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Abstract
High-dimensional vectors serve as a bridge be-
tween massive real-world data and AI applica-
tions such as large language models (LLMs). Yet,
the data is often of large scale and with high di-
mensionality, which causes high costs in both
memory consumption and computation. To re-
duce both costs, vector quantization has been
widely adopted. A recent advance in vector quan-
tization is the RaBitQ method, which supports
flexible compression rates and provides asymp-
totically optimal error bounds for distance esti-
mation. It demonstrates strong empirical perfor-
mance in terms of space, accuracy and runtime.
In this paper, we first provide a comprehensive
overview of RaBitQ’s design, insights and theo-
retical guarantees. We then introduce the RaBitQ
Library, which covers some key implementation
techniques of RaBitQ and its integration with in-
dices for approximate nearest neighbor search.

1. Introduction
Artificial Intelligence (AI) has rapidly transformed many
facets of modern life, from revolutionizing industries to in-
fluencing how we interact with technology on a daily basis.
For example, large language models (LLMs) (Brown et al.,
2020), which corresponds to a powerful type of AI applica-
tion, has been used for many tasks including but not limited
to question answering, code generation, and autonomous
AI agents. These applications are fundamentally powered
by diverse and massive data - including images, text, audio,
video, and code and social media interactions.

To exploit the massive data, deep neural network mod-
els first extract their semantic information and represent
it as high-dimensional vectors. The semantic similarity
in the original data translates into geometric proximity in
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vector space. These vectors are then utilized in various
downstream systems, e.g., they can be stored in vector
databases (Wang et al., 2021) for tasks such as information
retrieval (Santhanam et al., 2021), and retrieval-augmented
generation (Gao et al., 2024b), or they can be directly fed to
machine learning models to perform learning and generation
tasks.

In the context of modern AI applications, high-dimensional
vector data is often of large scale and with high dimension-
ality. For example, LLMs can take a prompt with millions
of tokens as inputs, where each token would be embedded
into a vector, and OpenAI’s text-embedding-3-large model 1

can produce vectors with up to 3,072 dimensions. The
large scale and high dimensionality cause challenges in both
storage and computation. For example, the space cost of
storing 1 billion vectors each with 1,000 dimensions would
be 4TB and the computation cost of finding approximate
nearest neighbors among massive vectors is high since it
usually involves many distance computations and each of
computation involves thousands of arithmetic operations on
floating-point values and is costly.

Vector quantization has been widely adopted for addressing
the challenges (Simhadri et al., 2024). The major idea is to
first construct a codebook, which consists of a certain num-
ber of vectors. It then quantizes a vector to be the closest
vector in the codebook and store its index as the quantiza-
tion code. Since a code is usually shorter than a vector, the
space is reduced. In addition, the distance computations
based on quantized vectors are often more efficient than
on the original vectors, and thus the computation costs are
reduced. Among those existing vector quantization meth-
ods, the scalar quantization (SQ) and product quantization
(PQ) (Jegou et al., 2010) are two most widely used ones.
However, SQ struggles to produce reasonable accuracy with
high compression rates. PQ offers better effectiveness for
high compression rates but lacks theoretical performance
guarantees and incurs the overhead of frequent random mem-
ory access for computing distances.

Recently, we introduced a new vector quantization method
called RaBitQ (Gao & Long, 2024; Gao et al., 2024a).
Specifically, RaBitQ constructs a randomized codebook,

1https://openai.com/index/new-embedding-models-and-api-
updates/
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which is transformed from vectors of D-dimensional B-
bit unsigned integers, where D is the dimensionality and
B is the bit-width per dimension. For example, when
B = 1, RaBitQ corresponds to a binary quantizer and pro-
vides a 32x compression rate (i.e., each floating-point value
in the original vector is quantized to be 1 bit for each di-
mension). Based on the randomized codebook, RaBitQ’s
distance estimator is carefully designed so that it is unbiased
and has a theoretical error bounded. It is proved that Ra-
BitQ’s error bound is asymptotically optimal across different
compression rates. Empirically, RaBitQ achieves superior
trade-offs among space, accuracy and efficiency compared
to SQ and PQ. Since its first release in May 2024, RaBitQ
has been widely adopted in systems from the industry in-
cluding VectorChord (TensorChord, 2024), VSAG (Zhong
et al., 2025), Milvus (Zilliz, 2024), Faiss (Faiss, 2025),
CockroachDB (CockroachDB, 2025), and Volcengine from
ByteDance (Volcengine, 2025). ElasticSearch adopts Ra-
BitQ with some minor changes (e.g., removing the random
rotation) and gives the variant a new name “BBQ” (Trent,
2025).

