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Abstract

Large Language Models (LLMs) have demon-001
strated the capability to refine their generated002
answers through self-correction, enabling con-003
tinuous performance improvement over multi-004
ple rounds. However, the mechanisms under-005
lying how and why accuracy evolves during006
this iterative process remain unexplored. To007
fill this gap, we propose a probabilistic the-008
ory to model the dynamics of accuracy change009
and explain the performance improvements ob-010
served in multi-round self-correction. Through011
mathematical derivation, we establish that the012
accuracy after the tth round of self-correction013
is given by: Acct = Upp− αt(Upp−Acc0),014
where Acc0 denotes the initial accuracy, Upp015
represents the upper bound of accuracy con-016
vergence, and α determines the rate of con-017
vergence. Based on our theory, these parame-018
ters can be calculated and the predicted accu-019
racy curve then can be obtained through only020
a single round of self-correction. Extensive ex-021
periments across diverse models and datasets022
demonstrate that our theoretical predictions023
align closely with empirical accuracy curves,024
validating the effectiveness of the theory. Ad-025
ditionally, we derive and experimentally ver-026
ify three corollaries, further substantiating the027
theory. Finally, we discuss failure scenarios,028
bottlenecks, and the potential of self-correction029
from the perspective of our theory. Our work030
provides a theoretical foundation for under-031
standing LLM self-correction, thus paving the032
way for further explorations.033

1 Introduction034

With the depletion of pre-training corpora, the train-035

ing scaling law (Kaplan et al., 2020) reaches the036

saturation point, and an alternative way to further037

improve performance is introducing more com-038

putational cost at test time, also known as infer-039

ence scaling (Snell et al., 2025; Hoffmann et al.,040

2022). Brown et al. (2024b) repeatedly sample041

multiple answers and select the optimal one with042
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Figure 1: A demonstration of our theory on GSM8k
with Llama3-8B-Instruct. The curves reflect how ac-
curacy evolves in multi-round self-correction, and we
depict the empirical curve, theoretical curve, and upper
bound predicted by our theory in blue, green, and or-
ange respectively. The theoretical curve fits the actual
curve well, and both curves approach but do not exceed
the upper bound.

best-of-n (Li et al., 2023) or majority voting (Wang 043

et al., 2023) strategy, and the curve of how ac- 044

curacy changes in this process as inference costs 045

increase is also experimentally recorded (Wu et al., 046

2024a). Another approach to inference scaling 047

is self-correction (Kamoi et al., 2024; Pan et al., 048

2024), where LLMs can refine their answers based 049

on intrinsic (Madaan et al., 2024) or external (Jiang 050

et al., 2023b) feedback. Xi et al. (2023); Liu et al. 051

(2024b) have empirically observed that model per- 052

formance continuously improves and eventually 053

converges during multi-round self-correction, but 054

the underlying reasons and mechanisms remain 055

poorly understood. To narrow this gap, we pro- 056

pose a probabilistic theory to model how accuracy 057

evolves and explain why performance improves in 058

multi-round self-correction. 059

In §3, we mathematically derive our theory from 060

a probabilistic perspective. Yang et al. (2024b) 061

decompose self-correction capabilities of LLMs 062
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into confidence capability and critique capabil-063

