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Abstract

Computer-aided design (CAD) is the most widely used modeling approach for
technical design. The typical starting point in these designs is 2D sketches which
can later be extruded and combined to obtain complex three-dimensional assem-
blies. Such sketches are typically composed of parametric primitives, such as
points, lines, and circular arcs, augmented with geometric constraints linking the
primitives, such as coincidence, parallelism, or orthogonality. Sketches can be
represented as graphs, with the primitives as nodes and the constraints as edges.
Training a model to automatically generate CAD sketches can enable several novel
workflows, but is challenging due to the complexity of the graphs and the hetero-
geneity of the primitives and constraints. In particular, each type of primitive and
constraint may require a record of different size and parameter types. We propose
SketchGen as a generative model based on a transformer architecture to address
the heterogeneity problem by carefully designing a sequential language for the
primitives and constraints that allows distinguishing between different primitive
or constraint types and their parameters, while encouraging our model to re-use
information across related parameters, encoding shared structure. A particular
highlight of our work is the ability to produce primitives linked via constraints that
enables the final output to be further regularized via a constraint solver. We evaluate
our model by demonstrating constraint prediction for given sets of primitives and
full sketch generation from scratch, showing that our approach significantly out
performs the state-of-the-art in CAD sketch generation.

1 Introduction

Computer Aided Design (CAD) tools are popular for modeling in industrial design and engineering.
The employed representations are popular due to their compactness, precision, simplicity, and the
fact that they are directly ‘understood’ by many fabrication procedures.

CAD models are essentially a collection of primitives (e.g., lines, arcs) that are held together by a
set of relations (e.g., collinear, parallel, tangent). Complex shapes are then formed by a sequence
of CAD operations, forming a base shape in 2D that is subsequently lifted to 3D using extrusion
operations. Thus, at the core, most CAD models are coplanar constrained sketches, i.e., a sequence of
planar curves linked by constraints. For example, CAD models in some of the largest open-sourced
datasets like Fusion360 [37] and SketchGraphs [27] are thus structured, or sketches drawn in algebraic
systems like Cinderella [1]. Such sequences are not only useful for shape creation, but also facilitate
easy editing and design exploration, as relations are preserved when individual elements are edited.

CAD representations are heterogeneous. First, different instructions have their unique sets of parame-
ters, with different parameter counts, data types, and semantics. Second, constraint specifications
involve links (i.e., pointers) to existing primitives or parts of primitives. Further, the same final shape
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can be equivalently realized with different sets of primitives and constraints. Thus, CAD models
neither come in regular structures (e.g., image grids) nor can they be easily encoded using a fixed
length encoding. The heterogeneous nature of CAD models makes it difficult to adopt existing deep
learning frameworks to train generative models. One easy-to-code solution is to simply ignore the
constraints and rasterize the primitives into an image. While such a representation is easy to train,
the output is either in the image domain, or needs to be converted to primitives via some form of
differential rendering. In either case, the constraints and the regularization parametric primitives
provide is lost, and the conversion to primitives is likely to be unreliable. A slightly better option is
to add padding to the primitive and constraint representations, and then treat them as fixed-length
encodings for each primitive/constraint. However this only hides the difficulty, as the content of the
representation is still heterogeneous, the generator now additionally has to learn the length of the
padding that needs to be added, and the increased length is inefficient and becomes unworkable for
complex CAD models.

We introduce SketchGen as a generative framework for learning a distribution of constrained sketches.
Our main observation is that the key to working with a heterogeneous representation is a well-
structured language. We develop a language for sketches that is endowed with a simple syntax, where
each sketch is represented as a sequence of tokens. We explicitly use the syntax tree of a sequence
as additional guidance for our generative model. Our architecture makes use of transformers to
capture long range dependencies and outputs both primitives along with their constraints. We can
aggressively quantize/approximate the continuous primitive parameters in our sequences as long as
the inter-primitive constraints can be correctly generated. A sampled graph can then be converted, if
desired, to a physical sketch by solving a constrained optimization using traditional solvers, removing
errors that were introduced by the quantization.

