two modalities
with a piecewise-linear RNN (see appendix [A.2]for details), supports modeling the effect of exter-
nal inputs, although this capability was not demonstrated in Kramer et al.| (2022). Nevertheless,
we include comparisons with mmPLRNN with input as one of our baselines. Finally, as another
ablation study to assess the importance of prioritization of behaviorally relevant dynamics, we also
implement an unsupervised version of BRAID, termed U-BRAID, that removes the behaviorally
relevant optimization step and instead learns all neural dynamics in one optimization step while still
incorporating external inputs into the model (see section [3]and appendix [A.2]for details).

Most other prior nonlinear methods only consider neural signals during modeling without consider-
ing behavior or external inputs (Gao et al.l |2016; Pandarinath et al.l |2018; [Hernandez et al., 2020;
Rutten et al.| 2020; Kim et al., 2021) or do not use dynamic models (Zhou & Weil 2020; Schneider,
et al.,|2023)) and thus are vastly different from our method. We list the differences of some of these
methods with our method in table[T]

Table 1: Summary of related works. ELBO: evidence lower bound, LL: log-likelihood.
Prioritize . . . .
Dissociate | Dissociate

Method Nonlinear | behavioral- L Training objective
non-neural | intrinsic
ly relevant

IPSID X v v v Projection-based
TNDM v v X X Multi-modal ELBO
mmPLRNN v X X v Multi-modal ELBO
DPAD v v X X 1-step-ahead LL
BRAID v v v v m-step-ahead LL

3 METHODS

3.1 BRAID MODEL

We model the neural activity (y; € R™) and behavior (z; € R™=) as observations of a nonlinear
dynamical system (with latent states x; € R"=) that have some intrinsic dynamics and are driven
both by measured inputs (u; € R™*) as well as unmeasured inputs and/or noises (wy € R™=). The
following model describes the dynamical system

Xerl = Afw(XZ) + wa(uk) + Wy
vi = Cy(xp,ui)+ vy €))
Z) = Cu(xp,ug) + €

where v, € R™ and €, € R" are observation noises. Given this dynamical system, one can
recursively infer the latent state from neural observations yj using an RNN as follows

X1k = AXgg-1) + K(yx, uk) )
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where X 1) (or simply xx1) is defined as the inferred latent state based on {y1,-,y¥x} and
{uy, ..., ux}. Given the latent nature of the states, even when inference is optimal (e.g., in a Kalman
filter), the inferred states will not be equal to the internal states x; in equatiorép (Katayamal, 2006),
which is why we use different notations for the states in equations (1| and More importantly,
note that A and K in equation 2] are distinct from Ay, and Ky, in equation [T} This is because
A and K represent the “predictor form” representation of dynamics, describing how the inferred
latent state recursively evolves over time as samples of y;, and uy are observed, whereas A ¢,
and K, represent the “generative form” representation of dynamics that describe how the latent
states themselves evolve, purely based on their intrinsic dynamics — so Ay, is what ultimately
describes the intrinsic dynamics. For linear systems, there is an analytical bidirectional relationship
between predictor and generative form representations (defined by the Kalman filter, see [Katayamal
2006)), whereas for nonlinear systems in general, this relationship is not known. Thus, we devise an
approach that allows us to learn both representations of dynamics from data.

Critically, to predict the latent state (or neural or behavioral data) multiple (for m > 1) steps into the
future using only new observations from the input uj, we would need to propagate the latent state
ahead according to its intrinsic dynamics, i.e., the “generative form” representation of dynamics, as

Xk+m|k — Afw (xk—i-m—l\k) + wa(uk’+m—1) (3)

where Xj 1., denotes the latent state at time step k& + m, generated given {yi,...,yx} and
{uy, ...  Ueym— 1}. Note that for m = 2, the right hand side of equation I would have x4 1,
which is given by equation 2] Thus, m-step-ahead inference of the latent sfate engages both pre-
dictor and generative form representation of the dynamics via equations 2] and [3] respectively. As
an alternative interpretation, the m-step-ahead prediction of the latent state (or neural or behavioral
data), for m > 1, involves two RNNs operating in complementary fashion (figure [Ib):

1. The first RNN (parameterized by A and K) takes in neural and input time series and recursively
estimates the 1-step-ahead prediction (x;—1)-

2. The second RNN (parameterized by Ay, and Ky,,) takes in the 1-step-ahead predicted state
from the first RNN and propagates it m — 1 additional steps ahead according to the intrinsic
latent dynamics of the model, to get the m-step-ahead predictions (Xy s, —1|x—1, for m > 1).

Overall, the BRAID model is comprised of six distinct transformations: A(.), A, (.), K(.),
Ky, (.), Cy(.), and Cy(.). A/Ay,, describe predictor/generative form recursions of the latent state.
K/K¢,, describe predictor/generative form encoders. C, and Cy describe behavior and neural de-
coders. We implement these six transformations as multi-layer perceptrons (MLPs) with arbitrary
user-specified number of units and hidden layers. As a special case, any (or all) of these mappings
can be replaced by a linear mapping (i.e., an MLP with no hidden layer and a linear activation).

We learn the parameters specifying all six transformations of the model by optimizing a weighted
sum of m-step-ahead neural-behavioral prediction errors (for m € [my, ma, ..., my]) as our losses

L, = 2521 azmiMSE(zk+mwCZ(Xk+mi|k7 Uktm;))
L
Ly = Zl:l ayvni MSE(yk+m7 I Cy (Xk?+mz |k77 uk+mb ))

where MSE(.) indicates the mean-squared error loss, L denotes the number of steps ahead simulta-
neously included in the loss, and «;,, - and ¢, denote the weights used in the sum. In this work,
we always set v, and oy, to 1. Moreover, afthough the decoders in BRAID can optionally take
both the latent state and the external input uy, (lines 2-3 of equation[I), in our real data analyses we
do not provide uy, to decoders and generate predictions only based on the latent states.

“4)

3.2 PRIORITIZATION OF BEHAVIORALLY RELEVANT OVER OTHER NEURAL DYNAMICS

To dissociate behaviorally relevant neural dynamics from other neural dynamics and prioritize the
former, we break the latent state x;, into two sections (x and x(z)) and learn these two sections
in two learning stages. We denote the model parameters assocmted with each model section using
a .M or . superscript, e.g., A and A®). We provide the full two-section formulation for the
model in appendix [A.T.T] and the optimization details in appendix [A.1.2] Briefly, each of the two
learning stages consist of 2 optimizations, as follows:

Stage 1: Learning RNNI and RNNI 7,
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Figure 1: BRAID model architecture. (a) BRAID dissociates the dynamics of neural-behavioral
data into three latent states xg), ng), and x,(j): 1) the dynamics shared between neural and behav-
ioral modalities (learned in stage 1 by RNNI and RNNI ,,), 2) any remaining dynamics private to
neural activity (learned in stage 2 by RNN2 and RNN2¢,,), and 3) Input-driven, behavior-specific dy-
namics not encoded in neural activity (learned per section @by RNN3 and RNN3¢,,). (b) For each
latent state, we simultaneously learn a predictor and generative form representation of the dynamics
(denoted by A and Ay,,), by optimizing m-step-ahead prediction of neural-behavioral data. This
interconnected two-RNN system is visualized for RNNI and RNNI ¢,, in this computation graph.

