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Abstract

This paper is motivated by recent research in the d-dimensional stochas-
tic linear bandit literature, which has revealed an unsettling discrepancy:
algorithms like Thompson sampling and Greedy demonstrate promising
empirical performance, yet this contrasts with their pessimistic theoretical
regret bounds. The challenge arises from the fact that while these algo-
rithms may perform poorly in certain problem instances, they generally
excel in typical instances. To address this, we propose a new data-driven
technique that tracks the geometric properties of the uncertainty ellipsoid
around the main problem parameter. This methodology enables us to for-
mulate a data-driven frequentist regret bound, which incorporates the geo-
metric information, for a broad class of base algorithms, including Greedy,
OFUL, and Thompson sampling. This result allows us to identify and
“course-correct” problem instances in which the base algorithms perform
poorly. The course-corrected algorithms achieve the minimax optimal re-
gret of order Õ(d

√
T ) for a T -period decision-making scenario, effectively

maintaining the desirable attributes of the base algorithms, including their
empirical efficacy. We present simulation results to validate our findings
using synthetic and real data.

1 Introduction

Multi-armed bandits (MABs) have garnered significant attention as they provide well-
defined framework and techniques for investigating the trade off between experimentation
(learning) and rewards (earning) and in sequential decision-making problems. In MAB
problems, a decision-maker sequentially selects actions from a given set and observes corre-
sponding uncertain rewards. The MAB setting also extends to scenarios where the decision
rewards can be personalized by the presence of features or covariates, leading to contextual
bandits, as showcased in a large number of recent applications (Langford & Zhang, 2008;
Li et al., 2010; Tewari & Murphy, 2017; Zhou et al., 2020; Villar et al., 2015; Bastani &
Bayati, 2020; Cohen et al., 2020). This paper focuses on a well-studied class of models
that captures both MABs and contextual bandits as special cases while being amenable to
theoretical analysis: the stochastic linear bandit (LB) problem. In this model, the problem
parameter θ⋆ represents an unknown vector in Rd, while the actions, also vectors in Rd,
yield noisy rewards with a mean equal to the inner product of θ⋆ and the chosen action.
The objective of a policy is to maximize the cumulative reward based on the observed data
up to the decision time. The policy’s performance is measured by the cumulative regret,
which quantifies the difference between the total expected rewards achieved by the policy
and the maximum achievable expected reward.
Achieving this objective necessitates striking a balance between exploration and exploita-
tion. In the context of LB, this entails selecting actions that aid in estimating the true
parameter θ⋆ accurately while obtaining optimal rewards. Various algorithms based on the
optimism principle have been developed to address this challenge, wherein the optimal ac-
tion is chosen based on the upper confidence bound (UCB) (Lai & Robbins, 1985; Auer,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2002; Dani et al., 2008; Rusmevichientong & Tsitsiklis, 2010). Another popular strategy
is Thompson sampling (TS), a Bayesian heuristic introduced by Thompson (1933) that
employs randomization to select actions according to the posterior distribution of reward
functions. Additionally, the Greedy policy that selects the myopically best action is shown
to be effective in contextual bandits (Kannan et al., 2018; Raghavan et al., 2018; Hao et al.,
2020; Bastani et al., 2021).
In the linear bandit setting, two types of regret are considered. The Bayesian regret is
applicable when the parameter θ⋆ is treated as a random variable with a prior distribution.
In this case, the regret is averaged over three sources of randomness: the observation noise,
the randomized algorithm, and the random parameter θ⋆. Intuitively, the Bayesian regret
measures the expected performance of the algorithm over different realizations of the pa-
rameter θ⋆. Russo & Van Roy (2014) and Dong & Van Roy (2018) establish an Õ(d

√
T )

upper bound for the Bayesian regret of the Thompson Sampling (TS) heuristic, referred to
as LinTS, which matches the minimax optimal bound shown by Dani et al. (2008). Here,
Õ refers to the asymptotic order, up to polylogarithmic factors.
On the other hand, the frequentist regret assumes a fixed, unknown parameter θ⋆, and the
expectation is taken only with respect to the randomness of the noise and the algorithm.
In this frequentist setting, the optimism-based algorithm proposed by Abbasi-Yadkori et al.
(2011), known as Optimism in the Face of Uncertainty Linear Bandit Algorithm (OFUL),
achieves a Õ(d

√
T ) frequentist regret bound, which matches the minimax optimal Bayesian

bound. However, for a frequentist variant of LinTS, referred to as TS-Freq, which modifies
the posterior distribution by increasing its variance, Agrawal & Goyal (2013) and Abeille
et al. (2017) provide a Õ(d