Beyond the algorithmic advancements of RaBitQ, numer-
ous implementation techniques further enhance its practical
performance. To facilitate deployment of RaBitQ in real-
world systems, we develop the RaBitQ Library, which is
designed with a strong emphasis on usability and efficiency.
To promote ease of use, the library provides a set of well-
defined interfaces and multiple data formats that support
RaBitQ’s advanced features. For example, RaBitQ allows
each quantization code to be split into two components: a
binary code (consisting of the most significant bit) and an
ex-code (consisting of the remaining bits). During querying,
the binary code is accessed first to compute a coarse dis-
tance estimate. If higher accuracy is required, the ex-code
is accessed incrementally to refine the result. For practical
efficiency, the library includes optimized implementations
of key RaBitQ components such as the rotator and quantizer.
These implementations trade off some theoretical guaran-
tees in favor of significantly improved runtime performance,
while still maintaining strong empirical accuracy.

The remaining part of the paper is organized as follows.
Section 2 introduces the key features, insights and theo-
retical guarantees about RaBitQ. Readers can refer to the
original RaBitQ papers (Gao & Long, 2024; Gao et al.,
2024a) for more technical details. Section 3 briefly intro-
duces the implementation techniques adopted in the RaBitQ
Library. Section 4 describes how RaBitQ is combined with
IVF, HNSW and QG for vector search. Section 5 concludes
the paper and discusses future research directions. The li-
brary is publicly available at https://github.com/
VectorDB-NTU/RaBitQ-Library.

2. The RaBitQ Algorithm
RaBitQ (Gao & Long, 2024; Gao et al., 2024a) is a vector
quantization algorithm, which offers asymptotically optimal
trade-off between space and accuracy of distance estima-
tion 2. It can work as a drop-in replacement of (uniform)
scalar quantization and binary quantization.

The key advantages of RaBitQ include

• High Accuracy with Tiny Space - RaBitQ offers
promising accuracy under tiny space budgets such as 1
to 4 bits per dimension.

• Fast Distance Estimation - For 1-bit quantization,
RaBitQ enables efficient distance estimation using bit-
wise operations or FastScan (André et al., 2017). For
multi-bit quantization, it performs distance estimation
through arithmetic operations on unsigned integers.

• Theoretical Error Bounds - RaBitQ guarantees an
unbiased estimator with asymptotically optimal theo-
retical error bound.

2.1. Insights

A key factor contributing to the optimality of RaBitQ is
its effective exploitation of a distinctive property in high-
dimensional spaces known as the concentration of mea-
sure (Ledoux, 2001; Vershynin, 2018). There have been
vast theoretical studies on this phenomenon over the past
decades (Alon & Klartag, 2017; Johnson & Lindenstrauss,
1984; Larsen & Nelson, 2017; Freksen, 2021). In this paper,
instead of discussing the principle in rigorous mathematics,
we aim to present a simple example to build an intuitive
understanding on the counter-intuitive phenomenon.

Consider the following scenario: we are interested in deter-
mining the value of the projection of a unit vector x onto
a specific vector—for simplicity, let’s choose the first co-
ordinate of the vector, represented as x[0]. However, due
to certain constraints, we do not have direct access to this
value. Instead, our goal is to estimate its approximate range.
Since the vector x is a unit vector, and with no further infor-
mation, the only inference we can make is that the value of
x[0] must fall within the interval [−1, 1].

Next, let us investigate the case, where the vector x follows
the uniform distribution on the unit sphere. To better un-
derstand the behavior of x[0] in this case, we generate 105

random vectors following this distribution. The empirical
distribution of x[0] is plotted in Figure 1. On the left panel,
we illustrate the case for a 3-dimensional vector. This sce-
nario is intuitive: for a unit vector, x[0] can take any value

2It supports the estimation of Euclidean distances, inner prod-
ucts and cosine similarities. For the ease of narrative, we refer to
all these similarity metrics as distances in the paper.
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within the range [−1, 1]. On the right panel, however, the sit-
uation becomes far less intuitive when the vector has 1,000
dimensions. While the theoretically possible range of x[0]
remains [−1, 1], the figure reveals a striking phenomenon:
the values of x[0] are highly concentrated around 0. This
unexpected behavior highlights a fundamental distinction
between low-dimensional and high-dimensional spaces: in
high-dimensional spaces, randomness (e.g., the uniform dis-
tribution of x on the unit sphere) can lead to surprisingly
certainty (i.e., the concentration of x[0] around 0).

