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Abstract

Multimodal learning systems often encounter challenges related to modality im-
balance, where a dominant modality may overshadow others, thereby hinder-
ing the learning of weak modalities. Conventional approaches often force weak
modalities to align with dominant ones in "Learning to be (the same)" (Posi-
tive Learning), which risks suppressing the unique information inherent in the
weak modalities. To address this challenge, we offer a new learning paradigm:
"Learning Not to be" (Negative Learning). Instead of enhancing weak modal-
ities’ target-class predictions, the dominant modalities dynamically guide the
weak modality to suppress non-target classes. This stabilizes the decision space
and preserves modality-specific information, allowing weak modalities to pre-
serve unique information without being over-aligned. We proceed to reveal the
multimodal learning from a robustness perspective and theoretically derive the
Multimodal Negative Learning (MNL) framework, which introduces a dynamic
guidance mechanism tailored for negative learning. Our method provably tightens
the robustness lower bound of multimodal learning by increasing the Unimodal
Confidence Margin (UCoM) and reduces the empirical error of weak modali-
ties, particularly under noisy and imbalanced scenarios. Extensive experiments
across multiple benchmarks demonstrate the effectiveness and generalizability of
our approach against the competing methods. The code is available at https:
//github.com/BaoquanGong/Multimodal-Negative-Learning.git.

1 Introduction

Multimodal learning has become a cornerstone in many real-world applications, such as autonomous
perception [1], medical diagnosis [2], and human-computer interaction [3]. By integrating infor-
mation from multiple sources, such as vision, audio, and text, multimodal systems aim to improve
performance and generalization. However, multimodal data often exhibit a significant imbalance be-
tween modalities due to noise, lack of information, or sensor heterogeneity [4]. Unimodal prediction
accuracy is widely used to detect modality imbalance, which is a simple and effective metric [5, 6, 7],
but it is inherently sensitive to noise and perturbations [8]. This vulnerability often leads to fragile
performance in practice, limiting the reliability of such definitions in real-world deployments.

Extensive prior studies, especially those based on late fusion, also known as decision-level fusion
strategies, have attempted to alleviate modality imbalance. Common approaches include enhancing
the predictive performance of weak modalities through aggregating independently trained modality-
specific classifiers [9, 10], confidence-based weighting [5], adaptive ensembling [11], or knowledge
distillation [12, 13] from dominant modalities. While effective in certain scenarios, these methods
often implicitly aim to align weak modalities with dominant ones in terms of prediction accuracy. This
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Figure 1: (a) Illustration of conventional (top) vs. our (bottom) strategies: instead of improving target
prediction of weak modalities, we stabilize their decision space by suppressing non-target classes,
which can preserve the modality-specific information and enhance robustness. (b) Empirical evidence:
forced alignment can degrade weak modality (Video) predictions on certain samples, highlighting the
risk of losing modality diversity. Where KL Guidance stands for the forced alignment method.

over-alignment may lead to several issues: (i) suppressing the distinct and complementary information
encoded in weak modalities; (ii) risking error propagation, as dominant modality errors are amplified
when weak modalities follow them blindly [14, 15]. More importantly, we conduct a statistical
analysis illustrated in Fig. 1 (b), showing that traditional alignment-based strategies may even harm
weak modalities. Specifically, we observe that samples originally predicted correctly by weak
modalities (e.g., Video) but incorrectly by dominant modalities (e.g., Audio) become misclassified
after being guided by fixed unidirectional KL guidance, as training progresses and eventually leads to
what we term an over-alignment collapse point, where weak modalities lose their original predictive
advantages due to excessive conformity [16].

In this paper, we propose a novel perspective: rather than requiring weak modalities to select the
correct class, we teach them to eliminate implausible ones, forming a negative learning process. This
paradigm shift is motivated by the intuition that it is often easier to rule out wrong answers than to
select the right one [17, 18], especially when data quality is limited. As shown in Fig. 1 (a), unlike
conventional methods that force weak modalities to identify the target class, they are often highly
sensitive to noise and perturbations. Our approach enhances robustness by stabilizing the decision
space, making the fusion process more resilient to uncertainty. Decision space instability refers to a
model’s high sensitivity to input perturbations near the decision boundary, where even minor changes
may cause large shifts in prediction. By mitigating this instability, our method not only improves
robustness but also preserves modality-specific information.

By allowing dominant modalities to guide weak ones through negative learning, we gain two major
advantages: (1) we stabilize the decision space, thereby improving the robustness and consistency
of the final prediction, making it less sensitive to noise and better at resisting perturbations; (2) we
reduce the performance gap between modalities, effectively mitigating modality imbalance. This
elimination-based view of weak modalities transforms them from noisy distractions into active agents
of uncertainty reduction, which is especially useful in safety-critical or imbalanced scenarios.

To support this view, we introduce a learning not to be strategy for multimodal learning that shifts the
focus from only improving weak modality predictions to reducing uncertainty over non-target classes.
We establish a theoretical guarantee on the robustness lower bound of decision-level fusion, showing
that this uncertainty suppression leads to more reliable performance. Furthermore, we demonstrate
that the empirical error of weak modalities can be significantly reduced under this strategy, especially
in noisy or imbalanced scenarios. In other words, our method not only enhances multimodal
cooperation robustness under perturbations, but also narrows the performance gap between modalities.
We summarize our main contributions as follows:

• We provide an intuitive and rigorous multimodal learning paradigm from the perspective of
robustness. Under the theoretical analysis, we propose a new negative learning paradigm,
stabilizing the decision space by instructing non-target classes of the weak modalities to
learn from the dominant one.
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• Building on our theoretical finding, we derive a new Multimodal Negative Learning (MNL)
framework based on the Unimodal Confidence Margin (UCoM). This offers theoretical
guarantees to tighten the robustness lower bound from multimodal learning, effectively
mitigating modality imbalance and boosting robustness.

• Our model is flexible and compatible with a wide range of late fusion methods without
introducing additional inference overhead. Extensive experiments confirm its practical
effectiveness and generalizability in challenging multimodal scenarios.

2 Related Work

2.1 Imbalanced Multimodal Learning

Modality imbalance is a common challenge in multimodal learning, where different modalities vary
in quality, completeness, and reliability. This issue is present across all fusion strategies: early fusion
[19, 20], intermediate fusion [6, 21, 22], and late fusion [23, 24]. Among these, late fusion remains
one of the most widely adopted paradigms due to its modular design, interpretability, and strong
compatibility with unimodal pre-trained models [25]. Due to the lack of feature-level compensation
or cross-modal interaction, late fusion tends to amplify the influence of strong modalities while
weakening the role of lower-quality ones. Consequently, predictions from disadvantaged modalities
often carry little weight or even introduce noise into the final decision [26]. To address this, a
variety of methods have been proposed to alleviate imbalance in late fusion settings. These include
confidence-based weighting [27, 28], modality dropout or gating [29], and adaptive ensembling
strategies [11], which aim to dynamically suppress or correct low-quality predictions. However,
the prevailing philosophy in these works is to improve the predictive accuracy of weak modalities
for the target class, attempting to bring them closer to their stronger counterparts, which can easily
cause modality-specific information loss. Inspired by the intuition that "Learning not to be: ruling
out wrong answers is often easier than identifying the correct one [17, 18]", we propose a novel
perspective: leveraging dominant modalities to assist weak modalities in identifying and suppressing
non-target classes. By stabilizing the decision space of weak modalities in this way, we reduce their
exposure to noise and uncertainty, and enhance their utility in the final decision. This approach not
only promotes alignment between weak and dominant modalities, but also preserves the distinctive
information of weak modalities, enabling more diverse and robust decision fusion.

2.2 Robustness in Multimodal Cooperation

Robustness has long been a critical topic in multimodal learning due to the inherent sensitivity
of cooperation to perturbations such as data noise, label noise, and incomplete modality [30, 31].
These vulnerabilities stem from the heterogeneity of the modalities and their varying reliability
under real-world scenarios. Existing studies address this by incorporating uncertainty modeling [21],
designing robustness-aware fusion strategies [5, 6]. Some works also attempt to quantify multimodal
robustness through novel evaluation metrics [16], or connect it with generalization error bounds
[32, 33]. Collectively, these studies have highlighted a critical insight: the robustness of a multimodal
system can be bottlenecked by a single weak modality [34], revealing a strong link between modality
imbalance and overall system reliability. However, most of these approaches emphasize prediction-
consistency modeling, often overlooking the role of decision space instability—especially the impact
of non-target categories. This leads to more complex architectures with limited generalizability
across tasks with different class granularity [35]. In contrast, our method improves robustness from a
decision perspective: by identifying and suppressing non-target categories, we stabilize the effective
decision space and enhance resistance to noisy or conflicting predictions. This contributes to a tighter
theoretical robustness lower bound for decision-level fusion, providing both practical generalization
and theoretical justification.

3 Method

In this section, we first clarify the basic setup of the multimodal late fusion system and extend the
multimodal robustness lower bound to the late fusion framework. We then introduce Multimodal
Negative Learning (MNL), which reduces uncertainty in non-target classes and tightens the robustness
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Figure 2: After cross entropy optimization, each unimodal learner updates its parameters based
on ground-truth supervision, overlooking non-target class optimization, especially problematic for
inferior modalities, which introduce noise during fusion. With the MNL, the robust dominant modality
guides the inferior one by reducing uncertainty over non-target classes, thereby enhancing multimodal
robustness with a larger UCoM.

lower bound in multimodal learning by enhancing the UCoM. Finally, we present the multimodal
training strategy that incorporates the MNL.