√
dT ) upper bound for the frequentist regret. This regret bound

falls short of the optimal rate by a factor of
√

d. Recent work by Hamidi & Bayati (2020a)
confirms that this modification is necessary, and thus, the frequentist regret of LinTS cannot
be improved. For the Greedy algorithm in linear bandit problems, no general theoretical
guarantee exists (Lattimore & Szepesvari, 2017), and hence both LinTS and Greedy might
perform suboptimally.
Despite the theoretical gaps in performance, LinTS has shown strong empirical performance
(Russo et al., 2018), indicating that the inflation of the posterior distribution may be unnec-
essary in most problem instances, and unfavorable instances are unlikely to occur frequently.
Similarly, the Greedy algorithm works well in typical instances (Bietti et al., 2021). Ad-
ditionally, while optimism-based algorithms are computationally expensive (generally NP-
hard as discussed by Dani et al. (2008); Russo & Van Roy (2014); Agrawal (2019)), LinTS
and Greedy are known for their computational efficiency. This unsettling disparity between
theoretical, computational, and empirical performance has motivated our investigation into
the following two questions: Is it possible to identify, in a data-driven fashion, problematic
instances where LinTS and Greedy could potentially fail and apply a “course-correction”
to ensure competitive frequentist regret bounds? And can this be achieved without com-
promising their impressive empirical performance and computational efficiency? In this
paper, we provide positive answers to both questions. Specifically, we make the following
contributions.
1. We develop a real-time geometric analysis technique for the d-dimensional confidence
ellipsoid surrounding θ⋆. This method is crucial for maximizing the use of historical data,
advancing beyond methods that capture only limited information from the confidence ellip-
soid, such as a single numerical value. Consequently, this facilitates a more precise “course-
correction”.
2. We introduce a comprehensive family of algorithms, termed POFUL (encompassing
OFUL, LinTS, TS-Freq, and Greedy as specific instances), and derive a general, data-driven
frequentist regret bound for them. This bound is efficiently computable using data observed
from previous decision epochs.
3. We introduce course-corrected variants of LinTS and Greedy that achieve minimax
optimal frequentist regret. These adaptations maintain most of the desirable characteristics
of the original algorithms.
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The distinguishing feature of our study from the existing literature is the geometric analysis
of the d-dimensional confidence ellipsoid. Specifically, we conduct an analysis considering
the size, shape, position, and orientation of the confidence ellipsoid during the execution of
bandit algorithms. This enables real-time characterization of the set of potentially optimal
actions, leading to the establishment of a data-driven regret bound.

1.1 Other Related Literature

Our work is closely related to three main research streams: methodological foundations of
linear bandits, bandit algorithms utilizing spectral properties, and data-driven exploration
techniques. While these works share some similarities with our approach, we highlight the
key differences and the unique aspects of our methodology.
From a methodological perspective, our regret analysis builds upon the foundations laid by
Abbasi-Yadkori et al. (2011), Agrawal & Goyal (2013), and Abeille et al. (2017). However,
a key distinguishing factor is that our approach does not rely on optimistic samples, which
is a departure from previous methods. This means that the algorithms we study do not
always choose actions that are expected to perform better than the true optimal action. By
allowing non-optimistic samples, we avoid the need to inflate the posterior distribution, a
requirement in the works of Agrawal & Goyal (2013) and Abeille et al. (2017).
Our use of spectral information in bandit algorithms bears some resemblance to the study of
Spectral Bandits (Valko et al., 2014; Kocák et al., 2014; Kocák et al., 2020; Kocák & Gariv-
ier, 2020). These works represent arm rewards as smooth functions on a graph, leveraging
low-rank structures to improve algorithmic performance and obtain regret guarantees inde-
pendent of the number of actions. In contrast, our approach exploits the spectral properties
of the action covariance matrix, which is distinct from graph spectral analysis. Moreover,
our research tackles the broader context of stochastic linear bandits without assuming any
low-rank structure.
Our work also shares conceptual similarities with research on exploration strategies (Russo
& Van Roy, 2016; Kirschner & Krause, 2018) and data-driven exploration reduction (Bastani
et al., 2021; Pacchiano et al., 2020; Hamidi & Bayati, 2020a;b). However, our methodology
and data utilization differ significantly. For instance, Bastani et al. (2021) focuses on the
minimum eigenvalue of the covariance matrix, a single-parameter summary of the observed
data, while Hamidi & Bayati (2020b) uses information from one-dimensional reward con-
fidence intervals. The work of Hamidi & Bayati (2020a) is more closely related to ours,
as it employs spectral information to improve the performance of Thompson Sampling in
linear bandits. They use a single summary statistic called the thinness coefficient to de-
cide whether to inflate the posterior. In contrast, our approach leverages the full geometric
details of the d-dimensional confidence ellipsoid, harnessing richer geometric information.

