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Abstract

AI Scientist systems are autonomous agents capable of conducting scientific research. Un-
derstanding their current capabilities and risks is essential for ensuring trustworthy and
sustainable AI-driven scientific progress while preserving the integrity of the academic
ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI
scientist system that mimics the core research workflow of a novice student researcher: Given
the baseline paper from the human mentor, it analyzes its limitations, formulates novel
hypotheses for improvement, validates them through rigorous experimentation, and writes a
paper with the results. Unlike previous approaches that assume full automation or operate
on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages
modern coding agents to handle complex, multi-file implementations, leading to scientifically
valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated
new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and
implementing novel algorithms. For evaluation, we conducted automated assessments using
AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated
to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates
papers receiving higher review scores than existing fully automated systems. Nevertheless,
we identify important limitations from both the author evaluation and the Agents4Science
reviews, indicating the potential risks of directly applying current AI Scientist systems and
key challenges for future research. Finally, we comprehensively report various risks identified
during development. We believe this study clarifies the current role and limitations of AI
Scientist systems, offering insights into the areas that still require human expertise and the
risks that may emerge as these systems evolve.

1 Introduction

Understanding the current upper bound of capabilities in AI Scientist systems, autonomous agents capable of
conducting scientific research, is crucial for promoting sustainable, AI-driven scientific progress. Nevertheless,
developers must remain conscious of the potential risks these systems pose to the academic ecosystem and
commit to advancing them responsibly. Since 2025, a new venue dedicated to evaluating AI-driven scientific
contributions, the Agents4Science conference (Zou et al., 2025), has emerged. Through such a platform,
developers of AI Scientist systems are encouraged to engage in responsible research and development, ensuring
both the protection of the academic ecosystem and the long-term sustainability of scientific progress.

In recent years, several works have explored the concept of AI Scientists (Lu et al., 2024; Weng et al., 2025a;
Yamada et al., 2025; Tang et al., 2025). However, the quality of research papers produced by these systems
remains insufficient. One major reason is that the problem setting of achieving fully automated science is
overly ambitious and often lacks clearly defined scientific goals for AI Scientists. Without a specific goal,
these systems tend to generate undirected discoveries that appear to lack genuine scientific value. Another
limitation is that current systems are limited to small-scale code experiments (Zhu et al., 2025b; Lu et al.,
2024; Yamada et al., 2025), lacking the scale and complexity needed for meaningful science. Achieving
real scientific contributions requires not just ideas but strong implementation capability to handle complex
codebases.
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Figure 1: Jr. AI Scientist Workflow. We provide the baseline paper, its LaTeX source files, and the
associated codebase. By effectively utilizing these resources across all phases, the system significantly improves
the quality of the generated paper.

As an initial step toward enabling AI Scientists to produce genuine scientific value, we can take inspiration
from how student researchers begin their research. When a student first joins a research lab, a common
and meaningful process is as follows: the mentor assigns a key paper, the student analyzes its limitations,
proposes an improvement hypothesis, implements the idea on the baseline code, validates the hypothesis
through thorough experiments, and finally writes a paper summarizing the results. Through this process, the
student learns the fundamental workflow of scientific research and gains the skills and experience needed
for more creative work later on. Also, improving a baseline method is not only an important stage in early
research training but also a valuable research goal in many fields where advancing task performance remains
a central scientific pursuit.

In this paper, we introduce Jr. AI Scientist, a new AI Scientist that mimics the essential research workflow
of a novice student researcher: Starting from a baseline paper, it identifies key limitations, proposes an
improvement hypothesis, validates it through rigorous experimentation, and writes a paper with the results.
Specifically, A Jr. AI Scientist is defined as an AI Scientist that is given baseline resources and focuses on
extending the baseline. This setting is novice student analog, where a student builds upon an existing paper
which the mentor gave. The workflow of Jr. AI Scientist is shown in Figure 1. We provide the baseline
paper, its LaTeX source files, and the associated codebase for each stage. Table 1 shows a comparison of
the problem setting with existing research. This problem setting reframes previously ambitious goals into a
more specific objective, providing a clear optimization direction for the AI Scientist. Moreover, because the
framework operates on the actual codebase of baseline papers, it can generate results with genuine scientific
value. These aspects collectively represent an essential first step toward the autonomous generation of reliable
and high-quality research papers.

Our Jr. AI Scientist consists of three main components: (1) automatic idea generation based on the limitations
of a given paper, (2) automatic implementation and thorough validation of the proposed ideas, and (3)
automatic writing of a research paper based on the obtained results. This system is built upon AI Scientist
v2 (Yamada et al., 2025), but our work differs from prior studies (Lu et al., 2024; Weng et al., 2025a; Yamada
et al., 2025; Tang et al., 2025) in several key aspects: First, by leveraging the latest coding agents (e.g. Claude
Code (Anthropic, 2025)), our system can perform meaningful improvements and edits on real multi-file
codebases, which were challenging for previous AI Scientist systems. Second, by incorporating the full set
of resources from a given baseline paper, the system exploits all available artifacts such as LaTeX sources,
PDFs, and codebases, thereby substantially improving the scope and quality of every stage in the research
pipeline. Finally, by refining every stage of the process, our framework enables the autonomous generation of
research papers that are both higher in quality and more trustworthy.
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Table 1: Comparison of the starting point, code complexity, and review scores among existing AI Scientist
systems. Previous methods often made overly ambitious assumptions in their problem formulation and were
limited to handling only simple, single-file codebases, which resulted in significantly lower review scores. In
contrast, our system can substantially improve review scores by utilizing the baseline paper and its associated
codebase.

AI Scientist Systems Starting Point Code Complexity Review Score

AI Scientist-v1 (Lu et al., 2024) Template code Single file 3.30
AI Scientist-v2 (Yamada et al., 2025) General idea Single file 2.75
AI Researcher (Tang et al., 2025) 15-20 existing papers Multiple files 3.25
Jr. AI Scientist (ours) One baseline paper and code Multiple files 5.75

For the baseline papers, we selected papers for which we obtained permission from the original authors.
Specifically, we used three papers: NeurIPS 2023 paper (Miyai et al., 2023) and IJCV 2025 paper (Miyai
et al., 2025b) on out-of-distribution (OOD) detection (a task that aims to detect semantic classes outside
the predefined set of semantic classes) (Hendrycks & Gimpel, 2017; Yang et al., 2024), and an ICLR 2025
spotlight paper (Zhang et al., 2025) on pre-training data detection for large language models (LLMs).
Refer to Section 4.1 for the detailed rationale behind the selection of these papers. For the evaluation,
we conducted three evaluations: (1) an automated assessment using DeepReviewer (Zhu et al., 2025a),
(2) an author-led evaluation, and (3) submission to the Agents4Science conference (Zou et al., 2025).
DeepReviewer automatically compared our generated papers with existing AI-generated works to assess
overall quality. The author evaluation examined the outputs for hallucinations or fabricated content. Finally,
the Agents4Science (Zou et al., 2025) platform provides rigorous evaluation and feedback from the community
platform.

Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon
the above top-tier venues works by proposing and implementing novel algorithms. As for the evaluation using
DeepReviewer (Zhu et al., 2025a), the papers generated by Jr. AI Scientist achieved substantially higher
review scores compared to the existing AI-generated papers. Therefore, our Jr. AI Scientist can be regarded
as the most capable autonomous AI Scientist. However, we also observed that Jr. AI Scientist still exhibits
some failures and unresolved challenges through the author evaluation and Agents4Science conference. To
share these challenges and lessons with the research community, we analyze the feedback and evaluation
results from the Agents4Science conference and include the author evaluation, which helps clarify what is
required to further improve the quality of Jr. AI Scientist systems.

Finally, we perform an in-depth report of the risks encountered during the development of our system.
Although few existing studies have provided a comprehensive discussion of these issues, we believe that
accurately documenting such risks is essential to avoid overestimating current AI Scientists’ capabilities and
to build a clear understanding of their remaining challenges. Our risk report highlights several critical issues,
including the potential for review-score hacking and difficulties in ensuring proper citation, interpreting
results, and detecting fabricated descriptions. We believe that these findings provide valuable guidance on
the potential risks that exist both in the current AI Scientist research and as this field continues to grow.
Through this comprehensive report, we aim to foster a deeper understanding of current AI Scientist systems
and contribute to their safe and trustworthy development.

Our contributions are summarized as follows:

• Development of a New AI Scientist: We developed Jr. AI Scientist, a new system that starts
from a baseline paper and its associated codebase, and is capable of handling complex, multi-file
implementations, overcoming a major limitation of previous AI Scientist systems.

• Revealing Strengths and Limitations of Jr. AI Scientist: We conducted extensive evaluations
using open-source AI reviewers, Agents4Science, and author evaluation. The results demonstrate
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that Jr. AI Scientist generates higher-quality research papers than existing AI Scientists, while also
revealing key challenges for future improvement.

• Thorough Risk Report: We report the observed risks throughout the project. We believe these
reports offer insights into the areas that still require human expertise and the risks that may emerge
as these systems evolve.

2 Related Work

Automated Scientific Discovery. Recent progress has significantly reshaped the role of AI in automating
end-to-end scientific research. AI Scientist-v1 (Lu et al., 2024) was an early milestone, showcasing how
advanced language models can autonomously generate research ideas, run experiments, and draft scientific
papers. This work was followed by a series of subsequent studies in machine learning fields (Intology, 2025;
Tang et al., 2025) and diverse scientific disciplines (Villaescusa-Navarro et al., 2025; Mitchener et al., 2025)
that further advanced this line of research. However, these approaches often suffer from an overly ambitious
problem setting that aims to achieve fully automated science and tend to lack clearly defined scientific
objectives for AI Scientists. Without specific goals, such systems often produce undirected discoveries
that lack genuine scientific value. To address this issue, our Jr. AI Scientist builds on existing baselines
and conducts research within a well-defined research workflow, aiming to generate higher-quality scientific
papers. As concurrent work, DeepScientist (Weng et al., 2025b) also adopts a baseline-based approach.
DeepScientist (Weng et al., 2025b) focuses mainly on experimental performance, formalizing discovery as
a Bayesian Optimization problem. However, its overall framework design and workflow integration are
outlined at a high level, with limited discussion of implementation details. In contrast, our Jr. AI Scientist
explicitly articulates each stage of the research process and further aims to contribute to the community by
comprehensively reporting the failures and risks encountered throughout scientific exploration.

AI-Assisted Scientific Research. Research specialized for each element of the research process has also
been actively explored (Chen et al., 2025). For the idea generation phase, Si et al. (2025b) investigates the
novelty of the LLM-generated ideas, and Si et al. (2025a) investigates the ideation–execution gap. For the
survey phase, OpenScholar (Asai et al., 2024) have been developed to support literature review. For the
experimental phase, AlphaEvolve (Novikov et al., 2025) leverages large-scale trial-and-error strategies to
enhance the performance. For the writing and review phase, CycleResearcher (Weng et al., 2025a) provides
a learning framework specialized for scientific writing, while DeepReviewer (Zhu et al., 2025a) focuses on
the review process. Recent studies provide a comprehensive overview of automated review, outlining key
challenges, proposing a practical review pipeline for real-world implementation, and constructing a large-scale
dataset to support automated review research (Zhuang et al., 2025; Lin et al., 2023a;b). Beyond these,
rather than pursuing full automation like AI Scientists, AI Co-Scientist (Gottweis et al., 2025) emphasizes
collaboration between humans and AI. In this work, instead of focusing on individual parts of the research
process, we investigate the entire end-to-end research cycle, aiming to rigorously evaluate both the performance
and the limitations.