3.1 Basic Setting

Given multimodal tasks, we denote the set of modalities by M, where |M| represents the cardinality
of M. Without loss of generality, the training data points are denoted as Dtrain = {(xi, yi)}Ni=1 ⊂
X × Y , where N is the sample size of Dtrain, xi = {x(1)

i , . . . , x
(|M|)
i } represents the input for

the i-th sample across all modalities, and yi ∈ Y denotes the corresponding label. In the late
fusion framework, we define the logit output of the unimodal model is given by f (m). Depending
on the specific fusion strategy employed in late fusion, the unimodal logits are either averaged or
dynamically fused. The fusion result is represented as f(x), which is formally defined as:

f(x) =

|M|∑
m=1

w(m)f (m), (1)

where w(m) ≥ 0 and
∑|M|

m=1 w
(m) = 1. Static late fusion assigns equal weights to all modalities,

whereas dynamic late fusion allows the weights to vary across samples. Overall, late fusion is favored
for its flexibility, robustness, and interpretability [36].

3.2 Robust Lower Bound for Multimodal Learning with Late Fusion

Inspired by [16] and following their definition of multimodal robustness, we extend the lower bound
of multimodal robustness to the case of late fusion. Specifically, when the multimodal model f
correctly classifies the sample xi, we introduce the multimodal robustness radius for the sample xi:

R(xi) = min ∥xi − x′
i∥2 s.t.∃j ̸= y, f(x′

i)y = f(x′
i)j (2)

where ∀k ̸= y, f(xi)y > f(xi)k, f(xi)k denotes the logit of class k and x′
i denotes the adversarially

perturbed sample. Given the ground-truth label yi and its nearest competing class j, this defines
the smallest perturbation, denoted as xi − x′

i. Any perturbation smaller than this, i.e., within the
multimodal robustness radius, can thus be reliably defended. For simplicity, for a unimodal logit
output f (m)(x

(m)
i ), we introduce the Unimodal Confidence Margin (UCoM) as follows:

ξj(m) = f (m)(x
(m)
i )y − f (m)(x

(m)
i )j (3)

where y is the target class and j is the most probable class among the non-target classes. Unless
otherwise specified, we omit the explicit subscript of the competing class j for simplicity, and denote
it compactly as ξ(m). We analyze the UCoM. A larger margin indicates that the unimodal modality is
more reliable in distinguishing between these two classes.
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For the competing class j in the final fused result, if there exists a perturbed sample x′
i of xi such that

f(x′
i)y = f(x′

i)j (i.e., a critical state), then for the original sample xi, the multimodal CoM between
class y and the competing class j is given by:

f(xi)y − f(xi)j =

|M|∑
m=1

w(m) · ξ(m) −
|M|∑
m=1

w(m) · ξ′(m) =

|M|∑
m=1

w(m) · (ξ(m) − ξ′(m)) (4)

where
∑|M|

m=1 w
(m) = 1 and

∑|M|
m=1 w

(m) · ξ′(m) = 0. Furthermore, we introduce the Lipschitz
constant τ(m) [16, 37], which characterizes the minimal constant that bounds the local variation of a
function, to simplify:

|ξ(m) − ξ′(m)| ≤ τ(m)∥x
(m)
i − x

(m)′

i ∥2 (5)

where ξ′(m) denotes the UCoM of the sample x
(m)
i after being perturbed x

(m)′

i . Finally, we can
provide the lower bound of multimodal robustness in late fusion framework. The proof details are
provided in the Appendix A.1.

Theorem 3.1. Multimodal Robustness of the Late Fusion Multimodal System. Given an input xi and
a perturbed sample x′

i, for the target class y and the closest competing class j ̸= y, let ξ(m) denote
the UCoM for the m-th modality under a Lipschitz constraint τ(m). Let w(m) represent the weight
assigned to the m-th modality in a late fusion scheme. The lower bound of the perturbation radius in
the late fusion framework when |M| = 2 can then be described as:

R(xi) = min ∥xi − x′
i∥2 ≥

w(1)ξ(1) + w(2)ξ(2)√
(w(1)τ(1))2 + (w(2)τ(2))2

. (6)

Corollary 3.2. Larger Unimodal Confidence Margins lead to greater robustness in multimodal
systems.

3.3 Multimodal Negative Learning

In multimodal tasks, significant disparities in modality quality and information capacity are common.
Weak modalities often struggle to produce accurate predictions independently, especially as inter-
modal imbalance increases, leading to greater uncertainty in the output space. Intuitively, it is easier
for such modalities to suppress incorrect predictions than to identify the correct one. Thus, leveraging
high-confidence predictions from the dominant modality to suppress uncertainty in the weak modality
over non-target classes is a natural choice. On one hand, a dominant modality that is more accurate
on the target class typically exhibits lower uncertainty on non-target classes, enabling it to denoise
the weak modality and enhance cross-modal consistency. On the other hand, restricting the guidance
to non-target classes helps prevent the weak modality from over-aligning with the dominant one,
thereby preserving its complementary information rather than being overwhelmed. Further details on
preserving unique information of the weaker modality are provided in Appendix B.1.

However, Theorem 3.1 and Corollary 3.2 show that relying only on confidence in the ground-truth
class to define modality roles can be risky. Guiding the weak modality using non-target signals from
the strong one may reduce its margin and harm robustness. To avoid this, we redefine dominant and
inferior modalities to ensure both lower uncertainty and preserved robustness.

Definition 3.3. A modality exhibiting higher confidence in the target class and a larger UCoM is
regarded as the Robust Dominant Modality (RDM); the others are considered the Inferior Modality
(IM).

Therefore, when the robust dominant modality exhibits lower uncertainty over non-target classes and
a larger UCoM, guiding the inferior modality using the non-target information from the dominant
enables the inferior modality to eliminate more uncertain choices and enlarge its own margin. This
ultimately enhances the overall robustness of the multimodal system. Based on this intuition, we
propose Multimodal Negative Learning:

MNL(P (RDM), P (IM), y) = −y · P (RDM) · log(P (IM)) (7)

where P (m) = σ(f (m)(x
(m)
i )), σ(·) denotes the softmax function and y indicates 0 at the ground-

truth class and 1 for all non-target classes. Most importantly, during the optimization of MNL, we
detach the predictions from the robust dominant modality. Furthermore, an analysis of the MNL from
the perspective of empirical error reduction is provided in the Appendix A.2.
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3.4 Dynamic Guidance and Training Strategy

It is important to note that modality dominance is not a fixed property. Instead, it emerges as
a dynamic phenomenon that varies across samples, tasks, and training iterations. Therefore, we
implement dynamic guidance between modalities based on the variation in modality predictions.
Specifically, when |M| = 2:

MNL(P (RDM), P (IM), y) =

{
−y · P (1) · log(P (2)) P

(2)
y < P

(1)
y , ξ(2) < ξ(1)

−y · P (2) · log(P (1)) P
(1)
y < P

(2)
y , ξ(1) < ξ(2)

(8)

The dynamic guidance mechanism is a critical component of MNL. Its core is formalized in Definition
3.3, which jointly considers both Py and UCoM to identify the RDM and the IMs. If dynamic guidance
is absent in multimodal negative learning, an incorrect modality may guide a correct one, and a low
UCoM modality might influence a high UCoM one, potentially weakening the multimodal system’s
robustness. Moreover, the motivation behind the MNL is to reduce the uncertainty of the inferior
modality, thereby enabling it to better focus on the correct answer. Therefore, in addition to negative
learning for the non-target classes, it is also intuitive to positive learning for the target class. For
the target class, the standard cross-entropy loss naturally fulfills this objective. Consequently, in our
training process, the overall loss is defined as:

L = CE(P fusion, y) +

2∑
i=1

CE(P (i), y) + λ ·MNL(P (RDM), P (IM), y) (9)

where CE(·, ·) denotes the cross-entropy loss, P fusion = σ(f(x)). y is the one-hot label, which
equals 1 at the ground truth class. The hyperparameter λ controls the strength of MNL. The training
process is divided into two stages. During Stage 1, we employ only the CE(·, ·) loss to optimize
for the target class. In Stage 2, once the performance of both modalities stabilizes, we incorporate
the MNL to better exploit the guidance from the dominant modality to the inferior modality. The
warm-up setting primarily serves to reduce unnecessary computational cost in the early phase of
MNL training. The overall pseudocode of our model is provided in the Appendix C.6.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the proposed method on a variety of multimodal classification tasks, including
(1) image-text classification using the UMPC Food-101 dataset [38], which contains approximately
100,000 image-text recipe pairs collected in uncontrolled environments, covering 101 food categories
with varying levels of noise in both modalities; (2) sentiment analysis using the MVSA dataset
[39], which consists of paired user-generated images and texts annotated with sentiment polarity; (3)
scene recognition based on the NYU Depth V2 dataset [40], which includes RGB-depth image pairs
primarily focused on indoor scene understanding; and (4) emotion recognition using the CREMA-D
dataset [41], a multimodal audio-visual dataset in which actors express six basic emotions (happiness,
sadness, anger, fear, disgust, neutrality) through spoken utterances.

Evaluation metrics. To ensure consistency with prior work [33, 42, 43], we evaluate average model
performance under Gaussian and Salt noise for image modality, SNR-based noise for audio modality,
and blank noise for the text modality. To reduce the variance introduced by stochastic factors, we
conduct evaluations using five independent random seeds.

Baselines and competing methods. In our experiments, we integrate the proposed MNL with
both static late fusion method (LATE FUSION, LF) and advanced dynamic late fusion approaches.
Specifically, we compare our method against representative static fusion strategies as well as state-of-
the-art dynamic fusion techniques such as DynMM [44], TMC [43], QMF [42], and PDF [33]. In
addition, we establish unimodal baselines to provide a comprehensive evaluation.