2 Setup and Preliminaries

Notations. We use ∥·∥ to denote the Euclidean 2-norm. For a symmetric positive definite
matrix A and a vector x of proper dimension, we let ∥x∥A :=

√
x⊤Ax be the weighted 2-

norm (or the A-norm). We let ⟨·, ·⟩ denote the inner product in Euclidean space such that
⟨x, y⟩ = x⊤y. For a d-dimensional matrix V , we let λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λd(V ) be the
eigenvalues of V arranged in decreasing order. We let Bd denote the unit ball in Rd, and
Sd−1 = {x ∈ Rd : ∥x∥ = 1} denote the unit hypersphere in Rd. For an interger N ≥ 1, we let
[N ] denote the set {1, 2, . . . , N}. We use the O(·) notation to suppress problem-dependent
constants, and the Õ(·) notation further suppresses polylog factors.

Problem formulation and assumptions. We consider the stochastic linear bandit
problem. Let θ⋆ ∈ Rd be a fixed but unknown parameter. At each time t ∈ [T ], a pol-
icy π selects action xt from a set of action Xt ⊂ Rd according to the past observations
and receives a reward rt = ⟨xt, θ⋆⟩ + εt, where εt is mean-zero noise with a distribution
specified in Assumption 3 below. We measure the performance of π with the cumulative
expected regret R(T ) =

∑T
t=1⟨x⋆

t , θ⋆⟩ − ⟨xt, θ⋆⟩ , where x⋆
t is the best action at time t, i.e.,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x⋆
t = arg maxx∈Xt

⟨x, θ⋆⟩ . Let Ft be a σ-algebra generated by the history (x1, r1, . . . , xt, rt)
and the prior knowledge, F0. Therefore, {Ft}t≥0 forms a filteration such that each Ft

encodes all the information up to the end of period t.
We make the following assumptions that are standard in the relevant literature.
Assumption 1 (Bounded parameter). The unknown parameter θ⋆ is bounded as ∥θ⋆∥ ≤ S,
where S > 0 is known.
Assumption 2 (Bounded action sets). The action sets {Xt} are uniformly bounded and
closed subsets of Rd, such that ∥x∥ ≤ Xt for all x ∈ Xt and all t ∈ [T ], where Xt’s are
known and supt≥1 {Xt} <∞.
Assumption 3 (Subgaussian reward noise). The noise sequence {εt}t≥1 is condition-
ally mean-zero and R-subgaussian, where R is known. Formally, for all real valued λ,
E
[
eλεt |Ft

]
≤ exp

(
λ2R2/2

)
. This condition implies that E [εt|Ft] = 0 for all t ≥ 1.

2.1 Regularized Least Square and Confidence Ellipsoid

In this subsection, we review the useful frequentist tools developed by Abbasi-Yadkori et al.
(2011) for estimating the unknown parameter θ∗ in linear bandit (LB) problems.
Consider an arbitrary sequence of actions (x1, . . . , xt) and their corresponding rewards
(r1, . . . , rt). In LB problems, the parameter θ∗ is typically estimated using the regular-
ized least squares (RLS) estimator. Let λ be a fixed regularization parameter. The sample
covariance matrix Vt and the RLS estimate θ̂t are defined as follows:

Vt = λregId +
t∑

s=1
xsx⊤

s , θ̂t = V −1
t

t∑
s=1

xsrs. (1)

The following proposition from Abbasi-Yadkori et al. (2011) establishes that the RLS esti-
mate θ̂t concentrates around the true parameter θ∗ with high probability.
Proposition 1 (Theorem 2 in Abbasi-Yadkori et al. (2011)). Let δ ∈ (0, 1) be a fixed
confidence level. Then, with probability at least 1− δ, it holds for all x ∈ Rd that∥∥∥θ̂t − θ⋆

∥∥∥
Vt

≤ βRLS
t,δ,λreg ,

∣∣∣⟨x, θ̂t − θ⋆⟩
∣∣∣ ≤ ∥x∥V −1

t
βRLS

t,δ,λreg

where the confidence bound βRLS
t,δ,λreg

is defined as

βRLS
t,δ,λreg = R

√
2 log (λreg + t)d/2λ

−d/2
reg

δ
+
√

λregS. (2)

Hereafter, we might omit the dependence of βt on δ if there is no ambiguity. Propostion 1
enables us to construct the following sequence of confidence ellipsoids.
Definition 1. Fix δ ∈ (0, 1). We define the RLS confidence ellipsoid as

ERLS
t (δ) = {θ ∈ Rd : ∥θ − θ̂t∥Vt

≤ βRLS
t,δ,λreg} .