Figure 1. The Empirical Distribution of x[0] (Gao et al.).

This example typically demonstrates the phenomenon
of concentration of measure in high-dimensional spaces.
Formally, based on the seminal distributional Johnson-
Lindenstrauss Lemma (Johnson & Lindenstrauss, 1984) (JL
Lemma), with probability at least 99.9%, in this example,
the absolute value of x[0] is bounded by Ω(1/

√
D), where

D is the dimensionality. For more theoretical studies around
the phenomenon of concentration of measure, we refer read-
ers to comprehensive surveys and textbooks (Ledoux, 2001;
Vershynin, 2018; Freksen, 2021).

The concentration phenomenon in high-dimensional spaces
leads to intriguing implications. In particular, in this exam-
ple, when x has 3 dimensions, the only information we have
about x[0] is that it lies within the interval [−1, 1], which is
not very informative. However, when x has 1,000 dimen-
sions, the concentration phenomenon tells us that x[0] is
highly unlikely to deviate from 0 by Ω(1/

√
D). Since D

is large, this interval becomes much narrower, providing
a significantly tighter bound on x[0] in high-dimensional
spaces. We note that this is particularly counter-intuitive
because we did not access any single bit of data nor perform
any computation to reach this conclusion. However, the un-
certainty about x[0] significantly decreases. In other words,
via analyzing the concentration phenomenon, we gain “free
information” about x[0] without doing any computation.

This insight creates opportunities to enhance algorithms
by leveraging this “free information”. One area, where
this can be especially advantageous is quantization. By
effectively harnessing this phenomenon, we propose the
RaBitQ algorithm (Gao & Long, 2024; Gao et al., 2024a)
for vector quantization. In the algorithm, we construct a ran-
domly rotated quantization codebook. The randomness in

the codebook brings the aforementioned “free information”,
allowing us to construct an unbiased estimator for squared
distances and inner products. In addition, in the RaBitQ
papers (Gao et al., 2024a), we proved that RaBitQ’s error
bound is asymptotically optimal. To our knowledge, RaBitQ
is the first practically deployable algorithm, which achieves
the asymptotically optimal space-accuracy trade-off.

2.2. Theoretical Guarantees

Let or be a raw data vector, qr be a raw query vector and c
be a center vector, e.g., local centroids produced by KMeans
clustering. Let o := or−c

∥or−c∥ be the normalized data vector
and q := qr−c

∥qr−c∥ be the normalized query vector. RaBitQ
first reduces the question of estimating squared distances
or inner product between the raw vectors to the question of
estimating the inner product of unit vectors as follows.

∥or − qr∥2 =∥or − c∥2 + ∥qr − c∥2

− 2∥or − c∥∥qr − c∥ · ⟨o,q⟩ (1)

⟨or,qr⟩ = ⟨or, c⟩ − ∥c∥2 + ⟨qr, c⟩
+ ∥or − c∥∥qr − c∥ · ⟨o,q⟩ (2)

In these equations, the terms ∥or − c∥ and ⟨or, c⟩ − ∥c∥2
only depend on the data vector and the center vector and
can be pre-computed during indexing. The terms ∥qr − c∥
and ⟨qr, c⟩ only depend on the query vector and the center
vector. They can be computed once when a query comes
and shared by many data vectors. With this, the question
is reduced to the estimation of inner product between unit
vectors. Note that the raw data vectors and query vectors
can be any arbitrary vectors in the high-dimensional space.
We do not assume that they are unit vectors. The theoretical
results relevant to the unbiasedness and error bounds of
RaBitQ are restated as follows.
Theorem 2.1 (Unbiasedness and Error Bounds). Let o be
a unit data vector, q be a unit query vector, Crand be a
randomized codebook of unit vectors and ô be the quantized
data vector of o. An unbiased estimator is given by

E
[
⟨ô,q⟩
⟨ô,o⟩

]
= ⟨o,q⟩ (3)

The following error bound of the estimator holds with prob-
ability at least 1− 2 exp(−c0t

2).∣∣∣∣ ⟨ô,q⟩⟨ô,o⟩
− ⟨o,q⟩

∣∣∣∣ ≤
√

1− ⟨ô,o⟩2

⟨ô,o⟩2
· t√

D − 1
(4)

where t is a parameter which controls the failure probability.
c0 is a constant factor.