Implementation details. The network is trained using the original configuration of the corresponding
method, with the MNL directly incorporated. All experiments are conducted on an NVIDIA TITAN
GPU using PyTorch, with default settings applied across all methods. The warm-up time of Stage 1
and additional details are provided in the Appendix C.
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Table 1: Performance of different methods under varying noise levels across four (MVSA, FOOD101,
NYU Depth V2, and CREMA-D) datasets. We add noise (Gaussian noise for image-related modal-
ities) on 50% modalities and ε presents the noise degree. The red and blue represent the best and
second-best result respectively. We used ↑ and ↓ to illustrate the amount of increase or decrease
our MNL method achieved. LF denotes static late fusion. Full results with standard deviation are
reported in Appendix 14.

Method MVSA UMPC FOOD 101 NYU DEPTH V2 CREMA-D
ε=0.0 5.0 10.0 ε=0.0 5.0 10.0 ε=0.0 5.0 10.0 ε=0.0 5.0 10.0

Unimodal1 64.12 49.36 45.00 64.62 34.72 33.03 63.30 53.12 45.46 60.70 59.60 49.52
Unimodal2 75.61 69.50 47.41 86.46 67.38 43.88 62.65 50.95 44.13 56.23 52.47 38.17

LF 76.88 63.46 55.16 90.69 68.49 57.99 70.03 64.37 60.55 68.04 64.25 52.39
DYNMM 79.07 67.96 59.21 92.59 74.74 59.68 65.50 54.31 46.79 63.27 62.01 51.43

TMC 74.87 66.72 60.35 89.86 73.93 61.37 70.40 59.33 50.61 63.63 62.68 57.97
QMF 78.07 73.85 61.28 92.90 76.03 62.21 69.54 64.10 60.18 66.13 64.27 50.77
PDF 79.94 74.40 63.09 93.32 76.47 62.83 71.37 65.72 62.56 67.07 64.57 53.33

LF+MNL 79.50 74.03 63.01 92.77 75.16 62.06 71.05 67.02 63.81 73.71 70.35 57.26
∆ ↑2.62 ↑10.57 ↑7.85 ↑2.08 ↑6.67 ↑4.06 ↑1.02 ↑2.65 ↑3.26 ↑5.67 ↑6.10 ↑4.87

QMF+MNL 79.45 74.12 62.75 93.03 75.41 62.59 71.25 65.38 61.80 68.18 67.00 52.62
∆ ↑1.38 ↑0.27 ↑1.47 ↑0.13 ↓0.62 ↑0.38 ↑1.71 ↑1.28 ↑1.62 ↑2.05 ↑2.73 ↑1.85

PDF+MNL 80.54 74.07 63.78 93.33 76.65 63.16 71.52 67.01 63.07 69.18 66.94 55.43
∆ ↑0.60 ↓0.33 ↑0.69 ↑0.01 ↑0.18 ↑0.33 ↑0.15 ↑1.29 ↑0.51 ↑2.11 ↑2.37 ↑2.10

4.2 Results

Tables 1 and 2 present the main results across all datasets. For the MVSA and FOOD-101 datasets,
Unimodal1 and Unimodal2 refer to the image and text modalities, respectively. In the NYU Depth
V2 dataset, they correspond to depth and RGB, while in the CREMA-D dataset, they denote the audio
and visual modalities. Specifically, Gaussian noise is added to image-related modalities in Table 1,
Salt noise is added to image-related modalities in Table 2, blank (masking) noise is applied to text,
and noise is added to audio by adjusting the signal-to-noise ratio (SNR) according to the noise level
following [33, 42]. We standardize the noise levels across modalities as ϵ = 0, 5, and 10, allowing
us to evaluate the robustness of multimodal models under varying degrees of noise. MNL enhances
the model’s robustness compared to the baselines and competing methods. At multiple noise levels,
MNL significantly improves the performance of the static late fusion method. In most cases, MNL
consistently outperforms both the PDF and QMF baselines.

Notably, the improvement brought by MNL is less pronounced when applied to dynamic fusion
methods compared to static fusion strategy. As indicated in Theorem 3.1 and Corollary 3.2, the
lower bound of multimodal robustness is jointly influenced by both the modality weights and the
UCoM. Dynamic fusion strategies [33, 42] generally assign higher weights to modalities that are more
confident in predicting the target class, while overlooking the potential synergy between modality
weighting and UCoM enhancement. Specifically, MNL encourages weaker modalities to increase
their margins, but dynamic fusion tends to down-weight these weaker modalities, resulting in a
misalignment. This misalignment can diminish the benefits of MNL in the dynamic fusion setting
and may even lead to performance degradation relative to the baseline. In most cases, increasing
the UCoM of the inferior modality leads to higher confidence in predicting the ground truth. On
the NYU Depth V2 dataset, MNL improves the performance of both static and dynamic fusion
methods. However, the gains are relatively modest, likely because the dataset exhibits minimal
imbalance between the two modalities. In other words, the gap between the robust dominant and
inferior modalities is small. As a result, the dominant modality has limited capacity to guide the
inferior modality, reducing the effectiveness of the margin enhancement encouraged by MNL.

4.3 Ablation Study

Table 3 compares the performance of three guidance strategies—Prior, Confident, and Robust—under
different noise levels (ϵ = 0, 5, 10) on both dynamic PDF and static late fusion frameworks. Prior
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Table 2: Performance of different methods under varying noise levels across four (MVSA, FOOD101,
NYU Depth V2, and CREMA-D) datasets. We add noise (Salt noise for image-related modalities)
on 50% modalities and ε presents the noise degree. LF denotes static late fusion. Full results with
standard deviation are reported in Appendix 15.

Method MVSA UMPC FOOD101 NYU Depth V2 CREMA-D
ε=0.0 5.0 10.0 ε=0.0 5.0 10.0 ε=0.0 5.0 10.0 ε=0.0 5.0 10.0

Unimodal1 64.12 56.72 50.71 64.62 50.75 36.83 63.30 50.99 38.56 60.70 59.60 49.52
Unimodal2 75.61 69.50 47.41 86.46 67.48 43.88 62.65 49.14 34.76 56.23 50.62 43.90

LF 76.88 67.88 55.43 90.69 77.99 58.75 70.03 62.05 51.50 68.04 62.50 52.61
DYNMM 79.07 71.35 59.96 92.59 78.91 57.64 65.50 52.26 38.17 63.27 62.92 52.33

TMC 74.87 68.02 56.62 89.86 77.86 60.22 70.40 59.33 45.32 63.63 62.31 58.44
QMF 78.07 73.90 60.41 92.90 80.87 61.60 69.54 62.02 51.87 66.13 63.73 51.55
PDF 79.94 75.11 61.97 93.32 81.21 61.76 71.37 64.27 53.62 67.07 63.44 53.71

LF+MNL 79.50 74.68 62.31 92.77 80.87 61.41 71.05 64.88 54.08 73.71 68.06 58.41
∆ ↑2.62 ↑6.80 ↑6.88 ↑2.08 ↑2.88 ↑2.66 ↑1.02 ↑2.83 ↑2.58 ↑5.67 ↑5.56 ↑5.80

QMF+MNL 79.45 75.14 64.68 93.03 81.14 62.47 71.25 63.62 53.30 68.18 64.05 52.32
∆ ↑1.38 ↑1.24 ↑4.27 ↑0.13 ↑0.27 ↑0.87 ↑1.71 ↑1.60 ↑1.43 ↑2.05 ↑0.32 ↑0.77

PDF+MNL 80.54 75.76 64.93 93.33 81.52 62.95 71.52 64.32 54.08 69.18 63.77 54.30
∆ ↑0.60 ↑0.65 ↑2.96 ↑0.01 ↑0.31 ↑1.19 ↑0.15 ↑0.05 ↑0.46 ↑2.11 ↑0.33 ↑0.59

uses fixed modality dominance from prior knowledge, Confident dynamically selects guidance based
on each modality’s confidence, and Robust incorporates UCoM into dynamic guidance.

Figure 3: Accuracy varies with Gaus-
sian noise level on the CREMA-D dataset.
“+” indicates models trained with the pro-
posed Multimodal Negative Learning (MNL).
Our method consistently improves accuracy
across all noise levels.

Our proposed MNL corresponds to the Confident
+ Robust (✓✓) setting, which jointly considers
modality-wise confidence and UCoM to dynamically
determine the guidance direction. This dynamic guid-
ance mechanism not only identifies which modality
is currently more trustworthy, but also detects and
compensates for potential modality imbalance, en-
hancing fusion stability. As shown in the results,
our method consistently outperforms all other vari-
ants. For instance, on PDF at ϵ = 10, it achieves
63.78%, compared to 63.24% for Confident-only
and 61.02% for Prior-only. Similar trends are ob-
served on LATE FUSION, with our method reaching
63.01%, significantly better than Prior-only (62.77%)
and Confident-only (59.35%). These results demon-
strate that our joint Confident + Robust guidance
leads to more adaptive and balanced decision fusion,
especially under noisy and imbalanced conditions
where single-criterion strategies fail to generalize. In
general, benefiting from the dynamic guidance mech-
anism, MNL can improve the performance of most
methods and achieve optimal results.

Table 4 presents an ablation study comparing two
guidance strategies: All-Class guidance, which aligns
inferior modalities across the full label space, and our
proposed Non-Target guidance, which focuses only
on suppressing non-target categories. Across all per-
turbation levels, Non-Target guidance consistently
outperforms All-Class guidance in both the dynamic
PDF framework and the static LATE FUSION base-
line. For instance, under the highest noise level (ϵ
= 10), Non-Target guidance improves accuracy from
61.56% to 63.78 % on PDF (+2.22%) and from 62.52% to 63.01% on LATE FUSION (+0.49%).
Even in the clean setting (ϵ = 0), it shows noticeable gains: +1.9% for PDF and +0.60% for LATE
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Table 3: Performance comparison under differ-
ent guidance strategies on MVSA dataset.