ity, introducing two metrics named Confidence064

Level (CL) and Critique Score (CS) to measure065

them, respectively. Based on their decomposition,066

we further discover a recursive relationship be-067

tween the accuracy of successive rounds of self-068

correction: Acct = (CL − CS)Acct−1 + CS,069

where Acct and Acct−1 denote the accuracy after070

the tth and t− 1th round of self-correction, respec-071

tively. From this recursive relationship, we fur-072

ther find Acct = Upp − αt(Upp − Acc0), where073

Upp = CS
1−CL+CS , α = CL − CS, and Acc0 is074

the initial accuracy. This equation serves as the075

core part of our theory by describing how accuracy076

evolves in multi-round self-correction. To directly077

verify the theory, we compare the empirical accu-078

racy curve with the theoretical curve given by our079

theory, and extensive experiments in §4 demon-080

strate that the theoretical curve fits the empirical081

curve well across various models and datasets (with082

an example illustrated in Figure 1).083

Based on our theory and subsequent deduction,084

three corollaries can be derived (§5): (1). after085

infinite rounds of self-correction, the final accu-086

racy converges to the upper bound Upp, which is087

solely determined by CL and CS and is indepen-088

dent of the initial accuracy Acc0 (§5.1); (2). the089

speed of convergence depends α = CL−CS, and090

accuracy converge faster when α is lower (§5.2);091

(3). in particular, under the ideal condition with092

an oracle verifier (CL = 1), the accuracy follows093

Acct = 1− (1−CS)t(1−Acc0), ultimately con-094

verging to 100% (§5.3). All these corollaries are095

then experimentally validated: (1). when manipu-096

lating initial accuracy Acc0 to different values, we097

find final accuracy always converges to the same098

value, validating corollary 1; (2). by comparing the099

convergence rate of LLama3 and Qwen2.5, we find100

model with lower α converges faster, validating101

corollary 2; (3). after introducing an oracle verifier102

to make sure CL = 1, we find the theoretical curve103

still fits the empirical curve, validating corollary 3.104

These experiments directly verify three corollaries105

and provide further support for our theory.106

Further discussions on self-correction based on107

our theory (§6). Huang et al. (2024); Jiang et al.108

(2024); Valmeekam et al. (2023); Zhang et al.109

(2024b) observe the failure of self-correction where110

accuracy can even decrease after self-correction.111

From the perspective of our theory, this failure can112

be explained as a special case when the converged113

upper bound Upp is lower than the initial accuracy114

Acc0. We also discuss how far self-correction can 115

go: the performance upper bound of self-correction 116

has been given by our theory, which is empirically 117

not that high, and this bottleneck can hardly be 118

solved. In contrast, the great potential of exter- 119

nal self-correction is showcased by our theory, and 120

performance can be improved by a large margin 121

when CL = 1. These discussions provide a the- 122

oretical perspective for a better understanding of 123

self-correction, and bring more insights to further 124

investigation. 125

Our contributions can be summarized as follows: 126

1. We propose a probabilistic theory to model 127

how accuracy evolves in multi-round self- 128

correction, along with 3 corollaries. 129

2. To validate our theory, we conduct extensive 130

experiments and find that our theoretical curve 131

fits empirical curve well. We also provide ex- 132

perimental validation of 3 corollaries as fur- 133

ther support of the theory. 134

3. We discuss failure scenarios, bottlenecks, and 135

the potential of self-correction based on the 136

theory, bringing insights and a better under- 137

standing to further explorations. 138

2 Related Work 139

Inference Scaling Model performance can be 140

improved by introducing more computational cost 141

at test time, and this inference scaling (Snell et al., 142

2025; Hoffmann et al., 2022) can be achieved via 143

various ways: Wei et al. (2022) find directly out- 144

putting the final answer limits model performance 145

and propose a Chain-Of-Thought (COT) prompt- 146

ing strategy; Wu et al. (2024a) repeatedly sample 147

multiple answers and choose the best one with best- 148

of-n (Li et al., 2023; Brown et al., 2024b) or ma- 149

jority voting (Wang et al., 2023), and Zhang et al. 150

(2023); Liu et al. (2024c) further substitute repeated 151

sampling with Monte Carlo Tree Search (MCTS) 152

for better efficiency; Liu et al. (2024b); Xi et al. 153

(2023) utilize multi-round self-correction to obtain 154

refined answers and Zhang et al. (2024a) refine 155

answers with a search tree. while previous works 156

have empirically observed that model performance 157

improves with higher inference costs, deeper ex- 158

ploration into why these performance curves occur 159

is still lacking. Our work partially fills this gap 160

by providing a theoretical explanation and mod- 161

eling how accuracy changes during multi-round 162

self-correction. 163
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LLM Self-Correction LLMs can generate feed-164