The superscript .(!) indicating that parameters are for RNNI and RNN1 fw 1s omitted for simplicity.

la Learn A, Agcllz, KW, Kj(cllz, and C;l), and extract latent states xg) and x,(:_gmlk (form > 1)
by minimizing the behavior prediction loss L, from equation 4}
1b Learn C§,1) by predicting neural data from xg) and X](€1+)m‘ K

tion loss Ly from equation 4]
Stage 2: Learning RNN2 and RNN2 f,,

2a Learn A, Agczu),, K®, Kﬁz, and C§,2), and extract latent states ng) and Xl(jzmlk (form > 1)

by minimizing the neural loss L., while including outputs of stage 1b as part of the predictions.

2b Learn Céz) by predicting behavior from x,(f) and x,(i)m‘k, while minimizing the behavior loss

L, from equation[d] and including outputs of stage 1a as part of the predictions.

while minimizing the neural predic-

The explicit dissociation of the relevant dynamics and the above two-stage optimization allow us to
first preferentially learn the (low-dimensional) shared dynamics between the two observations i.e.,
the behaviorally relevant neural dynamics, in stage 1. Then in stage 2, we learn any residual neural
dynamics. This multi-stage approach has similarities to [Sani et al.| (2024)), but here we have: 1)
additional signals (uy), 2) different losses, 3) a forecasting RNN within each model section (figure
[Ip), and additional steps that are discussed in the next section.

3.3 DISSOCIATION OF BEHAVIOR-SPECIFIC DYNAMICS

Optimizing behavior prediction (stage 1a) given neural activity yj and input uy, can lead to learning
behavior dynamics that are predictable from the input but are not encoded in the recorded neural
activity. Although learning such behavior-specific dynamics enhances behavior decoding, it poses
an interpretation challenge for neuroscience applications because one would not know what part of
the learned dynamics are represented in the recorded brain regions. As shown in|Vahidi et al.|(2024)
this may lead to a misinterpretation of input-driven behavior-specific dynamics as intrinsic dynamics
of the recorded brain region. To mitigate this possibility, we develop two additional steps in our

method, that can 1) exclude such behavior-specific dynamics from xg) , and 2) learn them separately

as a distinct latent states xf’) (figure ). Details are provided in appendix Briefly, first,
to exclude behavior-specific dynamics, we introduce an optional preprocessing stage that predicts
behavior from neural data, and passes this neurally-predicted behavior to be used in stages la and
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2b. This preprocessing step ensures that the behaviorally relevant states learned in stage 1 (XS))
are encoded in recorded neural activity yx, which can be crucial for interpretability in neuroscience
studies. In our analyses of the real datasets (section.2), we always include this preprocessing step.
Second, to still be able to learn behavior-specific dynamics, we add an optional post-hoc learning
step that fits RNN3 and RNN3 f,, to any unexplained behavior and learns these input-driven behavior-

specific dynamics as a distinct latent state x,&s). As we show in simulations (see figure , when
desired in an application, this post-hoc step can offset any behavior decoding loss incurred due to
the preprocessing step, while still maintaining the interpretability of the model. We did not apply
this post-hoc step in our real data analyses (section {.2).

3.4 INFERENCE AND EVALUATION METRICS

After learning parameters of BRAID, we can readily use the learned mappings A, K (and Ay,
and K,,) to infer the 1-(and multi)-step-ahead predicted states x (and Xy 1 ,,,|3) using equations
(and [3) for the held-out test data. Predicted neural activity and behavior are obtained by applying
their corresponding decoders C, and C', to these inferred states. We also use the term “decoding”
for behavior predictions because our model predicts behavior only using neural data and inputs, and
never using behavior itself. To evaluate the performance of our models, we perform 5- and 2-fold
cross-validation, for real data and simulation analyses, respectively. We calculate and report the
Pearson Correlation Coefficient (CC) between the predicted and actual observation, averaged across
the data dimensions. Note that regardless of what step-ahead predictions were included during
training, the learned model can be used to predict the latent state and neural-behavioral data at m-
steps ahead for any desired m using equations [2] and [3] (or [A.T] and together. For example, in
ﬁgure only [1,2, 4, 8] step ahead predictions are included in the optimization loss (equation but
we evaluate the learned models with predictions up to 32-steps ahead. The m-step-ahead prediction
accuracy gives a measure of how well the intrinsic dynamics Ay, are learned. For simulation
analyses with linear recursions (Ajy,,), we additionally evaluate the learned intrinsic dynamics by
comparing the eigenvalues of A, between the true and learned model (see appendix .

4 EXPERIMENTAL RESULTS

4.1 SIMULATION EXPERIMENTS

We validated BRAID in three simulations with different nonlinear neural-behavioral-input struc-
tures, to show that it can learn intrinsic behaviorally relevant neural dynamics in presence of inputs.

4.1.1 BRAID ACHIEVES NEAR OPTIMAL NEURAL-BEHAVIORAL PREDICTIVE ACCURACY IN
NONLINEAR INPUT-DRIVEN SIMULATIONS

First, we considered an input-driven dynamical system with a nonlinear behavior mapping in the
form of fo_(v) := asin(¥) + br, where the periodic pointwise function, sin(.), introduces nonlin-
earity (figure 2h). We generated 10 random parameter sets (see equation as our true models
and generated data from them. First, we implemented an automatic selection of nonlinearity for
BRAID by setting each of A, K, Cy, or C), to linear or nonlinear, resulting in 24 different BRAID
models, and finding the model with the best behavior decoding in the training data. Across all 10
realizations and 2 cross-validated folds, the behavior decoder, setting C, to be nonlinear was cor-
rectly identified as the best performing nonlinearity in 100% of the cases. Additionally, we evaluated
BRAID with nonlinearity only in one of A, K, Cy, or C,. The model with nonlinear behavior de-
coder C, outperformed other nonlinearity choices as well as linear models i.e., IPSID and the fully
linear BRAID, in behavior decoding and neural prediction. BRAID further outperformed DPAD,
which is nonlinear but does not account for the input uy, in neural-behavioral prediction. In fact,
both BRAID with nonlinear C, and BRAID with automatic nonlinearity selection achieved almost
the same neural-behavioral prediction as the true simulated models, demonstrating BRAID’s success
in accurately learning the nonlinear input-driven dynamical system (table 2).
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Table 2: 1-step-ahead prediction results for nonlinear simulation with sinusoidal behavior mapping.
Mean =+ s.e.m. is across 20 runs (10 datasets, 2 folds). State dimension is always set to ground truth.
True model’s outcome indicates the “Ideal” accuracy. Bold: within 1 s.e.m. of ideal in both metrics.