Prior Confident Robust ϵ = 0 ϵ = 5 ϵ = 10

LATE FUSION 76.88 63.46 55.16
✓ 78.66 72.69 62.77

✓ 78.74 71.87 59.35
✓ ✓ 79.50 74.03 63.01

PDF 79.94 74.40 63.09
✓ 79.19 71.85 61.02

✓ 80.23 72.68 63.24
✓ ✓ 80.54 74.07 63.78

Table 4: Performance comparison under all-class
and non-target guidance across different pertur-
bation levels on MVSA dataset.

All-Class Non-Target ϵ = 0 ϵ = 5 ϵ = 10

LATE FUSION 76.88 63.46 55.16
✓ 78.90 72.16 62.52

✓ 79.50 74.03 63.01

PDF 79.94 74.40 63.09
✓ 78.64 72.45 61.56

✓ 80.54 74.07 63.78

(a) (b) (c)

Figure 4: (a) We visualize the average KL divergence between the two modality predictions and
compare the performance gaps between our method and the baseline across varying noise levels. (b)
and (c) show the evolution of UCoM on the CREMA-D and MVSA datasets, respectively.

FUSION. These consistent improvements verify that Non-Target guidance leads to better noise
resilience and decision stability, by avoiding overfitting to uncertain target predictions and instead
stabilizing the decision space through suppressing irrelevant classes. Further details regarding the
settings of λ and the warm-up epochs can be found in Appendix D.2.

4.4 Discussion

Analyzing the Sources of Performance Improvements. Fig. 3 illustrates the performance of each
modality and fusion model under increasing noise levels (ϵ = 0–10), with and without the proposed
MNL loss. We observe that adding the MNL loss (“+” curves) consistently improves accuracy across
all settings. For example, under the static late fusion setting (top), Fusion+ outperforms Fusion by
up to 3.2% at ϵ = 6, and maintains higher robustness as noise increases. Similarly, in the dynamic
PDF setting (down), Fusion+ indicates that MNL not only improves clean performance but also
significantly reduces performance degradation under perturbation. Moreover, both Audio+ and
Video+ curves show that MNL benefits single-modality branches as well, with especially noticeable
gains on the weak video modality. This confirms that MNL effectively guides weak modalities to
suppress noisy predictions, stabilizing decision fusion and mitigating modality imbalance.

Analysis of Guidance on Non-Target Classes. Fig. 4(a) illustrates the optimization behavior of
MNL by comparing the average KL divergence between dual-modal outputs and the corresponding
performance gap under different guidance strategies. We use the average KL divergence between
modality predictions to quantify modality discrepancy, and compare our Non-Target class guidance
with All-Class guidance under varying noise levels. Results show that although Non-Target guidance
leads to higher KL divergence, it consistently achieves better multimodal performance across three
noise levels, with gains of +1.83%, +0.85%, and +4.64%, respectively. Notably, the weaker modality
benefits the most from this strategy. This seemingly counterintuitive result highlights a core strength
of our method: unlike All-Class guidance, which enforces rigid alignment by pushing the weaker
modality to imitate the stronger one, our Non-Target guidance selectively preserves discriminative
cues in the weaker modality. This selective preservation maintains modality diversity and enhances
cross-modal complementarity, ultimately improving system robustness.
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Analysis of the Unimodal Confidence Margin. For presentation, UCoM is normalized via a softmax
over the output logits. Fig. 4(b) shows the UCoM of correctly classified validation samples during
training for LATE FUSION and LATE FUSION+MNL on CREMA-D. Typically, one modality
quickly stabilizes while the weaker modality lags at a lower UCoM. As UCoM directly governs
multimodal robustness (Theorem 3.1), this gap is critical. MNL consistently boosts the weak
modality’s UCoM, reinforcing its decision boundary and improving overall robustness to perturbations.
And Fig. 4(c) shows the ξ values for all samples of each modality under different noise levels on the
MVSA dataset. Notably, for weak modality (e.g., image), ξ is consistently higher with MNL, which
ultimately leads to improved model performance under noisy conditions.

Furthermore, theoretical analysis reveals that the effectiveness of MNL depends on satisfying a
robustness condition. As shown in a representative case, when modality A exhibits a higher predicted
probability than modality B, P (A)

y > P
(B)
y but a lower UCoM ξ(A) < ξ(B), directly using the

non-target class signals from A modality to guide the B modality can actually reduce the UCoM of
B. This phenomenon highlights that guidance strategies lacking robustness-aware constraints can
disrupt UCoM, ultimately degrading overall system performance and robustness.

Table 5: Results of experiments conducted on
the CMU-MOSEI dataset.

Method ϵ = 0 ϵ = 5 ϵ = 10

LATE FUSION 66.42 61.71 45.80
+ MNL 67.44 63.36 55.09

PDF 66.14 63.54 42.47
+ MNL 67.29 64.35 48.62

Table 6: Results of the QA task on MathQA
dataset, where M1 is Qwen2.5-0.5B-Instruct and
M2 is Qwen2.5-1.5B.

Method Fusion M1 M2

LATE FUSION 50.89 42.85 49.41
+ MNL 51.42 43.32 50.85

Analysis of the extensibility of MNL. MNL
demonstrates strong scalability. In terms of the
number of modalities, according to Definition 3.3,
it can be easily extended to multiple modalities.
We conducted experiments on the CMU-MOSEI
dataset [34] under varying levels of noise inter-
ference, including the visual, textual, and audio
modalities in Table 5. MNL consistently improves
model performance across both static and dynamic
fusion methods, particularly under noisy condi-
tions. Moreover, MNL can be further extended to
LLMs QA tasks and MLLMs VQA tasks. Specif-
ically, we apply logit fusion to the answer token
generated by two models, a process we refer to as
LATE FUSION. During optimization, MNL en-
ables the more robust and accurate model to guide
the weaker model in eliminating incorrect answers,
given that the models share the same vocabulary.
We conducted experiments on the MathQA dataset
[45] (QA task). For the QA task, we fine-tuned
Qwen2.5-0.5B-Instruct and Qwen2.5-1.5B [46] using LoRA [47]. We then compared the performance
to validate the effectiveness of our approach in Table 6. Further details about the task setting and the
VQA task are provided in Appendix C.4.

5 Conclusion

In this work, we address the challenge of modality imbalance and fragility in multimodal fusion by
rethinking the role of weak modalities. Rather than forcing weak modalities to align with strong ones,
we propose a novel Multimodal Negative Learning (MNL) framework that guides weak modalities to
suppress non-target classes while preserving their unique contributions. Theoretically, we prove that
this strategy tightens the robustness lower bound in decision-level fusion and reduces the empirical
error of weak modalities. Our method can be flexibly integrated into existing late fusion architectures.
Extensive experiments on noisy and imbalanced benchmarks demonstrate consistent improvements
in both accuracy and robustness, confirming the effectiveness of our approach.

In future work, we plan to extend this framework to more complex multimodal scenarios, such
as multi-label classification, open-set recognition, and temporal/sequential fusion. In addition, we
are interested in developing more fine-grained uncertainty estimation methods to enhance dynamic
guidance, and in exploring theoretical generalization bounds under adversarial or missing-modality
settings. We believe that our perspective offers a new and promising direction for building more
robust, adaptive, and trustworthy multimodal systems.

10



Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62222608,
62476198, U23B2049, 62436002), the National Natural Science Foundation of China (Grant
No. 22527901) through the National Major Research Instrumentation Program, the Fundamen-
tal and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of China
(JYB2025XDXM503), the Natural Science Foundation of Tianjin (No. 25JCYBJC00950), and the
CCF-Baidu Open Fund. The authors thank the anonymous reviewers for their helpful remarks.

References
[1] Jamie Roche, Varuna De-Silva, and Ahmet Kondoz. A multimodal perception-driven self

evolving autonomous ground vehicle. IEEE Transactions on Cybernetics, 52(9):9279–9289,
2021.

[2] Xia-an Bi, Xi Hu, Hao Wu, and Yang Wang. Multimodal data analysis of alzheimer’s disease
based on clustering evolutionary random forest. IEEE Journal of Biomedical and Health
Informatics, 24:2973–2983, 2020.

[3] Tareq Mahmod Alzubi, Jafar A Alzubi, Ashish Singh, Omar A Alzubi, and Murali Subramanian.
A multimodal human-computer interaction for smart learning system. International Journal of
Human–Computer Interaction, 41(3):1718–1728, 2025.

[4] Nan Wu, Stanislaw Jastrzebski, Kyunghyun Cho, and Krzysztof J Geras. Characterizing and
overcoming the greedy nature of learning in multi-modal deep neural networks. In International
Conference on Machine Learning, pages 24043–24055. PMLR, 2022.

[5] Yake Wei, Ruoxuan Feng, Zihe Wang, and Di Hu. Enhancing multimodal cooperation via
sample-level modality valuation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 27338–27347, 2024.

[6] Xiyuan Gao, Bing Cao, Pengfei Zhu, Nannan Wang, and Qinghua Hu. Asymmetric reinforcing
against multi-modal representation bias. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 16754–16762, 2025.

[7] Chengxiang Huang, Yake Wei, Zequn Yang, and Di Hu. Adaptive unimodal regulation for
balanced multimodal information acquisition. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pages 25854–25863, 2025.

[8] Yake Wei, Siwei Li, Ruoxuan Feng, and Di Hu. Diagnosing and re-learning for balanced
multimodal learning. In European Conference on Computer Vision, pages 71–86. Springer,
2024.

[9] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Multimodal semi-supervised
learning for image classification. In 2010 IEEE Computer society conference on computer
vision and pattern recognition, pages 902–909. IEEE, 2010.