back on their answer, revise this answer based on165

feedback, and output a refined answer that is con-166

sidered to be better than the initial answer. This167

self-correction capability (Kamoi et al., 2024; Pan168

et al., 2024; Yang et al., 2024b) can be further im-169

proved through approaches: introducing external170

tools to provide more effective feedback (Jiang171

et al., 2023b), better prompting strategies (Li et al.,172

2024; Wu et al., 2024b), fine-tuning on a aug-173

mented critique dataset (Welleck et al., 2023), rein-174

forcement learning with online feedback (Kumar175

et al., 2024) and iterative self-correction (Qu et al.,176

2024; Madaan et al., 2024). Different from pre-177

vious works, we propose a theory to explain and178

model the accuracy curve for self-correction, pro-179

viding theoretical support and beneficial insights180

for further investigations on LLM self-correction.181

3 Theory182

In this section, we introduce an inference scaling183

theory to model and explain how accuracy changes184

in multi-round self-correction. First, we formally185

define the multi-round self-correction process and186

provide mathematical notations in §3.1. Then we187

discuss a simple scenario where the test set con-188

sists of only one datum (§3.2), and further extend189

our analysis to the general case where the test set190

contains n questions (§3.3). According to our the-191

ory, the accuracy after t rounds of self-correction192

is given by Acct = Upp − αt(Upp − Acc0) and193

finally converges to Upp.194

3.1 Problem Formulation and Notations195

Initially, we have a set comprising of n questions196

denoted as Q = {q1, q2, ..., qn}, and we utilize197

multi-round self-correction to boost model perfor-198

mance. For any given question qi, we first di-199

rectly query the model and generate an answer200

ai,0. Then we utilize an appropriate prompt to201

encourage the model to self-correct ai,0 and get a202

refined answer ai,1 and subsequently self-correct203

ai,1 to get ai,2, and so on. This process is con-204

ducted iteratively, yielding a sequence of answers205

ai,0, ai,1, ..., ai,k after k rounds of self-correction.206

It is worth noting that during the tth self-correction,207

only the (t− 1)th answer ai,t−1 is provided as in-208

put to the model, rather than the entire sequence209

ai,0, ..., ai,t−1, which ensures that the computa-210

tional cost per self-correction round remains ap-211

proximately constant, rather than scaling linearly212

with t. For the answer ai,t from the tth self- 213

correction, we denote the probability that the 214

model generates a correct answer through a sin- 215

gle temperature-based sampling as P (ai,t). The 216

initial accuracy is defined as Acc0 =
∑n

i=1 P (ai,0)
n , 217

and the accuracy after the tth self-correction round 218

is defined as Acct =
∑n

i=1 P (ai,t)
n . For clarity, all 219

notations and their corresponding definitions are 220

summarized in Appendix A. 221

3.2 Question-Level Theory 222

Rather than exploring the change of accuracy on the 223

whole dataset, we first discuss a simpler problem: 224

how the probability of generating a correct answer 225

for a single question qi evolves as the number of 226

self-correction rounds increases. 227

For answer ai,t generated in the tth self- 228

correction, the answer before self-correction ai,t−1 229

may be either correct or wrong, so by the Law of 230

Total Probability we have: 231

P (ai,t) =P (ai,t−1)P (ai,t|ai,t−1)

+ [1− P (ai,t−1)]P (ai,t|¬ai,t−1),
(1) 232

where P (ai,t|ai,t−1) and P (ai,t|¬ai,t−1) denote 233

the conditional probabilities that ai,t is correct 234

given that ai,t−1 is correct or incorrect, respectively. 235

During the tth self-correction round, only ai,t−1 is 236

fed into the model, rather than the whole sequence 237

ai,0, ..., ai,t−1. Consequently, these two probabili- 238

ties depend solely on the question index i and are 239

independent of the current self-correction round t. 240

We denote these two probabilities as P con
i and P cri

i 241

respectively, which represent the probability of gen- 242

erating a correct answer after self-correction, given 243

the answer before self-correction is correct/wrong. 244

P con
i reflects model confidence in the correct an- 245

swer and P cri
i reflects the critique capability. For 246

any t ∈ N+, we have P (ai,t|ai,t−1) = P con
i and 247

P (ai,t|¬ai,t−1) = P cri
i , which we substitute into 248

Equation 1 to obtain: 249

P (ai,t) = P (ai,t−1)P
con
i + [1− P (ai,t−1)]P

cri
i

= (P con
i − P cri

i )P (ai,t−1) + P cri
i

(2) 250

By subtracting P cri
i

1−P con
i +P cri

i
from both sides of 251

the Equation 2, we have: 252

P (ai,t)−
P cri
i

1− P con
i + P cri

i

= (P con
i − P cri

i )(P (ai,t−1)−
P cri
i

1− P con
i + P cri

i

)

(3) 253
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It is evident that P (ai,t) − P upp
i forms a ge-254

ometric progression with a common ratio of αi,255

where P upp
i =

P cri
i

1−P con
i +P cri

i
and αi = P con

i −P cri
i .256

By applying the general term formula of a geo-257

metric sequence, we obtain: P (ai,t) − P upp
i =258

αt
i(P (ai,0) − P upp

i ). After k rounds of self-259

correction, the probability of the model correctly260

answering question qi is expressed as:261

P (ai,t) = P upp
i − αt

i(P
upp
i − P (ai,0)) (4)262

This equation characterizes the trajectory of the263

probability of correctly answering a single ques-264

tion qi as the number of self-correction iterations t265

increases.266

3.3 Dataset-Level Theory267

In §3.2, we have demonstrated that the trajectory268

of correct probability for a single question (as269

shown in Equation 4) depends on three variables:270

P (ai,0), P
con
i and P cri

i . Further, we attempt to ex-271

tend this finding to the dataset level, where we272

measure accuracy across the entire dataset. Specifi-273

cally, we also use the initial accuracy, model con-274

fidence, and critique capability as three key indi-275

cators to characterize how accuracy evolves with276

the increase of self-correction rounds. Yang et al.277

(2024b) decompose the self-correction capability278

of a model into two components: confidence (the279

ability to maintain confidence in the correct answer)280

and critique (the ability to correct wrong answers),281

and propose two probabilistic metrics to measure282

these capabilities quantitatively, which we adopt283

directly:284

• The Confidence Level (CL) measures the285

model confidence, defined as the probability that286

the model retains the correct answer after self-287

correction:288

CLt = E[P (a_,t+1|a_,t)]

=

∑n
i=1 P (ai,t)P (ai,t+1|ai,t)∑n

i=1 P (ai,t)
,

(5)289

• The Critique Score (CS) measures the capabil-290

ity to critique and reflect, defined as the probability291

that the model corrects a wrong answer to a right292

one after self-correction:293

CSt = E[P (a_,t+1|¬a_,t)]