The next proposition, known as the elliptical potential lemma, plays a central role in bound-
ing the regret. This proposition provides the key element in the work of Abbasi-Yadkori
et al. (2011), showing that the cumulative prediction error incurred by the action sequence
used to estimate θ∗ is small.
Proposition 2 (Lemma 11 in Abbasi-Yadkori et al. (2011)). If λreg > 1, for an arbitrary
sequence (x1, . . . , xt), it holds that

∑t
s=1 ∥xs∥2

V −1
s
≤ 2 log det(Vt+1)

det(λregI) ≤ 2d log
(

1 + t
λreg

)
.

3 POFUL Algorithms

In this section, we introduce POFUL (Pivot OFUL), a generalized framework of OFUL.
This framework enables a unified analysis of frequentist regret for common algorithms.

4
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At a high level, POFUL is designed to encompass the exploration mechanism of OFUL
and LinTS. POFUL takes as input a sequence of inflation parameters {ιt}t∈[T ], feasible
(randomized) pivots {θ̃t}t∈[T ] and optimism parameters {τt}t∈[T ]. The inflation parameters
are used to construct confidence ellipsoids that contain {θ̃t}t∈[T ] with high probability. This
is formalized in the next definition.
Definition 2. Fix δ ∈ (0, 1) and δ′ = δ/2T . Given the inflation parameters {ιt}t∈[T ], we
call random variables {θ̃t}t∈[T ] feasible pivots if for all t ∈ [T ], P

[
θ̃t ∈ EP V T

t (δ′)|Ft

]
≥ 1−δ′,

where we define the “pivot ellipsoid” as EP V T
t (δ) :=

{
θ ∈ Rd : ∥θ − θ̂t∥Vt

≤ ιtβ
RLS
t,δ,λreg

}
.

At each time t, POFUL chooses the action that maximizes the optimistic reward

x̃t = arg max
x∈Xt

(
⟨x, θ̃t⟩+ τt∥x∥V −1

t
βRLS

t,δ′,λreg

)
, (3)

as shown in a pseudocode representation in Algorithm 1 and illustrated in Figure 1a.
Recall OFUL encourages exploration by introducing the uncertainty term τt∥x∥V −1

t
βRLS

t,δ′,λreg

in the reward, while LinTS explores through random sampling within the confidence ellip-
soid. We let POFUL select an arbitrary pivot (which can be random) from EP V T

t and max-
imize the optimistic reward to encompass arbitrary exploration mechanisms within EP V T

t .

Algorithm 1 POFUL
Require: T , δ, λreg, {ιt}t∈[T ], {τt}t∈[T ]

Initialize V0 ← λI, θ̂1 ← 0, δ′ ← δ/2T
for t = 0, 1, . . . , T do

Sample a feasible pivot θ̃t with respect to ιt according to Definition 2
x̃t ← arg maxx∈Xt

(
⟨x, θ̃t⟩+ τt∥x∥V −1

t
βRLS

t,δ′,λreg

)
Observe reward rt

Vt+1 ← Vt + x̃tx̃
⊤
t

θ̂t+1 ← V −1
t+1
∑t

s=1 x̃srs.
end for

We demonstrate that POFUL encompasses OFUL, LinTS, TS-Freq, and Greedy as special
cases, as illustrated in Figure 1b.
Example 1 (OFUL). For stochastic linear bandit problems, OFUL chooses actions by solv-
ing the optimization problem maxx∈Xt ⟨x, θ̂t⟩+ ∥x∥V −1

t
βRLS

t,δ′,λreg
. Therefore, OFUL is a spe-

cially case of POFUL where ιt = 0, τt = 1 and θ̃t = θ̂t, the center of the confidence ellipsoid,
for all t ∈ [T ].

Before describing how TS can be derived as an instance of POFUL, we introduce a definition.