We evaluate SketchGen on one of the largest publicly-available constrained sketch datasets Sketch-
Graph [27]. We compare with a set of existing and contemporary works, and report noticeable
improvement in the quality of the generated sketches. We also present ablation studies to evaluate the
efficacy of our various design choices.

2 Related Work

Vector graphics generation. Vector graphics, unlike images, are presented in domain-specific
languages (e.g., SVG) and are not in a format easily utilized by standard deep learning setups.
Recently, various approaches have been proposed by linking images and vectors using differentiable
renderer [19, 26] or supervised with vector sequences (e.g., deepSVG [4], SVG-VAE [20], and
Cloud2Curve [5]). DeepSVG, mostly closely related to our work, proposes a hierarchical non-
autoregressive model for generation, building on command, coordinate, and index embeddings.

Structured model generation. Geometric layouts are often represented as graphs encoding rela-
tionships between geometric entities. Motivated by the success in image synthesis, several authors
attempted to build on generative adversarial networks [17, 22] or variational autoencoder [15]. Re-
cently, autoregressive models like the transformer architecture [31] emerged as an important tool
for generative modeling of layouts, e.g. [34, 23, 36]. Closely related to our work are DeepSVG [4]
and Polygen [21]. These solutions are also related to modeling with variable length commands,
but they simplify the representation so that commands are padded to a fixed length. Polygen is an
auto-regressive generative model for 3D meshes that introduces several influential ideas. One of
the proposed ideas, that we also build on, is to employ pointer networks [32] to refer to previously
generated objects (i.e., linking vertices to form polygonal mesh faces). Unlike PolyGen, we work
with heterogeneous primitives and constraints, and with edges that constrain the primitive parameters,
motivating our constraint optimization step.

CAD Datasets and CAD generation. Recently, several notable datasets have emerged for CAD
models: ABC [13], Fusion360 [37], and SketchGraphs [27]. Only the latter two include constraints
and only SketchGraphs introduces a framework for generative modeling. There are several papers
that focus on the boundary (surface) representation for CAD model generation without constraints
such as UV-Net [9] and BRepNet [14]. A related topic is to recover (parse) a CAD-like representation
from unstructured input data, e.g. [28, 6, 30, 18, 33, 35, 11, 3, 29, 40, 7, 10].
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Figure 1: A typical CAD sketch consists of primitives such as lines, circles and arcs, and constraints
between primitives, shown as floating boxes. We represent them as primitive- and constraint sequences
in a language that is endowed with a simple syntax. We show the syntax trees of the first two primitives
and constraints. Tokens in the constraint sequence reference primitives (colored token background).

Concurrent work. Multiple papers, namely Computer-Aided Design as Language [8], Engineering
Sketch Generation for Computer-Aided Design [38], DeepCAD [39], have appeared on arXiv very
recently, and should be considered to be concurrently works.

3 Overview

CAD sketches. A CAD sketch can be defined by a graph S = (P, C), whereP is a set of parametric
primitives, such as points, lines, and circular arcs and C is a set of constraints between the primitives,
such as coincidence, parallelism, or orthogonality. See Figure 1 for an example. Some of the
primitives are only used as construction aids and are not part of the final 3D CAD model (shown
dashed in Figure 1). They can be used to construct more complex constraints; in Figure 1, for
example, the center of the circle is aligned with the midpoint of the yellow line, which serves as a
construction aid. Both primitives and constraints in the graph are heterogeneous: different primitives
have different numbers and types of parameters and different constraints may reference a different
number of primitives. Primitives P ∈ P are defined by a type and a tuple of parameters P = (τ, κ, ρ),
where τ is the type of primitive, κ is a binary variable which indicates if the primitive is a construction
aid, and ρ is a tuple of parameters with a length dependent on the primitive type. A point, for
example, has parameters ρ = (x, y). See Figure 2 for a complete list of primitives and their parameter
type. Constraints C ∈ C are defined by a type and a tuple of target primitives C = (ν, γ), where
ν is the constraint type and γ is a tuple of references to primitives with a length dependent on the
constraint type. Constraints can target either the entire primitive, or a specific part of the primitive,
such as the center of a circle, or the start/end point of a line. In a coincidence constraint, for example,
γ = (λ1, µ1, λ2, µ2) refers to two primitives Pλ1