Method | Behavior decoding CC | Neural prediction CC
IPSID 0.4567 £+ 0.0527 0.8901 + 0.0304
linear BRAID 0.4558 + 0.0528 0.8893 + 0.0304
DPAD Nonlin C, 0.4958 + 0.0620 0.3767 + 0.0680
BRAID Nonlin A 0.4735 £ 0.0572 0.8127 £+ 0.0528
BRAID Nonlin K 0.7680 + 0.0467 0.6983 £ 0.0473
BRAID Nonlin C, 0.4558 + 0.0528 0.8887 £ 0.0305
BRAID Nonlin C,, 0.8696 + 0.0487 0.8913 + 0.0305
BRAID Auto Nonlin 0.8693 + 0.0487 0.8913 + 0.0305
True model (ideal) ‘ 0.8737 £+ 0.0486 ‘ 0.8921 £+ 0.0306

4.1.2 BRAID DISSOCIATES INTRINSIC DYNAMICS FROM INPUT DYNAMICS IN SIMULATIONS

Next, we sought to validate BRAID’s ability to disentangle intrinsic and input-driven contributions
to neural dynamics. BRAID simultaneously learns a predictor form and a generative form represen-
tation of the dynamics, the latter of which directly describes the intrinsic dynamics in terms of the
mapping Ay, (.) (section figure ). In this simulation, we kept the ground truth state transi-
tions linear so that we could precisely quantify the intrinsic dynamics and their learning error via the
eigenvalues of the state transition matrix Ay, (appendix . We analyzed data from three sets
of simulated dynamical systems with distinct nonlinear structures (see appendix [A.4]for details): (1)
Spiral behavior manifold (figure 2h-d), (2) trigonometric behavior manifold (also explained in sec-
tion A.1.1] figure 2p-h), (3) trigonometric input-encoder (figure [A.T). For each simulation, we gen-
erated realizations from 10 different systems with randomly generated sets of parameters. Across
all three simulations, BRAID accurately learned the intrinsic dynamics, resulting in smaller error in
eigenvalues of the transition matrix, compared with DPAD, which is nonlinear but does not consider
the input, and compared with linear BRAID and IPSID, which consider input, but are linear (figures
[2k.g.[A.IJd). This more accurate intrinsic dynamics coupled with the input also resulted in BRAID
achieving better behavior decoding (figures 2b,f , [A.Th) as well as neural prediction (figure [A.Tk)
compared to baselines. These results suggest that failing to account for either nonlinearity or input
may lead to less accurate models and a misinterpretation of the intrinsic dynamics in nonlinear data.

Another metric for how well intrinsic dynamics are learned is forecasting, where behavior is pre-
dicted multiple steps into the future, without observing new neural data and only by observing the
future input (section [3.1)). Forecasting evolves the state dynamics according to the learned intrinsic
dynamics (equation [3]) and as such validates their accurate learning. We performed forecasting up
to 32 steps ahead and found that the nonlinear models with input consistently outperformed linear
models as well as the nonlinear DPAD, which does not consider input (figures Ql,h and @}e,f).

4.1.3 BRAID CAN EXCLUDE NON-ENCODED BEHAVIOR-SPECIFIC DYNAMICS

We next wanted to demonstrate that the optional preprocessing step in BRAID (detailed in section
[3.3) can dissociate behavior-specific dynamics (i.e., those that are not encoded in the neural activity)
during learning and make sure they are not conflated with intrinsic neural dynamics and are not

mixed into the neural states (x,(cl) and x,(f)). We conducted two additional simulations similar in
structure to the second and third simulations explained in section 4.1.2] However, here, for all sim-
ulated models, we added input-driven dinamics that influenced behavior but were not encoded in

neural activity (denoted as x,(:') in figure|ljp and equation . The prepossessing step is intention-
ally expected to yield latent states that are potentially less predictive of behavior, but are encoded in
neural activity. When desired, BRAID provides the option to further learn behavior-specific dynam-

ics post-hoc with a separate latent state (X,(f)). The preprocessing and post-hoc learning steps allow
BRAID to avoid conflation of non-encoded behavior dynamics with others, while also being able to
learn these dynamics and thus not incurring any overall reduction in behavior decoding.
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Figure 2: BRAID better learns the intrinsic shared dynamics by simultaneously modeling input
and nonlinearity, and by optimizing forecasting. (a-d) Results for simulation with spiral behav-
ioral manifold. (b) 1-step-ahead behavior decoding for nonlinear BRAID, nonlinear DPAD, linear
BRAID, and IPSID (c). Error in identifying intrinsic dynamics of the true model quantified by the
error in learning the eigenvalues of Ay,,. (d) Behavior decoding forecasts for 1 to 32 steps ahead,
enabled by learning the intrinsic dynamics (A ¢,,), with predictions optimized for [1, 2, 3, 4, 5]-steps-
ahead (section E[) (e-h) Same as (a-d) for simulation with trigonometric behavior mapping.

We fitted BRAID models with the preprocessing, and both with and without post-hoc learning of
behavior-specific dynamics. With the preprocessing, BRAID reached the neural prediction perfor-
mance of the ground truth model indicating correct removal of behavior-specific dynamics (figure
[AZ2). Moreover, the optional learning of behavior-specific dynamics led to reaching the behavior
decoding performance of the ground truth model (figure [A2)), suggesting that one could option-
ally learn these dynamics as well within BRAID to gain interpretability (by learning a disentangled
model) without compromising decoding performance.

4.2 NON-HUMAN PRIMATE MOTOR CORTICAL ACTIVITY DURING REACHING

We applied our method to a publicly available dataset recorded from a non-human primate (NHP)
performing reaching movements|O’Doherty et al.|(2017) (figure[3p). We took smoothed spike counts
from primary motor cortex (M1) as neural time-series yy, fingertip’s position and velocity as behav-
ior z,, and sensory task instructions (target location) as the input uy, (appendix[A23)). Sensory inputs
can have their own dynamics, which are distinct from the intrinsic dynamics of the motor cortex.
Our goal is to learn the intrinsic dynamics in M1 related to movement while disentangling them
from the dynamics of sensory input and also from any behavior-specific dynamics. Therefore, we
importantly include the behavior preprocessing stage explained in section [3.3|for BRAID.

