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Abstract

Counterfactual explanations provide ways of achieving a favorable model outcome
with minimum input perturbation. However, counterfactual explanations can also
be leveraged to reconstruct the model by strategically training a surrogate model to
give similar predictions as the original (target) model. In this work, we analyze how
model reconstruction using counterfactuals can be improved by further leveraging
the fact that the counterfactuals also lie quite close to the decision boundary. Our
main contribution is to derive novel theoretical relationships between the error
in model reconstruction and the number of counterfactual queries required using
polytope theory. Our theoretical analysis leads us to propose a strategy for model
reconstruction that we call Counterfactual Clamping Attack (CCA) which trains a
surrogate model using a unique loss function that treats counterfactuals differently
than ordinary instances. Our approach also alleviates the related problem of deci-
sion boundary shift that arises in existing model reconstruction approaches when
counterfactuals are treated as ordinary instances. Experimental results demon-
strate that our strategy improves fidelity between the target and surrogate model
predictions on several datasets.

1 Introduction

Counterfactual explanations (also called counterfactuals) have emerged as a burgeoning area of
research [Wachter et al., 2017, Guidotti, 2022, Verma et al., 2022, Karimi et al., 2022] for providing
guidance on how to obtain a more favorable outcome from a machine learning model. Interestingly,
counterfactuals can also reveal information about the underlying model, posing a nuanced interplay
between model privacy and explainability [Aïvodji et al., 2020, Wang et al., 2022]. Our work
provides novel theoretical analysis on the relationship between model reconstruction error using
counterfactuals and the number of counterfactuals queried for, through the lens of polytope theory.

Model reconstruction using counterfactuals can have serious implications in Machine Learning as
a Service (MLaaS) platforms that allow users to query a model for a specified cost [Gong et al.,
2020]. An adversary may be able to “steal” the model by querying for counterfactuals and training a
surrogate model to provide similar predictions as the target model, a practice also referred to as model
extraction. On the other hand, model reconstruction could also be beneficial for preserving applicant
privacy, e.g., an applicant using crowd-sourced information to assess acceptance chances before
sharing their information with institutions, often due to resource constraints or limited application
attempts. (e.g., applying for credit cards reduces the credit score [Capital One, 2024]). Our goal is to
formalize how faithfully the underlying model can be reconstructed using counterfactual queries.

An existing approach for model reconstruction is to treat counterfactuals as ordinary examples and
use them for training a surrogate model [Aïvodji et al., 2020]. While this may work for well-balanced
counterfactual queries from the two classes lying roughly equidistant to the decision boundary, it is
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not the same for unbalanced datasets. The surrogate decision boundary might not always overlap
with that of the target model, a problem also referred to as a decision boundary shift (see Fig. 5 in
Appendix B). The decision boundary shift is aggravated when the system provides only one-sided
counterfactuals, i.e., counterfactuals only for queries with unfavorable predictions. Wang et al. [2022]
suggests a clever way of mitigating this issue when two-sided counterfactuals are available. However,
such strategies cannot be applied when only one-sided counterfactuals are available, which is a more
common and also a more challenging case for model reconstruction, e.g., counterfactuals are only
available for the rejected applicants to get accepted for a loan but not the other way. In Appendix B,
we discuss several other related works, e.g., auditing using counterfactuals [Yadav et al., 2023] and
membership inference attacks [Pawelczyk et al., 2023].

In this work, we analyze how model reconstruction using counterfactuals can be improved by
specifically leveraging the fact that the counterfactuals are quite close to the decision boundary. In
summary, our contributions can be listed as follows:

Fundamental guarantees on model reconstruction using counterfactuals: We derive novel the-
oretical relationships between the error in model reconstruction and the number of counterfactual
queries (query complexity) under three settings: (i) Convex decision boundaries and closest coun-
terfactuals (Theorem 3.2); (ii) ReLU networks and closest counterfactuals (Theorem 3.5); and (iii)
Beyond closest counterfactuals, approximate guarantees for a broader class of models, including
ReLU networks and locally-Lipschitz continuous models (Theorem 3.8).
Model reconstruction strategy with a novel loss function: We devise a reconstruction strategy – that
we call Counterfactual Clamping Attack (CCA) – that exploits only the fact that the counterfactuals
lie reasonably close to the decision boundary, but need not be exactly the closest.
Empirical validation: We conduct experiments on both synthetic datasets as well as four real-
world datasets, namely, Adult Income [Becker and Kohavi, 1996], COMPAS [Angwin et al.,
2016], DCCC [Yeh, 2016], and HELOC [FICO, 2018]. Our strategy outperforms the exist-
ing baseline [Aïvodji et al., 2020] over all these datasets (Section 4) using one-sided counter-
factuals, i.e., counterfactuals only for queries from the unfavorable side of the decision bound-
ary. We also include additional experiments to observe the effects of model architecture, Lips-
chitzness, and other types of counterfactual generation methods, comparison with model recon-
struction using two-sided counterfactuals, e.g., [Wang et al., 2022] as well as ablation studies
with other loss functions. A python-based implementation is available at: https://github.
com/pasandissanayake/model-reconstruction-using-counterfactuals. Visit https:
//arxiv.org/abs/2405.05369 for the ArXiv version.

2 Preliminaries

Notations: We consider binary classification models m that take an input value x ∈ Rd and output a
probability m(x) between 0 and 1. The final predicted class is denoted by ⌊m(x)⌉ ∈ {0, 1}, obtained
by thresholding the output as ⌊m(x)⌉ = 1[m(x) ≥ 0.5] where 1[·] denotes the indicator function.
Accordingly, the decision boundary of the model m is the (d − 1)-dimensional hypersurface (see
Definition E.1) in the input space, given by ∂M = {x : m(x) = 0.5}. We call the region where
⌊m(x)⌉ = 1 as the favorable region and the region where ⌊m(x)⌉ = 0 as the unfavorable region. We
say the decision boundary is convex if and only if the set M = {x ∈ Rd : ⌊m(x)⌉ = 1} is convex.
We assume that upon knowing the range of values for each feature, the d−dimensional input space
can be normalized so that the inputs lie within the set [0, 1]d (the d−dimensional unit hypercube),
as is common in literature [Liu et al., 2020, Tramèr et al., 2016, Hamman et al., 2023, Black et al.,
2022]. We let gm denote the counterfactual generating mechanism corresponding to the model m.
Definition 2.1 (Counterfactual Generating Mechanism). Given a cost function c : [0, 1]d × [0, 1]d →
R+

0 for measuring the quality of a counterfactual, and a model m, the corresponding coun-
terfactual generating mechanism is the mapping gm : [0, 1]d → [0, 1]d specified as follows:
gm(x) = arg minw∈[0,1]d c(x,w), such that ⌊m(x)⌉ ≠ ⌊m(w)⌉.

The cost c(x,w) is selected based on specific desirable criteria, e.g., c(x,w) = ||x −w||p, with
|| · ||p denoting the Lp-norm. Specifically, p = 2 leads to the following definition of the closest
counterfactual [Wachter et al., 2017, Laugel et al., 2017, Mothilal et al., 2020].
Definition 2.2 (Closest Counterfactual). When c(x,w) ≡ ||x−w||2, the resulting counterfactual
generated using gm as per Definition 2.1 is called the closest counterfactual.
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Given a model m and a counterfactual generating method gm, we define the inverse counterfactual
region G for a subset H ⊆ [0, 1]d to be the region whose counterfactuals under gm fall in H.
Definition 2.3 (Inverse Counterfactual Region). The inverse counterfactual region Gm,gm of H ⊆
[0, 1]d is the the region defined as: Gm,gm(H) = {x ∈ [0, 1]d : gm(x) ∈ H}.

Problem setting: We consider a target model m which is pre-trained and assumed to be hosted on a
MLaaS platform. Any user can query it with a set of input instances D ⊆ [0, 1]d, and will be provided
with a set of predictions {⌊m(x)⌉ : x ∈ D}, and a set of one-sided counterfactuals for the instances
whose predicted class is 0, i.e., {gm(x) : x ∈ D, ⌊m(x)⌉ = 0}. The goal of the user is to train a
surrogate model to achieve a certain level of performance with as few queries as possible. In this
work, we use fidelity as our performance metric for model reconstruction.
Definition 2.4 (Fidelity [Aïvodji et al., 2020]). With respect to a given target model m and a reference
dataset Dref ⊆ [0, 1]d, the fidelity of a surrogate model m̃ is given by

Fidm,Dref(m̃) =
1

|Dref|
∑

x∈Dref

1 [⌊m(x)⌉ = ⌊m̃(x)⌉] .