and Pλ2
, while µ1, µ2 indicate which part of each

primitive the constraint targets, or if it targets the entire primitive.

CAD sketch generation with Transformers. We show how a generative model based on the trans-
former architecture [31] can be used to generate CAD sketches defined by these graphs. Transformers
have proven very successful as generative models in a wide range of domains, including geometric
layouts [21, 36], but require converting data samples into sequences of tokens. The choice of sequence
representation is a main factor influencing the performance of the transformer and has to be designed
carefully. The main challenge in our setting is then to find a conversion of our heterogeneous graphs
into a suitable sequence of tokens.

Will, will Will will Will Will's will?

possesive
name

proper
name

nounverbproper
name

aux.
verb

proper
name

sentence
VP

VP
NP

VP

VP: verb phrase
NP: noun phrase

To this end, we design a language to describe CAD sketches that
is endowed with a simple syntax. The syntax imposes constraints
on the tokens that can be generated at any given part of the
sequence and can help interpreting a sequence of tokens. An
extreme example is the famous natural language sentence "Will,
will Will will Will Will’s will?", which is a valid sentence that is

easier to interpret given its syntax tree, as shown in the inset. In natural language processing, syntax
is complex and hard to infer automatically from a given sentence, so generative models usually only
infer it implicitly in a data-driven approach. On the other end of the spectrum of syntactic complexity
are geometric problems such as mesh generation [21], where the syntax consists of repeating triples
of vertex coordinates or triangle indices that can easily be given explicitly, for example as indices
from 1 to 3 that denote which element of the triple a given token represents. In our case, the grammar
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is more complex due to the heterogeneous nature of our sketch graphs, but can still be stated explicitly.
We show that giving the syntax of a sequence as additional input to the transformer helps sequence
interpretation and increases the performance of our generative model for CAD sketches.

We describe our language for CAD sketches in Section 4. In this language, primitives are described
first, followed by constraints. We train two separate generative models, one model for primitives that
we describe in Section 5.1, and a second model for constraints that we describe in Section 5.2.

4 A Language for CAD Sketches

We define a formal language for CAD sketches, where each valid sentence is a sequence of tokens
Q = (q1, q2, . . . ) that specifies a CAD sketch. A grammar for our language is defined in Figure 2,
with production rules for primitives on the left and for constraints on the right. Terminal symbols
for primitives include {Λ,Ω, τ, κ, x, y, u, v, a, b} and for constraints {Λ, ν, λ, µ,Ω}. Each terminal
symbol denotes a variable that holds the numerical value of one token qi in the sequence Q. The
symbols Λ and Ω are special constants; Λ marks the start of a new primitive or constraint, while Ω
marks the end of the primitive or constraint sequence. τ , ν, κ, λ, and µ were defined in Section 3
and denote the primitive type, constraint type, construction indicator, primitive reference, and part
reference type, respectively. The remaining terminal symbols denote specific parameters of primitives,
please refer to the supplementary material for a full description.