=

∑n
i=1[1− P (ai,t)]P (ai,t+1|¬ai,t)∑n

i=1[1− P (ai,t)]
,

(6)294

In the tth round of self-correction, the rela-295

tionship between accuracy before and after self-296

correction and the two metrics above is given by297

(with derivation details shown in Appendix B): 298

Acct = Acct−1CLt−1 + (1−Acct−1)CSt−1

(7) 299

Assuming that CL and CS reflect the inherent 300

confidence and critique capabilities of LLMs, so 301

we treat these metrics as constants independent of 302

the round number t, and this yields: 303

Acct = Acct−1 ∗ CL+ (1−Acct−1) ∗ CS (8) 304

Noticing that Equation 8 and Equation 2 are 305

essentially the same recurrence relation, we can 306

similarly derive that: 307

Acct = Upp− αt(Upp−Acc0) (9) 308

where Upp = CS
1−CL+CS , α = CL − CS. Em- 309

pirically we have 0 < α < 1, and as t → +∞, 310

Acct → Upp. This equation describes how ac- 311

curacy changes in multi-round self-correction and 312

provides a theoretical performance upper bound, 313

serving as the core part of our theory. 314

4 Experiments 315

4.1 Experimental Setup 316

Models Similar to Yang et al. (2024b), exper- 317

iments are conducted on both open-source and 318

closed-source models. For the closed-source mod- 319

els, we assess Qwen-Max (Bai et al., 2023), GPT- 320

3.5 Turbo, and GPT-4 Turbo (Achiam et al., 321

2023) by API calls. For the open-source mod- 322

els, we evaluate Llama3-8B (AI@Meta, 2024), 323

Qwen2.5-7B (Yang et al., 2024a), DeepSeek-LLM- 324

7B (DeepSeek-AI, 2024), Mistral-7B-v3 (Jiang 325

et al., 2023a), and GLM4-9B (GLM et al., 2024), 326

and parameters of these models are publicly avail- 327

able on HuggingFace 1. For each open-source 328

model (< 10B), we run the experiments on a sin- 329

gle Nvidia A100 80G GPU, and utilize vllm 2 to 330

accelerate generation. 331

Dataset We conduct experiments on both classi- 332

fication and generation tasks, including domains 333

in mathematics, coding, instruction following, 334

common-sense reasoning, and knowledge. To be 335

specific, the dataset we utilized include GSM8k 336

(Cobbe et al., 2021), Humaneval (Chen et al., 2021), 337

IFEval (Zhou et al., 2023), MMLU (Hendrycks 338

et al., 2021), BoolQ (Clark et al., 2019), Common- 339

senseQA (Talmor et al., 2019), PiQA (Bisk et al., 340

2019), and HotpotQA (Yang et al., 2018). 341

1https://huggingface.co/
2https://github.com/vllm-project/vllm
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Figure 2: Experimental verification of our theory on Llama3-8B-Instruct. The empirical curve in mult-round
self-correction, theoretical curve, and upper bound predicted by our theory are depicted in blue, green, and orange
respectively. The theoretical curve fits the empirical curve well and accuracy approaches but never surpasses the
upper bound.

4.2 Results342

To validate our theory, we compare the empir-343

ical accuracy change curve with the theoretical344

curve predicted by our theory by visualizing them345

in the same figure and checking the alignment.346

The empirical curve is acquired from a 5-round347

self-correction process across multiple models and348

datasets, during which we track accuracy and vari-349

ance changes and plot the results. To enhance the350

numerical stability of experimental results, we sam-351

ple five responses independently for each question352

and use the average accuracy for analysis. For353

the theoretical curve, we compute three key pa-354

rameters: initial accuracy (Acc0), confidence level355

(CL), and critique score (CS). Using these values356

and Equation 9, we generate the theoretical curve357

and its upper bound, which are then plotted along-358

side the empirical curve. Since the calculation of359

CL and CS relies on probability, we utilize the360

probability estimation methods provided by Yang361

et al. (2024b), and more details are shown in the362

Appendix C.363

The experimental results of Llama3-8B-Instruct364

are presented in Figure 2, with more results of other365

models provided in Appendix D. For better visual-366

ization, the empirical curve, theoretical curve, and367

upper bound are depicted in blue, green, and or-368

ange respectively. The results demonstrate that the369

theoretical curve closely aligns with the empirical 370

curve across various datasets, suggesting that the 371

proposed theory effectively models and explains 372

the variations in accuracy during self-correction. 373

Furthermore, the upper bound derived from the 374

theory holds practical relevance, as the accuracy 375

curve consistently approaches but does not exceed 376

it, further validating the effectiveness of our theory. 377

5 Corollaries 378

Based on the theory in §3, three corollaries can be 379

further derived: (1). the final converged accuracy 380

is independent of the initial accuracy (§5.1); (2). 381

the convergence rate of accuracy increases as α 382

decreases (§5.2); (3). a special case of the theory 383

where CL = 1 (§5.3). We provide both mathe- 384

matical derivation and experimental verification of 385

these corollaries, which can also serve as further 386

validation of our theory. 387

5.1 Corollary 1 388

Corollary 1: The final converged accuracy is
exclusively determined by the confidence and
critique capabilities (i.e., CL and CS), and re-
mains independent of the initial accuracy Acc0.