We fitted BRAID with different nonlinearity choices as in our simulations; (1) nonlinear recursion
A(.)/ Ay (.), (2) nonlinear encoder K (.)/K f,,(.), (3) nonlinear decoders Cy (.) and C,(.), along-
side to a fully linear variant, linear BRAID. We included m = [1, 2, 4, 8]-steps-ahead predictions
in the BRAID loss, which for m > 1 engage the intrinsic behaviorally relevant dynamics (A f.,)
and allow their learning. To evaluate the learned intrinsic dynamics, we report neural-behavioral
forecasting accuracy for different step-ahead horizons (figure [3p-c), while tabulating the results for
4-steps-ahead prediction (200ms in this dataset) as a demonstration of the benefits of BRAID in
forecasting (tables 3] and [A22). In addition to these results in the low-dimensional regime (stage 1
only, n, =nj = 16), we also report results in the high-dimensional regime (both stages, n,, = 64,
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n1 = 16) (table B and figure [A3). Among nonlinearity configurations, BRAID with nonlinear de-
coders provided the best fit to neural-behavioral data (table[A.2)).

Next, we compared BRAID’s neural-behavioral forecasting to several ablation baselines: (1) linear
BRAID, i.e., a similar but fully linear model, (2) DPAD (Sani et al.,2024), which can have decoder
nonlinearities similar to BRAID, but does not consider inputs, and (3) U-BRAID, which removes
the first stage of BRAID and thus loses prioritization. BRAID has advantages over all ablation base-
lines (table [3] and figures 3] and [A3). First, BRAID achieved more accurate neural-behavioral fore-
casts than linear BRAID. Second, BRAID also outperformed DPAD in neural-behavioral forecasts,
showing the importance of considering the effects of sensory inputs on neural-behavioral dynam-
ics. Third, BRAID outperformed U-BRAID in behavioral forecasting with low-dimensional latent
states, while matching its neural forecasting accuracy when given enough state dimensions (table[3]
ny = 64). This shows the benefit of prioritization for learning low-dimensional representations of
intrinsic behaviorally relevant dynamics, and confirms that with its stage 2, BRAID can also capture
any remaining non-behavioral neural dynamics (table 3] figure [A3).

We also compared BRAID’s neural-behavioral forecasting performance to mmPLRNN, which mod-
els multi-modal data using piecewise-linear RNNs, and has the option to model inputs although prior
work had not explored this input option. BRAID outperformed input-driven mmPLRNN networks
in forecasting both behavior and neural activity, across all forecasting horizons, with the exception
of 2-steps-ahead neural prediction (table[3] figure[3). Note that BRAID’s better decoding is achieved
despite the fact that mmPLRNN, by design, has the unfair advantage of having access to behavior
as an input during inference, whereas BRAID does not. Finally, we compared BRAID to TNDM
(Hurwitz et al., |2021)), a nonlinear sequential autoencoder that models neural-behavioral dynamics,
but does not include the effect of external inputs. We extended TNDM beyond the original work to
create a version that also adds sensory inputs as an additional input besides neural activity (appendix
[A.2.6). We analyzed non-smoothed spike counts from the same dataset and found that BRAID sig-
nificantly outperformed TNDM in behavior decoding while achieving comparable neural prediction
(table [A-3). Extending TNDM to include inputs significantly improved its behavior decoding, but
it still did not reach that of BRAID (table [A.3). BRAID’s superior behavior forecasting may be
attributed to its prioritization of behaviorally relevant dynamics in a dedicated optimization stage as
opposed to mmPLRNN and TNDM’s combined objective approach (see[Discussion).
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Figure 3: BRAID outperforms baselines in neural-behavioral forecasting. (a) Dataset and task
visualization. (b) Behavior and, (¢) neural activity forecasting correlation coefficient (CC) for
BRAID, linear BRAID, DPAD, and mmPLRNN at low state dimension regime (n,=16). Shaded
areas show the s.e.m., across the 7 recording sessions and 5 cross-validation folds.
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Table 3: Forecasting performance (4-step-ahead) compared to baselines in NHP dataset for models
with low-dimensional (n, = 16) and high-dimensional (n, = 64) latent states. n; =16 for BRAID,
linear BRAID, and DPAD. Also see tables and[A.3]for additional results.

\ Behavior forecasting CC \ Neural forecasting CC
Method =16 | n.=64 | m,=16 | n,=6d
linear BRAID | 0.7453 £ 0.0066 | 0.7409 £ 0.0059 | 0.1767 £ 0.0054 | 0.3784 &+ 0.0078
DPAD 0.6706 £ 0.0096 | 0.7352 +0.0079 | 0.2067 £ 0.0062 | 0.3611 =+ 0.0080
U-BRAID 0.7663 £ 0.0069 | 0.8049 + 0.0068 | 0.4089 + 0.0076 | 0.4185 + 0.0074

mmPLRNN 0.6851 +£0.0143 | 0.7328 £ 0.00361 | 0.3162 + 0.0107 | 0.3570 + 0.0223
BRAID (ours) | 0.8042 & 0.0085 | 0.7970 & 0.0086 | 0.3274 & 0.0078 | 0.4123 + 0.0077

5 DISCUSSION

We introduced BRAID, a method for input-driven nonlinear dynamical modeling that disentangles
intrinsic shared dynamics between two observation modalities from the effect of input. Here, we
assume some external inputs are measured (e.g., from sensory stimuli or other brain regions) and
are available for modeling. This approach is distinct from the input-inference approach, where
unmeasured inputs are inferred from measured neural activity (Pandarinath et al., 2018} |Schimel
et al., 2022). These two approaches are in a sense complementary. In our approach, any measured
inputs can be explicitly incorporated into the model to dissociate their dynamics from the intrinsic
dynamics of the measured neural-behavioral data. Practically, one cannot measure all inputs to a
given brain area, so our approach does not rule out the influence of unmeasured inputs on the learned
intrinsic dynamics. One could thus use the input-inference approach to infer such unmeasured inputs
from all measured signals. Note however that inferred inputs are ultimately a function of measured
signals and thus do not add any new information (unlike measured inputs), rather they can be thought
of as a decomposition of the measured signals based on certain assumptions (e.g. smoothness).

While the learning in BRAID is supervised by the behavior, we only use neural activity and input
(but not behavior) during inference. This supervision allows extraction of behaviorally relevant in-
trinsic neural dynamics with priority, while also enabling the learning of neural-specific or behavior-
specific dynamics in subsequent independent optimizations. This multi-stage learning approach has
similarities to some prior works (Vahidi et al., 2024; [Sani et al.l 2024), but is fundamentally dif-
ferent from other prior works that use a single multi-modal optimization loss (Kramer et al., 2022;
Gondur et al., 2024; Hurwitz et al.| [2021), which may miss prioritization of the shared dynamics
over modality-specific dynamics (Sani et al., 2024). In fact, some of these works are focused on
multi-modal inference and aim to fuse both shared and modality-specific information into the same
latent space (Kramer et al.| 2022} |Gondur et al., [2024). Multi-stage methods such as BRAID avoid
this fusion by focusing on shared dynamics during a dedicated first optimization stage with only
cross-modality prediction (e.g., behavior decoding) as the objective.