Syntax trees. A derivation of a given sequence in our grammar can be represented with a syntax
tree, where the leafs are the terminal symbols that appear in the sequence, and their ancestors are
non-terminal symbols. An example of a sequence for a CAD sketch and its syntax tree are shown
in Figure 1. The syntax tree provides additional information about a token sequence that we can
use to 1) interpret a given token sequence in order to convert it into a sketch, 2) enforce syntactic
rules during generation to ensure generated sequences are well-formed, and 3) help our generative
model interpret previously generated tokens, thereby improving its performance. Given a syntax tree
T , we create two additional sequences Q3 and Q4. These sequences contain the ancestors of each
token from two specific levels of the syntax tree. Qx contains the ancestors of each token at depth
x: Qx = (axT (q1), axT (q2), . . . ), where axT (q) is a function that returns the ancestor of q at level x
of the syntax tree T , or a filler token if q does not have such an ancestor. Level 3 of the syntax tree
contains non-terminal symbols corresponding to primitive or constraint types, such as point, line, or
coincident, while level 4 contains parameter types, such as location and direction. The two sequences
Q3 and Q4 are used alongside Q as additional input to our generative model.

Parsing sketches. To parse a sketch into a sequence of tokens that follows our grammar, we iterate
through primitives first and then constraints. For each, we create a corresponding sequence of tokens
using derivations in our grammar, choosing production rules based on the type of primitive/constraint
and filling in the terminal symbols with the parameters of the primitive/constraint. Concatenating
the resulting per-primitive and per-constraint sequences separated by tokens Λ gives us the full
sequence Q for the sketch. During the primitive and constraint derivations, we also store the parent
and grandparent non-terminal symbols of each token, giving us sequences Q3 and Q4. The primitives
and constraints can be sorted by a variety of criteria. In our experiments, we use the order in which
the primitives were drawn by the designer of the sketch [27]. In this order, the most constrained
primitives typically occur earlier in the sequence. The constraints are arranged based on prevalence
in the dataset, constraints that are used more frequently in the dataset occur earlier.

5 Models

Following [21], we decompose our graph generation problem into two parts:

p(S) = p(P)︸︷︷︸
Primitive

Model

p(C|P)︸ ︷︷ ︸
Constraint

Model

Both of these models are trained by teacher forcing with a Cross-Entropy loss. We now describe each
of the models.
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Figure 2: Grammar of the CAD sketch language. Each sentence represents a syntactically valid
sketch. The full grammar is given in the supplementary material.

S = P, C

P = Λ, P, {Λ, P}, Ω
P = point | line | circle | arc

point = τ point, κ, location
line = τ line, κ, location, direction, range

...
location = x, y

direction = u, v
range = a, b

...

C = Λ, C, {Λ, C}, Ω
C = coincident | parallel | equal

| horizontal | vertical | midpoint
| perpendicular | tangential

coincident = νcoincident, ref, sub, ref, sub
parallel = νparallel, ref, ref

...
ref = λ

sub = µ
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Figure 3: Sequence generation approach. The sequence Q from 1 . . . nP describes the primitives
and from nP + 1 . . . nC the constraints of a sketch. We use two separate generators for the two
sub-sequences (blue for primitives, green for constraints). The sequences Q4 and Q3 describe part of
the syntax tree of Q and are used as additional input.

5.1 Primitive Generator

Quantization. Most of the primitive parameters are continuous and have different value distribu-
tions. For example, locations are more likely to occur near the origin and their distribution tapers off
outwards, while there is a bias towards axis alignment in direction parameters. To account for these
differences, we quantize each continuous parameter type (location, direction, range, radius, rotation)
separately. Due to the non-uniform distribution of parameter values in each parameter type, a uniform
quantization would be wasteful. Instead, we find the quantization bins using k-means clustering of
all parameter values of a given parameter type in the dataset, with k = 256.

Input encoding. In addition the the three inputs sequences Q, Q3, and Q4 described in Section 4,
we use a fourth sequence QI of token indices that provides information about the global position
in the sequence. Figure 3 gives an overview of the input sequences and the generation process. We
use four different learned embeddings for the input tokens, one for each sequence, that we sum up to
obtain an input feature:

fi = ξqi + ξ3q3i
+ ξ4q4i

+ ξIqIi
, (1)

where q∗i ∈ Q∗ and ξ∗ are learned dictionaries that are trained together with the generator.