RaBitQ achieves asymptotic optimality on the space-
accuracy trade-off established by a prior theoretical
study (Alon & Klartag, 2017). The theorem about the opti-
mality is restated as follows.
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Theorem 2.2 (Optimality). Let B be the bit-width used
per dimension. For ϵ > 0 where 1

ϵ2 log
1
δ > D, setting

B = Θ
(
log

(
1
D · 1

ϵ2 log
1
δ

))
ensures that the error of inner

product estimated by RaBitQ is bounded by ϵ with probabil-
ity at least 1− δ.

It is worth noting that the required bit-width B is nega-
tively related to the dimensionality. In other words, for a
fixed bit-width, higher dimensionality leads to lower error,
which is counter-intuitive but aligns with the concentration
of measure phenomenon.

3. Implementation Techniques
This section briefly introduces implementation techniques
of RaBitQ in both indexing and querying phases. More
detailed descriptions are left in the documentation due to the
page limit. During indexing, the RaBitQ algorithm includes
two steps: (1) Random Rotation - it samples a random ro-
tation and applies it to all vectors; and (2) Quantization - it
quantizes a vector of floating-point numbers into a vector
of low-bit unsigned integers. During querying, the RaBitQ
algorithm pre-processes the query vector with the same ran-
dom rotation and estimates distances based on the rotated
query vectors and the quantized data vectors. In this library,
we provide efficient implementations for both components.
Specifically, Section 3.1 and Section 3.2 present efficient
implementation techniques of random rotation and quantiza-
tion respectively. Recall that RaBitQ is used for estimating
Euclidean distances and inner products. Section 3.3 illus-
trates data formats and estimator interfaces which ease the
distance estimation. Section 3.4 and Section 3.5 briefly in-
troduce the kernels for compact storage and computation
respectively. Section 3.6 describes how to utilize RaBitQ’s
error bound for reranking.

3.1. Rotator

Random rotation (Johnson-Lindenstrauss Transformation,
JLT in short) is a well-studied topic in the community of
high-dimensional probability (Freksen, 2021). It originally
refers to the random orthogonal transformation described in
the seminal paper of Johnson-Lindenstrauss Lemma (John-
son & Lindenstrauss, 1984). Over the past decades, there
has been a vast literature for fast JLT such as SRHT (Ailon
& Chazelle, 2009) and Kac’s Walk (Jain et al., 2020).

In the library, we adopt two algorithms for random rota-
tion. One is the classical random orthogonal transforma-
tion (Johnson & Lindenstrauss, 1984), which takes O(D2)
time for rotation. The other is an algorithm which combines
SRHT (Ailon & Chazelle, 2009) and Kac’s Walk (Jain et al.,
2020), which takes O(D logD) time for rotation. The im-
plementation of SRHT is taken from FFHT library (Andoni
et al., 2015). In particular, the original SRHT supports only

power-of-two dimensionalities. The combined approach
enables efficient random rotation for more general dimen-
sions. Due to the increasing dimensionality of vectors, we
recommend use the latter, which runs faster and provides
similar rotation quality.

3.2. Quantizer

After applying random rotation, the quantizer maps the ro-
tated floating-point vectors to unsigned integer vectors. The
library provides two implementations to accommodate dif-
ferent usage scenarios. The first implementation follows the
algorithm detailed in the original RaBitQ paper (Gao et al.,
2024a), achieving optimal accuracy at the cost of longer
quantization time. The second implementation introduces
approximations that slightly reduce accuracy but signifi-
cantly accelerate quantization. Specifically, the original
implementation of RaBitQ enumerates multiple rescaling
factors. For each factor, it rescales the data vector and
rounds it to the nearest vector in the codebook. Then it
selects the rescaling factor and vector that minimize the
quantization error. In the fast implementation, instead of
enumerating factors, it directly uses the expected optimal
rescaling factor 3 to perform the rounding and generates the
quantization code.