Geometry of decision boundaries: Our theoretical analysis employs arguments based on the
geometry of the involved models’ decision boundaries. We assume the decision boundaries are
hypersurfaces. A hypersurface is a generalization of a surface into higher dimensions, e.g., a line or
a curve in a 2-dimensional space, a surface in a 3-dimensional space, etc. We show that touching
hypersurfaces share a common tangent hyperplane at their point of contact. This result is instrumental
in exploiting the closest counterfactuals in model reconstruction. Rigorous definitions and the proof
are deferred to Appendix E.1.
Lemma 2.5. Let S(x) = 0 and T (x) = 0 denote two differentiable hypersurfaces in Rd, touching
each other at point w. Then, S(x) = 0 and T (x) = 0 have a common tangent hyperplane at w.

3 Main results

3.1 Convex decision boundaries and closest counterfactuals

Prior work [Yadav et al., 2023] shows that for linear models, the line joining a query instance x
and the closest counterfactual w(= gm(x)) is perpendicular to the linear decision boundary. We
generalize this observation to any differentiable decision boundary, not necessarily linear.
Lemma 3.1. Let S denote the decision boundary of a classifier and x ∈ [0, 1]d be any point that is
not on S. Then, the line joining x and its closest counterfactual w is perpendicular to S at w.

Figure 1: Polytope approximation

For a proof, see Appendix E.1. As a direct consequence of
Lemma 3.1, a user may query the system and calculate tan-
gent hyperplanes of the decision boundary drawn at the closest
counterfactuals. This leads to a linear approximation of the
decision boundary at the closest counterfactuals. If the bound-
ary is convex, this approximation provides a set of supporting
hyperplanes. The intersection of these supporting hyperplanes
gives a circumscribing convex polytope approximation of the decision boundary (Fig. 1). Theorem
3.2 characterizes the average fidelity of such an approximation. Appendix E.2 provides a proof.
Theorem 3.2. Let m be the target model whose decision boundary is convex (i.e., the set {x ∈
[0, 1]d : ⌊m(x)⌉ = 1} is convex) and has a continuous second derivative. Denote by M̃n, the convex
polytope approximation of m constructed with n supporting hyperplanes obtained through i.i.d.
counterfactual queries. Assume that the fidelity is evaluated with respect to Dref which is uniformly
distributed over [0, 1]d. Then, when n→∞ the expected fidelity of M̃n with respect to m is given by

E
[
Fidm,Dref(M̃n)

]
= 1− ϵ where ϵ ∼ O

(
n− 2

d−1

)
and the expectation is over both M̃n and Dref.

Remark 3.3 (Relaxing the Convexity Assumption). This strategy can readily be extended to a concave
decision boundary. Now, the rejected region becomes intersection of these half-spaces. However,
a concave region will require a much denser set of query points (see Fig. 2) w.r.t. a convex region
due to the inverse effect of length contraction discussed in Aleksandrov [1967, Chapter III Lemma
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2]. Deriving similar guarantees for a decision boundary which is neither convex nor concave is
much more challenging as the decision regions can no longer be approximated as intersections of
half-spaces. However, we address this challenge in case of ReLU networks to arrive at a probabilistic
guarantee as discussed next.

3.2 ReLU networks and closest counterfactuals

Figure 2: Approximating
concave regions

Rectified Linear Units (ReLU) are one of the most used activation func-
tions in neural networks [Zeiler et al., 2013, Maas et al., 2013, Ron-
neberger et al., 2015, He et al., 2016]. A deep neural network that uses
ReLU activations can be represented as a Continuous Piece-Wise Lin-
ear (CPWL) function [Chen et al., 2022, Hanin and Rolnick, 2019]. A
CPWL function comprises of a union of linear functions over a partition
of the domain. Definition 3.4 below provides a precise characterization.

Definition 3.4 (Continuous Piece-Wise Linear (CPWL) Function [Chen
et al., 2022]). A function ℓ : Rd → R is said to be continuous piece-wise linear if and only if
1. There exists a finite set of closed subsets of Rd, denoted as {Ui}i=1,2,...,q such that ∪qi=1Ui = Rn

2. ℓ(x) is affine over each Ui i.e., over each Ui, ℓ(x) = ℓi(x) = aT
i x+ bi with ai ∈ Rd, bi ∈ R.

This definition can be applied to the models of our interest, of which the domain is the unit hypercube
[0, 1]d. A neural network with ReLU activations can be used as a classifier by appending a Sigmoid

Figure 3: Nϵ grid. Thick
lines: decision bound-
ary pieces; white: ac-
cepted region; pale col-
ors: inverse counterfac-
tual regions. In this case
k(ϵ) = 7, v∗(ϵ) is area of
lower amber region.

activation σ(z) = 1
1+e−z to the final output. We denote such a classifier

by m(x) = σ(ℓ(x)) where ℓ(x) is CPWL. It has been observed that the
number of linear pieces q of a trained ReLU network is generally way
below the theoretically allowed maximum [Hanin and Rolnick, 2019].
Moreover, the decision boundary of such as classifier is a collection of
polytopes (see Lemma E.7).

To analyze the probability of successful model reconstruction, consider
a uniform grid Nϵ over the unit hypercube [0, 1]d, where each cell is a
small hypercube with side length ϵ (see Fig. 3). For this analysis, we
make the assumption: If a cell contains a part of the decision boundary,
then that part is completely linear (affine) within that small cell 1.

Now, since the decision boundary is affine for each small cell that it passes
through, having just one closest counterfactual in each such cell is suffi-
cient to reconstruct the decision boundary in that cell (recall Lemma 3.1).
We formalize this intuition in Theorem 3.5. A proof is presented in
Appendix E.3.

Theorem 3.5. Let m be a target binary classifier with ReLU activations.
Let k(ϵ) be the number of cells through which the decision boundary passes. Define {Hi}i=1,...,k(ϵ)

to be the set of affine pieces of the decision boundary within each decision boundary cell where
each Hi is an open set. Let vi(ϵ) = V (Gm,gm(Hi)) where V (.) is the d−dimensional volume (i.e.,
the Lebesgue measure) and Gm,gm(.) is the inverse counterfactual region w.r.t. m and the closest
counterfactual generator gm. Then the probability of successful reconstruction with counterfactual
queries distributed uniformly over [0, 1]d is lower-bounded as

P [Reconstruction] ≥ 1− k(ϵ)(1− v∗(ϵ))n (1)

where v∗(ϵ) = mini=1,...,k(ϵ) vi(ϵ) and n is the number of queries.

Remark 3.6. Here k(ϵ) and v∗(ϵ) depend only on the nature of the model being reconstructed and
are independent of the number of queries n. The value of k(ϵ) roughly grows with the surface area of
the decision boundary (e.g., length when input is 2D), showing that models with more convoluted
decision boundaries might need more queries for reconstruction. Generally, k(ϵ) lies within the
interval A(∂M)√

2ϵd−1
≤ k(ϵ) ≤ 1

ϵd
where A(.) denotes the surface area in d−dimensional space. The

1This is violated only for the cells containing parts of the edges of the decision boundary. However, we may
assume that ϵ is small enough so that the total number of such cells is negligible compared to the total cells
containing the decision boundary.
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lower bound is due to the fact that the area of any slice of the unit hypercube being at-most
√
2 [Ball,

1986]. Upper bound is reached when the decision boundary traverses through all the cells in the grid
which is less likely in practice. When the model complexity increases, we get a larger k(ϵ) as well as
a smaller v∗(ϵ), requiring a higher number of queries to achieve similar probabilities of success.
Corollary 3.7 (Linear Models). For linear models with one-sided counterfactuals,
P [Reconstruction] = 1 − (1 − v)n where v is the volume of the unfavorable region. How-
ever, with two-sided counterfactuals, P [Reconstruction] = 1 with just one single query.

This result mathematically demonstrates that allowing two-sided counterfactuals (as in Aïvodji et al.
[2020], Wang et al. [2022]) makes model reconstruction easier than the one-sided case. It effectively
increases each vi(ϵ). As everything else remains unaffected, for a given n, P[Reconstruction] is
higher when counterfactuals from both regions are available. For a linear model, this translates
to a guaranteed reconstruction with a single query since v = 1. Next, we focus on relaxing the
requirement of having the closest counterfactual corresponding to a given input instance.