Finally, unlike many nonlinear approaches (Gao et al., [2016; |[Pandarinath et al.l 2018} Hernandez
et al., [2020; [Hurwitz et al., 2021; Keshtkaran et al., 2022; |Gondur et al., [2024; |[Karniol-Tambour
et al., 2024), BRAID has a causal formulation and can perform real-time inference by recursively
inferring the next sample of the latent state after each new observation sample is measured. This
causal and computationally efficient recursive architecture makes BRAID an ideal candidate for
real-time decoding applications such as brain-machine-interfaces. Furthermore, BRAID can contin-
uously process measured data streams of arbitrary length, making it suitable not only for trial-based
tasks, but also for naturalistic tasks without a fixed trial length.

6 LIMITATIONS

A fundamental limitation of modeling latent dynamics is the fact that many alternative models may
explain the data equally well. As such, to evaluate the learned dynamics, we are limited to com-
putable quantities related to measured signals, most importantly m-step-ahead prediction of neural
and behavioral signals. In the special case of linear models, all correct latent models share the same
eigenvalues (Katayamal, 2006), enabling a direct evaluation of learned latent dynamics (figure [2)).
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibilty of our work, we are sharing the code for BRAID along with a Python
notebook demonstrating its usage. At the moment, we provide these in a temporary double blind
repository athttps://anonymous. 4open.science/r/BRAID-5ABF, but we will provide
them on Github upon publication. We also provide model architecture and training details in ap-
pendix [A.T.4] Finally, the dataset we used (O’Doherty et all 2017) is publicly available for anyone
interested in reproducing the results reported in section 4.2}
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A APPENDIX

A.1 METHOD DETAILS
A.1.1 TWO-SECTION FORMULATION

In equations and 3] we combined both latent state sections of our model (x,(cl) and x(z)) for
simpler exposition. Here, we present the complete two-section formulation. The predictor form part
of the model (equation [2)) can be written as follows:

[XE%] [A(lwx,(;l; o] [ KW (y,uy) ]
2
Xk+1/k )

~ Ay (|) ) K(2)(Ykaukaxg|;€_1
(A1)
) 1
Yklk—1 = C3(/)(X§€“)€ pu )+C (Xk\k 1 Uk)
Zpr = CY )(X,(jl ) + CFF (Xk\k 1 Uk)

where we have also included the two-section formulation for the prediction of observations as lines
2-3 of the equation. As before, y;, € R™ and z; € R+ are the observed high-dimensional neural
activity and behavior respectively while u; € R™ represents the measured inputs to the dynami-
cal system. Here, the overall latent state, x; € R™=, which describes the dynamics underlying the
neural-behavioral data, is constructed such that the behaviorally relevant neural dynamics, repre-
sented by x,(cl)
The predictor form RNNs in equation [A.] (i.e., RNNI and RNN2) are complemented by another
set of RNNs (i.e., RNNI,, and RNN2;,,) that constitute the generative form part of the model
(equation [3), and enable m-step-ahead (for m > 1) prediction of latent states and neural-behavioral
data. The generative RNNs were again shown with a combined latent state in equation [3|for simpler
exposition. The following equations show the complete two-section formulation:

€ R™, are dissociated from the the irrelevant ones, represented by x,(f) € R"=="t,

(1) (1) (1)
le+mk] [Af1zz(xk+m1|k) + @ )K( )(uk—i-m( )1) 1
(2) (2) ((2) 1
Xtmlk Ay (X ) Ky (Wem—1, %, ) 5
(A2)
. 1 1 2),. (2
Yk+mlk = C}(' )(XI(CJZm\Iw uk+m) C3(/ )(Xgﬂlmlk’ uk+m)
N 1) 2
Zktmlk = s (Xk+m\k’ Upm) + +C; )(Xk+m|k’ Weym)
where m > 1, and x,(:lll , and xf€ 1k (i.e., m = 1) are taken from equation A visualization

of how the formulations in equations and [A.2] are connected is provided in ﬁgure [l In equa-
tion[A.2] we have also included the two-section formulation for the prediction of neural-behavioral

observations as lines 2-3 of the equation, showing that applying the same decoders C' 1)/Cyg) and

() (2)

C’él)/Céz) as in equation to the m-step-ahead predicted latents x, bpmlk

step-ahead predictions of the neural-behavioral data (yk+m|k and z ktm] k)

m| WX gives the m-

Equations and [A.2]together constitute the two-section formulation of the BRAID model, which
consists of 12 transformations in total: A(.), As,(.), K(.), Ktw(.), Cx(.), and Cy(.), each having

two sections denoted with the .(!) and .(?) superscripts.

A.1.2 LEARNING ALGORITHM STEPS

In sections[A.T.2HA.T.3] we provide detailed formulations of the optimization stages used in BRAID
during learning. For simplicity, we explain the optimizations in terms of 1-step ahead predictions,

14



Under review as a conference paper at ICLR 2025

which involve predictor form parameters of the model. Formulations for m-step-ahead predictions,
which constitute additional terms in the overall loss (equations [4)), are analogous to those provided
here, but instead of the predictor form parameters (equation they engage the generative form
parameters (equation [A.7).

We develop a two-stage optimization algorithm for learning parameters of the two sections of the
BRAID model (equation [A.T). We note that the following 2 stages are sequential. This means that

parameters associated with behaviorally relevant states (Xg)) are fully learned with RNNI, then if

needed, the remaining parameters corresponding to non-relevant dynamics (x,(cz)) can be learned via
RNN?2. In all the optimizations described below, we use the mean-squared-error (MSE) of predicting
observations as the loss function, but we note that the MSE is proportional to the negative log-
likelihood (NLL) for isotropic Gaussian-distributed data. Below we provide the details for the 4
optimizations that are performed in the two learning stages of BRAID.

Stage 1:

1a First, BRAID learns a recurrent neural network (RNNI) with nq states, to minimize behavior
prediction MSE given past neural data and inputs (equation [A.3). This ensures that RNN/ only
learns neural dynamics that are relevant to (i.e., predictive of) behavior. The states of RNNI

constitute the first set of latent states in the BRAID model: xg). This optimization step can be
formulated as:

Xgﬁl = A(l)(xg)) + KW (yg, uy)
7z = CPY ) . (A3)
loss ' MSE(z, Cél)(xl(:),uk))

1b Next, in a second optimization, we learn a transformation C§,1) (.) that maps XS) to neural activity

while minimizing neural prediction MSE (equation [A.4):

{ vi = CPEW )

L L (A4)
loss MSE(yk,C§,)(x,(C)7uk))

The above 2 steps conclude stage 1 of learning, i.e., learning intrinsic behaviorally relevant
d icsxV N lain th onal . . .
ynamics X, ’. Next we explain the (optional) remaining stage 2, which can learn any remaining

dynamics in neural activity x;.