Based on either of the implementations, the library provides
a quantizer that can replace scalar quantization seamlessly.
Specifically, for an input vector x and a specified bit-width
B, the quantizer outputs a rescaling factor ∆x, a shifting
factor vl 4 and a vector of B-bit unsigned integers xu such
that

x ≈ ∆xxu + vl1D (5)

where 1D denotes the all one vector in D-dimensional
space.

3.3. Estimator Interface and Data Formats

Recall that RaBitQ is used for estimating Euclidean dis-
tances and inner products. In this part, we present the esti-
mator interface and data formats adopted for supporting the
estimation. Specifically, the library provides an interface,
which receives the dimensionality D, the number of bits per
dimension B, a floating-point vector x, a center vector c and
a flag which indicates the type of metrics (i.e., Euclidean
distance or inner product) as inputs. It outputs a code vector
xu and several floating-point factors which are used for the
distance estimation. It is worth highlighting that, with the

3The expected optimal rescaling factor is computed by averag-
ing the optimal factors computed from several vectors, which are
sampled from the uniform distribution on the unit sphere. Note
that the factor is independent to the dataset.

4Note that storing vl is optional, as it can be derived as vl =
−∆x × 2B−1

2
.
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new data formats and estimator interfaces, the query vector
only needs to be pre-processed once during search. This
significantly reduces the processing costs compared to the
original implementation, which processes the query vector
for each distinct center vector.

3.3.1. BASIC DATA FORMATS FOR DISTANCE
ESTIMATION

The basic data format includes a code vector of B-bit un-
signed integers xu and three factors F_add, F_rescale
and F_error. When a query comes, it prepares a ran-
domly rotated raw query vector q′

r and three factors G_add,
G_kBxSumq and G_error for every center vector. Let ip
be the inner product between the code vector xu and the ro-
tated query vector q′

r. Based on these factors, the estimated
Euclidean distance or inner product can be easily computed
as follows.

1 float est_dist = F_add + G_add + F_rescale
* (ip + G_kBxSumq);

2 float error_bound = F_error * G_error;
3 float lb_dist = est_dist - error_bound;
4 float ub_dist = est_dist + error_bound;

It is worth highlighting that this implementation works for
both similarity metrics - the detailed values of the factors
would be different for different metrics.

... ...

Figure 2. Splitting quantization codes into two parts (Gao et al.,
2024a).

3.3.2. ADVANCED DATA FORMATS FOR INCREMENTAL
DISTANCE ESTIMATION.

RaBitQ supports an advanced feature known as incremental
distance estimation. As illustrated in Figure 2, each code
vector xu can be decomposed into two components: the
binary code xb (comprising the most significant bits) and
the ex-code xex (the remaining bits). During ANN query-
ing, the algorithm can first estimate a coarse distance using
only the binary code. If higher accuracy is needed, it can
then access the ex-code to refine the estimate. This enables
a flexible trade-off between efficiency and accuracy. It is
important to distinguish this from a commonly used two-
stage filtering strategy, where coarse distances (e.g., from
1-bit codes) are used to filter candidates, followed by re-
ranking with a separate distance computation (e.g., using
4-bit codes). Although both approaches use a total of 5 bits,

the two-stage strategy achieves the accuracy of 4-bit quan-
tization, whereas incremental distance estimation achieves
the accuracy of 5-bit quantization—effectively halving the
error.

An advanced data format is provided to ease the incremental
distance estimation. Specifically, the format stores the bi-
nary code xb and the ex-code xex are separately. Three
factors F_add, F_rescale and F_error are prepared
for the binary codes and another three factors F_add_ex,
F_rescale_ex and F_error_ex are provided by the ex-
codes. When a query comes, it prepares a randomly rotated
raw query vector q′

r and four factors G_add, G_k1xSumq
and G_kBxSumq and G_error for every center vector. The
detailed definition of the factors is left in the documenta-
tion of the library due to the limit of space. Let ip_bin be
the inner product ⟨xb,q

′
r⟩ and ip_ex be the inner product

⟨xex,q
′
r⟩. The incremental distance computation can be

performed in the following way.