389

Derivation of Corollary 1 Intuitively, when the 390

model is provided with an initial correct or incor- 391
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Figure 3: The accuracy convergency results with different initial accuracy Acc0 for Llama3-8B-Instruct: the
accuracy consistently converges to the same final value regardless of the initial accuracy.

rect answer to self-correct, it has a higher probabil-392

ity of reaching the correct answer when the initial393

answer is correct. This implies that CL > CS,394

which is also empirically demonstrated by Yang395

et al. (2024b). Given that CL,CS ∈ (0, 1), it396

follows that 0 < α = CL − CS < 1. Based397

on Equation 9, as t → +∞, αt → 0, and thus398

Acct → Upp. This indicates after sufficient rounds399

of self-correction the final accuracy converges to400

Upp = CS
1−CL+CS . Notably, Upp is entirely deter-401

mined by CL and CS and is independent of the402

initial accuracy Acc0.403

Verification of Corollary 1 To validate this404

corollary and investigate whether the initial accu-405

racy influences the final converged accuracy after406

infinite rounds of self-correction, we systematically407

manipulate the initial accuracy to various target val-408

ues and observe its impact on the final accuracy.409

Unlike the experiments described in §4, where the410

initial answer ai,0 is generated by feeding the ques-411

tion qi to the model, we directly control the initial412

accuracy to achieve a desired value Acctarget by413

carefully setting the initial answers. For a K-class414

classification task, we assign the initial probabil-415

ity of the correct class to Acctarget and distribute416

the remaining probability uniformly among the in-417

correct classes, ensuring that each incorrect class418

has a probability of 1−Acctarget
K−1 . This guarantees419

that the initial accuracy Acc0 = Acctarget. For420

generation tasks with n items in the dataset, we421

first sample multiple answers for each question qi422

to obtain both correct and incorrect answers. We423

then randomly select ⌊Acctarget × n⌋ items to use424

correct answers as initial answers, while assigning425

incorrect answers to the remaining items, which426

ensures that the initial accuracy Acc0 ≈ Acctarget.427

In cases where no correct answer is sampled for a428

question, we use the standard correct answer from429

the dataset. Conversely, if no incorrect answers 430

are sampled, we truncate a correct answer to create 431

an incorrect one. As the results of Llama3-8B- 432

Instruct illustrated in Figure 3, the final accuracy 433

consistently converges to the same value regardless 434

of whether the initial accuracy is set to 0%, 20%, 435

40%, 60%, 80%, or 100%, which experimentally 436

verifies Corollary 1. 437

5.2 Corollary 2 438

Corollary 2: The convergence rate of accuracy
is determined by the parameter α = CL− CS.
Specifically, a model with a lower value of α
exhibits faster convergence in accuracy.

439

Derivation of Corollary 2 As discussed in §5.1, 440

as t → +∞, αt → 0, and consequently Acct → 441

Upp. The convergence rate of αt is decided by the 442

value α, and the closer the value of α is to 0, the 443

faster αt will converge to 0. To better illustrate 444

this difference in convergence speed, consider the 445

following example: when α = 0.9, α10 ≈ 0.35; 446

whereas when α = 0.2, α10 ≈ 10−7. 447

Verification of Corollary 2 To validate this 448

corollary, we compare the convergence rates of 449

models with distinct α values. Given the difficulty 450

in discerning convergence speed differences be- 451

tween models with similar α values, we select two 452

models with significantly differing α values for 453

comparison. As experimentally demonstrated in 454

§4, the Llama3-8B-Instruct model exhibits a lower 455

α value, while the Qwen2.5-7B-Chat model has a 456

higher α value, so we choose these two models for 457

comparison and analysis. The experimental results 458

are shown in Figure 4, with more results provided 459

in Appendix D. Llama3-8B-Instruct (lower α) con- 460

verges noticeably faster and its accuracy gets closer 461

to the upper bound after 5 rounds of self-correction 462
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Figure 5: Curves for the special case (CL = 1) on Llama3-8B-Instruct. The theoretical curve fits the actual curve
well when CL = 1, and exceeds the standard intrinsic self-correction (CL < 1) by a large margin.

than Qwen2.5-7B-Chat (higher α), which experi-463

mentally verifies Corollary 2.464

5.3 Corollary 3465

Corollary 3: A special case where CL=1, we
have Acct = 1 − (1 − CS)t(1 − Acc0), and
Acct → 1 as t → +∞.