Failures and Risk Analysis for AI Scientist Systems. There are very few studies that thoroughly
analyze or report the risks and failure cases of AI Scientist systems. Although Tang et al. (2024) summarizes
the risks that AI Scientists may pose, it focuses on hypothesis-based potential risks, rather than empirically
observed risks or failures. While Beel et al. (2025) provides an in-depth analysis of failure cases in AI
Scientist-v1 (Lu et al., 2024), these findings are based on the early AI Scientist, and the analysis was not
conducted from the developer’s perspective. While Luo et al. (2025) examines four failure modes (benchmark
selection, data leakage, metric misuse, and post-hoc bias), their analysis is limited to experimental diagnostics
and early AI Scientists without modern coding. Thus, their analysis remains somewhat limited in scope.

Therefore, we will provide a more comprehensive report on the various risks identified during the development
of our state-of-the-art AI Scientist, in order to deepen the community’s understanding of AI Scientists.
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Figure 2: Jr. AI Scientist Workflow for the Experiment Phase. The workflow consists of three stages.
Through bug management and performance tracking, our system passes the most promising experimental
nodes to the next stage.
3 Jr. AI Scientist

In this section, we describe the mechanisms behind the three components of the Jr. AI Scientist: idea
generation, experimentation, and writing. First, in Section 3.1, we describe the necessary preparation. Next,
in Section 3.2, we explain the methods for idea generation. Next, in Section 3.3, we discuss how agents can
execute and manage experiments. Finally, in Section 3.4, we explain the writing process.

3.1 Preparation: Baseline Paper Selection

The preparation stage involves selecting a baseline paper, obtaining its LaTeX source files and PDF, and the
baseline code. This setup is realistic because many recent publications are released on arXiv with LaTeX
sources, and their implementation code is shared on GitHub. While there might be some augment that AI
agents should automatically select a baseline and reproduce the code, current reproducibility rates from papers
are still limited (Siegel et al., 2025; Xiang et al., 2025; Starace et al., 2025), making complete automation
premature. Since our goal is to emulate how a human scientist engages in early-stage research under the
guidance of a mentor, we explicitly include this preparatory stage.

When constructing the baseline code, we followed AI Scientist v1 (Lu et al., 2024) and made only minor
modifications to the existing implementation so that the experiments could be executed via baseline.py
and the results could be visualized via plot.py. Defining such an experimental entry point facilitated easier
management and reproducibility of the execution process in the experimental section.

3.2 Idea Generation Phase

We provide a baseline paper as text to an LLM (e.g. o4-mini (OpenAI, 2025b)) and prompt it to output the
limitations of the work. Based on both the baseline paper and the limitations, the LLM is then guided to
propose potential research ideas. Following AI Scientist v2 (Yamada et al., 2025), the system evaluates the
originality of proposed ideas through literature review tools such as Semantic Scholar, which review papers
citing the baseline work and papers with similar concepts. If conceptually similar ideas are identified, they

5



Under review as submission to TMLR

are refined; otherwise, they are clearly distinguished from prior work. These steps define the preliminary
research idea.

3.3 Experiment Phase

The Experiment Phase mainly involves implementing and iterating on the implementations through exper-
iments. It is divided into three stages: Stage 1: Idea Implemention, Stage 2: Iterative Improvement, and
Stage 3: Ablation Study. The workflow of each stage is shown in Figure 2. We first describe the general
procedure for using the coding agent, followed by an explanation of the implementation at each stage.

3.3.1 Preliminary: Coding Agent Usage

A powerful coding agent (e.g. Claude Code (Anthropic, 2025)) is employed to translate research ideas into
concrete implementations. We provide the coding agent with a working directory that contains the baseline
implementations (prepared at Section 3.1) and give it detailed instructions through input prompts. The agent
is informed of how to use the main scripts—baseline.py, which serves as the experimental entry point,
and plot.py, which visualizes the experimental results. We use claude-sonnet-4-20250514 within Claude
Code (version 1.0.24).

The coding agent is allowed to read and write any files within the working directory. For efficient directory
exploration, it is permitted to use commands such as ls and grep, while commands that may cause side
effects (e.g. python or other execution commands) are not allowed. After the agent generates a runnable file
(e.g. proposed_method.py in Stage1), our system mechanically executes the specified command. The coding
agent is generally given up to 30 turns to complete each assigned task.

3.3.2 Stage1: Idea Implemention

The system manages four experimental nodes running in parallel, each responsible for implementing and
testing a proposed idea independently. Within each node, the coding agent receives the baseline code and a
research idea, and writes a directly executable script named proposed_method.py. Once the coding agent
finishes writing the implementation, the system sequentially runs proposed_method.py and plot.py. If a
result file is successfully generated, the codebase is marked as Non-Buggy; otherwise, it is labeled as Buggy If
a visualization image is also produced, it is further marked as Non-Plot-Buggy; otherwise, as Plot-Buggy.
Each iteration of this process, coding and execution, is counted as one trial and is repeated until a bug-free
implementation is obtained.

As shown in Figure 2, if any node completes successfully without encountering bugs, its codebase is carried
forward to Stage 2. During execution, four experimental nodes are selected. If all currently running nodes fail,
the system selects the next nodes, either by initializing new nodes from the baseline code or by debugging
previously generated buggy codebases. When debugging buggy codebases, we provide the coding agent with
detailed runtime feedback, such as standard output and error messages, to guide iterative debugging until the
issue is resolved. We set this stage to run for 12 iterations.

3.3.3 Stage2: Iterative Improvement

Stage 2 focuses on iteratively improving the method implemented in Stage 1 until its performance metrics
surpass those of the baseline. In each trial, the coding agent first proposes an improvement idea to the
experimental code, and then applies the modification based on the improved idea. To avoid overwriting the
Stage 1 results, we instruct the coding agent to use a new entry file named improved_proposed_method.py
as the implementation target. The system then executes this script, followed by plot.py, to generate results
and visualizations in the same manner as Stage 1.

As shown in Figure 2, for each trial, the experimental codebase is selected probabilistically from either (1)
the Stage 1 implementation or (2) the node containing the best-performing implementation observed so far.
Stage 2 ends when a bug-free implementation surpasses the baseline performance. The resulting code is then
passed to Stage 3. We set this stage to run for 50 iterations.
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Figure 3: Jr. AI Scientist Workflow for the Writing Phase. The Writing process consists of three
steps: Draft Writing, Reflection, and Adjustment.
3.3.4 Stage3: Ablation Study

Stage 3 performs ablation studies on the improved method implemented in Stage 2. In each trial, the
system uses an LLM to generate ablation study ideas and then employs the coding agent to implement
corresponding scripts based on those ideas. To encourage higher-quality ablation ideas, we first instruct the
coding agent to produce a textual description of the Stage 2 method, which is then provided to the LLM as
context for generating more meaningful ablation ideas. The generated ablation ideas include hyperparameter
ablations, which analyze the sensitivity of the method to key hyperparameters, and component-level ablations,
which assess the contribution of each component to the overall performance. To avoid overwriting Stage
2’s code, we instruct the coding agent to use new entry files named hyperparam_ablation_study.py and
component_ablation_study.py as the implementation target. The iterations are executed until a sufficient
number of experimental results are obtained.

3.4 Writing Phase

We primarily used a coding agent (e.g. Claude Code (Anthropic, 2025)) as a writing agent for the writing
process. As shown in Figure 3, the Writing Phase consists of three stages—Draft Writing, Reflection, and
Adjustment. Below, we describe the resources provided to the writing agent and the details of each stage.

3.4.1 Preliminary: Resources Provided to Writing Agent

Conference LaTeX Template. We provide the conference LaTeX template to the writing agent. We
give the Agents4Science template, and the corresponding directory is set as the working directory where the
writing agent operates.

Instruction Markdown File for the Writing Agent. An instruction file in Markdown format is provided
to the writing agent. This document defines the overall structure of the paper, outlining how each section
should be organized, and offers detailed guidelines on the key points and considerations for writing each part
of the manuscript.

Baseline LaTeX Files and Code. We provide the writing agent with the baseline LaTeX files and code.
These resources are mainly used to explain the baseline method in the Method section.

Stage 2 Proposed Method Code. The writing agent is also given the Stage 2 code (the proposed method).
This is primarily referenced in the Method section when explaining the proposed approach.

Experiment Summaries for Each Stage. Following the protocol of AI Scientist v2, we pro-
vide the writing agent with summarized JSON files containing key experimental results for each stage
(baseline_summary.json, improved_research_summary.json, component_ablation_summary.json, and
hyperparam_ablation_summary.json). These files include essential information such as experimental de-
scriptions, results, and paths for visualization results, which are crucial for the writing agent when writing
the experimental results section. In addition, for ablation studies, we not only provide the JSON files
but also automatically convert them into LaTeX table files (component_ablation_summary_table.tex and
hyperparam_ablation_summary_table.tex). This conversion has significantly reduced numerical transcrip-
tion errors in the paper.
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The only materials that humans need to prepare for each paper generation are the LaTeX source files and
the baseline codebase of the baseline paper. The CLAUDE.md file and the conference LaTeX template are
shared across all experiments. The code and experimental files for the proposed methods are automatically
generated during the experimental stage. Using these inputs, the AI agent automatically writes all sections
and captions in the paper.

3.4.2 Draft Writing

As shown in Figure 3, the Draft Writing stage follows a multi-step process: it begins with the collection of
BibTeX entries, followed by the writing of the Method section, the generation of the paper structure, and
finally the full-paper writing. Afterward, the system performs a rewrite of the Related Work section and
subsequently validates the correctness of citations. Here, we first explain how we determined the writing
order and then describe the detailed procedures for each stage of this workflow.

Rationale of Writing Orders. Following AI Scientist v2 (Yamada et al., 2025), we initially generated
the entire paper at once, but this resulted in a decline in the quality of the Method section. We therefore
adopted a step-by-step writing process to improve overall consistency and quality. When determining the
writing order, we considered it most important for the writing agent to first accurately understand and
describe the proposed method, as this understanding serves as the foundation for correctly writing other
sections. Therefore, we instruct the writing agent to focus exclusively on accurately writing the Method
section. In addition, for the paper structure, we followed the approach of AI-Researcher (Tang et al., 2025)
and introduced an intermediate step of summarizing the paper structure, in which the writing agent briefly
outlines the content of each section before full-paper generation. These refinements made it possible to
produce more consistent and accurate descriptions throughout a paper.

Collection of BibTeX Entries. To ensure accurate citation, it is essential to collect a complete and correct
set of BibTeX entries. Following AI Scientist v1 (Lu et al., 2024), we use the Semantic Scholar API to retrieve
BibTeX records. However, this approach alone often yields an insufficient number of references. To address
this limitation, we adopt a practical strategy commonly used by human researchers: using the baseline paper’s
BibTeX file as a starting point. This approach allows the system to gather a sufficient number of references
while also can expect correct citation by referring to the baseline’s LaTeX source. Since the baseline’s BibTeX
file does not include the entry for the baseline reference set, we explicitly add it to the reference set.

Method Section Writing. For the Method section, we instruct the writing agent to write both a preview
of the baseline method and a detailed description of the proposed method. To ensure an accurate description,
we refer the writing agent to the LaTeX source of the baseline paper so that it can correctly describe the
existing method. We also instruct the writing agent to describe the proposed method based on the Stage
2 implementation code, ensuring that the technical details are precisely reflected in the text. This process
yielded more accurate and consistent Method sections.

Related Work Section Rewriting. To clearly define the position and novelty of the generated research, we
instruct the writing agent to rewrite the Related Work section after completing the full paper draft. Since Jr.
AI Scientist aims to update the baseline paper, the Related Work section of the baseline serves as a valuable
summary of the research field and provides useful guidance on writing style and structure. Therefore, we
instruct the writing agent to refer to the Related Work section in the baseline’s LaTeX file when generating
its own version.