3.3 Beyond closest counterfactuals

In this section, we examine model reconstruction under local-Lipschitz assumptions. The difference
of model output probabilities is considered as a measure of similarity between target and surrogate
models. We observe that the difference of two models’ output probabilities corresponding to a given
input x can be bounded as in Theorem 3.8. See Appendix E.4 for a proof.
Theorem 3.8. Let the target m and surrogate m̃ be ReLU classifiers such that m(w) = m̃(w) for
every counterfactual w. For any point x that lies in a decision boundary cell, |m̃(x) −m(x)| ≤√
d(γm + γm̃)ϵ holds with probability p ≥ 1− k(ϵ)(1− v∗(ϵ))n.

Note that within each decision boundary cell, models are affine and hence locally Lipschitz for some
γm, γm̃ ∈ R+

0 . Local Lipschitz property assures that the approximation is quite close (γm, γm̃ are
small) except over a few small ill-behaved regions of the decision boundary. This result can be
extended to any locally Lipschitz pair of models as stated in Corollary E.9.

Theorem 3.8 provides the motivation for a novel model reconstruction strategy. Let w be a counter-
factual. Recall that ∂M denotes the decision boundary of m. As implied by the theorem, for any
x ∈ ∂M, the deviation of the surrogate model output from the target model output can be bounded
above by

√
d(γm + γm̃)ϵ given that all the counterfactuals satisfy m(w) = m̃(w). Knowing that

m(w) = 0.5, we may design a loss function which clamps m̃(w) to be 0.5. Consequently, with
a sufficient number of well-spaced counterfactuals to cover ∂M, we may achieve arbitrarily small
|m̃(x) − m(x)| at the decision boundary of m. We propose the following loss function for our
Counterfactual Clamping Attack. For 0 < β ≤ 1,

Lβ(m̃(x), yx) = 1 [yx = 0.5, m̃(x) ≤ β] {L(m̃(x), β)− h(β)}+ 1 [yx ̸= 0.5]L(m̃(x), yx) (2)

Here, yx denotes the label assigned to the input instance x, received from the API. L(ŷ, y) is the binary
cross-entropy loss and h(·) denotes the binary entropy function. We assume that the counterfactuals
are distinguishable from the ordinary instances, and assign them a label of yx = 0.5. The first term
accounts for the counterfactuals, where they are assigned a non-zero loss if the surrogate model’s
prediction is below β. The second term becomes non-zero only for ordinary query instances. Note
that substituting β = 1 in Lβ(m̃(x), yx) yields the ordinary binary cross entropy loss. Succinctly,
this loss function forces the surrogate model to output a prediction m̃(x) = β or higher for the
counterfactuals. Algorithm 1 in Appendix A summarizes the proposed strategy.

It is noteworthy that this approach is different from soft-label learning Nguyen et al. [2011a,b] in
two aspects: (i) yx’s do not smoothly span the interval [0,1] – instead yx ∈ {0, 0.5, 1}; (ii) yx of
counterfactuals being 0.5 does not indicate that the surrogate prediction m̃(x) should ideally be 0.5.
There can be counterfactuals that are well within the surrogate decision boundary. Nonetheless, we
also perform ablation studies where we compare the performance of CCA with another potential
loss which simply forces m̃(w) to be exactly 0.5 (see Appendix F.2.10 for results). Counterfactual
Clamping overcomes two challenges beset in existing works; (i) the problem of decision boundary
shift (particularly with one-sided counterfactuals) present in the method suggested by Aïvodji et al.
[2020] and (ii) the need for counterfactuals from both sides of the decision boundary in the methods
of Aïvodji et al. [2020] and Wang et al. [2022].
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4 Experiments

We carry out a number of experiments to study the performance of our proposed strategy Counterfac-
tual Clamping. We include some results here and provide further details in Appendix F.

All the classifiers are neural networks unless specified otherwise and their decision boundaries are not
necessarily convex. The performance of our strategy is compared with the existing attack presented
in Aïvodji et al. [2020] that we refer to as “Baseline”, for the case of one-sided counterfactuals.
As the initial counterfactual generating method, we use an implementation of the Minimum Cost
Counterfactuals (MCCF) by Wachter et al. [2017].

Performance metrics: Fidelity is used for evaluating the agreement between the target and surrogate
models. It is evaluated over both uniformly generated instances (denoted by Duni) and test data
instances from the data manifold (denoted by Dtest) as the reference dataset Dref.

A summary of the experiments is provided below with additional details in Appendix F.

(i) Visualizing the attack using synthetic data: First, the effect of the proposed loss function in
mitigating the decision boundary shift is observed over a 2-D synthetic dataset. Fig. 4 presents the
results. In the figure, it is clearly visible that the Baseline model is affected by a decision boundary
shift. In contrast, the CCA model’s decision boundary closely approximates the target decision
boundary. See Appendix F.2.1 for more details.

Figure 4: A 2-D demonstration of the proposed strategy. Orange and blue shades denote the favorable
and unfavorable decision regions of each model. Circles denote the target model’s training data.

(ii) Comparing performance over four real-world dataset: We use four publicly available real-
world datasets namely, Adult Income, COMPAS, DCCC, and HELOC (see Appendix F.1) for our
experiments. Table 1 provides some of the results over four real-world datasets. We refer to Appendix
F.2.2 (specifically Fig. 8) for additional results. In all cases, we observe that CCA has either better or
similar fidelity as compared to Baseline.

Table 1: Average fidelity achieved with 400 queries on the real-world datasets over an ensemble of
size 100. Target model has hidden layers with neurons (20,10). Model 0 is similar to the target model
in architecture. Model 1 has hidden layers with neurons (20, 10, 5).

Architecture known (model 0) Architecture unknown (model 1)
Dataset Dtest Duni Dtest Duni

Base. CCA Base. CCA Base. CCA Base. CCA
Adult In. 91±3.2 94±3.2 84±3.2 91±3.2 91±4.5 94±3.2 84±3.2 90±3.2
COMPAS 92±3.2 96±2.0 94±1.7 96±2.0 91±8.9 96±3.2 94±2.0 94±8.9

DCCC 89±8.9 99±0.9 95±2.2 96±1.4 90±7.7 97±4.5 95±2.2 95±11.8
HELOC 91±4.7 96±2.2 92±2.8 94±2.4 90±7.4 95±5.5 91±3.3 93±3.2

(iii) Studying effects of Lipschitz constants: We study the connection between the target model’s
Lipschitz constant and the CCA performance. Target model’s Lipschitz constant is controlled by
changing the L2−regularization coefficient, while keeping the surrogate models fixed. Results are
presented in Fig. 12. Target models with a smaller Lipschitz constant are easier to extract. More
details are provided in Appendix F.2.4.

(iv) Studying different model architectures: We also consider different surrogate model architec-
tures spanning models that are more complex than the target model to much simpler ones. Results
show that when sufficiently close to the target model in complexity, the surrogate architecture plays
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a little role on the performance. See Appendix F.2.5 for details. Furthermore, two situations are
considered where the target model is not a neural network in Fig. 14 and Appendix F.2.8. In both
scenarios, CCA surpasses the baseline.

(v) Studying other counterfactual generating methods: Effects of counterfactuals being sparse,
actionable, realistic, and robust are observed. Sparse counterfactuals are generated by using L1−norm
as the cost function. Actionable counterfactuals are generated using DiCE [Mothilal et al., 2020]
by defining a set of immutable features. Realistic counterfactuals (that lie on the data manifold) are
generated by retrieving the 1-Nearest-Neighbor from the accepted side for a given query, as well as
using the autoencoder-based method C-CHVAE [Pawelczyk et al., 2020]. Additionally, we generate
robust counterfactuals using ROAR [Upadhyay et al., 2021]. We evaluate the attack performance on
the HELOC dataset (Table 2). Moreover we observe the distribution of the counterfactuals generated
using each method w.r.t. the target model’s decision boundary using histograms (Fig. 13). Additional
details are given in Appendix F.2.6.

Table 2: Fidelity achieved with different counterfactual generating methods on HELOC dataset.
Target model has hidden layers with neurons (20, 30, 10). Surrogate model architecture is (10, 20).