O

θ̂t

EPV T
t (δ)

θ̃t

Parameter
space: Rd

Reward
space: R

POFUL

2ιt∥x∥V −1
t

βRLS
t (δ′)

⟨θ̃t, x⟩
2τt∥x∥V −1

t
βRLS

t (δ′)

⟨θ̂t, x⟩

(a)

OFUL
⟨θ̂t, x⟩

TS⟨θ̃t, x⟩

⟨θ̂t, x⟩ Greedy⟨θ̃t, x⟩=⟨θ̂t, x⟩

(b)

Figure 1: a) POFUL algorithms illustration. (b) Special cases: Greedy, TS, and OFUL.
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Definition 3. Let δ ∈ (0, 1). We define DSA(δ) as a distribution satisfying
Pη∼DSA(δ) [∥η∥ ≤ 1] ≥ 1− δ.
Example 2 (TS). Linear Thompson Sampling (LinTS) algorithm is a generic randomized
algorithm that samples from a distribution constructed from the RLS estimate at each step.
At time t, LinTS samples as θ̃t = θ̂t + ιT S

t βRLS
t (δ′)V − 1

2
t ηt, where δ′ = δ/2T , and ιT S

t is an
inflation parameter controlling the scale of the sampling range, and ηt is a random sample
from a normalized sampling distribution DSA(δ′) that concentrates with high probability.
LinTS is a special case of POFUL where ιt = ιT S

t , τt = 0 and θ̃t = θ̂t + ιT S
t βRLS

t (δ′)V − 1
2

t ηt.
Setting the inflation parameter ιt = Õ(1) corresponds to the original LinTS algorithm. On
the other hand, setting ιt = Õ(

√
d) corresponds to the frequentist variant of LinTS studied

in Agrawal & Goyal (2013); Abeille et al. (2017), namely TS-Freq. This means TS-Freq
inflates the posterior by a factor of order

√
d.

Example 3 (Greedy). Greedy is a special case of POFUL with ιt = τt = 0, θ̃t = θ̂t, ∀t.

4 Frequentist Regret Analysis of POFUL

In this section, we present the frequentist regret analysis of POFUL algorithms. We defer
all proofs to Appendix C. We first introduce useful concentration events that hold with
high-probability.
Definition 4. Fix δ ∈ (0, 1) and δ′ = δ/2T . We define βP V T

t,δ′,λreg
:= ιt(δ)βRLS

t,δ′,λreg
and

Ât :=
{
∀s ≤ t :

∥∥∥θ̂t − θ⋆
∥∥∥

Vt

≤ βRLS
t,δ′,λreg

}
, Ãt :=

{
∀s ≤ t :

∥∥∥θ̃t − θ̂t

∥∥∥
Vt

≤ βP V T
t,δ′,λreg

}
.

We also define At := Ât ∩ Ãt .
Proposition 3. Under Assumptions 1, 2 and 3 , we have P [AT ] ≥ 1− δ.

4.1 An Data-Driven Regret Bound for POFUL

In the following, we condition on the event AT which holds with probability 1 − δ. The
following proposition bounds the instantaneous regret of POFUL.
Proposition 4. Suppose θ⋆ ∈ ERLS

t (δ′) and θ̃t ∈ EP V T
t (δ′), it holds that

⟨x⋆
t , θ⋆⟩ − ⟨x̃t, θ⋆⟩ ≤ (1 + ιt − τt)∥x⋆

t ∥V −1
t

βRLS
t,δ′,λreg + (1 + ιt + τt)∥x̃t∥V −1

t
βRLS

t,δ′,λreg . (4)

Note that this upper bound is different from what’s used in the optimism-based methods
(Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013; Abeille et al., 2017), we reproduce
their upper bound and discuss the relationship of our method and theirs in Appendix D.
On the right-hand side of equation 4, since the oracle optimal action sequence {x⋆

t }t∈[T ]
is unknown to the algorithm and is different from the action sequence {x̃t}t∈[T ] played by
POFUL, one cannot apply Proposition 2 to bound the summation

∑T
t=1 ∥x̃t∥2

V −1
t

and get
an upperbound of the regret. To fix the problem due to this discrepancy, the key point is
connecting {x̃t}t∈[T ] and {x⋆

t }t∈[T ] in terms of the V −1
t -norm. This motivates the following

definition.
Definition 5. For each t ≥ 1, let x̃t and x⋆

t respectively denote the action chosen by POFUL
and the optimal action. We define the uncertainty ratio at time t as αt := ∥x⋆

t ∥V −1
t

/∥x̃t∥V −1
t

.
We also define the (instantaneous) regret proxy at time t as µt := αt(1+ ιt−τt)+1+ ιt +τt.

Note that ⟨x, θ̂t − θ⋆⟩ ≤ ∥x∥V −1
t

βRLS
t holds with high probability, we have that ∥x∥V −1

t

essentially determines the length of the confidence interval of the reward ⟨x, θ⋆⟩. Hence, αt

serves as the ratio of uncertainty degrees of the reward obtained by the optimal action x⋆
t

and the chosen action x̃t.