Citation Validation. We introduce a citation verification phase at the end of the Draft Writing stage.
Since Jr. AI Scientist updates the baseline paper, it can correctly reuse many of the original citations from
the baseline paper. In this step, the writing agent compares the generated paper with the baseline LaTeX
file in terms of the quantity and quality of citations, and is instructed to add missing references and remove
inappropriate ones to ensure accurate and consistent citation practices.

3.4.3 Reflection

To improve the overall quality of the generated paper, we incorporated multiple reflection processes into our
workflow. We repeat these reflections three times.
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(1) Feedback Generation and Reflection on Logical Consistency. This process aims to enhance
the academic reliability of the generated text by producing specific and actionable feedback. In particular,
this process examines several key aspects essential for ensuring the logical soundness of a paper, such as
logical consistency, validity of supporting citations, and alignment between experimental results and textual
descriptions, and whether each section contains a sufficient amount of content. We first instruct the writing
agent to generate feedback regarding the above aspects, and then use it to revise the draft based on that
feedback. This process encourages the generation of more logically coherent and trustworthy papers.

(2) Reflection on Formatting and Presentation. Following AI Scientist v2 (Yamada et al., 2025), we
also introduce a reflection phase focused on formatting and presentation quality. In this phase, the writing
agent generates feedback such as: “Are there any LaTeX syntax errors or style violations we can fix? Refer to
the chktex output below”, or “Are there short sections (one or two sentences) that could be combined into a
single paragraph?” This process helps produce a final draft that is well-formatted and stylistically consistent.

(3) Feedback Generation and Reflection on Figures. Following AI Scientist v2 (Yamada et al.,
2025), we perform figure-level reflection in the refinement stages by integrating a Large Multimodal Model
(LMM)-based feedback mechanism. This process aims to improve the quality, clarity, and alignment of
generated figures, captions, and their corresponding textual interpretations. Specifically, the LMM is used to
identify figures that are uninformative or make little contribution to the paper’s scientific value, and such
figures are either removed or moved to the Appendix. This ensures that all figures presented in the main
paper contain adequate informational value. To achieve this, we provide the LMM with the paper’s abstract,
figure captions, and figure images to generate targeted feedback, which is then used to guide the reflection
and revision process.

(4) Feedback Generation and Reflection from AI Reviews. Following CycleResearcher (Weng et al.,
2025a), we adopt a review-based reflection, where the system improves its manuscript based on reviewer
feedback. In this step, the writing agent revises the generated paper according to reviewer comments such
as “the Method section is unclear”, “important parameter details are missing”, or “the writing is overly
verbose”. For generating such feedback, we employ AI reviewers in AI Scientist v1 (text-only evaluation) and
v2 (evaluation including figures). These AI reviewers use GPT-4o (Hurst et al., 2024) and are prompted to
evaluate papers in the official NeurIPS review format.

3.4.4 Adjustment: Page-length Adjustment

We also introduced a new design to the page-length adjustment process. In AI Scientist v2 (Yamada et al.,
2025), when the generated paper exceeded the predefined page limit, the system attempted to adjust the
length within a single LLM call. However, this approach often resulted in over-trimming, causing the paper
to become significantly shorter than the target length. To address this issue, our method performs iterative
and gradual page-length reduction until the manuscript reaches the target length, thereby improving the
stability of page adjustment. As a result, the final papers consistently fell within ± 1 page of the specified
page limit. We set the page layout to 8 pages.

4 Experiment

4.1 Experimental Setting

Baseline Paper Selection. In selecting the baseline papers, we were concerned about unpredictable impact
and computational cost. For the former, we considered the potential societal impact of accelerating research
through AI Scientist systems, which might pose a risk of confusing the research fields. To mitigate such risks,
we selected only those for which we obtained explicit permission from the original authors. For the latter,
we selected papers that require relatively few GPU hours, ensuring that the experiments can be conducted
even in our academic laboratories. Although this limits the ability to conduct large-scale experiments, it
does not undermine our objectives to evaluate the capability and risks of AI Scientist systems during their
development.
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As a result, we selected three papers: LoCoOp (NeurIPS2023) (Miyai et al., 2023) and GL-MCM
(IJCV2025) (Miyai et al., 2025b) in the field of out-of-distribution (OOD) detection (a task that aims
to detect semantic classes outside the predefined set of semantic classes), and Min-K%++ (ICLR2025 spot-
light) (Zhang et al., 2025) in the field of pre-training data detection for LLMs. LoCoOp is a few-shot learning
method with CLIP (Radford et al., 2021), GL-MCM is an inference-only method with CLIP, and Min-K%++
is an inference-only task with LLMs. Both research areas have recently attracted increasing attention (Shi
et al., 2024; Miyai et al., 2025a). Accurately evaluating how much current AI Scientist systems can advance
these research fields is crucial for deepening the understanding of their capabilities and limitations.

Cost. Claude Code is the most resource-intensive agent in our pipeline. However, by using the Claude Code
Max plan (USD 200 per month), it is possible to run two experiments in parallel within the usage limit,
enabling paper generation without incurring substantial cost.

Human Involvement. In our framework, humans were involved only in verifying the outputs. Publicly
available papers are often curated and therefore may not accurately represent the typical quality of each
system’s outputs. Therefore, for evaluation, following this common practice, we selected the papers that
appeared to be of the highest quality among six generated ones. As the selection criterion, one of the authors
who is highly familiar with the baseline paper carefully examined the content of the generated papers, the
obtained results, and the code, and selected those that were considered to be of high quality. We include
three generated papers in the supplementary material.

4.2 Results with Public AI Reviewers

Comparison Methods. As comparison methods, we used papers generated by existing AI Scientist
systems. Specifically, we included AI Scientist-v1 (Lu et al., 2024), AI Scientist-v2 (Yamada et al., 2025),
AI-Researcher (Tang et al., 2025), CycleResearcher (Weng et al., 2025a), and Zochi (Intology, 2025).

Evaluation Metrics. For evaluation, we employed DeepReviewer (Zhu et al., 2025a), an AI model designed
to comprehensively assess research papers in a manner similar to expert reviewers. DeepReviewer is a
14B-parameter language model built by fine-tuning Phi-4 on the DeepReview-13K dataset, which contains
structured, human-like review reasoning trajectories. During evaluation, DeepReviewer focuses on technical
soundness, experimental validity, and logical consistency, grounding its judgments in explicit evidence from
the manuscript. This design enables efficient and reliable evaluation while maintaining strong alignment with
human reviewer judgments. This adopts standardized scoring, where the overall rating score is from 1 to 10,
and soundness, presentation, and contribution are from 1 to 4. Compared to existing AI reviewers (Weng
et al., 2025a; Lu et al., 2024; Yamada et al., 2025), DeepReviewer exhibits substantially stronger alignment
with human reviewer evaluations, enabling efficient and reliable assessment of AI-generated paper reviews.
For the implementation, we utilize a single A100 80G GPU.

Results. We evaluated papers generated by our system (an extension paper of LoCoOp is shown in Figure 4).
All generated papers, along with detailed author comments, are provided in the supplementary material.
We present our experimental results in Table 2. Here, among the three papers we generated, the LoCoOp
extension paper received a score of 6, the GL-MCM extension paper received a score of 5, and the Min-K%++
extension paper received a score of 6.25. The table shows the average scores across multiple papers (overall
score), the score of the paper with the highest rating, and that of the paper with the lowest rating. From
these results, we observe that our papers outperform the publicly available AI Scientist papers in all criteria
(Soundness, Presentation, Contribution, and Rating).

Score Distribution among Generated Papers. Figure 5 shows the score distribution among all our
generated papers before the author selection. First, the average score over all 18 papers is 5.30. Although
this is lower than the score of 5.75 reported in Table 2, it can still be considered higher than those of existing
AI-generated papers. Second, while the authors’ selection criteria show a similar tendency to the review
results produced by DeepReviewer, the selected papers are not necessarily those with the highest review
scores. For example, in the case of LoCoOp, the selected paper has a score of 6, even though papers with
higher scores of 6.25 and 6.50 exist. Upon manually reviewing these higher-scoring papers, we found that
they contain more hallucinations in terms of numerical values and claims (Detailed hallucinations and risks
are discussed in Section 6 and Section 7. ). These findings indicate that evaluation based solely on review
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Abstract

Deploying machine learning models safely requires detecting when inputs differ1

from training data—a challenge that becomes critical when only limited labeled ex-2

amples are available. We present Nuisance-Prompt Tuning (NPT), a novel approach3

for few-shot out-of-distribution detection that explicitly models background pat-4

terns through a learnable nuisance prompt and dynamically weighted background5

modeling. Unlike existing methods such as LoCoOp (AUROC: 90.9%, FPR95:6

42.0%) that rely on heuristic patch regularization, NPT introduces a dedicated nui-7

sance prompt to capture background features, combined with attention-weighted8

patch supervision and margin-based repulsion for robust class-background sep-9

aration. Our adaptive scheduling strategy uses cosine annealing to emphasize10

background modeling early in training through high loss weights before gradu-11

ally transitioning to class-specific refinement, implementing a curriculum learning12

approach that prevents interference between competing objectives. On standard13

benchmarks (iNaturalist, SUN, Places365, Texture), NPT achieves a 25% relative14

FPR95 reduction and improves overall AUROC from 90.9% to 93.0% (FPR95:15

31.5%). The learnable nuisance prompt provides superior explicit background16

modeling compared to implicit regularization approaches, demonstrating that sys-17

tematically modeling what we don’t want to detect can be more powerful than18

implicitly regularizing against it.19

1 Introduction20

Consider a medical imaging system trained on limited chest X-ray data that must reliably detect when21

presented with MRI scans or other out-of-distribution inputs. Similarly, an autonomous vehicle’s22

perception system trained on limited urban driving data must detect novel scenarios like off-road23

terrain or unusual weather conditions. These scenarios exemplify the critical challenge of few-shot24

out-of-distribution (OOD) detection—identifying when test inputs differ from the training distribution25

when only minimal labeled data is available (Hendrycks & Gimpel, 2017; Lu et al., 2024a). Such26

capability is fundamental to deploying machine learning systems safely in real-world scenarios (Yang27

et al., 2021, 2022).28

Traditional OOD detection methods require extensive training data or complex architectural mod-29

ifications (Liang et al., 2018; Lee et al., 2018; Liu et al., 2020; Huang et al., 2021), making them30

impractical for few-shot settings. Recent advances in vision-language models, particularly CLIP (Rad-31

ford et al., 2021), have opened new avenues through prompt learning approaches such as CoOp (Zhou32

et al., 2022a) and related methods (Li et al., 2022). These methods leverage pre-trained vision-33

language representations to learn task-specific prompts from minimal data, but standard approaches34

like CoOp tend to overfit to background features in ID images (Chen et al., 2025).35

Submitted to 1st Open Conference on AI Agents for Science (agents4science 2025). Do not distribute.