Fidelity over Dtest Fidelity over Duni

CF method n=100 n=200 n=100 n=200

Base. CCA Base. CCA Base. CCA Base. CCA

MCCF L2-norm 91 95 93 96 91 93 93 95
MCCF L1-norm 93 95 94 96 89 92 91 95
DiCE Actionable 93 94 95 95 90 91 93 94

1-Nearest-Neightbor 93 95 94 96 93 93 94 95
ROAR [Upadhyay et al., 2021] 91 92 93 95 87 85 92 92

C-CHVAE [Pawelczyk et al., 2020] 77 80 78 82 90 89 85 78

(vi) Comparison with DualCFX: DualCFX proposed by Wang et al. [2022] is a strategy that utilizes
the counterfactual of the counterfactuals to mitigate the decision boundary shift. We compare CCA
with DualCFX in Table 6, Appendix F.2.7.

(vii) Studying alternate loss functions: We explore using binary cross-entropy loss function directly
with labels 0, 1 and 0.5, in place of the proposed loss. However, experiments indicate that this scheme
performs poorly when compared with the CCA loss (see Fig. 16 and Appendix F.2.10).

(viii) Validating Theorem 3.2: Empirical verification of the theorem is done through synthetic
experiments, where the model has a spherical decision boundary since they are known to be more
difficult for polytope approximation [Arya et al., 2012]. Fig. 18 presents a log-log plot comparing
the theoretical and empirical query complexities for several dimensionality values d. The empirical
approximation error decays faster than n−2/(d−1) as predicted by the theorem (see Appendix F.3).

5 Conclusion

Our work provides novel insights that bridge explainability and privacy through a set of theoretical
guarantees on model reconstruction using counterfactuals. We also propose a practical model
reconstruction strategy based on the analysis. Experiments demonstrate a significant improvement
in fidelity compared to the baseline method proposed in Aïvodji et al. [2020] for the case of one-
sided counterfactuals, across different model types and counterfactual generating methods. Our
findings also highlight an interesting connection between Lipschitz constant and vulnerability to
model reconstruction. See Appendix C for a discussion on limitations and future work. Broader
impacts are discussed in Appendix D.
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A Counterfactual Clamping Attack

Algorithm 1 Counterfactual Clamping Attack

Require: Attack dataset Dattack, β (β ∈ (0, 1], usually 0.5), API for querying
Ensure: Trained surrogate model m̃

1: Initialize A = {}
2: for x ∈ Dattack do
3: Query API with x to get yx {yx ∈ {0, 1}}
4: A← A ∪ {(x, yx}
5: if yx = 0 then
6: Query API for counterfactual w of x
7: A← A ∪ {(w, 0.5)} {Assign w a label of 0.5}
8: end if
9: end for

10: Train m̃ on A with Lβ(m̃(x), yx) as the loss
11: return m̃

B Related works

Figure 5: Decision boundary shift
when counterfactuals are treated
as ordinary labeled points.

A plethora of counterfactual-generating mechanisms has been
suggested in existing literature [Guidotti, 2022, Barocas et al.,
2020, Verma et al., 2022, Karimi et al., 2022, 2020, Mothilal
et al., 2020, Dhurandhar et al., 2018, Deutch and Frost, 2019,
Mishra et al., 2021]. Related works that focus on leaking in-
formation about the dataset from counterfactual explanations
include membership inference attacks [Pawelczyk et al., 2023]
and explanation-linkage attacks [Goethals et al., 2023]. Shokri
et al. [2021] examines membership inference from other types of
explanations, e.g., feature-based. Model reconstruction (without
counterfactuals) has been the topic of a wide array of studies (see
surveys Gong et al. [2020] and Oliynyk et al. [2023]). Various
mechanisms such as model inversion [Gong et al., 2021], equation solving [Tramèr et al., 2016], as
well as active learning have been considered [Pal et al., 2020]. Milli et al. [2019] looks into model
reconstruction using other types of explanations, e.g., gradient-based. Yadav et al. [2023] explore
algorithmic auditing using counterfactual explanations, focusing on linear classifiers and decision
trees. Using counterfactual explanations for model reconstruction has received limited attention, with
the notable exception of Aïvodji et al. [2020] and Wang et al. [2022]. Aïvodji et al. [2020] suggest
using counterfactuals as ordinary labeled examples while training the surrogate model, leading to
decision boundary shift, particularly for unbalanced query datasets (one-sided counterfactuals). Wang
et al. [2022] introduces a strategy of mitigating this issue by further querying for the counterfactual
of the counterfactual. However, both these methods require the system to provide counterfactuals for
queries from both sides of the decision boundary. Nevertheless, a user with a favorable decision may
not usually require a counterfactual explanation, and hence a system providing one-sided counterfac-
tuals might be more common, wherein lies our significance. While model reconstruction (without
counterfactuals) has received interest from a theoretical perspective [Tramèr et al., 2016, Papernot
et al., 2017, Milli et al., 2019], model reconstruction involving counterfactual explanations lack such
a theoretical understanding. Our work theoretically analyzes model reconstruction using polytope
theory and proposes novel strategies thereof, also addressing the decision-boundary shift issue.

C Limitations and future work

Even though Theorem 3.5 provides important insights about the role of query size in model recon-
struction, it lacks an exact characterization of k(ϵ) and vi(ϵ). Moreover, local Lipschitz continuity
might not be satisfied in some machine learning model types such as decision trees. Any improve-
ments along these lines can be avenues for future work. Utilizing techniques in active learning in
conjunction with counterfactuals is another problem of interest. Extending the results of this work for
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multi-class classification scenarios can also be explored. The relationship between Lipschitz constant
and vulnerability to model reconstruction may have implications for future work on generalization,
adversarial robustness, etc.

D Broader impact

We demonstrate that one-sided counterfactuals can be used for perfecting model reconstruction. While
this can be beneficial in some cases, it also exposes a potential vulnerability in MLaaS platforms.
Given the importance of counterfactuals in explaining model predictions, we hope our work will
inspire countermeasures and defense strategies, paving the way toward secure and trustworthy
machine learning systems.

E Proof of theoretical results

E.1 Proof of Lemma 2.5 and Lemma 3.1

Definition E.1 (Hypersurface, Lee [2009]). A hypersurface is a (d− 1)-dimensional sub-manifold
embedded in Rd, which can also be denoted by a single implicit equation S(x) = 0 where x ∈ Rd.
Definition E.2 (Touching Hypersurfaces). Let S(x) = 0 and T (x) = 0 denote two differentiable
hypersurfaces in Rd. S(x) = 0 and T (x) = 0 are said to be touching each other at the point w if
and only if S(w) = T (w) = 0, and there exists a non-empty neighborhood Bw around w, such
that ∀x ∈ Bw with S(x) = 0 and x ̸= w, only one of T (x) > 0 or T (x) < 0 holds. (i.e., within
Bw,S(x) = 0 and T (x) = 0 lie on the same side of each other).

Lemma 2.5. Let S(x) = 0 and T (x) = 0 denote two differentiable hypersurfaces in Rd, touching
each other at point w. Then, S(x) = 0 and T (x) = 0 have a common tangent hyperplane at w.

Proof. From Definition E.2, there exists a non-empty neighborhood Bw around w, such that ∀x ∈
Bw with S(x) = 0 and x ̸= w, only one of T (x) > 0 or T (x) < 0 holds. Let x = (x1, x2, . . . , xd)
and x[p] denote x without xp for 1 ≤ p ≤ d. Then, within the neighborhood Bw, we may re-
parameterize S(x) = 0 as xp = S(x[p]). Note that a similar re-parameterization denoted by
xp = T (x[p]) can be applied to T (x) = 0 as well. Let Aw =

{
x[p] : x ∈ Bw \ {w}

}
. From

Definition E.2, all x ∈ Bw \ {w} satisfy only one of T (x) < 0 or T (x) > 0, and hence without
loss of generality the re-parameterization of T (x) = 0 can be such that S(x[p]) < T (x[p]) holds
for all x[p] ∈ Aw. Now, define F (x[p]) ≡ T (x[p])− S(x[p]). Observe that F (x[p]) has a minimum
at w and hence, ∇x[p]

F (w[p]) = 0. Consequently, ∇x[p]
T (w[p]) = ∇x[p]

S(w[p]), which implies
that the tangent hyperplanes to both hypersurfaces have the same gradient at w. Proof concludes by
observing that since both tangent hyperplanes go through w, the two hypersurfaces should share a
common tangent hyperplane at w.

Lemma 3.1. Let S denote the decision boundary of a classifier and x ∈ [0, 1]d be any point that is
not on S. Then, the line joining x and its closest counterfactual w is perpendicular to S at w.