6
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The intuition behind the definition for µt is constructing a regret upper bound similar to that
of OFUL. Specifically, Proposition 4 indicates ⟨x⋆

t , θ⋆⟩ − ⟨x̃t, θ⋆⟩ ≤ µt∥x̃t∥V −1
t

βRLS
t , and we

can check that the instantaneous regret of OFUL satisfies ⟨x⋆
t , θ⋆⟩−⟨x̃t, θ⋆⟩ ≤ 2∥x̃t∥V −1

t
βRLS

t .
In this sense, µt is a proxy of the instantaneous regret incurred by POFUL at time t.
Moreover, OFUL can be regarded as a POFUL algorithm whose µt is fixed at 2, and we
could extend the definition of αt to OFUL by solving µt = αt(1 + ιt − τt) + 1 + ιt + τt and
set αt = 1 for all t ∈ [T ] for OFUL (recall that in OFUL, ιt = 0 and τt = 1 for all t ∈ [T ]).
The following Theorem connects {µt}t∈[T ] and R(T ). It provides an oracle but general
frequentist regret upper bound for all POFUL algorithms.
Theorem 1 (Oracle frequentist regret bound for POFUL). Fix δ ∈ (0, 1) and let δ′ = δ/2T .
Under Assumptions 1, 2 and 3, with probability 1− δ, POFUL achieves a regret of

R(T ) ≤

√√√√2d

(
T∑

t=1
µ2

t

)
log
(

1 + T

λreg

)
βRLS

T,δ′,λreg . (5)

Remark 1. We call Theorem 1 an oracle regret bound as {µt}t∈[T ] for general POFUL
depends on the unknown system parameter θ⋆. In general, they cannot be calculated by
the decision-maker. Nevertheless, when we have upper bounds for ιt and τt, as well as
computable upper bounds {α̂t}t∈[T ] for {αt}t∈[T ] respectively, using µ2

t ≤ 2α2
t (1 + ιt− τt)2 +

2(1+ιt+τt)2, we could calculate upper bounds for {µt}t∈[T ] as well. Consequently, Theorem 1
instantly turns into a data-driven regret bound for POFUL and could be utilized later for
course correction, which will be the aim of the next section. When we additionally know
that 1 + ιt − τt is non-negative, we would use the equality µt = αt(1 + ιt − τt) + 1 + ιt + τt

directly for the bound.
Remark 2. In the Discussion section of Abeille et al. (2017), the authors introduce a
concept similar to the reciprocal of our αt. They suggest that the necessity of proving LinTS
samples are optimistic could be bypassed if for some α > 0 LinTS samples θ̃t such that
∥x⋆(θ̃t)∥V −1

t
≥ α∥x⋆(θ⋆

t )∥V −1
t

with constant probability ,where x⋆(θ̃t) and x⋆(θ⋆
t ) represent

the optimal actions corresponding to θ̃t and θ⋆
t , respectively. They pose this as an open

question regarding the possibility of relaxing the requirement of inflating the posterior. In the
following section, we provide a positive answer to this question by studying the reciprocal of
their α using geometric arguments. This investigation offers an explanation for the empirical
success of LinTS without the need for posterior inflation.

5 A Data-Driven Approach

In this section, we present the main contribution of this work which provides a data-driven
approach to calibrating POFUL. Note that ιt and τt are parameters of POFUL that can
be controlled by a decision-maker, the essential point is to find a computable, non-trivial
upper bound α̂t for the uncertainty ratio αt, which turns into an upper bound µ̂t for the
regret proxy µt that’s deeply related to the frequentist regret of POFUL.
Typically, we can check that α̂t is no less than one because when x̃t = x⋆

t , we have αt =
∥x⋆

t ∥V −1
t

/ ∥x̃t∥V −1
t

= 1 and α̂t is an upper bound for αt. As a result, it holds that µ̂t =
(1 + α̂t)(1 + ιt) + (1− α̂t)τt ≤ (1 + α̂t)(1 + ιt), i.e., setting τt = 0 yields a valid upper bound
for µ̂t. Given this observation, we will focus on scenarios where τt = 0 for all t ∈ [T ]. Such
scenarios include LinTS and its variants like TS-Freq as well as Greedy - all of which are
standard algorithms that still lack theoretical regret guarantee results.
In the subsequent analysis, we construct upper bounds {α̂t}t∈[T ] for the continuous-action
scenario. Bounds for the discrete-action scenario are in Appendix E.

5.1 Continuous action space.

Our strategy capitalizes on geometric insights related to the properties of the confidence
ellipsoids, providing upper bounds that can be computed efficiently.