Sequence generation. We use a transformer decoder network [31] as generator. As an autoregres-
sive model, it decomposes the joint probability p(Q) of a sequence Q into a product of conditional
probabilities: p(Q) =

∏
n p(qn|q<n). In our case, the probabilities are conditioned on the input

features p(qn|q<n) = p(qn|f<n) where f<i denotes the sequence of input features up to (excluding)
position i. Each step applies the network gP to compute the probability distribution over all discrete
values for the next token qi:

p(qi | f<i) = gP (f<i). (2)
At training time all input sequences are obtained from the ground truth. At inference time, the
sequence Q is sampled from the output probabilities p(qi | f<i) using nucleus sampling, and
sequences Q3 and Q4 are constructed on the fly based on the generated primitive type τ , as shown in
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Figure 3. In addition to providing guidance to the network, the syntax described in Q3 and Q4 allows
us to limit generated token values to a valid range. For example, we correct the generated values for
tokens Λ and Ω to the expected special values if a different value has been generated.

5.2 Constraint Generator

The constraint generator is implemented as a Pointer Network [32] where each step returns an index
into a list of encoded primitives. These indices form the constraint part of the sequence q>np

, where
np is the number of primitive tokens in Q.

Primitive encoding. We use the same quantization for parameters described in the previous section,
but use a different set of learned embeddings, one for each primitive terminal token. The feature h′j
for primitive j is the sum of the embeddings for its tokens:

h′′j = ξττj + ξκκj
+ ξxxj

+ ξyyj + ξuuj
+ ξvvj + ξrrj + ξccj + ξaaj + ξbbj , (3)

where τj , κj , . . . are the tokens for primitive j. We use a special filler value for tokens that are
missing in primitives. We follow the strategy proposed in PolyGen [21] to further encode the context
of each primitive into its feature vector using a transformer encoder:

h′j = e(h′′j , H
′′), (4)

where H ′′ is the sequence of all primitive features h′′j . The transformer encoder e is trained jointly
with the constraint generator.

Input encoding. In addition to the sequence Q, we use the two sequences Q4 and QI as inputs,
but do not use Q3 as we did not notice an increase in performance when adding it. The final input
feature is then:

hi = h′qi + ξ4Cq4i
+ ξICqIi

, (5)

where h′qi is the feature for the primitive with index qi, and ξ4C , ξIC are learned dictionaries that are
trained together with the constraint generator.

Sequence generation. Similar to the primitive generator, the constraint generator outputs a proba-
bility distribution over the values for the current token in each step: p(qi|h>np<i), conditioned on
the input features for the previously generated tokens in the constraint sequence, denoted as h>np<i.
Unlike the primitive generator, we follow PointerNetworks [32] in computing the probability as dot
product between a the output feature of the generator network and the primitive features:

P (qi = j|q>np<i) = h′j · gC(h>np<i), (6)

where gC is the constraint generator. This effectively gives us a probability distribution over indices
into our list of primitive embeddings. Constraints may also reference sub-parts of primitives, such as
line endpoints, defined by the µ tokens of the constraint (see Figure 3). For µ tokens, the indices into
primitive embeddings are interpreted as IDs for the sub-part; each primitive can have up to 4 sub-parts
(see the supplementary for details). At training time all input sequences are obtained from the ground
truth. At inference time, the sequence Q is sampled from the output probabilities p(qi|h>np<i) using
nucleus sampling, and the sequence Q4 is constructed on the fly based on the generated constraint
type ν, as shown in Figure 3. Similar to primitive generation, the syntax in Q4 provides additional
guidance to the network and allows us to limit generated token values to a valid range.

6 Results

We evaluate our approach on two main applications. We experiment with generating sketches from
scratch and also demonstrate an application that we call auto-constraining sketches, where we infer
plausible constraints for existing primitives. We evaluate conditional models in the supplementary.
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the distribution of coincident and horizontal constraint counts in generated and data sketches.