Proof. The proof utilizes the following lemma.

Lemma E.3. Consider the d-dimensional ball Cx centered at x, with w lying on its boundary (hence
Cx intersects S at w). Then, S lies completely outside Cx.

The proof of Lemma E.3 follows from the following contradiction. Assume a part of S lies within
Cx. Then, points on the intersection of S and the interior of Cx are closer to x than w. Hence, w can
no longer be the closest point to x, on S.

From Lemma E.3, Cx is touching the curve S at w, and hence, they share the same tangent hyperplane
at w by Lemma 2.5. Now, observing that the line joining w and x, being a radius of Cx, is the normal
to the ball at w concludes the proof (see Fig. 6).

We present the following corollary as an additional observation resulting from Lemma E.3.
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Figure 6: Line joining the query and its closest counterfactual is perpendicular to the decision
boundary at the counterfactual. See Lemma 3.1 for details.

Corollary E.4. Following Lemma E.3, it can be seen that all the points in the d-dimensional ball
with x as the center and w on boundary lies on the same side of S as x.

E.2 Proof of Theorem 3.2

Theorem 3.2. Let m be the target model whose decision boundary is convex (i.e., the set {x ∈
[0, 1]d : ⌊m(x)⌉ = 1} is convex) and has a continuous second derivative. Denote by M̃n, the convex
polytope approximation of m constructed with n supporting hyperplanes obtained through i.i.d.
counterfactual queries. Assume that the fidelity is evaluated with respect to Dref which is uniformly
distributed over [0, 1]d. Then, when n→∞ the expected fidelity of M̃n with respect to m is given by

E
[
Fidm,Dref(M̃n)

]
= 1− ϵ where ϵ ∼ O

(
n− 2

d−1

)
and the expectation is over both M̃n and Dref.

Proof. We first have a look at Böröczky Jr and Reitzner [2004, Theorem 1 (restated as Theorem
E.5 below)] from the polytope theory. Let M be a compact convex set with a second-order differen-
tiable boundary denoted by ∂M. Let a1, . . . ,an be n randomly chosen points on ∂M, distributed
independently and identically according to a given density d∂M. Denote by H+(ai) the supporting
hyperplane of ∂M at ai. Assume C to be a large enough hypercube which contains M in its interior.

Now, define

M̃n =

n⋂
i=1

H+(ai) ∩ C (3)

which is the polytope created by the intersection of all the supporting hyperplanes. The theorem
characterizes the expected difference of the volumes of M and M̃n.

Theorem E.5 (Random Polytope Approximation, [Böröczky Jr and Reitzner, 2004]). For a convex
compact set M with second-order differentiable ∂M and non-zero continuous density d∂M,

E
[
V (M̃n)− V (M)

]
= τ (∂M, d)n− 2

d−1 + o
(
n− 2

d−1

)
(4)

as n→∞, where V (·) denotes the volume (i.e., the Lebesgue measure), and τ(∂M, d) is a constant
that depends only on the boundary ∂M and the dimensionality d of the space.

Let xi, i = 1, . . . , n be n i.i.d queries from the ⌊m(x)⌉ = 0 region of the target model. Then, their
corresponding counterfactuals gm(xi) are also i.i.d. Furthermore, they lie on the decision boundary
of m. Hence, we may arrive at the following result.

Corollary E.6. Let M = {x ∈ [0, 1]d : ⌊m(x)⌉ = 1} and M̃n = {x ∈ [0, 1]d :
⌊
M̃n(x)

⌉
= 1}.

Then, by Theorem E.5,

E
[
V (M̃n)− V (M)

]
∼ O

(
n− 2

d−1

)
(5)

when n→∞. Note that M ⊆ M̃n and hence, the left-hand side is always non-negative.
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From Definition 2.4, we may write

E
[
Fidm,Dref(M̃n)

]
= E

[
1

|Dref|
∑

x∈Dref

E
[
1
[
⌊m(x)⌉ =

⌊
M̃n(x)

⌉] ∣∣∣Dref

]]
(6)

=
1

|Dref|
E

[ ∑
x∈Dref

P
[
⌊m(x)⌉ =

⌊
M̃n(x)

⌉ ∣∣∣x]] (∵ query size is fixed) (7)

= P
[
⌊m(x)⌉ =

⌊
M̃n(x)

⌉]
(∵ x’s are i.i.d.) (8)

=

∫
Mn

P
[
⌊m(x)⌉ =

⌊
M̃n(x)

⌉ ∣∣∣M̃n(x) = m̃n(x)
]
P
[
M̃n(x) = m̃n(x)

]
dm̃n (9)

whereMn is the set of all possible m̃n’s.

Now, by noting that

P
[
⌊m(x)⌉ =

⌊
M̃n(x)

⌉ ∣∣∣M̃n(x) = m̃n(x)
]
= 1− P

[
⌊m(x)⌉ ≠

⌊
M̃n(x)

⌉ ∣∣∣M̃n(x) = m̃n(x)
]
,

(10)
we may obtain

E
[
Fidm,Dref(M̃n)

]
= 1−

∫
Mn

P
[
⌊m(x)⌉ ≠

⌊
M̃n(x)

⌉ ∣∣∣M̃n(x) = m̃n(x)
]

× P
[
M̃n(x) = m̃n(x)

]
dm̃n (11)

= 1−
∫
Mn

V (M̃n)− V (M)

Total volume︸ ︷︷ ︸
=1 for unit hypercube

P
[
M̃n(x) = m̃n(x)

]
dm̃n

(∵ x’s are uniformly distributed) (12)

= 1− E
[
V (M̃n)− V (M)

]
. (13)

The above result, in conjunction with Corollary E.6, concludes the proof.

E.3 Proof of Theorem 3.5

We first show that the decision boundaries of CPWL functions are collections of polytopes (not
necessarily convex).
Lemma E.7. Let m(x) = σ(ℓ(x)) be a ReLU classifier, where ℓ(x) is CPWL and σ(.) is the Sigmoid
function. Then, the decision boundary ∂M = {x ∈ [0, 1]d : m(x) = 0.5} is a collection of (possibly
non-convex) polytopes in [0, 1]d, when considered along with the boundaries of the unit hypercube.

Proof. Consider the ith piece mi(x) of the classifier defined over Ui. A part of the decision boundary
exists within Ui only if ∃x ∈ Ui such that mi(x) = 0.5. When it is the case, at the decision
boundary,

m(x) = 0.5 (14)

⇐⇒ 1

1 + e−ℓi(x)
= 0.5 (15)

⇐⇒ e−ℓi(x) = 1 (16)
⇐⇒ ℓi(x) = 0 (17)

⇐⇒ aT
i x+ bi = 0 (18)

which represents a hyperplane restricted to Ui. Moreover, the continuity of the ℓ(x) demands the
decision boundary to be continuous across the boundaries of Ui’s. This fact can be proved as follows:

Note that within each region Ui, exactly one of the following three conditions holds:
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(a) ∀x ∈ Ui, ℓi(x) > 0 → Ui does not contain a part of the decision boundary

(b) ∀x ∈ Ui, ℓi(x) < 0 → Ui does not contain a part of the decision boundary

(c) ∃x ∈ Ui, ℓi(x) = 0 → Ui contains a part of the decision boundary

In case when (c) holds for some region Ui, the decision boundary within Ui is affine and it extends
from one point to another on the region boundary. Now let Us and Ut, s, t ∈ {1, . . . , q}, s ̸= t
be two adjacent regions sharing a boundary. Assume that Us contains a portion of the decision
boundary, which intersects with a part of the shared boundary between Us and Ut (note that Ui’s
are closed and hence they include their boundaries). Let x0 be a point in the intersection of the
decision boundary within Us and the shared region boundary. Now, continuity of ℓ(x) at x0 requires
ℓt(x0) = ℓs(x0) = 0. Hence, condition (c) holds for Ut. Moreover, this holds for all the points in the
said intersection. Therefore, if such a shared boundary exists between Us and Ut, then the decision
boundary continues to Ut. Applying the argument to all Us − Ut pairs show that each segment of
the decision boundary either closes upon itself or ends at a boundary of the unit hypercube. Hence,
when taken along with the boundaries of the unit hypercube, the decision boundary is a collection of
polytopes.