Stage 2:
2a We learn a second recurrent neural network (RNN2) with ny := n, — n; states, to minimize
the MSE loss of predicting the residual neural activity, i.e., y} = yr — C§1)(x§€1), uy), given

past neural activity and inputs (equation . States of RNN2, i.e., x,(f), together with xg) from

T
stage 1 constitute the full neural dynamics, i.e., X, = {XS) xf)} . This optimization step can
be formulated as:

T e
vi = &P ) : (A5)
loss : MSE(yy, C)(,Q) (x,(f), uy))

2b Finally, another readout, C’f), can be learned to map x,(f) to the residual behavior, i.e., z;C =

Zp — Cél) (x,(cl)7 uy ), to minimizing the overall behavioral loss (equation :

{ Z;c = Céz) (Xg)a uk) (A 6)
loss : MSE(z, c? (X;(f), uy)
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Note that the optimization in stage 2b does not change RNN2 or Xé ) that were learned in stage

2a. So although stage 2b is supervised by behavior, the second set of states x,(C ) are still learned

unsupervised with respect to behavior.

In case a very low state dimension is specified by the user for stage 1 (n; lower than the ground truth
shared dimensionality), RNNI would not have enough capacity to learn all behaviorally relevant
dynamics. In that case, some behaviorally relevant neural dynamics will be left for RNN2 in stage
2 to learn. This is why the C;Z) transformation from x,(f) to behavior is included in the model, to

allow such behaviorally relevant information in x,(f) to be utilized to improve behavior decoding.

A.1.3 NON-ENCODED BEHAVIOR-SPECIFIC DYNAMICS

To remove the non-encoded behavior-specific dynamics, as a preprocessing step, we fit a high-
dimensional (n, = 150 in all real data analyses) unsupervised RNN to extract neural dynamics
alone by minimizing neural prediction MSE (equation[A.7):

Xl = A (x (2))+K<°’<yk,w€)
I . _ (A7)
loss : MSE(yg, C)(’ )(X/gc )7 k)

Then a readout C;O) is trained to map these neurally relevant states x,(fo) to behavior:

{ 7z = V) (A.8)
loss MSE(Zk,Céo)(chO)))

After parameters of the above are learned, we run inference on the training data to obtain the filtered
behavior as output of the preprocessing RNN model (first line in equation [A.8) and subsequently
use it in place of the original behavior in BRAID (in equations [A.T] [A.3],[A.6). In simulations, we
validate that this additional stage can successfully remove any input-driven behavior dynamics not
encoded in the neural recordings (figure[A.2). We include this preprocessing step in all reported real
data analyses with BRAID.

As mentioned in if desired, BRAID can also learn behavior-specific dynamics as separate dis-
sociated latent states using a post-hoc learning step. This step is performed after BRAID’s main
learning is done and is meant to be used in conjunction with BRAID’s preprocessing stage ex-
plained above. In this post-hoc learning step, we first infer the behavior using the originally learned
BRAID model. We then obtain the residual behavior (z}) by subtracting the inferred behavior from
the measured behavior. We then learn a third RNN (RNN3) that optimizes the prediction of the
residual behavior using only the external inputs. The following equations summarize this step:

z] = zr[c;”(x;”, k) — C () )]

% = AP £ KO () A0
- c® (3) (A9)

zk = z (xk ,u )

loss MSE(Z,C,C(?))(X](:)), k)

A.1.4 MODEL ARCHITECTURE DETAILS AND HYPERPARAMETERS

Throughout the manuscript, to model nonlinearities within any of the transformations i.e., A(.),
App(.), K(.), Ktw(.), Cy(.), and Cy(.), we use a multi-layer perceptron (MLP), also known as
a feedforward neural network, with a single hidden layer, 64 units in the hidden layer, and a ReLU
nonlinearity as activation function. Otherwise, to keep a transformation linear, we replace the MLP
with a linear mapping implementing a matrix multiplication, which is a special case of an MLP with
no hidden layers and a linear activation function. For example, linear BRAID is a BRAID model
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with all mappings being linear whereas BRAID Nonlinear C, has a nonlinear MLP as the behavior
decoder (both C;l) and Céz)) while all of its other transformations are linear.

We use an Adam optimizer (Kingma & Ba| |[2017) in all BRAID optimizations. We train models up
to a maximum number of 2500 epochs to ensure convergence, while employing early stopping to
avoid overfitting. Details of the hyperparameters used for BRAID are provided in table

Table A.1: BRAID hyperparameters used in real data experiments and simulations

| Hyperparameter | Value |

Number of hidden layers in nonlinear maps 1
Number of hidden units in nonlinear maps 64
Nonlinear activation ReLU
Learning rate 0.001
Batch size 32
Sequence length 128
Optimizer Adam

We also show that BRAID can locate the correct structure of nonlinearity within all possible com-
binations in our simulations (table [2). Here, we set each of the following four groups of transfor-
mations i.e., A(.)/ A, (), K()/Ky(.), Cy(.), Cx(.), as linear or nonlinear, resulting in a total of
24 cases. To select one final configuration for the nonlinearity, we follow an automatic nonlinearity
selection procedure for a given dataset. In this procedure, within the training data, we perform a
2-fold inner cross-validation in which we fit BRAID models with all 24 nonlinearity configurations
and then pick the nonlinearity structure with the best cross-validated behavior decoding on the held-
out section of the training data. Then we retrain a BRAID model with that selected structure on the
entire training data to get our final model. Finally, we evaluate that final model on the unseen test
data. We refer to this approach as automatic nonlinearity selection (table [2)).

In simulations, state dimensions are set to be the same as that of the true model underlying the
data. In real data analyses, to investigate the effect of n,, we vary the state dimension in n, €
[1,2,4,8,16,32,64] and report the results (figure |[A.3). For BRAID and DPAD models, we always

learn the first 16 dimensions via stage 1 i.e., x,(:) € R™ with ny = min(16, n;), and if there is

any more capacity left (i.e., if n, — nqy = nq is positive), it is dedicated to the irrelevant states

xg) € R™~"1 and is learned using stage 2. We pick 16 as the dimensionality of the behaviorally
relevant states as in our experiments, because BRAID reached close to its peak behavior decoding
at this dimension. We refer to models with state dimensions n,, = 16 and 64 as low and high-
dimensional regimes, respectively.