466

Derivation of Corollary 3 For intrinsic self-467

correction, LLMs need to independently evaluate468

the correctness of their generated answers (Zhang469

et al., 2024d), and errors in this process are almost470

inevitable (Stechly et al., 2023; Tyen et al., 2024).471

In cases where LLMs incorrectly identify a cor-472

rect initial answer as erroneous and subsequently473

generate an incorrect answer after self-correction474

(!→ %), we have CL < 1 instead of CL = 1.475

In contrast, external self-correction helps LLMs476

determine the correctness of their answers through477

external feedback, leading to a higher CL. For478

instance, Zhang et al. (2023); Kim et al. (2023)479

employ an oracle verifier to evaluate answer cor-480

rectness, while Brown et al. (2024a) investigate481

inference scaling laws under the best-of-n metric,482

which can be considered as a special case in our483

theory when CL = 1. Specifically, when CL = 1, 484

we have Upp = CS
1−CL+CS = 1, α = 1 − CS, 485

yielding: 486

Acct = 1− (1− CS)t(1−Acc0) (10) 487

As t → +∞, αt → 0, and thus Acct → 1, 488

which aligns with the idea proposed in Brown et al. 489

(2024a) that with sufficient times of sampling, the 490

correct answer will always be encountered. 491

Verification of Corollary 3 To validate this 492

corollary, we compare whether the accuracy change 493

curve derived from our theory for the ideal sce- 494

nario (CL = 1) aligns with the actual experiment 495

curve. To simulate this special case (CL = 1) 496

and equip the model with an oracle verifier, once 497

a correct answer is generated in generation tasks, 498

we halt subsequent rounds of self-correction and 499

directly treat the following answers as correct. 500

For classification tasks, we set the conditional 501

probability of selecting the correct/incorrect an- 502

swer after self-correction given the answer be- 503

fore self-correction is correct to 1/0 (i.e. setting 504

P (ai,t+1|ai,t) = 1, P (ai,t+1|¬ai,t) = 0). As the 505

experimental results illustrated in Figure 5 and Ap- 506

pendix D, we show the experimental curve and 507
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theoretical curve for the special case (CL = 1),508

along with the curves for standard intrinsic self-509

correction (CL < 1) for comparison. The results510

demonstrate that the theoretical curve can still align511

well with the empirical curve in this special case512

(CL = 1), which experimentally verifies Corollary513

3. Besides, we also find the accuracy of CL = 1514

is improved by a large margin compared to that515

of CL < 1 and can exceed the upper bound of516

CL < 1, which shows a promising direction for517

further optimization of self-correction.518

6 Discussion519

The Failure of Self-Correction Though Madaan520

et al. (2024); Liu et al. (2024a) have found521

LLMs can achieve better performance after self-522

correction, there is still a debate on the effective-523

ness of self-correction and Huang et al. (2024);524

Jiang et al. (2024); Valmeekam et al. (2023)525

observe accuracy can even decrease after self-526

correction with poor prompts. For instance, Xie527

et al. (2024); Zhang et al. (2024b) find adding "Are528

you sure?" to the prompt will significantly reduce529

model confidence, causing it to change correct an-530

swers to incorrect ones after self-correction. Our531

theory can provide a new perspective to understand532

how self-correction fails: poor prompts can disrupt533

the balance between the confidence and critique534

capabilities of LLMs (CL and CS), thereby reduc-535

ing the upper bound (Upp) to which the accuracy536

converges, ultimately resulting in Upp < Acc0,537

and in this scenario accuracy will decrease after538

self-correction. Figure 6 shows a failure case of539

Llama3-8B-Instruct on GSM8k under the poor540

prompt of "Are you sure?", where accuracy con-541

verges to the bound in a descending fashion. For a542

given model and test set, different prompts corre-543

spond to different Upp values, suggesting that we544

should choose better prompts to avoid the failure545

of self-correction. A simple approach inspired by546

our theory could be testing various prompts and547

selecting the one with the highest Upp, and we548

leave further explorations in avoiding this failure549

to future work.550

How Far Can LLM Self-Correction Go? Al-551

though previous works (Li et al., 2024; Zhang et al.,552

2024c; Wu et al., 2024b) have utilized and opti-553

mized self-correction for better performance, the554

extent of performance improvements achievable555

through self-correction under different settings and556

methods is still not thoroughly explored, and our557
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Figure 6: The failure of self-correction of Llama3-8B-
Instruct on GSM8k under prompt of "Are you sure?".
The accuracy decreases after self-correction and con-
verges to the bound in a descending fashion.