Theorem 3.5. Let m be a target binary classifier with ReLU activations. Let k(ϵ) be the number
of cells through which the decision boundary passes. Define {Hi}i=1,...,k(ϵ) to be the set of affine
pieces of the decision boundary within each decision boundary cell where each Hi is an open set. Let
vi(ϵ) = V (Gm,gm(Hi)) where V (.) is the d−dimensional volume (i.e., the Lebesgue measure) and
Gm,gm(.) is the inverse counterfactual region w.r.t. m and the closest counterfactual generator gm.
Then the probability of successful reconstruction with counterfactual queries distributed uniformly
over [0, 1]d is lower-bounded as

P [Reconstruction] ≥ 1− k(ϵ)(1− v∗(ϵ))n (1)
where v∗(ϵ) = mini=1,...,k(ϵ) vi(ϵ) and n is the number of queries.

Proof. Note that
P[Reconstruction] = P[There is a counterfactual in every decision boundary cell] (19)

= 1− P[At least one decision boundary cell does not have a counterfactual]
(20)

= 1−
k(ϵ)∑
i=1

P[ith decision boundary cell does not have a counterfactual] (21)

LetMi denote the event “ithdecision boundary cell does not have a counterfactual”. At the end of n
queries,

P[Mi] =
n∏

j=1

P[jthquery falling outside of Gm,gm(Hi)]︸ ︷︷ ︸
=1−vi(ϵ) for uniform queries

(22)

= (1− vi(ϵ))
n. (23)

Therefore,

P[Reconstruction] = 1−
k(ϵ)∑
i=1

(1− vi(ϵ))
n (24)

≥ 1− k(ϵ)(1− v∗(ϵ))n
(
∵ vi(ϵ) ≥ v∗(ϵ) = min

j
vj(ϵ)

)
. (25)

E.4 Proof of Theorem 3.8 and Corollary E.9

Lipschitz continuity is a property that is often encountered in related works [Bartlett et al., 2017,
Gouk et al., 2021, Pauli et al., 2021, Hamman et al., 2023, Liu et al., 2020, Marques-Silva et al.,
2021]. Usually, a smaller Lipschitz constant is indicative of a higher generalizability of a model
[Gouk et al., 2021].
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Definition E.8 (Local Lipschitz Continuity). A model m is said to be locally Lipschitz continuous
if for every x1 ∈ [0, 1]d there exists a neighborhood Bx1 ⊆ [0, 1]d around x1 such that for all
x2 ∈ Bx1 , |m(x1)−m(x2)| ≤ γ||x1 − x2||2 for some γ ∈ R+

0 .
Theorem 3.8. Let the target m and surrogate m̃ be ReLU classifiers such that m(w) = m̃(w) for
every counterfactual w. For any point x that lies in a decision boundary cell, |m̃(x) −m(x)| ≤√
d(γm + γm̃)ϵ holds with probability p ≥ 1− k(ϵ)(1− v∗(ϵ))n.

Corollary E.9. Suppose the target m and surrogate m̃ are locally Lipschitz (not necessarily ReLU)
such that m(w) = m̃(w) for every counterfactual w. Assume the counterfactuals are well-spaced
out and forms a δ-cover over the decision boundary. Then |m̃(x)−m(x)| ≤ (γm + γm̃)δ, over the
target decision boundary.

Proof. Note that from Theorem 3.5, with probability p ≥ 1− k(ϵ)(1− v∗(ϵ))n at least one counter-
factual exists within each decision boundary cell. When this is the case, we have

|m̃(x)−m(x)| = |m̃(x)− m̃(w)− (m(x)− m̃(w)) | (26)
= |m̃(x)− m̃(w)− (m(x)−m(w)) | (27)
≤ |m̃(x)− m̃(w)|︸ ︷︷ ︸

≤γm̃||x−w||2

+ |m(x)−m(w)|︸ ︷︷ ︸
≤γm||x−w||2

(28)

≤ (γm + γm̃)||x−w||2 (29)

≤
√
d(γm + γm̃)ϵ (30)

where the first inequality is a result of applying the triangle inequality and the second follows from the
definition of local Lipschitz continuity (Definition E.8). The final inequality is due to the availability
of a counterfactual within each decision boundary cell, which ensures ||x−w||2 ≤

√
dϵ. Corollary

E.9 follows directly from the second inequality, since the δ−cover of w’s ensure ||x−w||2 ≤ δ
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F Experimental Details and Additional Results

All the experiments were carried-out on two computers, one with a NVIDIA RTX A4500 GPU and
the other with a NVIDIA RTX 3050 Mobile.

F.1 Details of Real-World Datasets

We use four publicly available real-world tabular datasets (namely, Adult Income, COMPAS, DCCC,
and HELOC) to evaluate the performance of the attack proposed in Section 3.3. The details of these
datasets are as follows:

• Adult Income: The dataset is a 1994 census database with information such as educational
level, marital status, age and annual income of individuals [Becker and Kohavi, 1996]. The
target is to predict “income”, which indicates whether the annual income of a given person
exceeds $50000 or not (i.e., y = 1[income ≥ 0.5]). It contains 32561 instances in total
(the training set), comprising of 24720 from y = 0 and 7841 from y = 1. To make the
dataset class-wise balanced we randomly sample 7841 instances from class y = 0, giving
a total effective size of 15682 instances. Each instance has 6 numerical features and 8
categorical features. During pre-processing, categorical features are encoded as integers.
All the features are then normalized to the range [0, 1].

• Home Equity Line of Credit (HELOC): This dataset contains information about customers
who have requested a credit line as a percentage of home equity FICO [2018]. It
contains 10459 instances with 23 numerical features each. Prediction target is “is_at_risk”
which indicates whether a given customer would pay the loan in the future. Dataset
is slightly unbalanced with class sizes of 5000 and 5459 for y = 0 and y = 1,
respectively. Instead of using all 23 features, we use the following subset of 10 for
our experiments; “estimate_of_risk”, “net_fraction_of_revolving_burden”, “percent-
age_of_legal_trades”, “months_since_last_inquiry_not_recent”, “months_since_last_trade”,
“percentage_trades_with_balance”, “number_of_satisfactory_trades”, “aver-
age_duration_of_resolution”, “nr_total_trades”, “nr_banks_with_high_ratio”. All
the features are normalized to lie in the range [0, 1].

• Correctional Offender Management Profiling for Alternative Sanctions (COMPAS): This
dataset has been used for investigating racial biases in a commercial algorithm used for
evaluating reoffending risks of criminal defendants [Angwin et al., 2016]. It includes 6172
instances and 20 numerical features. The target variable is “is_recid”. Class-wise counts
are 3182 and 2990 for y = 0 and y = 1, respectively. All the features are normalized to the
interval [0, 1] during pre-processing.

• Default of Credit Card Clients (DCCC): The dataset includes information about credit card
clients in Taiwan Yeh [2016]. The target is to predict whether a client will default on
the credit or not, indicated by “default.payment.next.month”. The dataset contains 30000
instances with 24 attributes each. Class-wise counts are 23364 from y = 0 and 6636 from
y = 1. To alleviate the imbalance, we randomly select 6636 instances from y = 0 class,
instead of using all the instances. Dataset has 3 categorical attributes, which we encode into
integer values. All the attributes are normalized to [0, 1] during pre-processing.

F.2 Experiments on the attack proposed in Section 3.3

In this section, we provide details about our experimental setup with additional results. For conve-
nience, we present the neural network model architectures by specifying the number of neurons in
each hidden layer as a tuple, where the leftmost element corresponds to the layer next to the input;
e.g.: a model specified as (20,30,10) has the following architecture:

Input→ Dense(20, ReLU)→ Dense(30, ReLU)→ Dense(10, ReLU)→ Output(Sigmoid)

Other specifications of the models, as detailed below, are similar across most of the experiments.
Changes are specified specifically. The hidden layer activations are ReLU and the layer weights are
L2−regularized. The regularization coefficient is 0.001. Each model is trained for 200 epochs, with a
batch size of 32.
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Fidelity is evaluated over a uniformly sampled set of input instances (uniform data) as well as a
held-out portion of the original data (test data). The experiments were carried out as follows:

1. Initialize the target model. Train using Dtrain.
2. For t = 1, 2, . . . , T :

(a) Sample N × t data points from the dataset to create Dattack.
(b) Carry-out the attack given in Algorithm 1 with Dattack. Use k = 1 for “Baseline” models

and k = 0.5 for “Proposed” models.
(c) Record the fidelity over Dref along with t.