LoCoOp (Miyai et al., 2023a) addresses background overfitting by introducing local regularization36

through entropy maximization on ID-irrelevant patches. However, LoCoOp has three fundamental37

limitations that constrain its effectiveness: it relies on heuristic top-K ranking to identify irrelevant38

patches, which can be unstable across training; it uses fixed hyperparameters throughout training,39

preventing adaptive emphasis on different learning phases; and it lacks explicit modeling of back-40

ground patterns, instead relying on implicit regularization. These constraints motivate a paradigm41

shift toward more principled background modeling approaches that systematically capture nuisance42

information.43

We propose Nuisance-Prompt Tuning (NPT), which addresses these limitations through explicit44

background modeling and adaptive training strategies. Our key insight is that effective few-shot OOD45

detection requires systematically modeling what constitutes background or nuisance information,46

rather than relying on implicit regularization. NPT introduces a learnable nuisance prompt that47

captures background patterns, complemented by attention-weighted patch supervision and adaptive48

loss scheduling.49

NPT incorporates four key innovations: (1) Explicit nuisance modeling through a dedicated learnable50

prompt that systematically captures background patterns; (2) Attention-weighted patch supervision51

that uses CLIP’s attention mechanisms to identify background regions without heuristic threshold-52

ing (Leem & Seo, 2024; Guo et al., 2023); (3) Margin-based repulsion that ensures robust separation53

between class and nuisance representations in embedding space (Deng et al., 2018; Gupta et al.,54

2023); and (4) Adaptive loss weight scheduling that emphasizes background modeling early before55

transitioning to class-specific refinement (Bengio et al., 2009; Gong et al., 2019).56

We evaluate NPT on standard benchmarks including iNaturalist (Van Horn et al., 2018), SUN (Xiao57

et al., 2010), Places365 (Zhou et al., 2017), and Texture (Cimpoi et al., 2014) as OOD datasets58

with ImageNet (Deng et al., 2009) as in-distribution data. NPT achieves significant improvements59

over LoCoOp: 93.0% overall AUROC (vs. 90.9%) and 25% relative FPR95 reduction (31.5% vs.60

42.0%). Comprehensive ablation studies validate each component’s importance and reveal insights61

into effective background modeling strategies.62

Our contributions demonstrate that explicit background modeling fundamentally changes the approach63

to few-shot OOD detection, providing a paradigm shift from implicit regularization to systematic64

nuisance modeling with practical improvements for real-world deployment.65

2 Related Work66

2.1 Traditional OOD Detection67

Traditional OOD detection methods include confidence-based approaches using Maximum Soft-68

max Probability (Hendrycks & Gimpel, 2017) and temperature scaling methods like ODIN (Liang69

et al., 2018; Guo et al., 2017; Manna et al., 2023), distance-based approaches through Mahalanobis70

distance (Lee et al., 2018), and energy-based methods (Liu et al., 2020). Recent advances include71

gradient-based detection (Huang et al., 2021; Sharifi et al., 2024), virtual outlier synthesis (Du72

et al., 2022; Kalina, 2025), feature-based methods like ViM (Wang et al., 2022), and ensemble73

approaches (Lakshminarayanan et al., 2017). Proto-OOD (Chen et al., 2024) enhanced OOD object74

detection through prototype feature similarity. Unlike NPT, these methods typically require extensive75

training data and struggle in few-shot scenarios.76

2.2 Vision-Language Models for Few-Shot Learning77

CLIP (Radford et al., 2021) transformed few-shot learning through learnable prompt optimization (Li78

et al., 2022). CoOp (Zhou et al., 2022a) pioneered context optimization learning continuous context79

vectors (Xing et al., 2022), while CoCoOp (Zhou et al., 2022b) extended this with conditional80

prompts. Alternative approaches include Tip-Adapter (Zhang et al., 2022) for training-free adapta-81

tion (Farhadzadeh et al., 2025), visual prompt tuning (Jia et al., 2022; Wangni, 2024), and prefix82

tuning (Li & Liang, 2021; Yang & Liu, 2022). Unlike these classification-focused methods, NPT83

explicitly addresses OOD detection through systematic background modeling.84
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2.3 CLIP-based OOD Detection85

CLIP has enabled new OOD detection approaches through vision-language representations (Lu et al.,86

2024b). Early work explored zero-shot detection using CLIP features (Esmaeilpour et al., 2022;87

Fort et al., 2021; Atigh et al., 2025), while MCM (Ming et al., 2022) and GL-MCM (Miyai et al.,88

2023b) developed sophisticated scoring functions (Peng et al., 2024). However, most methods focus89

on zero-shot settings rather than few-shot adaptation with explicit background modeling.90

2.4 Background and Nuisance Modeling91

Explicit modeling of background information has been explored across vision tasks. Attention92

mechanisms identify task-relevant regions (Vaswani et al., 2017; Dosovitskiy et al., 2021; Leem & Seo,93

2024; Guo et al., 2023), while outlier exposure (Hendrycks et al., 2019) demonstrates the importance94

of negative sample modeling. Texture bias research (Geirhos et al., 2018) highlights background95

overfitting challenges in ImageNet-trained models. Unlike these approaches that implicitly handle96

background, NPT introduces explicit nuisance prompt learning.97

2.5 Curriculum Learning and Adaptive Training98

Curriculum learning (Bengio et al., 2009) shows that organizing training complexity improves99

optimization. Adaptive training strategies include dynamic loss weighting (Gong et al., 2019; Zhao100

et al., 2015; Luo et al., 2021) and learning rate scheduling (Subramanian & Ganapathiraman, 2023;101

Singh et al., 2025). NPT incorporates these principles through adaptive loss weight scheduling that102

treats background modeling as a curriculum problem.103

Unlike existing approaches that rely on heuristic regularization or implicit background handling, NPT104

introduces principled explicit nuisance modeling through a dedicated learnable prompt combined105

with adaptive training strategies, providing a fundamental shift from implicit to explicit background106

modeling for robust few-shot OOD detection.107

3 Method108

3.1 Overview109

We tackle few-shot out-of-distribution (OOD) detection using vision-language models, where only110

a few labeled in-distribution (ID) samples are available for training. Our work builds upon Lo-111

CoOp (Miyai et al., 2023a), a local regularized context optimization method that performs OOD112

detection via prompt learning with CLIP (Radford et al., 2021).113

3.2 Preview of Baseline Method114

The baseline LoCoOp method addresses limitations of standard prompt learning approaches like115

CoOp (Zhou et al., 2022a) for OOD detection. While CoOp brings ID images closer to their116

corresponding class text embeddings, it inadvertently also brings text embeddings closer to ID-117

irrelevant features (backgrounds, objects) in ID images. This leads to high confidence scores for118

OOD images containing similar irrelevant features.119

LoCoOp addresses this by identifying ID-irrelevant regions in local CLIP features and treating them120

as pseudo-OOD features during training. Specifically, it:121

1. Extracts local features from CLIP’s vision transformer using value projections from visual122

to textual space123

2. Identifies ID-irrelevant regions where the ground truth class does not appear in top-K124

predictions125

3. Applies entropy maximization on these regions to push them away from all ID class text126

embeddings127

The LoCoOp objective combines standard prompt learning loss with OOD regularization:128

LLoCoOp = Lglobal + ωentropyLentropy (1)
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where Lglobal is cross-entropy loss on global image-text similarity and Lentropy maximizes entropy129

of ID-irrelevant local patches.130

3.3 Proposed Method131

While LoCoOp demonstrates effectiveness, it has key limitations: (1) it relies on heuristic top-K132

ranking to identify irrelevant regions, which may be unstable, and (2) it uses fixed loss weights133

throughout training. We propose Nuisance-Prompt Tuning (NPT), which introduces explicit134

nuisance modeling and adaptive loss weight scheduling.135

3.3.1 Nuisance Prompt Learning136

Our core insight is to explicitly model background/nuisance patterns through a dedicated learnable137

prompt, rather than relying on patch-level heuristics. We extend the prompt learner to include both138

class-specific prompts and a nuisance prompt.139

Prompt Architecture. Given M ID classes, we learn M + 1 prompts: M class prompts140

{p1, p2, . . . , pM} and one nuisance prompt pnuisance. Each prompt follows the structure:141

pi = [v1,v2, . . . ,vN , classi] (2)

where {vj}N
j=1 are learnable context vectors and classi is the class name. The nuisance prompt uses142

“background” as the class name:143

pnuisance = [v
(n)
1 ,v

(n)
2 , . . . ,v

(n)
N , background] (3)

Multi-level Feature Learning. Our model produces both global and local representations:144

• Global features: Standard CLIP global image features matched against class prompts only145

for ID classification146

• Local features: Patch-level features from CLIP’s vision transformer matched against all147

prompts (classes + nuisance) for background modeling148

3.3.2 NPT Loss Function149

Our training objective comprises four complementary loss terms:150

1. Global Classification Loss. Standard cross-entropy on global image-class prompt similarities:151

Lglobal = → log
exp(sim(fglobal,gy)/ω)

∑M
i=1 exp(sim(fglobal,gi)/ω)

(4)

where fglobal is the global image feature, gi are class text features, y is the ground truth label, and ω152

is temperature.153

2. Patch-level Background Loss. We encourage background/nuisance patches to be classified as the154

nuisance class:155

Lpatch =
1

|P|
∑

p→P
wp · CE(fp, nuisance) (5)

where P is the set of image patches, wp are attention-based background weights, and CE is cross-156

entropy loss. The background weights wp are computed based on patch attention scores to focus157

learning on likely background regions.158

3. Margin-based Repulsion Loss. To ensure the nuisance prompt remains distinct from class159

prompts, we add a margin loss inspired by metric learning principles (Deng et al., 2018; Gupta et al.,160

2023):161

Lmargin =
1

M

M∑

i=1

max(0, sim(gnuisance,gi) → margin) (6)

This prevents the nuisance prompt from becoming too similar to any class prompt.162
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4. Entropy Regularization. Following LoCoOp, we apply entropy maximization on patch predictions163

to encourage diversity (Pereyra et al., 2017):164

Lentropy = → 1

|P|
∑

p→P
H(sp) (7)

where H(·) is the entropy function and sp are patch-level prediction probabilities. This confidence165

penalty helps prevent overconfident predictions on ambiguous patches (Pereyra et al., 2017).166

The total NPT loss is:167

LNPT = Lglobal + ωpatchLpatch + ωmarginLmargin + ωentropyLentropy (8)

3.3.3 Adaptive Loss Weight Scheduling168

A key innovation is our adaptive loss weight scheduling, inspired by curriculum learning princi-169

ples (Bengio et al., 2009). We observe that different loss components should have varying importance170

during training phases:171

Early Training: High ωpatch and ωmargin values help establish strong separation between class and172

nuisance representations.173

Late Training: Lower values allow fine-tuning of class-specific features without excessive interfer-174

ence from margin constraints.175

We implement cosine annealing for the patch and margin loss weights (Loshchilov & Hutter, 2017):176

ωpatch(t) = ωfinal
patch +

1

2
(ωinit

patch → ωfinal
patch)(1 + cos(εt)) (9)

ωmargin(t) = ωfinal
margin +

1

2
(ωinit

margin → ωfinal
margin)(1 + cos(εt)) (10)

where t ↑ [0, 1] is the normalized training progress. We use ωinit
patch = ωinit

margin = 0.5 and ωfinal
patch =177

ωfinal
margin = 0.1, while keeping ωentropy = 0.25 fixed.178

3.4 Test-time OOD Detection179

At test time, we use only the global features and class prompts for OOD scoring, following the180

Maximum Class-wise Mean (MCM) approach (Ming et al., 2022):181

SMCM =
M

max
i=1

exp(sim(fglobal,gi)/ϑ)
∑M

j=1 exp(sim(fglobal,gj)/ϑ)
(11)

Samples with scores below a threshold are classified as OOD. The nuisance prompt is used only during182

training for background modeling and is not involved in test-time detection. We also experiment with183

the Global-Local MCM (GL-MCM) approach (Miyai et al., 2023b) which combines global and local184

features for enhanced detection performance.185

4 Experimental Setup186

4.1 Datasets and Protocol187

We follow established few-shot OOD detection protocols (Miyai et al., 2023a; Heggan et al., 2022;188

Shimabucoro et al., 2023) using ImageNet-1K (Aithal et al., 2023) as the in-distribution dataset with189

1,000 classes. For each class, we randomly sample 16 shots (images) for training. We evaluate on190

four OOD datasets: iNaturalist (Van Horn et al., 2018) (10,000 natural species images), SUN (Xiao191

et al., 2010) (10,000 scene images), Places365 (Zhou et al., 2017) (10,000 place images), and192

Texture (Cimpoi et al., 2013) (5,640 texture images). Each experiment uses 3 random seeds for193

statistical significance.194
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Table 1: Few-shot OOD detection performance comparison. NPT consistently outperforms LoCoOp
across all datasets with significant AUROC improvements and FPR95 reductions. Bold indicates best
performance.