[10] Zirun Guo, Tao Jin, Jingyuan Chen, and Zhou Zhao. Classifier-guided gradient modulation for
enhanced multimodal learning. Advances in Neural Information Processing Systems, 37:133328–
133344, 2024.

[11] Michelle Livne, Jens K Boldsen, Irene K Mikkelsen, Jochen B Fiebach, Jan Sobesky, and
Kim Mouridsen. Boosted tree model reforms multimodal magnetic resonance imaging infarct
prediction in acute stroke. Stroke, 49(4):912–918, 2018.

[12] Mengxi Chen, Linyu Xing, Yu Wang, and Ya Zhang. Enhanced multimodal representation
learning with cross-modal kd. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11766–11775, 2023.

[13] Wei Wei, Jiabin Tang, Lianghao Xia, Yangqin Jiang, and Chao Huang. Multi-modal knowledge
distillation for recommendation with prompt-tuning. In The Web Conference 2024, 2024.

11



[14] Nuno C Garcia, Pietro Morerio, and Vittorio Murino. Modality distillation with multiple stream
networks for action recognition. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 103–118, 2018.

[15] Sungpil Woo, Muhammad Zubair, Sunhwan Lim, and Daeyoung Kim. Deep multimodal
emotion recognition using modality aware attention network for unifying representations in
neural models. In UniReps: the First Workshop on Unifying Representations in Neural Models,
2023.

[16] Zequn Yang, Yake Wei, Ce Liang, and Di Hu. Quantifying and enhancing multi-modal
robustness with modality preference. In ICLR, 2024.

[17] Kieran Setiya. Knowing right from wrong. OUP Oxford, 2012.

[18] Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim. Nlnl: Negative learning for noisy
labels. In Proceedings of the IEEE/CVF international conference on computer vision, pages
101–110, 2019.

[19] Paul Pu Liang, Ziyin Liu, AmirAli Bagher Zadeh, and Louis-Philippe Morency. Multimodal
language analysis with recurrent multistage fusion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 150–161, 2018.

[20] Yansen Wang, Ying Shen, Zhun Liu, Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency.
Words can shift: Dynamically adjusting word representations using nonverbal behaviors. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 7216–7223,
2019.

[21] Mingcheng Li, Dingkang Yang, Yang Liu, Shunli Wang, Jiawei Chen, Shuaibing Wang, Jinjie
Wei, Yue Jiang, Qingyao Xu, Xiaolu Hou, et al. Toward robust incomplete multimodal sentiment
analysis via hierarchical representation learning. Advances in Neural Information Processing
Systems, 37:28515–28536, 2024.

[22] Yang Yang, Fengqiang Wan, Qing-Yuan Jiang, and Yi Xu. Facilitating multimodal classification
via dynamically learning modality gap. Advances in Neural Information Processing Systems,
37:62108–62122, 2024.

[23] Hedi Ben-Younes, Rémi Cadene, Matthieu Cord, and Nicolas Thome. Mutan: Multimodal
tucker fusion for visual question answering. In Proceedings of the IEEE international conference
on computer vision, pages 2612–2620, 2017.

[24] Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences.
In Proceedings of the conference. Association for computational linguistics. Meeting, volume
2019, page 6558, 2019.

[25] Hamid Reza Vaezi Joze, Amirreza Shaban, Michael L Iuzzolino, and Kazuhito Koishida. Mmtm:
Multimodal transfer module for cnn fusion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 13289–13299, 2020.

[26] Konrad Gadzicki, Razieh Khamsehashari, and Christoph Zetzsche. Early vs late fusion in
multimodal convolutional neural networks. In 2020 IEEE 23rd international conference on
information fusion (FUSION), pages 1–6. IEEE, 2020.

[27] Mohammad Rafiqul Alam, Mohammed Bennamoun, Roberto Togneri, and Ferdous Sohel.
A confidence-based late fusion framework for audio-visual biometric identification. Pattern
Recognition Letters, 52:65–71, 2015.

[28] Yiqun Yao and Rada Mihalcea. Modality-specific learning rates for effective multimodal
additive late-fusion. In Findings of the Association for Computational Linguistics: ACL 2022,
pages 1824–1834, 2022.

[29] Ahmed Hussen Abdelaziz, Barry-John Theobald, Paul Dixon, Reinhard Knothe, Nicholas
Apostoloff, and Sachin Kajareker. Modality dropout for improved performance-driven talking
faces. In Proceedings of the 2020 International Conference on Multimodal Interaction, pages
378–386, 2020.

12



[30] Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, and Yuan Jiang. Semi-supervised multi-modal
learning with incomplete modalities. In IJCAI, pages 2998–3004, 2018.

[31] Yang Yang, De-Chuan Zhan, Yi-Feng Wu, Zhi-Bin Liu, Hui Xiong, and Yuan Jiang. Semi-
supervised multi-modal clustering and classification with incomplete modalities. IEEE Transac-
tions on Knowledge and Data Engineering, 33(2):682–695, 2019.

[32] Qingyang Zhang, Haitao Wu, Changqing Zhang, Qinghua Hu, Huazhu Fu, Joey Tianyi Zhou,
and Xi Peng. Provable dynamic fusion for low-quality multimodal data. In International
conference on machine learning, pages 41753–41769. PMLR, 2023.

[33] Bing Cao, Yinan Xia, Yi Ding, Changqing Zhang, and Qinghua Hu. Predictive dynamic fusion.
In Proceedings of the 41st International Conference on Machine Learning, pages 5608–5628,
2024.

[34] Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Chen, Peter
Wu, Michelle A Lee, Yuke Zhu, et al. Multibench: Multiscale benchmarks for multimodal
representation learning. Advances in neural information processing systems, 2021(DB1):1,
2021.

[35] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. In 8th International Conference on
Learning Representations. OpenReview. net, 2020.

[36] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learn-
ing: A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence,
41(2):423–443, 2018.

[37] Chris Finlay, Adam M Oberman, and Bilal Abbasi. Improved robustness to adversarial examples
using lipschitz regularization of the loss. Openreview, 2018.

[38] Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frederic Precioso. Recipe
recognition with large multimodal food dataset. In 2015 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), pages 1–6. IEEE, 2015.

[39] Teng Niu, Shiai Zhu, Lei Pang, and Abdulmotaleb El Saddik. Sentiment analysis on multi-view
social data. In MultiMedia Modeling: 22nd International Conference, MMM 2016, Miami, FL,
USA, January 4-6, 2016, Proceedings, Part II 22, pages 15–27. Springer, 2016.

[40] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation
and support inference from rgbd images. In Computer Vision–ECCV 2012: 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12,
pages 746–760. Springer, 2012.

[41] Houwei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini
Verma. Crema-d: Crowd-sourced emotional multimodal actors dataset. IEEE transactions on
affective computing, 5(4):377–390, 2014.

[42] Qingyang Zhang, Haitao Wu, Changqing Zhang, Qinghua Hu, Huazhu Fu, Joey Tianyi Zhou,
and Xi Peng. Provable dynamic fusion for low-quality multimodal data. In International
conference on machine learning, pages 41753–41769. PMLR, 2023.

[43] Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view
classification with dynamic evidential fusion. IEEE transactions on pattern analysis and
machine intelligence, 45(2):2551–2566, 2022.

[44] Zihui Xue and Radu Marculescu. Dynamic multimodal fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2575–2584, 2023.

[45] Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of NAACL-HLT, pages 2357–2367, 2019.

[46] Qwen Team. Qwen2.5: A party of foundation models, September 2024.

13



[47] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[48] Cong Hua, Qianqian Xu, Shilong Bao, Zhiyong Yang, and Qingming Huang. Reconboost:
Boosting can achieve modality reconcilement. In International Conference on Machine Learn-
ing, pages 19573–19597. PMLR, 2024.

[49] Paul Pu Liang, Zihao Deng, Martin Q Ma, James Y Zou, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Factorized contrastive learning: Going beyond multi-view redundancy. Advances
in Neural Information Processing Systems, 36:32971–32998, 2023.

[50] R. G. James, C. J. Ellison, and J. P. Crutchfield. dit: a Python package for discrete information
theory. The Journal of Open Source Software, 3(25):738, 2018.

[51] Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. Are multimodal
transformers robust to missing modality? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 18177–18186, June 2022.

[52] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation anal-
ysis. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 1247–1255, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[53] Zixian Gao, Xun Jiang, Xing Xu, Fumin Shen, Yujie Li, and Heng Tao Shen. Embracing
unimodal aleatoric uncertainty for robust multimodal fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 26876–26885, June
2024.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[55] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[56] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

[57] Yake Wei and Di Hu. Mmpareto: Boosting multimodal learning with innocent unimodal
assistance. In International Conference on Machine Learning, pages 52559–52572. PMLR,
2024.

[58] Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu, and Dong Yu.
Mm-llms: Recent advances in multimodal large language models. CoRR, 2024.