A.1.5 INTRINSIC DYNAMICS AND EIGENVALUES

To evaluate how well the intrinsic behaviorally relevant neural dynamics are learned, in simulations
(figures , we assess the eigenvalues of the generative transition A y,, which characterize the
intrinsic dynamics. Note that the ground truth and learned models in these simulations both have a
linear intrinsic state transition A y,, and the nonlinearity either lies in the transformation from latent
states to behavior (figure [2)) or transformation from external inputs to the latent space (figure [A.T).
We learn the forward recursion parameters A¢,, and K, of equations and as we optimize
multi-step-ahead predictions. We take the eigenvalues of the intrinsic transition A ¢, and compare

them to that of the ground truth model. For the ground truth (\;) and identified (5\1') eigenvalues we

first pair them as {\1, Az, ..., An, } and {A1, Ao, ..., Ay, } such that the sum of squared distances of
pairs is minimized. We then calculate the normalized eigenvalue error as:

1/;”)\1'—5\1'”2
B E— (A.10)

ny
> lIAdll?
i=1
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A.2 BASELINES

First, to assess the impact of the nonlinearities learned by BRAID, we compare it against two fully
linear dynamical methods: IPSID (Vahidi et al.,|2024) and linear BRAID. Second, to highlight the
significance of modeling the effect of measured inputs on the neural-behavioral dynamics, we take
an autonomous dynamical model, DPAD (Sani et al.,[2024), as another baseline. Another important
aspect of BRAID is supervision of the behaviorally relevant dynamics in presence of inputs in its
first stage. To assess prioritization of the behaviorally relevant dynamics due to this supervision,
we take an equivalent unsupervised baseline termed U-BRAID detailed below. We also compare
BRAID against a multi-modal nonlinear method that allows accounting for external inputs termed
mmPLRNN (Kramer et al.,[2022). Finally, we compare BRAID to TNDM (Hurwitz et al.,2021), a
second autonomous method for modeling neural-behavioral dynamics.

A.2.1 IPSID

IPSID, similar to BRAID, models the effect of measured external inputs on neural-behavioral dy-
namics but operates under a fully linear framework. It fits the parameters of a linear version of
equation via a projection-based analytical algorithm called subspace identification (Van Over-
schee & De Moor, [1996).

A.2.2 LINEAR BRAID

Linear BRAID serves as another linear baseline, retaining the same architecture and learning stages
as BRAID but with all transformations replaced by linear mappings. In essence, linear BRAID
and IPSID have a similar model that are learned differently. Linear BRAID uses the same numerical
optimization used in BRAID. BRAID reduces to linear BRAID by removing all hidden layers within
model transformations and setting all activation functions to linear. In simulations, we find that linear
BRAID and IPSID perform similarly as expected (figure [2)).

A.2.3 DPAD

Dissociative Prioritized Analysis of Dynamics (DPAD) (Sani et al., 2024), learns a nonlinear model
that dissociates and prioritizes dynamics shared between neural activity and behavior, but it impor-
tantly does not account for the external inputs. Originally, DPAD also does not allow for multi-
step-ahead optimization and thus does not learn a generative form representation of the dynamics,
which is in contrast to the learning of Ay, in BRAID. We extend DPAD to add optimization of
multi-step-ahead predictions into the DPAD framework for a more fair comparison to BRAID in
terms of forecasting.

A.2.4 U-BRAID

U-BRAID is an unsupervised method, which only performs stage 2 of the BRAID learning proce-
dure. As such, U-BRAID learns all neural dynamics irrespective of their relevance to the behavior,
but still while considering inputs (equation[A.5]). U-BRAID does not utilize behavior information in
learning dynamics, and the extracted latent states are later mapped to the behavior data via a down-

stream decoder (equation but without xg)). In fact, U-BRAID is special case of BRAID with
ny = 0 and n,; = no.

A.2.5 MMPLRNN

Multi-modal piecewise-linear RNN (mmPLRNN) is a method previously introduced for multi-
modal dynamical modeling with piecewise-linear RNNs (Kramer et al.,[2022). This method allows
for modeling external inputs, although this aspect of it has not been investigated in any prior work.
Nevertheless, we compare BRAID to an input-driven mmPLRNN to further assess its performance.
mmPLRNN builds on a prior work, PLRNN (Durstewitz, [2017), by fusing information from two
modalities (e.g., neural activity and behavior). By design, mmPLRNN utilizes both modalities (and
input) during inference, which is in contrast to BRAID that only uses neural activity (and input) dur-
ing inference. Although this gives an unfair advantage to mmPLRNN in terms of behavior decoding
and confounds the comparison with BRAID, we still include the mmPLRNN results. We train mm-
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PLRNN models with nonlinear readouts comparable to BRAID and compare their neural-behavioral
forecasting. mmPLRNN is a generative model whose parameters are learned via variational infer-
ence. We used the recommended hyperparameters from the original WOI'

A.2.6 TNDM

Targeted Neural Dynamical Modeling (TNDM) (Hurwitz et al.,[2021)) is a method based on sequen-
tial autoencoders that learns two sets of dynamics: one contributing to both neural and behavioral
data, and the other only contributing to neural data. TNDM uses a non-causal, bidirectional RNN as
the encoder to infer the initial conditions for its relevant and irrelevant generator/decoder RNNs. The
dynamical model is learned via variational inference with both neural and behavioral reconstructions
optimized simultaneously with a combined loss. Unlike BRAID, TNDM does not account for mod-
eling the effect of external inputs on neural-behavioral dynamics. Therefore, for comparisons, we
also implement an extension of TNDM to allow the inclusion of external inputs. In this version, we
provide the external inputs to TNDM model as input by concatenating them with the neural activity
as the input to the model. Importantly, we do not add reconstruction of inputs as part of the loss
to keep the loss the same as that of the original TNDM and keep the learned model focused on
neural-behavioral reconstruction.

We compare BRAID to TNDM (with and without addition of sensory stimuli as external input) in
our real data experiments. Unlike BRAID that models the neural observations with a Gaussian distri-
bution, TNDM uses a Poisson observation model for the neural data. Therefore, in our comparisons
to TNDM, we analyze non-smoothed spike counts in 50ms bins (for both TNDM and BRAID). We
use the default hyperparameters from the original Wor for TNDM.

A.3 NON-HUMAN PRIMATE ELECTROPHYSIOLOGICAL RECORDINGS FROM

We analyzed a publicly available dataset (O’Doherty et al., [2017) in which a macaque (monkey
I) performs a motor task. Spiking activity was recorded from primary motor cortex (M1), while
the subject controlled a 2D cursor to reach targets that appeared on random locations on a grid
within a virtual reality environment. Targets appeared back to back, without any time gaps. We
took the subject’s 2D fingertip position and velocity as the behavior time-series zy, and the sensory
input, taken as 2D location of the current target, as the input signal ui. We analyzed the first
spike dimension available for each channel-resulting in 89 to 92 units from the first 7 available
recording sessions and randomly selected half of these units to model as our neural activity. For
neural modality, we use spike counts within 50 ms non-overlapping windows. Finally, we smoothed
the spike counts by a Gaussian kernel with a 50 ms s.d. (except for in table[A.3) and took that as the
neural time-series y;. We report the mean and standard error of the mean (s.e.m.) computed across
7 sessions and 5 cross-validated folds.