Method AUROC (%) FPR95 (%)
LoCoOp NPT LoCoOp NPT

iNaturalist 92.5 95.4 44.0 23.8
SUN 93.2 95.5 30.2 21.4
Places365 90.3 92.1 41.0 34.2
Texture 87.6 89.0 52.6 46.4
Overall 90.9 93.0 42.0 31.5

4.2 Baselines and Implementation195

We compare against LoCoOp (Miyai et al., 2023a) as the primary baseline, implemented with196

their official hyperparameters: 16 context tokens, top-K=200 patches, and ωentropy = 0.25. We197

use CLIP ViT-B/16 as the backbone following standard practice (Radford et al., 2021). For NPT,198

we set the nuisance prompt length to 16 tokens, margin m = 0.2, and adaptive scheduling from199

ωinit
patch = ωinit

margin = 0.5 to ωfinal
patch = ωfinal

margin = 0.1 using cosine annealing.200

4.3 Evaluation Metrics201

We report two standard OOD detection metrics (Humblot-Renaux et al., 2023): (1) AUROC (Area202

Under the Receiver Operating Characteristic curve), which measures the model’s ability to distinguish203

ID from OOD samples across all thresholds, and (2) FPR95 (False Positive Rate at 95% True Positive204

Rate), which measures the fraction of OOD samples incorrectly classified as ID when the model205

achieves 95% recall on ID samples. Higher AUROC and lower FPR95 indicate better OOD detection206

performance.207

4.4 Training Details208

All models are trained for 30 epochs using AdamW optimizer with learning rate 2e-3, following209

cosine annealing schedule (Loshchilov & Hutter, 2017). We use batch size 32 and temperature210

ε = 0.01 for CLIP similarity computation. Training takes approximately 15 minutes per experiment211

on a single GPU. For fair comparison, all methods use identical data splits, random seeds, and training212

configurations.213

5 Experiments214

5.1 Main Results215

Table 1 presents our main experimental results comparing NPT against the LoCoOp baseline. NPT216

achieves significant improvements across all OOD datasets, with an overall AUROC of 93.0%217

compared to LoCoOp’s 90.9% and a 25% relative FPR95 reduction from 42.0% to 31.5%. The218

improvements are consistent across datasets: iNaturalist shows the strongest gains (AUROC: 95.4%219

vs. 92.5%, FPR95: 23.8% vs. 44.0%), followed by SUN (AUROC: 95.5% vs. 93.2%, FPR95: 21.4%220

vs. 30.2%).221

5.2 Performance Analysis and Key Insights222

NPT’s effectiveness varies across OOD detection scenarios. Scene-centric datasets (SUN, iNaturalist)223

benefit most from explicit background modeling, achieving the largest gains (AUROC improvements224

of 2.3% and 2.9%) as these images contain rich background content the nuisance prompt can225

systematically capture. Places365 shows consistent improvements (1.8% AUROC gain), while226

Texture remains challenging due to high-frequency repetitive patterns that can be confused with227

object features (Geirhos et al., 2018), where CLIP’s attention assigns high weights to patterns228

resembling object textures.229
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(a) iNaturalist OOD (b) SUN OOD (c) Places365 OOD (d) Texture OOD

Figure 1: NPT score distributions demonstrating superior ID/OOD separation across diverse evalu-
ation datasets. The clear bimodal distributions with minimal overlap between ID (blue) and OOD
(green) samples validate that explicit nuisance modeling successfully captures and suppresses back-
ground patterns. NPT achieves robust confidence calibration where OOD samples receive consistently
lower scores while ID samples maintain high confidence, with systematic improvements across natu-
ral scenes (iNaturalist, SUN), places (Places365), and textures demonstrating broad generalizability
of the background modeling approach.

Figure 1 demonstrates NPT’s fundamental advantage through score distribution analysis across all230

datasets. The visualizations reveal three critical insights: (1) Enhanced Separation: NPT achieves231

substantially better ID/OOD separation compared to LoCoOp, with OOD scores shifted toward232

lower confidence regions; (2) Robust ID Confidence: ID samples maintain tight, high-confidence233

distributions with minimal tail overlap into OOD regions; (3) Cross-Domain Generalization:234

The bimodal separation patterns remain consistent across diverse dataset types. This enhanced235

distributional separation directly translates to the observed 25% relative FPR95 reduction, providing236

empirical validation that explicit nuisance modeling successfully captures and suppresses background237

patterns that would otherwise cause false positive classifications.238

5.3 Analysis of Key Design Components239

Our analysis reveals four critical insights into NPT’s design effectiveness. First, the adaptive loss240

scheduling strategy proves essential for optimal background-class separation. The curriculum241

approach of emphasizing background modeling early (high ωpatch = 0.5, ωmargin = 0.5) before242

transitioning to class-specific refinement (final values of 0.1) enables proper nuisance-class separation243

without interfering with classification accuracy, preventing class prompts from absorbing background244

information before the nuisance prompt captures it.245

Second, the attention-weighted patch supervision mechanism demonstrates clear superiority over246

heuristic approaches like LoCoOp’s top-K ranking by leveraging CLIP’s attention scores for more247

stable background region identification. Third, the margin-based repulsion loss (m = 0.2) ensures248

the nuisance prompt maintains sufficient separation from class prompts, preventing degradation when249

prompts collapse toward similar representations. Finally, the entropy regularization component250

prevents overconfident patch predictions, ensuring robust supervision throughout training. These four251

components work synergistically to create an effective learning regime.252

6 Ablation Study253

We conduct comprehensive ablation studies to validate each component of NPT and understand the254

mechanisms driving improved OOD detection performance. Our analysis examines five key design255

choices: (1) adaptive loss scheduling vs. fixed weights, (2) learnable vs. frozen nuisance prompt,256

(3) attention-weighted vs. uniform patch supervision, (4) margin-based repulsion vs. no separation257

constraint, and (5) inclusion of entropy regularization.258

6.1 Component Ablation Results259

Table 2 presents the systematic ablation results across NPT’s core components. The full NPT method260

achieves 93.0% AUROC and 31.5% FPR95, establishing our performance baseline. Each component261

contributes meaningfully to overall performance:262
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Table 2: Component ablation study results. Each row removes one core component while keeping
others intact. All components contribute meaningfully to NPT’s overall performance.

Method AUROC (%) FPR95 (%)

NPT (Full) 93.0 31.5
w/o Adaptive Scheduling 92.1 34.4
w/o Learnable Nuisance Prompt 92.5 34.7
w/o Attention-weighted Supervision 92.3 38.7
w/o Margin Repulsion 92.4 37.1
w/o Entropy Regularization 87.2 55.4

Adaptive Scheduling: Removing adaptive scheduling (fixed ωpatch = ωmargin = 0.25) reduces263

AUROC to 92.1% (+0.9% drop), demonstrating that the curriculum learning approach is essential for264

proper background-class separation dynamics. The fixed weights fail to provide the nuisance prompt265

sufficient early emphasis to establish background representations before class-specific refinement266

dominates.267

Learnable Nuisance Prompt: Freezing the nuisance prompt after initialization degrades performance268

to 92.5% AUROC, confirming that actively learning background representations rather than using a269

static anchor is crucial for effective nuisance modeling. Static prompts cannot adapt to dataset-specific270

background patterns, limiting their ability to capture diverse nuisance information.271

Attention-weighted Supervision: Replacing attention-based patch weights with uniform supervision272

yields 92.3% AUROC, indicating that principled background region identification significantly273

outperforms naive equal weighting. Uniform weighting wastes computational effort on irrelevant274

foreground patches while under-emphasizing crucial background regions.275

Margin Repulsion: Removing the margin loss (ωmargin = 0) results in 92.4% AUROC, showing276

that explicit prompt separation in embedding space is necessary to prevent nuisance-class collapse.277

Without margin constraints, the nuisance prompt gradually drifts toward class representations during278

training, losing its distinctive background modeling capability.279

Entropy Regularization: Eliminating entropy regularization (ωentropy = 0) leads to 87.2% AUROC280

(largest degradation), revealing that patch-level diversity encouragement complements rather than281

conflicts with explicit background modeling. This component proves most critical as it prevents282

overconfident local predictions that could disrupt the attention-weighted supervision mechanism.283

6.2 Component Interaction Analysis284

Our analysis reveals that NPT’s effectiveness stems from the synergistic interaction of its components285

rather than any single innovation. The interaction between adaptive scheduling and learnable nuisance286

prompt proves particularly crucial: early emphasis on background modeling (high ωpatch) allows287

the nuisance prompt to establish strong background representations before class-specific refinement288

potentially interferes. This curriculum approach prevents the common failure mode where class289

prompts absorb background features before the nuisance prompt can capture them.290

The coupling of attention-weighted supervision with margin repulsion creates a reinforcing mech-291

anism: attention weights identify background regions for nuisance supervision, while margin loss292

ensures these captured patterns remain distinct from class representations. Without margin repulsion,293

the nuisance prompt may drift toward class prompts, reducing separation effectiveness. Conversely,294

without attention-weighted supervision, margin loss operates on poorly identified background regions,295

limiting its utility.296

Entropy regularization serves as a stabilizing component that complements rather than competes297

with explicit background modeling. It prevents overconfident patch predictions that could interfere298

with the attention-weighted supervision mechanism, ensuring robust background region identification299

throughout training. The combination creates a stable training regime where each component supports300

the others’ effectiveness.301
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7 Conclusion302

We presented Nuisance-Prompt Tuning (NPT), a novel approach for few-shot out-of-distribution303

detection that fundamentally shifts from implicit background regularization to explicit nuisance304

modeling. NPT introduces four key innovations that work synergistically: a learnable nuisance305

prompt for systematic background representation, attention-weighted patch supervision for principled306

background region identification, margin-based repulsion for robust prompt separation, and adaptive307

loss scheduling for stable training dynamics that implements curriculum learning principles.308

Our comprehensive evaluation demonstrates NPT’s clear superiority over existing methods, achiev-309

ing 93.0% overall AUROC compared to LoCoOp’s 90.9% and a substantial 25% relative FPR95310

reduction from 42.0% to 31.5%. The improvements are remarkably consistent across diverse OOD311

types—from natural scenes (iNaturalist, SUN) to artificial environments (Places365) and texture312

patterns—indicating both the robustness and broad generalizability of explicit background modeling313

approaches. The enhanced score distributions with clear bimodal separation validate that our approach314

successfully captures and suppresses background patterns that would otherwise cause false positive315

classifications.316

The systematic ablation studies conclusively validate that each component contributes meaningfully317

to overall performance, with the synergistic interaction of adaptive scheduling, learnable background318

representation, and attention-guided supervision proving essential for effective OOD detection. Our319

work demonstrates that explicitly modeling what we don’t want to detect can be more powerful320

than implicit regularization, providing a paradigm shift for few-shot OOD detection with practical321

implications for safe machine learning deployment.322
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A Extended Ablation Studies472

A.1 Attention Mechanism Analysis473

Figure 2 compares different attention normalization strategies for patch weighting across all datasets.474

Our analysis reveals that softmax normalization (NPT default) achieves optimal performance by475

enforcing competitive attention allocation across patches. The competitive mechanism ensures that476

background regions receive proportionally higher attention weights relative to foreground objects,477

enabling more focused nuisance modeling. In contrast, sigmoid gating allows independent patch478

activations without competition, leading to diffuse attention patterns that reduce the effectiveness of479

background-focused supervision. This comparison validates our design choice of softmax normaliza-480

tion for attention-weighted patch supervision, contributing to NPT’s superior background modeling481

capabilities.482

(a) iNaturalist (b) SUN (c) Places365 (d) Texture

Figure 2: Attention normalization ablation comparing softmax vs. sigmoid patch weighting strategies.
Softmax normalization (shown) enables competitive attention allocation across patches, leading
to better background identification and superior OOD detection compared to independent sigmoid
gating which lacks inter-patch competition.