Dataset. We train and evaluate on the recent Sketchgraphs dataset [27], which contains 15 million
real-world CAD sketches (licensed without any usage restriction), obtained from OnShape [2], a web-
based CAD modeling platform. These sketches are impressively diverse, however, simple sketches
with few degrees of freedom tend to have many near-identical copies in the dataset. These make up
∼84% of the dataset and would bias our results significantly. For this reason, we filter out sketches
with less than 6 primitives, leaving us with roughly 2.4 million sketches. Additionally we filter
sketches with constraint sequences of more than 208 tokens, which are typically over-constrained
and constitute < 0.1% of the sketches. We focus on the 4 most common primitive types and the 8
most common constraint types (see Figure 2 for a full list), and remove any other primitives and
constraints from our sketches. We keep aside a random subset of 50k samples as validation set and
86k samples as test set.

Experimental Setup. We implemented our models in PyTorch [24], using GPT-2 [25] like Trans-
former blocks. For primitive generation, we use 24 blocks, 12 attention heads, an embedding
dimension of 528 and a batch size of 544. For constraint generation, the encoder has 22 layers and
the pointer network 16 layers. Both have 12 attention heads, an embedding dimension of 264 and
use a batch size of 1536. We use the Adam optimizer [12] with a learning rate of 0.0001. Training
was performed for 40 epochs on 8 V100 GPUs for the primitive model and for 80 epochs on 8 A100
GPUs for the constraint model. See the supplementary material for more details.

Baselines. We use the sketch generation approach proposed in SketchGraphs [27] as the main
baseline, which is based on a graph neural network that operates directly on sketch graphs. Due to
the recent publication of the SketchGraphs dataset, to our knowledge this is still the only established
baseline for data-driven CAD Sketch generation. This baseline has two variants: SG-sketch generates
full sketches and SG-constraint generates constraints only on a given set of primitives. We re-train
both variants on our dataset. Additionally we retrain a DeepSVG [4] model on the SketchGraphs
dataset. Details of the retraining for both can be found in the supplementary material. As a lower
bound for the generation performance, we also include a random baseline, where token values in
each step are picked with a uniform random distribution over all possible values. Additionally, for
constraint generation, we compare to an auto-constraining method with hand-crafted rules, and as
ablation, we compare to variants of our own model that do not use the syntax tree, or only part of the
syntax tree as input.

Table 1: Sketch generation. We compare the quality of our learned distribution over sketches to
two baselines on the left, and compare three variants of our method using statistics over generated
sequences on the right.

(a) Metrics on the test set.

NLL↓ in bits per

method sketch prim. constr.

random 1020.73 70.97 24.14
SG-sketch 158.90 - 2.42
DeepSVG 100.26 11.49 -
ours 88.22 8.60 0.61

(b) Metrics on generated sequences.

method Esyntax↓ EP
stat↓ EC

stat↓ Estat↓

ours (p = 1.0) 19.8 0.0058 0.0134 0.0192
ours (p = 0.9) 18.3 0.0185 0.0442 0.0627
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Figure 5: Examples of generated sketches before (gray background) and after optimization to satisfy
the generated constraints. Note that the optimization corrects quantization errors (red arrows point
out a few changed details). The right-most example is a perturbed testset sketch.

Sketch Generation Metrics. We report sketch generation performance using three metrics. The
negative log-likelihood (NLL) of test set sketches in our models (in bits) measures how much the
learned distribution of sketches differs from the test set distribution (lower numbers mean better
agreement). In addition to this metric of the generator’s performance on the test set, we use two
metrics that evaluate the quality of generated sequences. The syntactic error (Esyntax) measures the
percentage of sequences with invalid syntax if we do not constrain tokens to be syntactically valid.
Lastly, the statistical error (Estat), measures how much the statistics of generated sketches differ from
the ground truth statistics. We compute Estat based on statistics like the number of point primitives
per sketch, the distribution of typical line directions, or relative postioning errors, each represented as
normalized histogram. Estat is then the earth mover’s distance [16] (EMD) between the histograms of
generated sketches and test set sketches, see the supplementary material for details. We further split
up Estat into EPstat for statistics relating to primitives and ECstat for constraints.