[59] Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. Visual7w: Grounded question
answering in images. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4995–5004, 2016.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main contributions and scope were reflected in the abstract and introduction
(in the last paragraph of introduction, page 2).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: We provide a short proof sketch in the main paper to offer intuition in section
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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available.
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are presented in Section 4.1. For data splits, hyper-
parameter selection, and the type of optimizer used, we follow the same settings as the
baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run the main experiments 5 times with different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


Appendix

A Proof

A.1 Robust Lower Bounds for Multimodal Learning with Late Fusion

In the decision-level late fusion framework, following the standard setting, let f (m) denote the logit
output from modality m, where C is the number of classes and B is the batch size. For simplicity,
we illustrate the formulation using two modalities. The fusion weights satisfy w1 + w2 = 1, with
w1, w2 > 0. The fused multimodal output is defined as:

f(x) = w(1) · f (1)(x(1)) + w(2) · f (2)(x(2)) (10)

where x = {x(1), x(2)}, f(x) ∈ RB×C . According to the definition of UCoM, for a given ground-
truth class y and competing class k ̸= y (the runner-up class), the UCoM is given by:

ξ(m) = f (m)(x(m))y − f (m)(x(m))k (11)

In real-world scenarios, modality inputs are often subject to perturbations. Let the perturbed input be
denoted as x′ = {x(1)′ , x(2)′}. We consider a critical condition under which the perturbed multimodal
margin becomes zero for some k ̸= y,

f(x′)y − f(x′)k =

2∑
m=1

w(m) · ξ′(m) =

2∑
m=1

w(m) · (f (m)(x(m)′)y − f (m)(x(m)′)k) = 0 (12)

The perturbed multimodal logit output can then be expressed as:

f(x′) = w(1) · f (1)(x(1)′) + w(2) · f (2)(x(2)′) (13)

where x′ = {x(1)′ , x(2)′}, f(x′) ∈ RB×C . We now compute the multimodal CoM between class
y and the competing class k:

f(x)y − f(x)k = w(1) · ξ(1) + w(2) · ξ(2) −
(
w(1) · ξ′(1) + w(2) · ξ′(2)

)
(14)

= w(1)(ξ(1) − ξ′(1)) + w(2)(ξ(2) − ξ′(2)). (15)

According to the Lipschitz continuity assumption [16, 37], for modality m, there exists a constant
τ(m) such that:

|ξ(m) − ξ′(m)| ≤ τ(m)∥x(m) − x′(m)∥2. (16)

Combining Equation 15 and Equation 16, the total margin variation is upper bounded as:

f(x)y − f(x)k ≤ w(1)τ(1)∥x(1) − x(1)′∥2 + w(2)τ(2)∥x(2) − x(2)′∥2. (17)

Using the Cauchy-Schwarz inequality, define

a = w(1)τ(1), b = w(2)τ(2),

u = (a, b), v = (∥x(1) − x(1)′∥2, ∥x(2) − x(2)′∥2),

then
⟨u, v⟩ ≤ ∥u∥2 · ∥v∥2 =

√
a2 + b2 · ∥x− x′∥2. (18)

Therefore,

f(x)y − f(x)k ≤
√

(w(1)τ(1))2 + (w(2)τ(2))2 · ∥x− x′∥2. (19)

Hence, the multimodal robustness radius is lower bounded as:

R(x) = min ∥x− x′∥2 ≥
w(1)ξ(1) + w(2)ξ(2)√

(w(1)τ(1))2 + (w(2)τ(2))2
. (20)
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Figure 5: During the training process, examples are provided for both the guiding and guided
modalities, with the green bar representing the ground truth class. Specifically, (d) highlights the
predicted probabilities for the ground truth class and the runner-up class.

A.2 Empirical Error

We incorporate Multimodal Negative Learning (MNL) into both traditional static late fusion methods
and advanced dynamic fusion approaches. Within the MNL framework, we define one modality
as the guiding modality (Robust Dominant Modality, RDM) and the other as the guided modality
(Inferior Modality, IM). To analyze the impact of MNL on empirical error, we conduct a case study
based on different combinations of prediction correctness:

1. Both modalities predict correctly or both incorrectly: Since MNL operates independently
of the ground-truth label, it does not directly affect the empirical error in these cases, as
illustrated in Fig. 5(a) and (b).

2. The guiding modality predicts correctly, while the guided modality predicts incorrectly:
As shown in Fig. 5(c), MNL encourages the guided modality to align with the guiding
modality on non-target classes. This alignment helps steer the guided modality toward the
correct prediction, thereby reducing the empirical error.

3. The guiding modality predicts incorrectly, while the guided modality predicts correctly:
As illustrated in Fig. 5(d), from the perspective of empirical error, if the guiding and guided
roles are assigned solely based on prediction confidence, it is possible for the guiding
modality to have a higher confidence score on the ground truth class (Pguiding > Pguided)
but a lower UCoM (ξguiding < ξguided). In such cases, the guiding modality may be making
an incorrect prediction while the guided modality is actually correct. Therefore, in MNL,
the assignment of guiding and guided roles is not solely based on prediction confidence or
the probability of the ground truth class. Instead, it also considers the UCoM. As a result,
instances like the one shown in Fig. 5(d), where the guiding modality is incorrect despite
high confidence, are excluded from contributing to the guidance.

Overall, integrating MNL into existing late fusion methods leads to a consistent reduction in empirical
error.

B More Analysis

B.1 Analysis of Unique Information in Modalities

In this subsection, we demonstrate the effectiveness of our approach from a mutual information
perspective. Let the two modalities be represented by X1 and X2, and let Y denote the ground-truth
labels. Following the methodology in [48, 49], we decompose the multimodal mutual information
I(X1,X2;Y) into three conditional mutual information components:

I(X1,X2;Y) = I(X1;X2;Y)︸ ︷︷ ︸
S(X1,X2)=relevant shared info.

+ I(X1,Y|X2)︸ ︷︷ ︸
U(X1)=relevant unique info. in X1

+ I(X2,Y|X1)︸ ︷︷ ︸
U(X2)=relevant unique info. in X2

In the main paper, we analyze the relationship between the KL divergence of modality outputs and
overall system performance to investigate the unique role of non-target class guidance in multimodal
learning. Unlike traditional all-class guidance, the non-target strategy adopted by MNL does not
enforce strict alignment across modalities. Instead, it selectively preserves discriminative features in
the weaker modality. In other words, MNL’s strength lies in the fact that the dominant modality is
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more effective at excluding non-target classes, while the weaker modality can learn this exclusion
ability without compromising its own distinctive representation for target classes. This prevents
the dominant modality from overwhelming the weaker one and helps maintain a healthy diversity
between modalities.

Specifically, we employ the dit toolkit [50] to perform partial information decomposition, quantifying
the unique information contributed by each modality. It is important to note that this quantification
reflects only the relative magnitudes of unique information within the multimodal system.

Fig. 6 reports the relative unique information of each modality under varying noise levels on the
CREMA-D dataset, measured as the ratio of unique information from the weaker modality to that
from the stronger one. Under zero-noise conditions, methods that apply guidance across all classes
tend to suppress the contribution of the weaker modality, resulting in limited benefits for fusion. In
contrast, MNL, which applies guidance only to non-target classes, consistently reduces the disparity
between modalities and effectively preserves or enhances the unique information of the weaker
modality.

Figure 6: Results on the CREMA-D dataset under Gaussian noise (left) and Salt noise (right). “*”
denotes methods applying guidance across all classes. The lines show the relative modality-specific
unique information (Proportion), measured as the ratio of the weaker to the stronger modality.
∆Accuracy reflects the performance improvement brought by the MNL method over conventional
all-class guidance approaches.

B.2 Extended Training for Improved Audio Modality Performance

In the main paper, based on previous methods, we compared the multimodal and unimodal perfor-
mances of two strategies, Non-target Class Guidance (MNL) and All Class Guidance, after training
for 100 epochs under different noise levels. The results show that at ϵ = 0 and ϵ = 5, the audio
modality under the MNL method performs worse than that under All Class Guidance. This may be
due to the dynamic guidance mechanism of MNL causing insufficient training of the audio modality.
To this end, we conducted two separate experiments: one extending the training to 200 epochs, and
the other increasing the loss weight of the audio modality from 1.0 to 2.0.

Fig. 7a and 7b illustrate the performance differences between the MNL method and the All-Class
Guidance baseline under various levels of Gaussian noise, with extended training duration and
increased loss weight for the audio modality, respectively. Notably, MNL continues to achieve
superior multimodal fusion performance, yielding improvements of (+0.83%, +1.14%, +6.45%) after
training for 200 epochs, and (+1.88%, +1.20%, +5.58%) when the loss weight for the audio modality
is increased to 2.0.

More importantly, MNL not only improves the overall multimodal performance but also consistently
outperforms All-Class Guidance in the audio modality alone, with gains of (+0.23%, +0.13%,
+2.99%) in Fig. 7a, and (+0.77%, +0.10%, +5.81%) in Fig. 7b. These results indicate that prolonged
training or accelerating the learning of the stronger modality can be beneficial when adopting the
MNL strategy.
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(a) After training for 200 epochs (b) Increase the loss weight of the audio modality

Figure 7: On the CREMA-D dataset with added Gaussian noise, we compared the performance
differences between the MNL method and the approach guided across all class under various noise
levels.

B.3 Advantages of Late Fusion and Comparison with Latent Fusion

In multimodal learning, the advantages of late fusion lie in its flexibility, robustness, and inter-
pretability [36].

• Flexibility. Latent fusion requires aligning and projecting heterogeneous modalities into a
unified representation space, which is often challenging and prone to noise or information
loss. In contrast, late fusion processes each modality independently and combines only the
final predictions, significantly reducing the need for strict alignment. As a result, late fusion
is more flexible and better suited for integrating diverse multimodal data types.

• Robustness. In real-world scenarios, data from one modality may be missing entirely or
severely degraded (e.g., due to noise). In latent fusion, such incomplete or low-quality
modalities can corrupt the shared representation, leading to a significant drop in perfor-
mance [36, 51]. In contrast, late fusion treats each modality independently and fuses only
the final predictions. As a result, if one modality is missing, its output can be simply ignored,
and if one modality is noisy, it does not directly affect the others. This modular structure
makes late fusion inherently more robust to missing or noisy modalities.

• Interpretability. Latent fusion occurs at the intermediate stages of the model, where fused
features are often highly abstract, making it difficult to clearly understand the specific
contribution of each modality to the final decision. In contrast, late fusion combines
individual modality predictions, allowing inspection of each modality’s output separately.
This enables easier identification of which modality’s prediction caused an error, thereby
offering superior interpretability.