3. Repeat steps 1 and 2 for S number of times and calculate average fidelities for each t, across
repetitions.

Based on the experiments of Aïvodji et al. [2020] and Wang et al. [2022], we select T = 20, 50, 100;
N = 20, 8, 4 and S = 100, 50, in different experiments. We note that the exact numerical results are
often variable due to the multiple random factors affecting the outcome such as the test-train-attack
split, target and surrogate model initialization, and the randomness incorporated in the counterfactual
generating methods. Nevertheless, the advantage of CCA over the baseline attack is observed across
different realizations.

F.2.1 Visualizing the attack using synthetic data

This experiment is conducted on a synthetic dataset which consists of 1000 samples generated using
the make_moons function from the sklearn package. Features are normalized to the range [0, 1]
before feeding to the classifier. The target model has 4 hidden layers with the architecture (10, 20, 20,
10). The surrogate model is 3-layered with the architecture (10, 20, 20). Each model is trained for 100
epochs. Since the intention of this experiment is to demonstrate the functionality of the modified loss
function given in (2), a large query of size 200 is used, instead of performing multiple small queries.
Fig. 4 shows how the original model reconstruction proposed by Aïvodji et al. [2020] suffers from
the boundary shift issue, while the model with the proposed loss function overcomes this problem.
Fig. 7 illustrates the instances misclassified by the two surrogate models.

Figure 7: Misclassifications w.r.t. to the target model, over Duni and Dtest as the reference datasets for
the 2-dimensional demonstration in Fig. 4. “Baseline” model causes a large number of misclassifica-
tions w.r.t. the “CCA” model.

F.2.2 Comparing performance over four real-world dataset

We use a target model having 2 hidden layers with the architecture (20,10). Two surrogate model
architectures, one exactly similar to the target architecture (model 0 - known architecture) and the
other slightly different (model 1 - unknown architecture), are tested. Model 1 has 3 hidden layers
with the architecture (20,10,5).

Fig. 8 illustrates the fidelities achieved by the two model architectures described above. Fig. 9 shows
the corresponding variances of the fidelity values over 100 realizations. It can be observed that the
variances diminish as the query size grows, indicating more stable model reconstructions. Fig. 10
demonstrates the effect of the proposed loss function in mitigating the decision boundary shift issue.
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Figure 8: Fidelity for real-world datasets. Blue lines indicate “CCA” models. Black lines indicate
“Baseline” models.

Figure 9: Variance of fidelity for real-world datasets. Blue lines indicate “CCA” models. Black lines
indicate “Baseline” models.
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Figure 10: Histograms of probabilities predicted by “Baseline” and “CCA” models under the
“Unknown Architecture” scenario (model 1) for the HELOC dataset. Note how the “Baseline” model
provides predictions higher than 0.5 for a comparatively larger number of instances with ⌊m(x)⌉ = 0
due to the boundary shift issue. The clamping effect of the novel loss function is evident in the “CCA”
model’s histogram, where the decision boundary being held closer to the counterfactuals is causing
the two prominent modes in the favorable region. The mode closer to 0.5 is due to counterfactuals
and the mode closer to 1.0 is due to instances with ⌊m(x)⌉ = 1.

F.2.3 Empirical and theoretical rates of convergence

Fig. 11 compares the rate of convergence of the empirical approximation error i.e., 1 −
E
[
Fidm,Dref(M̃n)

]
for two of the above experiments with the rate predicted by Theorem 3.2. Notice

how the empirical error decays faster than n−2/(d−1).

Figure 11: A comparison of the query complexity derived in Theorem 3.2 with the empirical query
complexities obtained on the Adult Income and HELOC datasets. The graphs are on a log-log
scale. We observe that the analytical query complexity is an upper bound for the empirical query
complexities. All the graphs are recentered with an additive constant for presentational convenience.
However, this does not affect the slope of the graph, which corresponds to the complexity.

F.2.4 Studying effects of Lipschitz constants

For this experiment, we use a target model having 3 hidden layers with the architecture (20, 10, 5) and
a surrogate model having 2 hidden layers with the architecture (20, 10). The surrogate model layers
are L2-regularized with a fixed regularization coefficient of 0.001. We achieve different Lipschitz
constants for the target models by controlling their L2-regularization coefficients during the target
model training step. Following Gouk et al. [2021], we approximate the Lipschitz constant of target
models by the product of the spectral norms of the weight matrices.

Fig. 12 illustrates the dependence of the attack performance on the Lipschitz constant of the target
model. The results lead to the conclusion that target models with larger Lipschitz constants are more
difficult to extract. This follows the insight provided by Theorem 3.8.
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Figure 12: Dependence of fidelity on the target model’s Lipschitz constant. The approximations of
the Lipschitz constants are shown in the legend with standard deviations within brackets. Lipschitz
constants are approximated as the product of the spectral norm of weight matrices in each model.
With a higher Lipschitz constant, the fidelity achieved by a given number of queries tend to degrade.

F.2.5 Studying different model architectures

We observe the effect of the model architectures on the attack performance over Adult Income,
COMPAS and HELOC datasets. Tables 3, 4, and 5, respectively, present the results.

Table 3: Fidelity over Dtest and Duni for Adult Income dataset
Target→ (20,10) (20,10,5) (20,20,10,5)

Dtest n=100 n=200 n=100 n=200 n=100 n=200

Surrogate ↓ Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA

(20,10) 0.88 0.89 0.92 0.93 0.82 0.84 0.91 0.93 0.94 0.95 0.95 0.96
(20,10,5) 0.87 0.88 0.91 0.93 0.79 0.82 0.90 0.92 0.93 0.94 0.95 0.96

(20,20,10,5) 0.85 0.86 0.91 0.91 0.79 0.81 0.89 0.92 0.93 0.92 0.95 0.95

Target→ (20,10) (20,10,5) (20,20,10,5)
Duni n=100 n=200 n=100 n=200 n=100 n=200

Surrogate ↓ Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA

(20,10) 0.71 0.81 0.75 0.87 0.78 0.84 0.79 0.87 0.84 0.88 0.85 0.91
(20,10,5) 0.71 0.78 0.74 0.83 0.77 0.82 0.78 0.85 0.82 0.88 0.84 0.90

(20,20,10,5) 0.71 0.75 0.74 0.81 0.77 0.81 0.78 0.84 0.82 0.86 0.84 0.90

Table 4: Fidelity over Dtest and Duni for COMPAS dataset
Target→ (20,10) (20,10,5) (20,20,10,5)

Dtest n=100 n=200 n=100 n=200 n=100 n=200

Surrogate ↓ Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA

(20,10) 0.93 0.96 0.94 0.97 0.92 0.94 0.94 0.96 0.94 0.96 0.95 0.97
(20,10,5) 0.92 0.95 0.94 0.97 0.92 0.93 0.95 0.95 0.94 0.96 0.95 0.97

(20,20,10,5) 0.92 0.95 0.92 0.97 0.84 0.91 0.89 0.94 0.92 0.94 0.94 0.96

Target→ (20,10) (20,10,5) (20,20,10,5)
Duni n=100 n=200 n=100 n=200 n=100 n=200

Surrogate ↓ Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA

(20,10) 0.94 0.95 0.94 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.96 0.96
(20,10,5) 0.93 0.95 0.94 0.95 0.94 0.92 0.95 0.92 0.95 0.96 0.96 0.96

(20,20,10,5) 0.93 0.94 0.94 0.95 0.94 0.85 0.94 0.90 0.95 0.92 0.95 0.94
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Table 5: Fidelity over Dtest and Duni for HELOC dataset
Target→ (20,10) (20,10,5) (20,20,10,5)

Dtest n=100 n=200 n=100 n=200 n=100 n=200

Surrogate ↓ Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA

(20,10) 0.90 0.94 0.91 0.95 0.90 0.94 0.92 0.95 0.98 0.99 0.98 0.99
(20,10,5) 0.88 0.92 0.92 0.95 0.89 0.92 0.92 0.95 0.98 0.98 0.98 0.99

(20,20,10,5) 0.87 0.93 0.91 0.93 0.87 0.89 0.91 0.94 0.98 0.98 0.98 0.98

Target→ (20,10) (20,10,5) (20,20,10,5)
Duni n=100 n=200 n=100 n=200 n=100 n=200

Surrogate ↓ Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA Base. CCA

(20,10) 0.92 0.92 0.94 0.95 0.91 0.91 0.94 0.95 0.98 0.98 0.99 0.99
(20,10,5) 0.91 0.90 0.94 0.93 0.91 0.89 0.93 0.94 0.97 0.97 0.98 0.99

(20,20,10,5) 0.91 0.91 0.93 0.94 0.91 0.87 0.93 0.92 0.97 0.97 0.98 0.98

F.2.6 Studying alternate counterfactual generating method

Counterfactuals can be generated such that they satisfy additional desirable properties such as
actionability, sparsity and closeness to the data manifold, other than the proximity to the original
instance. In this experiment, we observe how counterfactuals with above properties affect the attack
performance. HELOC is used as the dataset. Target model has the architecture (20, 30, 10) and the
architecture of the surrogate model is (10, 20).