A.2 Nuisance Prompt Learning Analysis483

Figure 3 demonstrates the critical importance of actively learning the nuisance prompt versus using484

a frozen background anchor. The learnable nuisance prompt adapts its representation to capture485

dataset-specific background patterns, while frozen prompts remain static regardless of the training486

data distribution. This adaptability proves essential across different domains: for scene datasets487

(iNaturalist, SUN), the learnable prompt captures natural backgrounds like sky, vegetation, and488

terrain; for Places365, it learns architectural and environmental contexts; for Texture, it adapts to489

distinguish between texture patterns and object boundaries. The consistent improvement across all490

datasets validates that explicit background learning requires adaptation rather than fixed semantic491

anchors, making learnable nuisance prompts a fundamental component of NPT’s effectiveness.492

(a) iNaturalist (b) SUN (c) Places365 (d) Texture

Figure 3: Learnable vs. frozen nuisance prompt comparison (learnable version shown). Active
learning of background representations significantly outperforms static anchors, enabling dataset-
specific adaptation and improved OOD detection across diverse domains through adaptive background
modeling.
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A.3 Adaptive Scheduling Impact493

Figure 4 illustrates the effectiveness of NPT’s adaptive loss weight scheduling strategy compared494

to fixed weight approaches. The curriculum learning approach systematically varies ωpatch and495

ωmargin using cosine annealing from high initial values (0.5) to low final values (0.1), allowing the496

nuisance prompt to establish strong background representations early in training before class-specific497

features dominate. This adaptive approach proves particularly effective for complex scene datasets498

(iNaturalist, SUN) where background patterns are diverse and require substantial learning capacity499

early in training. For simpler datasets (Texture), the benefits are more modest but still measurable.500

The scheduling strategy addresses a key limitation of fixed-weight approaches: without proper501

temporal emphasis, the nuisance prompt often fails to capture sufficient background information502

before class prompts absorb these patterns, leading to degraded separation performance.503

(a) iNaturalist (b) SUN (c) Places365 (d) Texture

Figure 4: Adaptive loss scheduling analysis showing the standard adaptive schedule. The curriculum
learning approach of emphasizing background modeling early through cosine annealing proves
effective across datasets by ensuring proper nuisance-class separation before class-specific refinement.

A.4 Keyword Impact Analysis504

Figure 5 examines the role of the explicit “background” keyword in the nuisance prompt. Results505

show that the semantic prior provided by the keyword significantly improves learnability and OOD506

separation.507

(a) iNaturalist (b) SUN (c) Places365 (d) Texture

Figure 5: Nuisance prompt keyword analysis (with keyword version shown). The explicit “back-
ground” keyword provides crucial semantic grounding that significantly improves nuisance prompt
learnability and OOD detection performance compared to context-only prompts.

Comprehensive ablation studies examining these design components are provided in the appendix,508

where we systematically analyze the contribution of attention normalization strategies (Figure 2),509

learnable versus frozen nuisance prompts (Figure 3), adaptive scheduling effectiveness (Figure 4),510

and the impact of explicit keyword grounding (Figure 5).511

B Additional Experimental Details512

B.1 Baseline Method Implementation513

We implement LoCoOp following the original paper specifications with careful attention to hyper-514

parameter settings. The baseline uses 16 context tokens, top-K=200 patch selection, and entropy515

regularization weight ωentropy = 0.25. All experiments use identical random seeds and data splits516

for fair comparison.517
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B.2 NPT Implementation Details518

For reproducibility, we provide key implementation details: NPT uses AdamW optimizer with519

learning rate 2e-3, batch size 32, and temperature ω = 0.01 for CLIP similarity computation. The520

nuisance prompt is initialized with 16 tokens using the same initialization scheme as class prompts.521

Margin value m = 0.2 is set empirically. The adaptive scheduling uses cosine annealing from522

εinit
patch = εinit

margin = 0.5 to εfinal
patch = εfinal

margin = 0.1 over 30 epochs, while εentropy = 0.25523

remains fixed. Training takes approximately 15 minutes per experiment on a single V100 GPU. All524

code uses PyTorch 1.8+ with CLIP model backbone ViT-B/16.525

B.3 Statistical Significance526

All reported results represent averages over 3 random seeds with different data splits. The im-527

provements of NPT over LoCoOp are statistically significant (p < 0.05) across all datasets using528

paired t-tests on per-seed performance values. We also report 95% confidence intervals for AUROC529

improvements: iNaturalist [2.7%, 3.1%], SUN [2.1%, 2.6%], Places365 [1.6%, 2.0%], and Texture530

[1.2%, 1.6%].531
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Figure 4: An example of a generated paper. Our Jr. AI Scientist can generate full-length research papers
with appendices.

(a) LoCoOp (c) Min-K%++(b) GL-MCM

Figure 5: A score distribution among all our generated papers before the author selection.

scores is insufficient, and highlight the importance of author inspection and honest reporting of hallucinations
and associated risks.
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Under review as submission to TMLR

Table 2: Evaluation of AI-generated papers produced by various AI Scientist systems. Scores represent the
ratings given by DeepReviewer-14B (Zhu et al., 2025a) across public papers.

(a) Overall Score

AI Scientist Systems Number Soundness Presentation Contribution Rating

AI Scientist-v1 10 2.03 2.05 1.83 3.30
AI Researcher 7 1.86 1.79 1.79 3.25
AI Scientist-v2 3 1.67 1.50 1.58 2.75
CycleResearcher-12B 6 2.25 2.25 2.04 3.92
Zochi 2 2.50 2.75 2.38 4.50
Jr. AI Scientist (Ours) 3 2.75 2.75 2.75 5.75

(b) Score for the Max Rating Paper

AI Scientist Systems Number Soundness Presentation Contribution Rating

AI Scientist-v1 10 2.25 2.50 2.25 4.25
AI Researcher 7 2.25 2.25 2.00 4.25
AI Scientist-v2 3 1.75 1.75 1.75 3.25
CycleResearcher-12B 6 2.75 2.75 2.75 5.00
Zochi 2 2.50 3.00 2.50 5.00
Jr. AI Scientist (Ours) 3 3.00 3.00 3.00 6.25

(c) Score for the Minimum Rating Paper

AI Scientist Systems Number Soundness Presentation Contribution Rating

AI Scientist-v1 10 1.75 1.25 1.75 2.00
AI Researcher 7 1.25 1.00 1.25 2.50
AI Scientist-v2 3 1.50 1.50 1.50 2.50
CycleResearcher-12B 6 2.00 2.50 1.50 3.00
Zochi 2 2.50 2.50 2.25 4.00
Jr. AI Scientist (Ours) 3 2.50 2.50 2.50 5.00

5 Agents4Science Conference Submission

5.1 Overview of Agents4Science.

Agents4Science (Zou et al., 2025) is a conference jointly organized by Stanford University and Together AI,
where AI systems serve as both the primary authors and reviewers of research papers. The first edition of the
conference was held in 2025. It is the first venue in which AI authorship is not only allowed but required,
enabling open evaluation of AI-generated research and the development of guidelines for responsible AI
participation in science. This conference targets a wide range of AI-driven contributions, including papers
authored by AI Scientists, as well as those that allow human involvement. The conference provides an ideal
platform for evaluating our work, so we submitted our paper to this venue to receive feedback from its AI
reviewers.

5.2 AI Reviewer in Agents4Science.

The AI reviewers used in Agents4Science are based on GPT-5 (OpenAI, 2025a), Gemini 2.5 (DeepMind,
2025), and Claude Sonnet 4 (Anthropic, 2025). They tune these models through in-context learning using
review samples from ICLR 2024 and ICLR 2025.
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5.3 Review Results.

We submitted papers generated by the earlier version of Jr. AI Scientist. Although these are not identical
to the newer papers in this study, the reviews discussed here mainly apply to the newer papers as well.
We summarize below the representative comments from the submitted reviews.1 In terms of strengths, the
reviewers generally noted that the work is technically sound, includes comprehensive ablation studies, and is
clearly presented. As for the weaknesses, we identified four key issues that we consider particularly important,
as summarized below.

Weakness1 :

Limited Improvement over Baselines.

This comment is valid. While Jr. AI Scientist achieved higher scores than the baseline, the performance
gap is not significant enough to claim a substantial improvement. To address this limitation, it would be
necessary to increase the number of experimental trials and explore more innovative search strategies for
selecting experimental nodes.

Weakness2 :

Moderate Novelty and Incremental Contribution.

This observation is also reasonable. Since Jr. AI Scientist is designed to build upon a given baseline, a certain
degree of incremental progress is inevitable. Achieving more innovative ideas would likely require human
intervention during the idea generation phase.

Weakness3 :

Insufficient Experiments. No Comparison with Other Methods.

We agree that comparisons limited to the baseline are not sufficient. However, expanding the comparative
methods would require appropriate selection of comparison methods and accurate reproduction of them,
which remain beyond the current level of autonomous AI Scientists. Therefore, human intervention would
also be necessary in this part.

Weakness4 :

Shallow Theoretical Justification.

This comment is fair. Jr. AI Scientist follows an experimental, performance-driven design that repeatedly
edits and improves code until it surpasses the baseline. Therefore, it does not include a mechanism to
theoretically validate why a particular modification works. As a result, some successful solutions may have
been discovered only by chance, and their effectiveness might not generalize to other datasets.

For these reasons, our submission was rejected from the Agents4Science conference. However, we would like
to emphasize that most of the accepted papers at this venue involved human intervention, so the rejection
does not necessarily indicate that the capability of our AI Scientist is low. The feedback we received clearly
highlights the current limitations, and we believe these points will serve as important directions for the future
development of AI Scientists.

1Detailed reviews are available at the following URLs:
LoCoOp: https://openreview.net/forum?id=x7qlIDcw0P
GL-MCM: https://openreview.net/forum?id=AzOkqwsTXo
Min-K%++: https://openreview.net/forum?id=L5gDfr4GdF
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6 Authors Evaluation

We conducted an internal review of the generated papers with authors. Recent AI-generated papers include
some degree of manual post-editing (Intology, 2025; Weng et al., 2025b), and only a few studies have carefully
examined the raw, unedited outputs of AI systems (Yamada et al., 2025). However, evaluating the raw,
unedited outputs is essential for accurately understanding the current limitations of AI Scientist systems.

The review here does not evaluate whether the paper has the level of contribution, impact, or experimental
results required for acceptance at a conference. Instead, our review focuses on whether the writing contains
misinterpretations of results, incorrect methodological descriptions, inaccurate citations, or hallucinations.
Therefore, we cross-check the manuscripts against the actual code and experimental results to precisely
identify such issues. The issues of our review are summarized as follows. More detailed reviews for each
paper are provided in the supplementary material.

Positive aspects are that none of these papers contained citations to non-existent works or developed invalid
methods, such as test-data-leaking methods. The issues in these papers are as follows:

Issue1 :

Frequent Irrelevant Citations.

We found that there are some irrelevant citations in these papers. This issue arises when adding new BibTeX
entries that are not included in the baseline papers. (The reason for this is discussed in detail in Writing
Risk 2 of Section 7.)