1 // 1-bit dist
2 float est_dist = F_add + G_add + F_rescale

* (ip_bin + G_k1xSumq)
3 float bound = F_error * G_error
4 float ub_dist = est_dist + bound
5 float lb_dist = est_dist - bound
6

7 // boost to full-bit dist
8 float ex_est_dist = F_add_ex + G_add +

F_rescale_ex * (ip_bin * (1 << (B-1)) +
ip_ex + G_kBxSumq)

9 float ex_bound = F_error_ex * G_error
10 float ex_ub_dist = ex_est_dist + ex_bound;
11 float ex_lb_dist = ex_est_dist - ex_bound;

3.4. Kernels for Storing Codes Compactly

Recall that RaBitQ offers a key advantage: it achieves high
accuracy even with small bit-widths, particularly when B <
8. However, encoding each coordinate with fewer than
8 bits leads to storage misalignment with standard byte
boundaries. This misalignment poses challenges for both
compact representation and efficient access, necessitating a
specialized storage format that minimizes memory overhead
while supporting high-speed operations. Furthermore, since
the quantized codes are used to compute inner products with
floating-point query vectors, the storage format must enable
fast packing and unpacking to avoid becoming a bottleneck
during distance estimation. Efficient decoding is particularly
critical for exploiting SIMD-based acceleration.

In practice, modern applications often adopt vector dimen-
sionalities that are multiples of 64—such as 512, 768, 1024,
or 1536—due to design choices in deep learning models.
To leverage this regularity, we design a compact storage
scheme that efficiently supports 1-bit to 8-bit quantization
over blocks of 64 coordinates. Figure 3 illustrates an exam-
ple for 2-bit quantization. The codes for a 64-dimensional
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Figure 3. The Compact Storage of 2-bit Quantization.

...

Figure 4. Bitwise Decomposition of Query Vectors (Gao & Long,
2024).

vector are stored in a byte array of length 16. Each row in
the figure represents one byte. Specifically, the 0-th byte
encodes the 2-bit codes for the 0-th, 16-th, 32-th, and 48-th
dimensions. The 1st byte encodes the 2-bit codes for the
1st, 17th, 33rd, and 49th dimensions, and so on. This layout
enables efficient unpacking using SIMD operations such as
bit shifting and masking, which can be implemented using
SSE instructions. The storage formats for other bit-widths
follow similar principles and are documented in detail in the
library’s documentation.

3.5. Kernels for Computing Inner Products

Computing the inner product between a code vector (an
array of unsigned integers) and a floating-point vector is a
core operation in RaBitQ. The library provides vectorized
kernels for this task. The kernels are categorized based on
the bit-width of the codes:

• 1-bit Codes: Two implementations are provided. The
first leverages bitwise operations to efficiently estimate
inner products for individual codes. The second em-
ploys FastScan (André et al., 2017), which processes
inner products in batches.

• Multi-bit Codes: The codes are unpacked into vectors
of 8-bit unsigned integers, enabling the inner product
computation using standard vectorized operations.

Bitwise Operations. For computing inner products based
on bitwise operations, we further quantize query vectors into
vectors of unsigned integers. Let Bq be the bit-width used
for quantizing query vectors. By default, we set Bq = 4

and use the fast implementation of RaBitQ in Section 3.2
to quantize query vectors. As is illustrated in Figure 4, the
query vector is further decomposed into Bq binary vectors.
Finally, through bitwise-and and popcount operations on the
binary vectors, we can compute the inner product between
the 1-bit codes and rotated query vectors approximately.
Note that the bit-width used for quantizing query vectors is
clearly larger than that for data vectors. Consequently, the
overall error remains primarily determined by the quantiza-
tion error of the data vectors.

FastScan. FastScan (André et al., 2017) is originally pro-
posed to accelerate PQ’s distance computation and has been
widely adopted in real-world systems (Douze et al., 2024). It
processes 32 codes in a batch, reorganizing their data layout
during indexing. During querying, it quantizes the PQ look-
up tables (LUTs), loads them into registers, and computes
estimated distances for a batch of codes simultaneously us-
ing vectorized operations. In the library, we integrates the
implementation of FastScan from Faiss (Douze et al., 2024).
We provide two versions of FastScan. The first quantizes
each coordinate of the query vector to 6 bits, enabling LUT
values to be stored as 8-bit unsigned integers. The second
quantizes each coordinate to 14 bits, storing LUT values
as 16-bit unsigned integers, which can then be decomposed
into two 8-bit LUTs for further computation. Each ver-
sion provides different accuracy levels based on the query
vectors. For details, please refer to the original papers of
RaBitQ and the documentation of the code repository.