We have further added comparisons with latent fusion methods on the MVSA dataset. The experiments
are conducted under varying levels of Gaussian noise, and all the competing methods share the same
backbone. The compared methods are described as follows:

• Deep CCA: Following [52], we implement the CCA loss and combine it with a cross-entropy
loss, which performs learning using the shared latent representation.

• LFM [22]: LFM integrates contrastive learning into multimodal learning to align features
across modalities.

• SUFA [53]: SUFA aligns different modalities by minimizing the KL divergence between
them. In addition, it constructs positive and negative sample pairs within each unimodal
branch for contrastive learning.
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Table 7: Compared with latent fusion

Method ϵ = 0 ϵ = 5 ϵ = 10

Deep CCA 76.49 63.58 53.94
LFM 77.26 66.47 57.80
SUFA 78.18 71.40 59.11
MNL 79.50 74.03 63.01

C More Details

C.1 Image-text Classification

For the image-text classification task, we conduct experiments on the MVSA and UMCP-FOOD101
datasets, following the experimental settings described in [42, 33]. We use a ResNet architecture
[54] pretrained on ImageNet [55] as the backbone for the image modality, and a pretrained BERT
model [56] for the text modality. The results of competing methods are reported based on the
implementations and settings from [42, 33]. All models are trained for 100 epochs with a batch size
of 16, using the Adam optimizer. The learning rate is set to 1e-4, with a warmup proportion of 0.1.

C.2 Senses Recognition

For the sense recognition task on the NYU DEPTH V2 dataset, we compare the proposed method
with several multimodal fusion approaches, following the experimental setting [42, 33]. We adopt the
ResNet architecture [54], pretrained on ImageNet [55], as the backbone network for each modality.
All models are trained for 100 epochs with a batch size of 32, using the Adam optimizer. The learning
rate is set to 1e-4, with a warmup proportion of 0.1.

C.3 Emotion Recognition

For the emotion recognition task, we conduct experiments on the CREMA-D dataset, implementing
the baseline and comparison methods based on the settings in [57]. All models are reproduced under
the same experimental conditions. We use ResNet-18 [54] as the backbone network, and all models
are trained from scratch for the text and visual modalities. Optimizer settings, learning rates, and
other hyperparameters follow those used in the respective baseline methods. Specifically, for LATE
FUSION, QMF [42], PDF [33], and the variants incorporating MNL, we use the SGD optimizer with
a batch size of 64, a learning rate of 0.002, and train for 100 epochs.

C.4 Multi-LLM Fusion

Recent MLLMs and LLMs [58] primarily rely on feature-level fusion. To demonstrate the gen-
eralizability of our approach, we extend MNL to large language models, thereby constructing a
multi-LLM fusion setting. Specifically, for both QA and VQA tasks, each individual model, given
a prompt, a question, and the corresponding answer candidates, is required to predict only a single
token representing the symbol of the chosen option. We collect the logits produced by each model (all
models share the same vocabulary) and fuse them with fixed weights at the decision level. We refer
to this procedure as LATE FUSION, which allows MNL to be naturally adapted to the multi-LLM
fusion setting. A similar strategy can also be applied to MLLMs.

For the QA task, we use the MathQA dataset [45], which contains math word problems annotated
with gold answers and step-by-step solution programs. The problems span diverse domains such as
arithmetic, algebra, geometry, and probability. MathQA is widely employed to evaluate and improve
models’ mathematical reasoning and problem-solving capabilities.

For the VQA task, we conduct experiments on the Visual7W dataset [59], a widely used benchmark
for visual question answering. Each question in Visual7W is annotated with a gold answer and
belongs to one of six categories: what, where, when, who, why, and how. This dataset is commonly
used to study image understanding and multimodal reasoning. From Visual7W, we sample data 6993
examples for training and 1400 examples for inference. We fine-tune Qwen2-VL-2B-Instruct and
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Qwen2.5-VL-3B-Instruct using LoRA, and compare the performance of LATE FUSION and LATE
FUSION + MNL to validate the effectiveness of our method. The results are summarized in Table 8.

Table 8: Performance comparison of VQA task.

Method Fusion Qwen2-VL-2B-Instruct Qwen2.5-VL-3B-Instruct

LATE FUSION 84.87 83.71 84.76
LATE FUSION + MNL 85.21 84.57 84.82

C.5 Symbols Table

To avoid potential confusion, we provide a table for main symbols in Table 9

Table 9: Summary of Symbols

Symbol Description

M Modality Set
|M| Number of Modalities
R(xi) Multimodal robustness radius of the sample xi

j The most probable class among the non-target classes
f(xi) Fusion logits output given sample xi

f(xi)k Fusion logits output for class k given sample xi

f (m)(x
(m)
i ) Logits output from the m-th modality given modality-specific input

σ(·) Softmax function
ξj(m) UCoM for modality m as defined in Eq. (2), where j denotes the most

probable class among the non-target classes
ξ(m) UCoM for modality m, in its simplified form, denoted by ξj(m) without

explicitly specifying the competing class j
ξ′(m) UCoM for modality m after perturbation
τ(m) Lipschitz constant of modality m
w(m) Weight assigned to modality m in late fusion
P (m) The predicted probability of modality m

P
(m)
y The predicted probability of the target class from modality m

C.6 Pseudocode of MNL

To facilitate better understanding, we provide pseudocode in Algorithm (1).

Algorithm 1 Multimodal Learning with MNL

Input: Training set Dtrain = {(xi, yi)}Ni=1 ⊂ X × Y; Iteration number T ; Warm-up epoch W
Output: Trained multimodal model parameters θ

1: for t = 1 to T do
2: Sample a fresh mini-batch Bt from Dtrain

3: Feed-forward Bt to the model
4: Obtain modality-specific logits f (m) and the fusion logits f(x) according to Eq. 1
5: if t > W then
6: Compute each modality ξ(m) (Eq. 3) and identify RDM and IMs according to Definition 3.3.
7: Compute MNL loss (Eq. 7) and the total loss (Eq. 9)
8: else
9: Compute cross-entropy loss to warm up

10: end if
11: Update model parameters θ
12: end for
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D Additional Results

D.1 Additional Ablation Study

In the main paper, we conducted ablation studies on both the guidance scope and guidance conditions.
To more intuitively demonstrate the effectiveness of MNL, we performed a comprehensive ablation
experiment on the aforementioned conditions, as shown in Table 13.

D.2 Additional Experiments on Hyperparameters

For the hyperparameter λ in Eq. 9, which controls the strength of MNL, our setup sums the MNL
loss equally with the CE loss. To illustrate this, we report results on the MVSA dataset, where the CE
weight is fixed at 1 while the MNL weight is varied from 0.2 to 2.0 under different noise levels as
Table 10.

Table 10: Performance under different noise levels with varying MNL weights.
λ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Gauss ϵ = 0 76.88 78.03 79.19 78.03 80.54 79.38 79.00 81.02 80.35 79.77
Gauss ϵ = 5 72.56 72.02 73.41 73.56 74.07 73.64 72.06 73.22 73.80 72.87
Gauss ϵ = 10 62.46 62.36 62.66 63.38 63.78 63.46 62.12 61.19 63.74 63.70

Salt ϵ = 5 74.95 74.57 74.37 74.95 75.76 75.14 75.72 74.76 74.37 75.26
Salt ϵ = 10 62.27 63.09 63.46 63.27 64.93 65.06 64.08 63.50 61.96 63.01

Table 11: Effect of warm-up epochs on accuracy.

Warm-up Epoch 0 2 5 10 15 20 30

Accuracy (%) 68.55 68.11 68.11 69.18 68.79 68.26 69.05

To further investigate the effect of warm-up epoch settings, we report the results on the CREMA-D
dataset with noise level 0 in Table 11. We observe that the hyperparameter warm-up epoch is not
sensitive (we set it to 10). This may be because the benefit of MNL is relatively small during the
early stages of training and becomes more pronounced as training progresses and the modality gap
widens, allowing for more meaningful guidance. Therefore, the warm-up is primarily introduced to
reduce unnecessary computational costs during the initial training phase.

D.3 Additional Overhead During Training

Integrating MNL with baseline methods incurs minimal computational overhead and requires no
modification to the underlying network architecture. During training, MNL operates solely at the
output level, identifying the Robust Dominant Modality (RDM) and the Inferior Modality (IM),
determining the guidance direction, and computing the additional loss. At inference time, the
procedure is identical to that of the baseline, introducing no extra cost. Specifically, we calculate
the average time per training iteration (per batch) on MVSA, FOOD101, NYUDv2, and CREMAD,
respectively. As shown in Table 12, the additional overhead introduced by MNL during training is
negligible.

Table 12: Inference time (in milliseconds) of different methods on various datasets.

Method MVSA FOOD101 NYUDv2 CREMA-D

LATE FUSION 20.96 ms 69.23 ms 32.27 ms 63.03 ms
LATE FUSION + MNL 31.15 ms 85.76 ms 49.19 ms 87.11 ms
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D.4 Full Results with Standard Deviation

In this section, we present the full results with standard deviation in Table 14 and Table 15.

Table 13: Performance comparison under different guidance scopes and conditions across various
Gaussian perturbation levels on the MVSA dataset, where red and blue indicates the best/runner-up
performance.