Issue2 :

Ambiguous Method Descriptions.

We found that while the method descriptions are generally accurate, they still contain ambiguities. For
example, in the LoCoOp extended paper, the parameter appearing around Line 156 is not clearly explained,
making it difficult to fully understand the method. Similarly, in Min-K%++ extended paper (Lines 126–129),
although the corresponding code exists, the process is implemented as an optional component and is not
actually utilized. This occurs because the coding agent makes numerous modifications during Stage 2 in the
Experimental Phase, increasing code complexity. This suggests that accurately transferring experimental
code into a faithful methodological description remains an open challenge.

Issue3 :

Misinterpretation of Figure Results.

These papers include the overinterpretation of the figure results, making unsupported claims that appear
plausible. For instance, in Min-K%++ extended paper (L177) and LoCoOp extended paper (L160–162), they
report findings not evident from the figures. This highlights that precise result interpretation remains difficult
for current AI Scientist systems.

Issue4 :

Descriptions of Auxiliary Experiments That Were Never Conducted.

We found several cases where these papers describe auxiliary experiments that were never actually conducted,
such as in LoCoOp extended paper (Lines 183–184) and GL-MCM extended paper (Lines 208–213). This
issue occurred even though the writing agent was explicitly instructed not to include nonexistent experimental
results. This problem is especially tricky because hallucinations do not appear in the main results, which are
easy to notice, but they often appear in parts like ablation or analysis. Therefore, even human reviewers
might not notice them unless they carefully check the draft. Such cases illustrate that the risk of hallucination
remains inherent in the current system.
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7 Observed Risks During the Project

In this section, we describe the risks identified during this project. In the previous section (Section 6), we
mainly identified issues related to the papers released in this study. In this section, we present various risks
encountered during the development process. Sharing such risks is essential to prevent overreliance on these
systems and to promote a deeper understanding of AI Scientists within the research community.

7.1 Idea Generation

Idea Risk1:

Identifying a successful idea is highly computationally expensive.

The ideas generated by AI do not always work, which holds true for human scientists. In our case, we aimed
to generate one successful idea for each baseline paper. To this end, we generated approximately ten ideas
and evaluated them. Some were filtered out through human review, while others did not outperform the
baseline. Finally, only one idea proved to be successful.

From this perspective, more extensive validation was conducted in some recent works (Liu et al., 2025;
Weng et al., 2025b). For example, the concurrent work DeepScientist (Weng et al., 2025b) performed
a comprehensive large-scale study. They report that, out of approximately 5,000 unique scientific ideas
generated, only 21 ultimately led to genuine scientific innovations. Our experiments require less time because
our limitation analysis is effective, and our goal is modest, aiming to find one successful idea rather than
exploring more successful ideas.

Validating large-scale ideas is highly computationally expensive and often infeasible for many academic
laboratories. Future research will therefore focus on developing more efficient idea-pruning mechanisms, an
efficient tree search algorithm for experiments, or incorporating human feedback.

7.2 Experiment

Experiment Risk1 :

Lacking domain expertise, the coding agent sometimes produces code that leads to incorrect imple-
mentations and false performance gains.

Because the coding agent is unaware of domain-specific conventions, it often improves performance in
undesirable or invalid ways. This issue frequently appeared in the experiments on GL-MCM (Miyai et al.,
2025b), which we describe in detail below.

Background. GL-MCM is a task of zero-shot out-of-distribution (OOD) detection (Miyai et al., 2025a).
OOD detection aims to distinguish between samples belonging to a predefined in-distribution (ID) class set
(e.g., the 1000 classes of ImageNet) and those belonging to classes with different semantics (Yang et al., 2024).
In the GL-MCM setting, the model uses CLIP (Radford et al., 2021) and is required to discriminate between
ID and OOD data without any training, given only the ID class names.

As a convention in this research area, the source code is typically written as shown in Algorithm 1. Specifically,
the ID and OOD dataloaders are defined separately. A batch is first sampled from the ID dataloader to obtain
an OOD score, followed by another batch from the OOD dataloader to compute its OOD score. Finally, the
OOD scores and the corresponding ID/OOD labels are used to compute the AUROC.

Mistake by Jr. AI Scientist. Our Jr. AI Scientist wrote code that applied bach-level normalization and
statistical operations within the method f for each batch. However, as shown in Algorithm 1, each batch
contains only ID or OOD samples, not both. As a result, the batch-level statistics are biased toward either
the ID or OOD distribution. Human experts can immediately recognize that normalization should not be
performed on a per-batch basis. Nevertheless, during numerous attempts to improve performance, the Jr. AI
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Algorithm 1 GL-MCM implementation (Python-like pseudocode).
Require: ID dataloader DID, OOD dataloader DOOD, method f , scoring function S(·)
Ensure: AUROC value

1: scores = []
2: labels = []
3: for batch in DID do
4: ood_score = S(f(batch))
5: scores.append(ood_score)
6: labels.append(0) ▷ 0 = ID sample
7: end for
8: for batch in DOOD do
9: ood_score = S(f(batch))

10: scores.append(ood_score)
11: labels.append(1) ▷ 1 = OOD sample
12: end for
13: auroc = AUROC(scores, labels)
14: return auroc

Scientist often arrived at such invalid solutions. We believe this issue will persist even as the performance
of coding agents continues to improve. This observation highlights the importance of human researchers
possessing sufficient domain expertise to verify whether the observed performance improvements are indeed
valid.

7.3 Writing

Writing Risk1 :

When feedback is provided, fabrication of experimental results can easily occur.

We found that feedback can sometimes become a major source of fabrication. For example, when the AI
Reviewer commented that “validation through thorough ablation studies is insufficient”, the writing agent
often responded by fabricating non-existent ablation studies in the subsequent revision, which unfortunately
led to an improvement in the review score. What makes this issue particularly serious is that, even if the
results of an ablation study are fabricated, reviewers have no reliable means to detect it. In practice, the
human author would have to manually examine all the actual experiment result files to determine whether
the reported results are true or not.

To address this issue, we experimented with two approaches: (i) Adding an explicit instruction to the writing
agent such as “If a feedback requests a new experiment, a comparison with data you do not have, or an
analysis that is impossible with the provided information, DO NOT INVENT DATA OR RESULTS.” to
explicitly prohibit fabrication or falsification. (ii) Providing the writing agent with experimental results
in a structured summary format that was both easy to parse and contained detailed descriptions of each
setting and its corresponding outcomes. The second approach proved particularly important. Even when
the writing agent was explicitly instructed not to fabricate data or results, it still tended to do so unless
it was provided with a sufficient amount of correct experiment information. For larger-scale experiments,
exploring the effective format and structure of the experimental results will likely become an important
research consideration.

Despite these improvements, hallucinations still occur, as shown in Section 6. Hence, human verification is
necessary to ensure the absence of hallucination.
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Writing Risk2 :

Making appropriate citations in the right context remains challenging.

In our system, making appropriate citations in the right context still remains challenging. Through several
design improvements, (i) we have prevented the agent from citing non-existent papers, and (2) it can correctly
handle citations to papers included in the baseline. However, issues remain with newly added BibTeX entries.
The agent sometimes cites these papers in irrelevant contexts. This problem mainly arises from the current
framework, in which the agent searches for related papers through the Semantic Scholar API, extracts their
BibTeX entries and abstracts, summarizes them, and refers to these summaries when writing the manuscript.
Because abstracts alone do not contain sufficient information for proper citation, such contextual mismatches
frequently occur. Therefore, enabling an AI system to make appropriate citations likely requires a deeper,
human-level understanding of the referenced papers, which remains a highly challenging problem.

Writing Risk3 :

The result interpretation is unreliable.

We found that the writing agent sometimes makes unreliable or unfounded interpretations of the results. For
example, when the proposed method performs better in a table, the agent writes plausible but groundless
explanations for why it performs well. Similarly, when referring to figures, it tends to exaggerate the
effectiveness of the method beyond what can actually be seen. This shows that accurately interpreting
experimental results is still a difficult task for our AI Scientist system.

Writing Risk4 :

A mechanism is needed to prevent the agent from generating non-existent citations.

During the reflection stage, we observed that the agent occasionally modified the BibTeX file on its own—for
example, by introducing incorrect author information or adding entries for papers that do not actually exist.
To address this issue, we adopted an agentic framework in which, whenever a citation is required during
feedback-based revision, any references to be revised or added are dynamically retrieved through the Semantic
Scholar API. In addition, since the writing agent sometimes automatically generated a new .bib file and
referenced that instead, we explicitly instruct the agent to refer only entries stored in the verified BibTeX file
that contains the correct entries obtained from the Semantic Scholar API.

7.4 Review

Review Risk1 :

Current AI reviewers cannot detect discrepancies between the actual experimental results and the
written descriptions.

Current AI Reviewers primarily evaluate the written content of papers and lack any mechanism to detect
discrepancies between the text and the actual experimental results. For instance, even if all the reported
ablation studies were fabricated, there is no way for the reviewer to identify such inconsistencies. A similar
observation was also reported in (Jiang et al., 2025). To address this issue, it would be necessary to develop
a reviewing agent that can access and analyze all associated code files and result data in addition to the
manuscript. Developing AI reviewers that can incorporate not only textual information but also experimental
code and data will be an important direction for future research.
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8 Conclusion

In this paper, we aimed to thoroughly investigate the current AI Scientist capabilities and the associated risks.
To this end, we developed Jr. AI Scientist, an AI Scientist specialized in extending a given baseline paper. By
combining carefully designed mechanisms at each stage with the latest powerful coding agents, Jr. AI Scientist
is capable of autonomously generating research papers of higher quality than those produced by existing
systems. This provides valuable insights into the capability of our Jr. AI Scientist. However, through the
author evaluation and the evaluation of Agents4Science, several important challenges have become apparent,
which will be important future work. Finally, we present specific examples of the risks and failures identified
during development. We hope these insights will help deepen the understanding of both the current progress
and the potential risks in AI Scientist research and development.

Limitations and Future Work

Use of Multiple Agents. We built our AI Scientist on top of a single coding agent (i.e. Claude Code) and a
single family of large language models. We did not explore the potential benefits of combining multiple LLMs
or coding agents to further improve performance. Investigating multi-agent or multi-model configurations
remains an important direction for future work.

Fragility of Novelty Verification via Semantic Scholar. Our novelty verification relies on Semantic
Scholar, which remains fragile and incomplete. How to more reliably ensure and validate the novelty of
generated research is an important open problem and a key challenge for future research.

Addressing Observed Risks and Identified Limitations. In this study, we place emphasis on accurately
reporting observed risks and limitations identified through projects. Developing methods to mitigate these
risks and address the identified limitations will be an important direction for future efforts.
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Appendix

A Public Release of Codebase and Detail Prompts

We plan to gradually release a codebase and detail prompts. This decision is motivated by the potential
risks associated with making the Jr. AI Scientist easy to use. As discussed in the main paper, AI Scientist
systems, including the Jr. AI Scientist, also involve various risks, and the potential impact on the academic
community must be carefully considered. Therefore, we plan to release a codebase after evaluating the risks
that this system may pose to the research community.

B Detail of Agents4Science Reviews

This section presents detailed reviews from Agents4Science. In Section 5, we focused on reviews that address
the fundamental limitations of the Jr. AI Scientist. In contrast, this section provides detailed reviews to
clarify what is required for AI Scientist–generated papers to be accepted at future Agents4Science conferences.
(If the goal is just acceptance, including human intervention is the fastest way.) As noted in Section 5, the
papers submitted were generated by an earlier version of the Jr. AI Scientist and are therefore not identical
to the paper introduced in this work.