3.6. Reranking

Reranking is a technique widely adopted for improving
recall of vector search. During searching, ANN algorithms
usually (1) shortlist a set of candidates based on an index
and their quantization codes (e.g., in memory); (2) retrieve
the raw vectors (e.g., from disks) for those candidates which
have the smallest estimated distances; and (3) computes
the exact distances for the candidates to find the nearest
neighbors. RaBitQ has a unique advantage in reranking
due to its theoretical error bound. It can skip reranking a
candidate if the lower bound of its estimated distance is
larger than the upper bound of the distance of the nearest
neighbors.

4. RaBitQ for ANN
In the library, we provide reference implementations which
combine RaBitQ with existing popular ANN indices includ-
ing IVF (Jegou et al., 2010), HNSW (Malkov & Yashunin,
2020) and QG (Yahoo, 2018) respectively. Each corre-
sponds to a different trade-off between memory consump-
tion and query efficiency, i.e., from IVF to HNSW to QG,
the memory consumption increases while the query effi-
ciency usually improves. In both IVF and HNSW, RaBitQ
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is employed to reduce memory consumption by storing
quantization codes instead of raw vectors (i.e., arrays of
32-bit floating-point numbers). The library supports bit-
widths ranging from 1 to 9 bits. In practice, 4-bit, 5-bit,
and 7-bit quantization typically achieve 90%, 95%, and
99% recall, respectively—without accessing raw vectors for
reranking. In QG, for each vertex of a graph-based index,
it quantizes each of its neighbors’ vectors with RaBitQ and
computes the approximate distances of all its neighbors us-
ing FastScan efficiently. All implementations are built on
the core operations of RaBitQ described in Section 3.

4.1. IVF+RaBitQ

The Inverted File Index (IVF) (Jegou et al., 2010) is a
lightweight index with minimal memory consumption. Dur-
ing indexing, it applies KMeans to partition a set of data
vectors into several clusters. During querying, for a query, it
retrieves data vectors from the clusters whose centroids are
nearest to the query. Then it computes the distances of these
vectors and finds out the NN. IVF is usually combined with
quantization, e.g., product quantization, in ANN (Douze
et al., 2024) - it estimates distances based on quantization
codes instead of computing distances exactly. In RaBitQ
Library, we use a similar strategy to combine IVF with
RaBitQ.

Index Phase. During indexing, we first build IVF with
the KMeans clustering in Faiss (Douze et al., 2024). We
randomly rotate all data vectors and centroids based on the
rotator described in Section 3.1. Then in each cluster, we
take its centroid as the center vector and quantize every
data vector into the data formats for incremental distance
estimation (Section 3.3.2). Recall that the format includes a
binary code and an ex-code for every vector. We pack every
32 binary codes in a batch and reorganize their data layout
such that FastScan can be applied to accelerate querying.

Query Phase. To find the NN for a given query, we first ro-
tate the query vector, prepare the look-up tables for FastScan
and pre-process factors for distance estimation. Then, we
compute the distances between the query and the clusters’
centroids to select the nearest nprobe (set by users) clusters
to search. After that, we scan the clusters one by one to
estimate distances using codes of RaBitQ. For each cluster,
we first access the 1-bit codes to compute a coarse approx-
imate distance and its error bounds using FastScan. Then,
we compare the lower bound of these estimated distances
with the distance of the currently searched NN. If the lower
bound is smaller than the distance of the NN, i.e., it may
update the NN, we access the ex-codes to boost the accuracy
and update the NN if its distance is smaller. Otherwise, we
drop them directly. After scanning the selected n clusters,
we obtain the NNs.

4.2. HNSW+RaBitQ

Graph-based indices are widely adopted in approximate
nearest neighbor (ANN) search due to their superior effi-
ciency. Among existing graph-based indices, the Hierarchi-
cal Navigable Small World (HNSW) graph is particularly
popular in both academia and industry (Malkov & Yashunin,
2020).