theory partially fills this gap by providing a theo- 558

retical upper bound of accuracy. Our theory almost 559

announces the death of intrinsic self-correction (Xi 560

et al., 2023; Madaan et al., 2024), as it demonstrates 561

that intrinsic self-correction cannot surpass the up- 562

per bound (Upp), which is empirically shown to 563

be not that high in §4. A more promising direction 564

lies in external self-correction (Jiang et al., 2023b; 565

Chen et al., 2024), as we have discussed in §5.3 566

the great performance improvement brought by an 567

oracle verifier (i.e. CL = 1), and external feed- 568

back can be viewed as an approximation of oracle 569

verifier. Similarly, Kamoi et al. (2024) also discuss 570

this problem and point out future directions for 571

self-correction, and our work provides theoretical 572

support to these discussions. 573

7 Conclusion 574

We propose a probabilistic theory to model and 575

explain how accuracy evolves in multi-round self- 576

correction. Based on our theory and further deduc- 577

tion, we acquire 3 corollaries about convergence 578

upper bound, the rate of convergence, and a special 579

scenario. Extensive experiments validate the theory 580

by showing the alignment between our theoretical 581

curves and empirical curves, and empirical verifica- 582

tion of 3 corollaries also futher supports the theory. 583

Finally, from the perspective of our theory, we ex- 584

plain why self-correction can fail sometimes and 585

discuss the bottle and potential direction of self- 586

correction. Our theory provides theoretical support 587

and a better understanding of LLM self-correction, 588

thus paving the way for further explorations. 589
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Limitations590

The calculation of our theoretical curve relies on591

probability estimation, which necessitates repeated592

sampling for the same question, and the simulation593

of multi-round self-correction (i.e. actual curve)594

also generates multiple answers for the same ques-595

tion. These can be more computationally expensive596

than traditional experiments where only one answer597

is generated for a question. We only experimentally598

validate our theory on 8 models and 8 datasets, leav-599

ing more verification experiments on more models600

and datasets for future work.601

Though our theoretical curve can fit the ac-602

tual curve to some extent, what happens in self-603

correction and how accuracy changes can be much604

more complex than our theory. Our theory can only605

describe how accuracy changes in multi-round self-606

correction, but how performance improves in other607

inference scaling settings (e.g. long COT, MCTS)608

is still unknown, and we leave it to future work.609

Ethical Considerations610

The data we utilized are open for research, and611

evaluated LLMs are all publicly available by either612

parameters or API calls. Therefore, we do not613

anticipate any ethical concerns in our research.614
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Appendix903

A Mathematical Notations904

This section shows all of the mathematical nota-905

tions used in our theory. If you forget the meaning906

of any notation, please refer to Table 1. We lever-907

age ˆ to symbolize estimates (e.g. P̂ (ai) represents908

the estimate of the true value P (ai) ).909

B Mathematical Derivations910

The detailed derivation of Equation 7 is show as911

follows:912

Acct

=

∑n
i=1 P (ai,t)

n

=

∑n
i=1 P (ai,t|ai,t−1)P (ai,t−1)

n

+
P (ai,t|¬ai,t−1)P (¬ai,t−1)

n

=

∑n
i=1 P (ai,t−1)

n

∑n
i=1 P (ai,t−1)P (ai,t|ai,t−1)∑n

i=1 P (ai,t−1)

+

∑n
i=1[1− P (ai,t−1)]

n

∗
∑n

i=1 P (¬ai,t−1)P (ai,t|¬ai,t−1)∑n
i=1[1− P (ai,t−1)]