Sketch Generation Results. Quantitative results are shown in Table 1. Metrics computed on the
test set are shown on the left. We can see that our method leads to the smallest NLL, indicating that
the distribution of generated sketches more closely aligns with the test set distribution than both
DeepSVG and SG-sketch. Since primitives are constructed using constraints in SG-sketch, we do not
show the NLL per primitive for that baseline. DeepSVG can only generate primitives, but as we see
in the results, still has lower performance than our model. All three methods perform far better than
the upper bound given by the random baseline.

On the right, metrics are computed on 15k generated sequences. We compare two different variants
of our results, using two different nucleus sampling parameters p. Nucleus sampling clips the tails of
the generated distribution, which tend to have lower-quality samples. Thus, without nucleus sampling
(p = 1.0) we see an increase in the syntactic error, due to the lower quality samples in the tail, but
a decrease in the statistical error, since, without the clipped tails, the distribution more accurately
resembles the data distribution. We show a few of the statistics we used to compute Estat in Figure 4.
We can verify that our generated distributions closely align with the data distribution. Additional
statistics are shown in the supplementary material.

The generated constraints can be used to correct errors in the primitive parameters that may arise, for
example, due to quantization. In Figure 5, all sketches except the right-most sketch are examples
of generated sketches before and after optimizing to satisfy the generated constraints, using the
constraint solver provided by OnShape [2]. We can see that our our generated sketches are visually
plausible and that the constraint generator finds a plausible set of constraints, that correctly closes
gaps between adjacent line endpoints, among other misalignments.

Auto-constraining Sketches. Another potential application of our model is to predict a plausible
set of constraints for a given set of primitives, for example to expose only useful degrees of freedom
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Table 2: Auto-constraining sketches. We compare the quality of our learned distribution over
constraints to two baselines on the left, and compare three variants of our method using various
metrics over the generated constraint sequences on the right.

(a) Metrics on the test set.

NLL↓ in bits per

method seq. constr.

random 259.40 24.14
SG-constraint 19.29 1.22
ours 8.28 0.61

(b) Metrics on generated sequences.

method Esyntax↓ EC
stat↓

ours (p = 1.0) 1.56 0.0415
ours (p = 0.9) 1.29 0.0442

Table 3: Ablation on the primitive model.
method NLL/seq.↓ NLL/prim.↓ NLL/token↓

ours 79.94 8.600 0.979
ours -Q3 79.96 8.605 0.980
ours -Q3 -Q4 80.35 8.640 0.984

Table 4: Ablation on the constraint model.
method NLL/seq.↓ NLL/constr.↓ NLL/token↓

ours 8.28 0.610 0.110
ours -Q4 8.47 0.633 0.113
ours -shared 8.45 0.627 0.112

for editing the sketch, or to correct slight misalignments in the sketch. To evaluate this application,
we separately measure the constraint generation performance given a set of primitives, using the
metrics described previously.

Quantitative results are shown in Table 2. On the left, we see similar results for constraint generation
as for full sketch generation: our learned distribution over constraint sequences is significantly
closer to the dataset distribution (lower NLL) than SG-constraint, and both are far from the upper
bound given by the random baseline. On the right, we compute constraints for the primitives of 15k
previously generated sketches, using two different nucleus sampling parameters p. Similar to the
previous section, deactivating nucleus sampling results in an increase of the syntactic error, but a
decrease in the statistical error.