Index Phase. We follow the standard HNSW insertion
routine to build the graph incrementally. During indexing,
we use the raw vectors to construct graphs. Once the graph
is complete, the raw vectors are discarded. Each vector is
then quantized using RaBitQ. Specifically, we first apply
KMeans clustering to obtain nc centroids (typically nc =
16). Then for a data vector, we use its nearest centroid as
the center vector and quantize it into the data formats for
incremental distance estimation (Section 3.3.2).

Query Phase. During querying, we first rotate the query
vector, prepare factors for distance estimation and quantize
a query vector into 4-bit per dimension via the fast version
of RaBitQ’s scalar quantizer (Section 3.2). We then traverse
the HNSW graph: in the upper layers, the estimated dis-
tances based on binary codes guide us to the entry point for
the next layer. Upon reaching the base layer, we employ
an adaptive strategy to retrieve NNs. During traversing the
graph, for each neighbor, we first compute a 1-bit distance
and its error bound using only the binary code. If the lower
bound is smaller than the distance of the currently searched
NN, we access the ex-code to compute a more accuracy
distance and update the NN.

4.3. QG+RaBitQ (SymphonyQG)

Besides replacing the raw vectors with quantization codes,
there is another framework, namely QG, which combines
quantization and graph to minimize the random memory
access in graph-based searching. The framework of QG was
firstly proposed in the open-source library NGT by Yahoo
Japan (Yahoo, 2018). Specifically, for every data vector,
QG creates quantization codes for all its neighbors on a
graph-based index and compactly stores them. The codes
are further reorganized for FastScan (André et al., 2017).
Thus, during querying, when visiting a vector’s neighbors,
the algorithm can largely eliminate random memory ac-
cess and fully utilize FastScan to estimate distances. Based
on the QG framework, we proposed a more symphonious
combination of RaBitQ and graph-based indices, which is
named SymphonyQG and achieves the state-of-the-art query
performance (Gou et al., 2025). In this library, we further
optimize the implementation of SymphonyQG based on
the RaBitQ kernel mentioned in previous sections. Unlike
IVF and HNSW, the combination of RaBitQ and QG is not
designed to reduce memory usage, but rather to minimize
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random memory accesses during graph-based querying and
to accelerate the search process.

Index Phase. The indexing of QG follows an iterative
pattern following DiskANN (Jayaram Subramanya et al.,
2019). At the beginning, the graph-based index is randomly
initialized. Then, in each iteration, for every vertex, the
algorithm finds its candidate neighbors by querying the
ANNs based on the graph-based index generated in the last
iteration. The candidate neighbors are next pruned based
on the RNG-base pruning rule (Fu et al., 2017). It is worth
noting that the process of searching every data vector’s ANN
is accelerated with FastScan.

Query Phase. When a query comes, it is first processed
to lookup tables (LUTs) for FastScan. Then we traverse
the graph-based index in iterations. In each iteration of
the search process, we identify the unvisited vector with
the smallest estimated distance. We next compute its exact
distance from the query vector and the estimated distances
of the vertex’s neighbors by FastScan. The NN that has been
searched so far will be updated based on the exact distances.

5. Conclusion and Discussion
In this paper, we reviewed the RaBitQ method, including
its insights and theoretical results. We then developed the
RaBitQ Library, which incorporates optimized implementa-
tions and user-friendly interfaces to support advanced fea-
tures of RaBitQ such as incremental distance estimation.

One future direction is to go towards more data-aware Ra-
BitQ. For now, RaBitQ captures the data distribution to
some extent in the normalization step (e.g., it uses the cen-
troids of KMeans as center vectors for normalization), it
is interesting to explore other alternatives with enhanced
data-awareness.

Another future direction is to go towards wider applications
of RaBitQ beyond vector search. One promising direction
lies in neural network quantization. Recent work (Yang
et al., 2025) suggests that RaBitQ, with its bit-level flexibil-
ity, can be tailored to quantize neural layers while preserving
inference accuracy. Additionally, RaBitQ can be leveraged
in key-value (KV) cache management for LLM inference.
As transformer-based models like GPT and LLaMA rely
heavily on KV caches to maintain context across long se-
quences, optimizing the storage and retrieval of these high-
dimensional keys and values becomes crucial. RaBitQ’s
compression could enable more efficient KV cache storage,
allowing for longer context windows or reduced memory
usage in inference pipelines.
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