= Acct−1 ∗ CLt−1 + (1−Acct−1) ∗ CSt−1

913

C Probability Estimation914

The metrics CL and CS discussed in §3 are de-915

rived from a probabilistic perspective and the cal-916

culation depends on three key probability val-917

ues for each question qi: P (ai,t), P (ai,t+1|ai,t),918

and P (ai,t+1|¬ai,t). However, these probabilities919

are not directly observable. Therefore, we em-920

ploy statistical methods proposed by Yang et al.921

(2024b) to estimate these probabilities as P̂ (ai,t),922

P̂ (ai,t+1|ai,t), and P̂ (ai,t+1|¬ai,t) for metric com-923

putation. Natural Language Processing (NLP)924

tasks are generally divided into classification and925

generation tasks, and we will separately discuss the926

probability estimation methods applicable to each927

type of task.928

Probability Estimation for Classification Tasks.929

In a K-class classification task, let the set930

of all candidate labels be denoted by L =931

{l0, l1, . . . , lK−1} (e.g., the candidate set for932

MMLU is {A,B,C,D}). A question qi is input933

into the model, which outputs a predicted label.934

During next-token prediction, the model generates 935

a logit vector (o0, o1, . . . , o|V |−1), where each el- 936

ement corresponds to a token in the vocabulary 937

V , whose size is |V |. The logits are then passed 938

through a softmax function to compute the proba- 939

bility distribution for the next token across the en- 940

tire vocabulary. For classification tasks, we focus 941

only on probabilities over the candidate label set 942

L, not the whole vocabulary V . Thus, we discard 943

most logits, retaining only those corresponding to 944

candidate labels, producing a reduced logit vec- 945

tor (o
′
0, o

′
1, . . . , o

′
K−1). After applying the softmax 946

function, the model predicts the probabilities for 947

each label P (l0), P (l1), . . . , P (lK−1). 948

(1) Assuming without loss of generality that the 949

correct label is l0, then P̂ (ai,t) = P (l0). 950

(2) By feeding the correct answer l0 back into 951

the model for self-correction, it outputs a proba- 952

bility distribution over candidate labels, denoted 953

as P (l0|l0), P (l1|l0), . . . , P (lK−1|l0), leading to 954

P̂ (ai,t+1|ai,t) = P (l0|l0). 955

(3) The computation of P̂ (ai,t+1|¬ai,t) is more 956

complex. For each incorrect label lj (j ̸= 0), we 957

input it to the model, allowing for self-correction, 958

yielding the probability of correcting to the correct 959

label P (l0|lj). Using the law of total probability, 960

we have P̂ (ai,t+1|¬ai,t) =
∑K−1

j=1 P (l0|lj)P (lj). 961

Probability Estimation for Generation Tasks. 962

We utilize multiple sampling to estimate prob- 963

abilities by observing the frequency of correct 964

and incorrect answers. Given a question qi, we 965

input it to the model to obtain an initial answer, 966

which the model then attempts to self-correct 967

to produce a refined answer. This process is 968

independently repeated M times, and each 969

pair of initial and refine answers is evaluated 970

for correctness, yielding a sequence of results 971

(a0i,t, a
0
i,t+1), (a

1
i,t, a

1
i,t+1), . . . , (a

M−1
i,t , aM−1

i,t+1), 972

where (ami,t, a
m
i,t+1) denotes the outcome of the 973

mth repetition. Specifically, P (ami,t) and P (ami,t+1) 974

indicate the correctness of the initial and refined 975

answers, respectively. For a correct initial 976

answer ami,t, P (ami,t) = 1; otherwise, P (ami,t) = 0. 977

The same logic applies to ati,t+1. Using these 978

frequencies, we estimate the probabilities as 979

follows: 980

(1) P̂ (ai,t) =
∑M−1

m=0 P (ami,t)

M ; 981

(2) P̂ (ai,t+1|ai,t) =
∑M−1

m=0 P (ami,t)P (ami,t+1)∑M−1
m=0 P (ami,t)

; 982

(3) P̂ (ai,t+1|¬ai,t) =
∑M−1

m=0 (1−P (ami,t))P (ami,t+1)∑M−1
m=0 (1−P (ami,t))

. 983
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Notations Meanings

Q a dataset with n questions

qi the ith question in Q

ai,t the answer to question qi generated in the tth round of self-correction

P (ai,t) the probability of generating a correct answer for question qi through a single
temperature-based sampling in the tth round of self-correction

P (ai,t|ai,t−1) the conditional probability of ai,t is correct given ai,t−1 is correct

P (ai,t|¬ai,t−1) the conditional probability of ai,t is correct given ai,t−1 is incorrect

P con
i model confidence in question qi: for any t ∈ N+, we have P (ai,t|ai,t−1) = P con

i

P cri
i critique capability in question qi: for any t ∈ N+, we have P (ai,t|¬ai,t−1) =

P cri
i ,

Pupp
i the upper bound of P (ai,t), and we have Pupp

i =
Pcri
i

1−Pcon
i +Pcri

i

αi the convergence rate of P (ai,t), and we have αi = P con
i − P cri

i

Acc0 the initial accuracy

Acct accuracy after the tth round of self-correction

CL the conditional probability of getting a correct answer after self-correction, given
the answer before self-correction is correct. (defined in Equation 5)

CS the conditional probability of getting a correct answer after self-correction, given
the answer before self-correction is incorrect. (defined in Equation 6)

Upp the upper bound of Acct, and we have Upp = CS
1−CL+CS

α the convergence rate of Acct, and we have α = CL− CS

Table 1: Mathematical notations and their meanings.

D More Experiment Results984

We try to verify on 8 models and 8 datasets in §4,985

but full experiments include 8 ∗ 8 = 64 groups,986

which is extremely expensive. So we only do a part987

of them and we believe that is sufficient to validate988

our theory. We show the results of 8 datasets on989

GLM4-9B-Chat in Figure 7, and we also show the990

results of 8 models on BoolQ in Figure 8, leaving991

more validation experiments on other models and992

datasets to further work.993

Except for the main experiments, we also pro-994

vide more results on the validation of corollaries995

(§5). More results on convergence rate (§5.2) are996

shown in Figure 9, and more results on a special997

case where CL = 1 (§5.3) are illustrated in Figure998

10.999
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Figure 7: Experimental verification of our theory on BoolQ. The actual curve in mult-round self-correction,
theoretical curve, and upper bound predicted by our theory are shown in blue, green, and orange respectively. The
theoretical curve fits the actual curve well.
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