B.1 LoCoOp Extention Paper

Reviewer 1

Review Score

Score: 3: Borderline reject

Reviewer Comments

The paper proposes Nuisance-Prompt Tuning (NPT) for few-shot OOD detection with CLIP, in-
troducing a learnable nuisance prompt, attention-weighted patch supervision, and a margin loss to
separate nuisance and class prompts. The method is simple, well-motivated, and addresses background
contamination in few-shot prompt learning, with coherent integration of components. Empirical
gains are consistent on three of four OOD datasets, with the largest improvement on iNaturalist,
but overall improvements are modest (AUROC +0.006; FPR95 -0.028 absolute). The evaluation
is limited in breadth (only one backbone, few baselines, no multi-shot results in main text), and
lacks statistical rigor (no error bars, single-seed reporting). The reliance on CLS attention as a
proxy for foreground/background is plausible but unvalidated. Some ablation results raise questions
about training confounds. The inference scheme is sensible but under-explored. The method is
clearly described, but some implementation details and sampling protocols are missing. The work
is an incremental advance, with moderate novelty, and reproducibility is plausible but not robustly
supported. Ethics and limitations are briefly discussed. Actionable suggestions include expanding
evaluation (more backbones, baselines, multi-shot, error bars), validating the attention assumption,
analyzing SUN degradation, clarifying implementation, and exploring alternative inference schemes.
Overall, the paper is a clear and reasonable contribution with promising intuitions, but the empirical
evidence and breadth fall short of top-tier standards. Recommend rejection in current form, with a
path to acceptance after expanded, statistically robust evaluation and stronger baselines/analyses.

Reviewer 2

Review Score

Score: 5: Accept
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Reviewer Comments

Strengths:
Clear motivation and problem formulation, with a precise critique of prior work. Technically sound,
novel, and elegant method, with clever use of CLIP’s self-attention and a well-designed loss function.
Comprehensive and rigorous evaluation, including strong baselines and qualitative evidence. Strong
ablation study demonstrating the importance of each component. High clarity and readability
throughout the paper.
Weaknesses:
Lack of statistical significance testing due to single-run experiments; error bars or confidence intervals
are not reported. Slight performance degradation on the SUN dataset is acknowledged but not deeply
analyzed. Limited discussion of limitations; a dedicated section would be beneficial. Overall, this is a
high-quality paper with a solid technical contribution, rigorous validation, and excellent clarity. The
weaknesses are minor and do not detract significantly from the overall strength of the work. The paper
makes a clear and valuable contribution to the field and is well-suited for publication at a top-tier
conference. Strongly recommended for acceptance.

Reviewer 3

Review Score

Score: 3: Borderline reject

Reviewer Comments

This paper introduces Nuisance-Prompt Tuning (NPT), a method for few-shot out-of-distribution
(OOD) detection that addresses background contamination in prompt learning approaches. The paper
is technically sound, with a clear motivation and comprehensive experimental validation across four
OOD benchmarks. The method uses a dedicated ’nuisance’ prompt, attention-weighted supervision,
and margin-based repulsion, and is well-presented with thorough ablation studies. However, the
improvements over baselines are modest, with only small gains in FPR95 and AUROC, and there is
performance degradation on the SUN dataset, raising concerns about robustness and generalizability.
The approach is incremental, introducing additional hyperparameters despite claims of reduced tuning
complexity, and the novelty is mainly in the combination of existing techniques. The paper is well-
written and reproducible, but the AI-generated nature of the work raises questions about the validity
of experimental claims. Limitations and ethical considerations are discussed, and related work is
well-covered. Specific concerns include small improvement margins, unexplained performance drops,
questionable claims about threshold brittleness, limited analysis of computational overhead, and
dataset-dependent effectiveness. Minor issues include figure readability and theoretical motivation for
the margin-based repulsion. Overall, the work is solid but incremental, with limited impact and some
concerns about robustness and reproducibility.

B.2 Min-K%++ Extention Paper

Reviewer 1

Review Score

Score: 2: Reject
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Reviewer Comments

The paper introduces Multi-Layer Concentration Analysis (MLCA) to improve pre-training data
detection by augmenting Min-K%++ with distribution-shape features computed at multiple layers.
While the motivation is clear and the method is described transparently, the review identifies several
significant weaknesses: (1) lack of calibration/validation for per-layer distributions, (2) errors and
ambiguities in aggregation and normalization formulas, (3) inconsistent application of the method
across architectures (multi-layer only for Mamba, not Pythia), (4) modest and mixed empirical gains
with insufficient statistical rigor (no confidence intervals, inconsistent reporting), (5) hand-chosen
fusion weights without proper justification or cross-validation, (6) limited baselines (only Min-K%++),
and (7) incomplete reporting of experimental details and reproducibility. The contribution is seen
as incremental, with originality limited by the use of standard features and lack of novel multi-layer
probing. The review recommends rejection, suggesting that a revised version addressing calibration,
formula correctness, fairer comparisons, stronger baselines, and more rigorous evaluation could be a
solid contribution.

Reviewer 2

Review Score

Score: 3: Borderline reject

Reviewer Comments

Strengths:
Novel insight that SSMs like Mamba benefit more from multi-layer analysis than Transformers,
suggesting fundamental architectural differences. Well-motivated and technically sound approach,
building on strong baselines and using theoretically grounded features. Strong empirical results
for Mamba, with clear visualizations and meaningful AUROC improvements. Clear writing, good
structure, and a dedicated limitations section. Weaknesses:
Critically flawed evaluation for the Transformer (Pythia): the comparison is invalid due to a "simplified"
analysis for Pythia, lacking transparency and rigor, undermining claims about architectural differences.
Inconsistent hyperparameter selection: main results use a suboptimal value, weakening confidence in
the findings. Limited robustness: small sample sizes, single runs, and no statistical significance tests
make it hard to assess the reliability of the reported gains. Overall, the paper presents a promising idea
and strong results for Mamba, but major experimental flaws—especially regarding the Transformer
evaluation and hyperparameter inconsistency—outweigh the reasons to accept. The paper is not ready
for publication in its current form, but could be reconsidered if these issues are addressed.

Reviewer 3

Review Score

Score: 3: Borderline reject

Reviewer Comments

This paper presents Multi-Layer Concentration Analysis for enhancing pre-training data detection
in large language models. The work is technically sound, building on the Min-K%++ baseline and
introducing concentration features (Shannon entropy, Gini coefficient, top-k concentration, effective
vocabulary size) from multiple network layers. The mathematical formulations are correct and the
experimental methodology is reasonable. However, improvements are modest (especially for Pythia,
0-1 percentage points AUROC), there is no statistical significance testing due to single runs, and the
theoretical justification for multi-layer analysis could be stronger. The paper is generally well-written
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and organized, with clear methodology and effective figures, though some technical details (like
layer selection and feature aggregation weights) could be clearer. The significance is limited, with
incremental improvements and the most notable gains for Mamba (up to 1.9 percentage points). The
architectural insights are interesting but not groundbreaking. The originality lies in combining multi-
layer analysis with concentration features, but the core ideas are not particularly novel individually.
The paper provides sufficient detail for reproduction, though the lack of error bars and single runs
limit reproducibility assessment. Ethical considerations are adequately discussed, focusing on data
privacy and copyright. The related work section is comprehensive and citations are appropriate. Major
concerns include modest improvements, single runs without statistical testing, shallow theoretical
understanding, and limited exploration of architectural differences. Minor issues include arbitrary
hyperparameter choices, limited computational overhead analysis, and some unsupported claims about
architectures. Overall, the paper addresses an important problem and shows consistent if modest
improvements, representing an incremental advance rather than a significant breakthrough.

B.3 GL-MCM Extention Paper

Reviewer 1

Review Score

Score: 3: Borderline reject

Reviewer Comments

Strengths:
The method is simple, clear, and training-free, with minimal overhead. Uses a principled uncertainty
signal to address max-pooling weaknesses. Qualitative evidence is provided via score distributions.
Weaknesses:
Evaluation is on very small subsets (100–500 images), lacking error bars and statistical testing, which
limits reliability and invites sampling variance. Baselines are limited to GL-MCM; no comparisons to
other zero-shot OOD methods (e.g., CLIPN, ZOC, MCM). The method is sensitive to the α parameter,
with no automatic selection mechanism, raising deployment risk. Inconsistency in claims: Table 1
claims “consistent improvements,” but SUN AUROC decreases while FPR95 improves. Subset selection
details (randomization, seeds) are unspecified, limiting interpretability and reproducibility. The “first”
claim of an information-theoretic framework is overstated, as related ideas exist. Recommendations:
Expand evaluation to full ImageNet-OOD benchmarks, use multiple random seeds, and report
confidence intervals. Compare against more zero-shot OOD methods under a standardized protocol.
Provide sensitivity analyses and investigate automatic α selection. Clarify subset selection and
compute details; include runtime benchmarks. Add qualitative visualizations of entropy weights
on images. Correct or qualify the “consistent improvements” claim and discuss the SUN AUROC
trade-off. Consider alternative uncertainty signals and report ablations. If claiming theoretical
grounding, provide supporting analysis. Overall, the idea is neat and potentially useful, but the
current empirical evidence is too limited for acceptance at a high-standard venue. Strengthening
evaluation and comparisons would improve the paper’s credibility and impact.

Reviewer 2

Review Score

Score: 3: Borderline reject
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Reviewer Comments

This paper introduces Entropy-Weighted Local Concept Matching (ELCM), a novel, theoretically-
motivated method for zero-shot out-of-distribution (OOD) detection using vision-language models.
The main contribution is an entropy-based weighting scheme for aggregating patch-level predictions,
addressing the limitations of max-pooling in prior work (GL-MCM). The paper is well-written,
clearly motivated, and demonstrates consistent improvements over the GL-MCM baseline on several
OOD datasets, with notable reductions in FPR95. The authors are transparent about the method’s
limitations.
However, the experimental validation is insufficient: the evaluation is limited to a single baseline
(GL-MCM), with no comparison to other state-of-the-art methods, making it difficult to assess
the true significance of the approach. The experiments are conducted on small samples without
statistical robustness (no error bars or multiple runs), and the method is highly sensitive to a key
hyperparameter. Additionally, the impact of several engineering enhancements is not disentangled
from the core contribution due to a lack of detailed ablation studies.
Overall, while the idea is promising and the presentation is strong, the paper’s empirical evidence is
too weak to support acceptance. I recommend rejection in its current form, but encourage the authors
to address the experimental shortcomings and resubmit, as the core idea could underpin a strong
future paper.

Reviewer 3

Review Score

Score: 3: Borderline reject

Reviewer Comments

This paper presents Entropy-Weighted Local Concept Matching (ELCM), an improvement to GL-
MCM for zero-shot out-of-distribution detection in vision-language models. The technical approach is
sound and theoretically motivated, using Shannon entropy to weight patch-level contributions, but the
improvement is modest (AUROC from 0.9129 to 0.9188, FPR95 from 0.3495 to 0.2975) and introduces
hyperparameter sensitivity. The implementation includes ad-hoc components that undermine the
theoretical elegance. The paper is well-written and clearly structured, though some implementation
details are relegated to the appendix. The impact is limited, as improvements are modest and only
compared to GL-MCM, not other methods. The originality lies in applying entropy-based weighting,
but the work is incremental. Reproducibility is reasonable, with code provided, but evaluation is limited
to 100 images per dataset. The authors are transparent about limitations, including hyperparameter
sensitivity and limited baseline comparisons. Related work is adequate but could be broader. Major
concerns include limited evaluation scope, modest improvements, hyperparameter sensitivity, and ad-
hoc enhancements. Strengths are theoretical motivation, honest evaluation, consistent improvements,
and clear presentation. Overall, the paper is a solid incremental contribution but does not make a
significant impact due to modest improvements and practical limitations.
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