7
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For the sake of a better illustration, we consider Xt = Sd−1 for all t ∈ [T ] for this scenario,
where Sd−1 =

{
x ∈ Rd : ∥x∥ = 1

}
is the unit hypersphere in Rd.This is a standard example

of continuous action space, and is the same as the setting considered in Abeille et al. (2017).
We remark that for this specific setting, the problem is still hard. This is because we don’t
have a closed-form solution for the set of potentially optimal actions.
In this setting, the optimal action x⋆

t (θ) := arg maxx∈Xt
⟨x, θ⟩ takes the form x⋆

t (θ) = θ/∥θ∥.
To upper bound αt, we consider respectively the smallest and largest value of ∥x⋆

t (θ)∥V −1
t

for θ in the confidence ellipsoids of θ, namely, ERLS
t and EP V T

t . Specifically, we have

αt ≤
supθ∈ERLS

t
∥x⋆

t (θ)∥V −1
t

infθ∈EP V T
t
∥x⋆

t (θ)∥V −1
t

. (6)

As is illustrated in Figure 2, the set of potentially optimal actions Ct is the projection of
the confidence ellipsoid Et onto Sd−1. It’s hard to get a closed-form expression for Ct, so
we cannot directly calculate the range of V −1

t -norm of actions in Ct. Nevertheless, we can
approximate the range by investigating the geometric properties of the ellipsoids.
The intuition here is that, when POFUL has implemented sufficient exploration so that Et

is small enough, Ct concentrates accordingly to a small cap on Sd−1. All actions within Ct

point to similar directions and thus have similar Vt-norm. (Note that for a unit vector x,
we have that ∥x∥Vt can be written as a weighted summation of the eigenvalues of Vt, where
the weights are determined by the direction of x.) Therefore, it is possible to estimate the
range of the Vt-norm by employing geometric reasoning. Subsequently, this estimated range
will be utilized to ascertain the range of the V −1

t -norm.

(a) (b)

Figure 2: Illustration of potentially optimal actions set Ct in R2. (a): Ct is Et’s projection
onto Sd−1. (b): As more data is collected, Et shrinks (colors show exploration levels).
Potentially optimal actions point in similar directions, determining their Vt-norm. This
suggests their Vt-norm range could be estimated geometrically.

The main theorem (proved in Section A) derives an upper bound for αt based on this idea.
Theorem 2. Suppose Xt = Sd−1 for all t ∈ [T ]. Define mt = (∥θ̂t∥2

Vt
− (βRLS

t )2)/(∥θ̂t∥ +
βRLS

t /λd(Vt))2, Mt = ∥θ̂t∥2
V 2

t
/(∥θ̂t∥2

Vt
− (βP V T

t )2). Let k ∈ [d] be the integer that satisfies
λk(V ) ≤Mt ≤ λk+1(V ). Define βP V T

t := ιtβ
RLS
t and

Φt =
{

(λ−1
1 (Vt) + λ−1

d (Vt)−mtλ
−1
1 (Vt)λ−1

d (Vt))
1
2 , if ∥θ̂t∥Vt ≥ βRLS

t

λ
− 1

2
d (Vt), if ∥θ̂t∥Vt

< βRLS
t

,

Ψt =
{

(λ−1
k (Vt) + λ−1

k+1(Vt)−Mtλ
−1
k (Vt)λ−1

k+1(Vt))
1
2 , if ∥θ̂t∥Vt

≥ βP V T
t

λ
− 1

2
1 (Vt), if ∥θ̂t∥Vt

< βP V T
t

.

Then for all t ∈ [T ], conditioned on Ât ∩ Ãt, it holds for all s ≤ t that αs ≤ α̂s := Φs/Ψs.

To better understand what Theorem 2 implies, we discuss some special cases in Appendix G
and provide empirical validations for them.
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6 A Meta-Algorithm for Course-Correction

This section demonstrates how the data-driven regret bound can enhance standard bandit
algorithms. We propose a meta-algorithm that creates course-corrected variants of base
algorithms, achieving minimax-optimal frequentist regret guarantees while preserving most
original characteristics, including computational efficiency and typically low regret.
We take LinTS as an example of the base algorithm, and propose the algorithm Linear
Thompson Sampling with Maximum Regret (Proxy) (TS-MR). The idea is to measure the
performance of LinTS using µ̂t and avoid bad LinTS actions by switching to OFUL actions.
Specifically, at each time t, TS-MR calculates the upper bound µ̂t and compares it with a
preset threshold µ. If µ̂t > µ, LinTS might be problematic and TS-MR takes an OFUL
action to ensure a low instantaneous regret; if µ̂t ≤ µ, TS-MR takes the LinTS action. We
remark that setting ιt = 0 for all t ∈ [T ] yields the corresponding Greedy-MR algorithm.
The pseudocode is presented in Algorithm 2 in Appendix H.
By design, course-corrected algorithms maintain µt ≤ max{µ, 2} for all t ∈ [T ]. Theorem 1
yields their optimal frequentist regret, up to a constant factor.
Corollary 1. TS-MR and Greedy-MR achieve a frequentist regret of Õ(max{µ, 2}d

√
T ).