Constraints can also be generated for primitives that do not come from the primitive generator. We
perturb the primitives in all test set sketches, generate constraints, and optimize the primitives to
satisfy the generated constraints using the OnShape optimizer. Since we have ground truth constraints
for the test set, we can measure the accuracy of the generated constraints. The average accuracy
on the test set is 98.4%. An example is shown in the right-most shape of Figure 5, where the left
version (gray background) is the perturbed test set shape and the right version the same shape after
optimization. Additional results are shown in the supplementary material.

Ablation. We ablate the primitive and constraint models separately. We aim to show that our syntax
provides prior knowledge about the the otherwise ambiguous structure of a sketch sequence that
improves the generative performance of our models. In Table 3, we show the result of removing
sequences Q3 and/or Q4, which contain information about the sequence syntax, from the input of the
primitive generator. Removing only Q3 results in a slight performance degradation, while removing
both results in a more significant drop. In Table 4, we see that removing Q4 also causes a significant
performance drop in the constraint generator. Additionally, we show the importance of grouping the
tokens by parameter type in the shared embeddings of the primitive encoder (see Eq. 3). Mixing
tokens with different parameter types in the shared embeddings, denoted as ours -shared, causes a
significant drop in performance.

7 Conclusion

In this work, we improve upon the state of the art in CAD sketch generation through the use of
transformers coupled with a carefully designed sketch language and an explicit use of its syntax.
The SketchGen framework enables the full generation of CAD sketches, including primitives and
constraints, or auto-constraining existing sketches by augmenting them with generated constraints.

We left a few limitations for future work. First, we chose only the most common types of primitives
and constraints in the dataset to avoid learning from the long tail of the dataset distribution. We can
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easily incorporate more types by extending our grammar, and in future work it would be interesting
to experiment with using more complex and less common types, such as Bezier curves and distance
constraints. Second, the autoregressive nature of our model prevents correcting errors in earlier parts
of the sequence and we would like to explore backtracking to correct these errors in future work.

We are excited about future research into generating complex parametric geometry and in examining
the explicit use of formal languages and generative language models.

8 Broader Impact

There are no foreseeable societal impacts specific to our method. There are societal impacts of
generative modeling, machine learning, and deep learning in general that are shared by papers in
these areas. The discussion of these broader topics is beyond the scope of this paper.
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Měch. Parsenet: A parametric surface fitting network for 3d point clouds. In European Conference on
Computer Vision, pages 261–276. Springer, 2020.

[30] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum, and
Jiajun Wu. Learning to infer and execute 3d shape programs. In International Conference on Learning
Representations, 2019.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

11



[32] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, 2015.

[33] Homer Walke, R Kenny Jones, and Daniel Ritchie. Learning to infer shape programs using latent execution
self training. arXiv preprint arXiv:2011.13045, 2020.

[34] Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. Deep convolutional priors for indoor
scene synthesis. ACM Transactions on Graphics, 2018.

[35] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-Amiri, and Hao
Zhang. Pie-net: Parametric inference of point cloud edges. In Advances in Neural Information Processing
Systems, 2020.

[36] Xinpeng Wang, Chandan Yeshwanth, and Matthias Nießner. Sceneformer: Indoor scene generation with
transformers. arXiv preprint arXiv:2012.09793, 2020.

[37] Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-
Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic cad
construction from human design sequences. ACM Transactions on Graphics (TOG), 40(4), 2021.

[38] Karl DD Willis, Pradeep Kumar Jayaraman, Joseph G Lambourne, Hang Chu, and Yewen Pu. Engineering
sketch generation for computer-aided design. arXiv preprint arXiv:2104.09621, 2021.

[39] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-aided
design models. arXiv preprint arXiv:2105.09492, 2021.

[40] Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D. D. Willis, and Daniel Ritchie. Inferring cad modeling
sequences using zone graphs. In CVPR, 2021.

12


	Introduction
	Related Work
	Overview
	A Language for CAD Sketches
	Models
	Primitive Generator
	Constraint Generator

	Results
	Conclusion
	Broader Impact
	Acknowledgements