To generate actionable counterfactuals, we use Diverse Counterfactual Explanations (DiCE) by
Mothilal et al. [2020] with the first four features, i.e., “estimate_of_risk”, “months_since_last_trade”,
“average_duration_of_resolution”, and “number_of_satisfactory_trades” kept unchanged. The di-
versity factor of DiCE generator is set to 1 in order to obtain only a single counterfactual for each
query. Sparse counterfactuals are obtained by the same MCCF generator used in other experiments,
but now with L1 norm as the cost function c(x,w). Counterfactuals from the data manifold (i.e.,
realistic counterfactuals, denoted by 1-NN) are generated using a 1-Nearest-Neighbor algorithm.
We use ROAR [Upadhyay et al., 2021] and C-CHVAE [Pawelczyk et al., 2020] to generate robust
counterfactuals. Table 2 summarizes the performance of the attack. Fig. 13 shows the distribution of
the counterfactuals generated using each method w.r.t. the decision boundary of the target model. We
observe that the sparse, realistic, and robust counterfactuals have a tendency to lie farther away from
the decision boundary, within the favorable region, when compared to the closest counterfactuals
under L2 norm.

Figure 13: Histograms of the target model’s predictions on different types of input instances. Coun-
terfactual generating methods except MCCF with L2 norm often generate counterfactuals that are
farther inside the favorable region, hence having a target model prediction much greater than 0.5. We
count all the query results across all the target models in the ensembles used to compute the average
fidelities corresponding to each counterfactual generating method.

22



F.2.7 Comparison with DualCFX Wang et al. [2022]

Wang et al. [2022] is one of the few pioneering works studying the effects of counterfactuals on
model extraction, which proposes the interesting idea of using counterfactuals of counterfactuals to
mitigate the decision boundary shift. This requires the API to provide counterfactuals for queries
originating from both sides of the decision boundary. However, the primary focus of our work is
on the one-sided scenario where an institution might be giving counterfactuals only to the rejected
applicants to help them get accepted, but not to the accepted ones. Hence, a fair comparison cannot
be achieved between CCA and the strategy proposed in Wang et al. [2022] in the scenario where only
one-sided counterfactuals are available.

Therefore, in the two-sided scenario, we compare the performance of CCA with the DualCFX strategy
proposed in Wang et al. [2022] under two settings:

1. only one sided counterfactuals are available for CCA (named CCA1)
2. CCA has all the data that DualCFX has (named CCA2)

We also include another baseline (following Aïvodji et al. [2020]) for the two-sided scenario where
the models are trained only on query instances and counterfactuals, but not the counterfactuals of
the counterfactuals. Results are presented in Table 6. Note that even for the same number of initial
query instances, the total number of actual training instances change with the strategy being used
(CCA1 < Baseline < DualCFX = CCA2 – e.g.: queries+CFs for the baseline but queries+CFs+CCFs
for DualCFX).

Table 6: Comparison with DualCFX. Legend: Base.=Baseline model based on [Aïvodji et al., 2020],
Dual=DualCFX, CCA1=CCA with one-sided counterfactuals, CCA2=CCA with counterfactuals
from both sides.

Architecture known (model 0)
Dataset Query size Dtest Duni

Base. Dual. CCA1 CCA2 Base. Dual. CCA1 CCA2

DCCC n=100 0.95 0.99 0.94 0.99 0.90 0.95 0.92 0.97
n=200 0.96 0.99 0.98 0.99 0.90 0.96 0.95 0.98

HELOC n=100 0.94 0.97 0.90 0.98 0.91 0.98 0.84 0.98
n=200 0.96 0.98 0.92 0.98 0.93 0.98 0.89 0.99

Architecture unknown (model 1)
Dataset Query size Dtest Duni

Base. Dual. CCA1 CCA2 Base. Dual. CCA1 CCA2

DCCC n=100 0.92 0.98 0.93 0.98 0.88 0.92 0.89 0.93
n=200 0.96 0.99 0.96 0.99 0.89 0.94 0.94 0.96

HELOC n=100 0.92 0.91 0.90 0.96 0.88 0.92 0.84 0.96
n=200 0.95 0.92 0.91 0.97 0.93 0.94 0.88 0.97
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F.2.8 Studying other machine learning models

We explore the effectiveness of the proposed attack when the target model is no longer a neural
network classifier. The surrogate models are still neural networks with the architectures (20, 10) for
model 0 and (20, 10, 5) for model 1. A random forest classifier with 100 estimators and a linear
regression classifier, trained on Adult Income dataset are used as the targets. Ensemble size S used is
20. Results are shown in Fig. 14, where the proposed attack performs better or similar to the baseline
attack.

Figure 14: Performance of the attack when the target model is not a neural network. Surrogates M0
and M1 are neural networks with the architectures (20,10) and (20,10,5) respectively. Baseline T is a
surrogate model from the same class as the target model.
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F.2.9 Studying effect of unbalanced Dattack

In all the other experiments, the attack dataset Dattack used by the adversary is sampled from a
class-wise balanced dataset. In this experiment we explore the effect of querying using an unbalanced
Dattack. Model architectures used are (20, 10) for the target model and surrogate model 0, and (20,
10, 5) for surrogate model 1. While the training set of the teacher and the test set of both the teacher
and the surrogates were kept constant, the proportion of the samples in the attack set Dattack was
changed. In the first case, examples from class y = 1 were dominant (80%) and in the second case,
the majority of the examples were from class y = 0 (80%). The results are shown in Fig. 15.

Figure 15: Results corresponding to the HELOC dataset with queries sampled from biased versions
of the dataset (i.e., a biased Dattack). The version on the left uses a Dattack with 20% and 80% examples
from classes y = 0 and y = 1, respectively. The version on the right was obtained with a Dattack
comprising of 80% and 20% examples from classes y = 0 and y = 1, respectively.
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F.2.10 Studying alternate loss functions

We explore using binary cross-entropy loss function directly with labels 0, 1 and 0.5 in place of the
proposed loss. Precisely, the surrogate loss is now defined as

L(m̃, y) = −y(x) log (m̃(x))− (1− y(x)) log (1− m̃(x)) (31)

which is symmetric around 0.5 for y(x) = 0.5. Two surrogate models are observed, with architectures
(20, 10) for model 0 and (20, 10, 5) for model 1. The target model’s architecture is similar to that of
model 0. The ensemble size is S = 20.

The results (in Fig. 16) indicate that the binary cross-entropy loss performs worse than the proposed
loss. The reason might be the following: As the binary cross-entropy loss is symmetric around 0.5 for
counterfactuals, it penalizes the counterfactuals that are farther inside the favorable region. This in
turn pulls the surrogate decision boundary towards the favorable region more than necessary, causing
a decision boundary shift.

Figure 16: Performance of binary cross-entropy loss with labels 0, 0.5 and 1. Black lines correspond-
ing to binary cross entropy (BCE) loss and blue lines depict the performance of the CCA loss.
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F.3 Experiments for verifying Theorem 3.2

This experiment includes approximating a spherical decision boundary in the first quadrant of a
d−dimensional space. The decision boundary is a portion of a sphere with radius 1 and the origin
at (1, 1, . . . , 1). The input space is assumed to be normalized, and hence, restricted to the unit
hypercube. See Section 3.1 for a description of the attack strategy. Fig. 17 presents a visualization
of the experiment in the case where the dimensionality d = 2. Fig. 18 presents a comparison of
theoretical and empirical query complexities for higher dimensions. Experiments agree with the
theoretical upper-bound.

Figure 17: Synthetic attack for verifying Theorem 3.2 in the 2-dimensional case. Red dots represent
queries and blue dots are the corresponding closest counterfactuals. Dashed lines indicate the
boundary of the polytope approximation.

Figure 18: Verifying Theorem 3.2: Dotted and solid lines indicate the theoretical and empirical rates
of convergence.
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