Proof. Note that µt ≤ max{µ, 2}, by Theorem 1, we have

R(T ) ≤

√
2dT (max{µ, 2})2 log

(
1 + T

λreg

)
βRLS

T,δ′,λreg
= Õ(max{µ, 2}d

√
T ).

Remark 3. In practice, the choice of the threshold µ depends on the problem settings. In
a high-risk setting where LinTS and Greedy fail with high probability, one can set a small
µ so that TS-MR and Greedy-MR select more OFUL actions to guarantee the necessary
amount of exploration. In a low-risk setting where original LinTS and Greedy algorithms
work well, one can set a large µ and hence TS-MR and Greedy-MR select TS and greedy
actions respectively to avoid unnecessary exploration and save the computational cost.

7 Simulations

We aim to compare TS-MR, Greedy-MR, and key baseline algorithms, via simulation.

7.1 Synthetic datasets

(a) example 1 (b) example 2 (c) example 3

Figure 3: Comparison of the cumulative regret incurred by TS-MR and Greedy-MR, versus
the baseline algorithms in Examples 1-3.

We conduct simulations on three representative synthetic examples. The detailed experi-
mental setups for these examples are presented in Appendix F.

Example 1. Stochastic linear bandit with uniformly and independently dis-
tributed actions. This is a basic example of standard stochastic linear bandit problems
without any extra structure. TS-Freq shows pessimistic regret due to the inflation of the
posterior, while other algorithms in general perform well.

9
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Example 2. Contextual bandits embedded in the linear bandit problem (Abbasi-
Yadkori, 2013). In this setting, Greedy performs suboptimally due to a lack of explo-
ration for some arms. Nevertheless, Greedy-MR outperforms both Greedy and OFUL by
adaptively choosing OFUL actions only when it detects large regret proxy µ̂t.

Example 3. Prior mean mismatch (Hamidi & Bayati, 2020a). This is an example
in which LinTS is proven to incur linear Bayesian regret. We see both LinTS and Greedy
incur linear regrets as expected, while TS-MR and Greedy-MR, switch to OFUL adaptively
to tackle this hard problem and achieve sublinear regret.

7.2 Real-world datasets

We explore the performance of standard POFUL algorithms and the proposed TS-MR and
Greedy-MR algorithms on real-world datasets. We consider three datasets for classification
tasks on the OpenML platform, Cardiotocography, JapaneseVowels and Segment. They
focus on healthcare, pattern recognition, and computer vision problems respectively.

Setup. We follow the approach in the literature (Bietti et al., 2021; Bastani et al., 2021)
that converts classification tasks to contextual bandit problems, and then embeds it into
linear bandit problems in the same way as Example 2 in Section 7.1. Specifically, we regard
each class as an action so that at each time, the decision-maker assigns a class to the
feature observed and receives a binary reward, namely 1 for assigning the correct class and
0 otherwise, plus a Gaussian noise.
We plot the cumulative regret (averaged over 100 runs) for all algorithms. Figure 4 shows
that for all real-world datasets: OFUL and TS-Freq perform poorly due to their conservative
exploration; LinTS and Greedy are achieving empirical success even though they don’t have
theoretical guarantees; TS-MR and Greedy-MR retain the desirable empirical performance
of LinTS and Greedy, while enjoying the minimax optimal frequentist regret bound.

(a) Cardiotocography dataset. (b) JapaneseVowels dataset. (c) Segment dataset.

Figure 4: Cumulative regret of all algorithms on real-world datasets.

8 Conclusion

In this work, we propose a data-driven framework to analyze the frequentist regret of PO-
FUL, a family of algorithms that includes OFUL, LinTS, TS-Freq, and Greedy as special
cases. Our approach allows for the computation of a data-driven frequentist regret bound
for POFUL during implementation, which subsequently informs the course-correction of the
algorithm. Our technique conducts a novel real-time geometric analysis of the d-dimensional
confidence ellipsoid to fully leverage the historical information and might be of independent
interest. As applications, we propose TS-MR and Greedy-MR algorithms that enjoy prov-
able minimax optimal frequentist regret and demonstrate their ability to adaptively switch
to OFUL when necessary in hard problems where LinTS and Greedy fail. We hope this
work provides a steady step towards bridging the gap between theoretical guarantees and
empirical performance of bandit algorithms such as LinTS and Greedy.
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