All-Class Non-target Prior Confident Robust ϵ = 0 ϵ = 5 ϵ = 10

✓ ✓ 78.77± 1.52 72.77± 0.36 62.36± 2.09
✓ ✓ 78.47± 0.87 72.74± 0.62 62.62± 1.40
✓ ✓ ✓ 78.90± 0.29 72.16± 0.48 62.52± 3.95

✓ ✓ 78.66± 0.87 72.69± 1.07 62.77± 1.62
✓ ✓ 78.74± 0.79 71.87± 1.93 59.35± 0.16
✓ ✓ ✓ 79.50± 1.70 74.03± 1.11 63.01± 1.74

E Limitations and Broader Impacts

The limitations of MNL can be better understood by examining the performance gap between
modalities across datasets, as shown in Fig. 8. In the CREMA-D dataset, the audio modality
outperforms the visual modality by a large margin, whereas in the NYU Depth V2 dataset, the RGB
modality slightly outperforms the depth modality. The modality gap in CREMA-D is noticeably
larger than in NYU Depth V2. Since MNL primarily relies on leveraging the stronger modality
to guide the weaker one, its benefits may be limited when the performance gap is small and both
modalities improve in sync. These observations suggest that the effectiveness of MNL is closely tied
to the degree of modality complementarity and asymmetry present in the data.

Reviewing Equation 20, the lower bound of multimodal robustness is determined by both the
modality weights and the UCoM. MNL aims to improve the robustness of the multimodal system
by enhancing the UCoM of weaker modalities. In contrast, dynamic late fusion methods typically
assign higher weights to modalities that are more confident in predicting the ground truth class. This
fundamental difference introduces a degree of incompatibility between MNL and existing dynamic
weight allocation strategies. As a result, the performance gains achieved by MNL are often smaller
than those observed with static late fusion methods. In future work, it would be valuable to explore
whether dynamic weight allocation can be guided by UCoM, so that the enhancements MNL provides
to weaker modalities are not undermined by their lower assigned weights.

Furthermore, MNL can be directly integrated with most late fusion methods, with the exception of
certain approaches such as evidence-based late fusion. In contrast, how to effectively incorporate
MNL into early fusion frameworks remains an open question, which we leave for future work.

Regarding the potential social impact, this paper proposes a method that leverages robust dominant
modalities to guide inferior modalities in suppressing non-target classes, effectively enhancing the
robustness of multimodal systems under noisy conditions. This approach holds promise for safety-
critical applications such as human-computer interaction, helping multimodal systems remain stable
and reliable in complex environments. However, due to the high uncertainty and uncontrollability of
noise in open environments, certain risks may still exist in high-stakes scenarios like autonomous
driving and medical diagnosis.

29



Table 14: Performance of different methods under varying noise levels across four (MVSA, FOOD101,
NYU Depth V2, and CREMA-D) datasets. We add Gaussian noise on 50% modalities and ε presents
the noise degree.

DATASET METHOD ϵ = 0.0 ϵ = 5.0 ϵ = 10.0

MVSA

IMG 64.12± 1.23 49.36± 2.02 45.00± 2.63

TEXT 75.61± 0.53 69.50± 1.50 47.41± 0.79

LATE FUSION 76.88± 1.30 63.46± 3.46 55.16± 3.60

DYNMM 79.07± 0.53 67.96± 1.65 59.21± 1.41

TMC 74.87± 2.24 66.72± 4.55 60.35± 2.79

QMF 78.07± 1.10 73.85± 1.42 61.28± 2.12

PDF 79.94± 0.95 74.40± 1.51 63.09± 1.33

LATE FUSION+MNL 79.50± 1.70 74.03± 1.11 63.01± 1.74

QMF+MNL 79.45± 0.60 74.12± 0.06 62.75± 0.04

PDF+MNL 80.54± 0.85 74.07± 1.93 63.78± 1.27

UMPC
FOOD 101

IMG 64.62± 0.40 34.72± 0.53 33.03± 0.37

TEXT 86.46± 0.05 67.38± 0.19 43.88± 0.32

LATE FUSION 90.69± 0.12 68.49± 3.37 57.99± 1.59

DYNMM 92.59± 0.07 74.74± 0.19 59.68± 0.20

TMC 89.86± 0.07 73.93± 0.34 61.37± 0.21

QMF 92.90± 0.11 76.03± 0.70 62.21± 0.25

PDF 93.32± 0.22 76.47± 0.31 62.83± 0.31

LATE FUSION+MNL 92.77± 0.17 75.16± 0.80 62.06± 0.49

QMF+MNL 93.03± 0.16 75.41± 0.48 62.59± 0.55

PDF+MNL 93.33± 0.22 76.65± 0.31 63.16± 0.32

NYU
DEPTH V2

DEPTH 63.30± 0.48 53.12± 1.52 45.46± 2.07

RGB 62.65± 1.22 50.95± 3.38 44.13± 3.80

LATE FUSION 70.03± 0.84 64.37± 0.80 60.55± 1.65

DYNMM 65.50± 0.37 54.31± 1.72 46.79± 1.09

TMC 70.40± 0.31 59.33± 2.19 50.61± 2.87

QMF 69.54± 1.06 64.10± 1.42 60.18± 1.23

PDF 71.37± 0.76 65.72± 1.72 62.56± 1.84

LATE FUSION+MNL 71.05± 1.06 67.02± 0.56 63.81± 1.63

QMF+MNL 71.25± 0.59 65.38± 1.09 61.80± 1.52

PDF+MNL 71.52± 0.89 67.01± 1.72 63.07± 0.50

CREMA-D

AUDIO 60.70± 0.94 59.60± 1.40 49.52± 2.91

VISUAL 56.23± 1.67 52.47± 2.06 38.17± 3.74

LATE FUSION 68.04± 3.92 64.25± 6.68 52.39± 7.40

DYNMM 63.27± 0.68 62.01± 1.27 51.43± 1.24

TMC 63.63± 1.16 62.68± 1.17 57.97± 2.14

QMF 66.13± 1.32 64.27± 1.47 50.77± 5.83

PDF 67.07± 0.83 64.57± 1.94 53.33± 2.78

LATE FUSION+MNL 73.71± 2.10 70.35± 1.27 57.26± 4.28

QMF+MNL 68.18± 0.35 67.00± 0.95 52.62± 2.96

PDF+MNL 69.18± 0.96 66.94± 1.82 55.43± 4.61
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Table 15: Performance of different methods under varying noise levels across four (MVSA, FOOD101,
NYU Depth V2, and CREMA-D) datasets. We add Salt noise on 50% modalities and ε presents the
noise degree.

DATASET METHOD ϵ = 0.0 ϵ = 5.0 ϵ = 10.0

MVSA

IMG 64.12± 1.23 56.72± 1.92 50.71± 3.20

TEXT 75.61± 0.53 69.50± 1.50 47.41± 0.79

LATE FUSION 76.88± 1.30 67.88± 1.87 55.43± 1.94

DYNMM 79.07± 0.53 71.35± 0.97 59.96± 1.31

TMC 74.87± 2.24 68.02± 3.07 56.62± 3.67

QMF 78.07± 1.10 73.90± 1.89 60.41± 2.63

PDF 79.94± 0.95 75.11± 1.15 61.97± 1.14

LATE FUSION+MNL 79.50± 1.70 74.68± 1.43 62.31± 1.71

QMF+MNL 79.45± 0.60 75.14± 1.19 64.68± 1.94

PDF+MNL 80.54± 0.85 75.76± 0.48 64.93± 1.37

UMPC
FOOD 101

IMG 64.62± 0.40 50.75± 0.44 36.83± 0.92

TEXT 86.46± 0.05 67.38± 0.19 43.88± 0.32

LATE FUSION 90.69± 0.16 77.99± 0.54 58.75± 0.99

DYNMM 92.59± 0.07 78.91± 0.20 57.64± 0.30

TMC 89.86± 0.07 77.86± 0.41 60.22± 0.43

QMF 92.90± 0.13 80.87± 0.40 61.60± 0.20

PDF 93.32± 0.22 81.21± 0.34 61.76± 0.33

LATE FUSION+MNL 92.77± 0.17 80.87± 0.57 61.41± 1.49

QMF+MNL 93.03± 0.16 81.14± 0.52 62.47± 0.38

PDF+MNL 93.33± 0.22 81.52± 0.27 62.95± 0.19

NYU
DEPTH V2

DEPTH 63.30± 0.48 50.99± 1.41 38.56± 2.16

RGB 62.65± 1.22 49.14± 1.40 34.76± 1.59

LATE FUSION 70.03± 0.84 62.05± 1.17 51.50± 1.81

DYNMM 65.50± 0.37 52.26± 1.45 38.17± 1.17

TMC 70.40± 0.31 59.33± 1.47 45.32± 2.84

QMF 69.54± 1.06 62.02± 1.47 51.87± 0.91

PDF 71.37± 0.76 64.27± 1.36 53.62± 2.15

LATE FUSION+MNL 71.05± 1.06 64.88± 0.97 54.08± 2.34

QMF+MNL 71.25± 0.59 63.62± 1.62 53.30± 2.60

PDF+MNL 71.52± 0.89 64.32± 0.58 54.08± 0.83

CREMA-D

AUDIO 60.70± 0.94 59.60± 1.40 49.52± 2.91

VISUAL 56.23± 1.67 50.62± 3.27 43.90± 2.80

LATE FUSION 68.04± 3.92 62.50± 6.63 52.61± 6.51

DYNMM 63.27± 1.74 62.92± 0.98 52.33± 3.57

TMC 63.63± 1.16 62.31± 1.93 58.44± 3.16

QMF 66.13± 1.32 63.73± 1.11 51.55± 5.31

PDF 67.07± 0.83 63.44± 2.39 53.71± 2.40

LATE FUSION+MNL 73.71± 2.10 68.06± 1.25 58.41± 4.70

QMF+MNL 68.18± 0.35 64.05± 2.93 52.32± 2.67

PDF+MNL 69.18± 0.96 63.77± 2.24 54.30± 4.84
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Figure 8: Unimodal performance on the CREMA-D and NYU Depth V2 datasets
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