A.4 SIMULATION DETAILS

We analyze three simulated datasets based on dynamical systems. In all the three, we generate 10
different sets of random linear matrices for equation then generate the ground truth latent
states Xj, neural activity y; and behavior observations z;. In equation @ Wi, Vi, and €, are
zero-mean white Gaussian noises accounting for unmeasured excitations, neural observation noise,
and behavioral observation noise respectively. fc, (.) and fp(.) are nonlinear functions, as described
below for each simulation.

Xpp1 = AfppXi+ fp(Bug) + wi
Yk = Cyx; + Dyup + vy (A.11)
Zy, = fc.(Cuxi) + Dyuy + €

To generate a temporally structured input in all cases, we simulate a separate random linear state
space model according to equation [A.12] and take its output as the external input uy, to the main

"We use the implementation provided in https://github.com/DurstewitzLab/mmPLRNN
We use the implementation provided in https: //github.com/HennigLab/tndm
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model of equation[A.TT]

Xy = AR+ wh
{u;C = Cuxp+vi (A-12)

A.4.1 SIMULATION 1: SPIRAL BEHAVIOR MANIFOLD

For the first simulation, we generate data with a spiral behavior manifold. To do so, we apply a

pointwise nonlinear mapping fc_(v) = [% cos(V) z sin(?)]T to the readout from the latent
states (third line in equation [A.TT). The bar over the function input v indicates a scaling factor
that normalizes it before nonlinear function is applied. See figure 2a for a visualization of the
nonlinearity. We take fz(.) as identity, set dimensions to n, = n, = n, = ny = n; = 2, and take

Dy, = D, = 0 for this simulation.

A.4.2 SIMULATION 2: TRIGONOMETRIC BEHAVIOR MANIFOLD

For the second simulation with trigonometric behavior map, we apply another nonlinearity, point-
wise sinusoidal nonlinear function, fc (v) = asin(¥) + b7, to the latent states to generate the
behavior z. See ﬁgure for a visualization of the nonlinearity. In this simulation fp(.) is taken as
identity function and we set n, = n, = n, =n, = n; = 1.

A.4.3 SIMULATION 3: TRIGONOMETRIC INPUT MAP

For the third simulation, as we iterate over the state equation (first line in equation [A.TT)), we apply
a pointwise sinusoidal nonlinear function, fp(v) = asin(7) + b7, to the input. See ﬁgure fora
visualization of the nonlinearity. Here fc_(.) is taken to be an identity function. In this simulation,
wesetn, =n, =n, =n; =n; = 1.

We also perform two additional simulations (figure[A.2)) that are similar in nonlinearity structure to
the second and third simulations explained above, but incorporate an additional 1-dimensional latent
state x,(cg), as in figure , representing input-driven behavior-specific dynamics not encoded in the
neural activity, as follows:

1 (1
Xl(chl _ A%Xk) [fB(B(l)uk):| +wy
RN B VUM
_ (1), (1) (A-13)
Yk = Cy'’x;’ + Dyup + vy
Z; = fe. (Cél)xg)) + Cég)xff) + D,uy + €

A.5 SUPPLEMENTARY TABLES AND FIGURES

Table A.2: Comparison of BRAID model’s nonlinearity configurations in the NHP dataset (n, =
n1 = 16, 4-step-ahead).

Model nonlinearity | Behavior forecasting CC | Neural forecasting CC

Linear 0.7453 £+ 0.0066 0.1767 £+ 0.0054
Recursion (A, Ayy,) 0.7121 £ 0.0059 0.2719 £+ 0.0061
Encoder (K, K,,) 0.7181 £ 0.0078 0.1646 £ 0.0049
Decoder (C, Cy,) 0.8042 + 0.0085 0.3274 £+ 0.0078
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Table A.3: Comparison to TNDM, both when sensory input is additionally provided to the TNDM
model and when it is not (see appendix [A.2.6). All models are learned in low-dimensional regime
,i.e., BRAID with n, = n; = 16, and TNDM with 16 relevant factors only. We used non-smoothed
spike counts as the neural signals in this analysis. BRAID performances are for causal 1-step-ahead
prediction, whereas the TNDM performances are non-causal smoothing performances, which are
the only option for TNDM since it is a sequential autoencoder.

Method | Behavior decoding CC | Neural forecasting CC
TNDM 0.3752 £+ 0.0170 0.3021 £ 0.0051
TNDM with sensory input 0.6219 £ 0.0103 0.3075 £ 0.0050
BRAID (ours) \ 0.7841 + 0.0079 \ 0.2935 + 0.0053
(b) (c) (d)
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Figure A.1: BRAID results, optimized for forecasting, in simulation with trigonometric input-
encoder. (a) Visualization of example nonlinearity in the simulation. (b-c) 1-step-ahead behavior
decoding and neural prediction for nonlinear BRAID, nonlinear DPAD, linear BRAID, and IPSID.
(d) Error in identifying intrinsic dynamics of the true model, quantified by the eigenvalues of the
state transition matrix A r,,. (e-f) Behavior and neural forecasting accuracy for 1 to 32 steps ahead,
enabled by learning the intrinsic dynamics (A f,,), with predictions optimized for [1, 2, 3, 4, 5]-steps-
ahead (section [3.1)).
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Figure A.2: Behavior preprocessing successfully excludes non-encoded, behavior-specific dy-
namics in simulations. 1-step-ahead behavior decoding and neural predictions for simulations with
(a-c) trigonometric behavior decoder, and (d-f) input-encoder. Note that the true model includes
behavior-specific dynamics, so here we expect that decoding of BRAID with preprocessing but
without the post-hoc learning of behavior-specific dynamics (shown as green), to be worse than that
of true model. Once the post-hoc learning step is also performed (shown as red), BRAID reaches
ideal performance, but importantly does so while these behavior-specific dynamics are dissociated

into a separate latent state CE’). In contrast, without the preprocessing step (shown as blue), BRAID
reaches ideal decoding performance, but does so without having dissociated behavior specific dy-

namics to not be included in Cél). See section for details.
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Figure A.3: Forecasting (4-step-ahead predictions) correlation coefficient across latent dimen-
sions. BRAID predicts both (a) behavior and (b) neural activity more accurately than DPAD due
to modeling input, and linear BRAID due to modeling nonlinearity. As state dimension increases
beyond 16 (dedicated to behaviorally relevant dynamics i.e., n; = 16), BRAID uses stage 2 to learn
irrelevant neural specific dynamics reaching the unsupervised baseline, U-BRAID in neural predic-
tion. For BRAID and DPAD, the first 16 state dimensions are dedicated to the behaviorally relevant
dynamics (i.e., n; = 16) while any remaining dimensions (n, > 16) are dedicated to the residual
non-shared neural. 4-steps-ahead in this dataset corresponds to 200ms ahead.
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