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ABSTRACT

Accurately solving partial differential equations (PDEs) on arbitrary geometries
and a variety of meshes is an important task in science and engineering applica-
tions. In this paper, we propose Adaptive Fourier Mamba Operators (AFMO),
which integrates reproducing kernels for state-space models (SSMs) rather than
the kernel integral formulation of SSMs. This is achieved by constructing
Takenaka-Malmquist systems for the PDEs. AFMO offers new representations
that align well with the adaptive Fourier decomposition (AFD) theory and can
approximate the solution manifold of PDEs on a wide range of geometries and
meshes. In several challenging benchmark PDE problems in the fields of fluid
physics, solid physics, and finance on point clouds, structured meshes, regu-
lar grids, and irregular domains, AFMO consistently outperforms state-of-the-art
solvers in terms of relative L2 error. Overall, this work presents a new paradigm
for designing explainable neural operator frameworks.

1 INTRODUCTION

A wide range of scientific and engineering phenomena, including fluid dynamics, heat and mass
transport, structural mechanics, and cell growth, can be characterized and modeled by partial dif-
ferential equations (PDEs). Most nonlinear PDEs do not have analytical solutions and need to be
solved numerically. Traditional discretization-based approaches for solving PDEs can be computa-
tionally expensive. To speed up the solution process, neural operators have recently been proposed
as an extension of neural networks to learn the infinite-dimensional solution operators of various
PDE problems. It has been proven that, with finite-dimensional solutions as training data, neural op-
erators can accurately learn the infinite-dimensional solution space. Once learned, neural operators
are mesh-independent, so neural operators trained on coarse grids can generalize to finer grids.

Frequency-based neural operators, such as Fourier neural operator (FNO) (Li et al., 2020), wavelet
neural operator (WNO) (Tripura & Chakraborty, 2023), multiwavelet transform (MWT) (Gupta
et al., 2021), U-shaped neural operator (Rahman et al., 2022), spectral neural operator (Fanaskov &
Oseledets, 2023), and latent spectral model (LSM) (Wu et al., 2023), are attractive since the solution
space of many PDEs can be naturally expressed in spectral bases. Frequency-based neural operators
approximate the PDE solutions by learning how frequencies evolve, and nonlinear terms become
convolution in the associated frequency domain. However, the performance of existing frequency-
based neural operators may deteriorate in irregular geometries (Li et al., 2023), as their associated
bases could lose orthogonality and eigenfunction properties in irregular domains (Lingsch et al.,
2023; Chen et al., 2024). As a result, retaining these important properties for kernels and bases for
irregular domains is critical.

Along this line, a recently proposed neural operator solver, latent Mamba operator (LaMO) (Tiwari
et al., 2025), shows great promise in capturing PDE solutions in irregular domains. LaMO integrates
the efficiency of state-space models (SSMs) in latent space with the expressive power of kernel
integral formulations in neural operators. Although the selective convolution kernels utilized in
LaMO can effectively capture PDE solutions on the irregular domain, their lack of orthogonality
property may lead to spectral mixing. Furthermore, since the kernels in LaMO are finite-order
linear dynamic filters (Gu & Dao, 2023), its finite-order state-space dynamics may induce a low-pass
filtering bias, leading to poor recovery of high-frequency and singular features (Gu et al., 2021; Gu
& Dao, 2023). In the illustrative experiments discussed in Appendix B, we show that LaMO suffers
from deviation in the propagation of high-frequency perturbations for 1-D advection PDE, and it
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fails to capture the singularities in 2-D Darcy flow equation with fractal noise as the permeability
field.

Recognizing the fact that LaMO lacks frequency-domain implementation, here we propose Adaptive
Fourier Mamba Operator (AFMO), a novel neural operator architecture that synergizes an adaptive
Fourier decomposition with the efficiency of structured SSMs in the frenquency domain (Gu & Dao,
2023; Parnichkun et al., 2024). AFMO parameterizes the SSM transfer function in a Takenaka-
Malmquist (TM) system in a reproducing kernel Hilbert space (RKHS), thus allowing state-free
kernel construction and inference directly on the spectrum. The Mamba blocks in AFMO serve as
rational filters while retaining linear-time selective scanning. Furthermore, it turns out that AFMO
structure resembles adaptive Fourier decomposition (AFD), a novel signal decomposition technique
achieving higher accuracy and significant computational speedup compared to conventional signal
decomposition methods (Qian, 2010; Qian et al., 2012). The architecture and design of AFMO is
fully guided by the AFD theory, thereby improving the mathematical explainability and groundness
of AFMO,

Overall, our key contributions are summarized as follows:

1. AFMO is the first neural operator which explicitly incorporates TM systems and Fourier-
based methods into the Mamba structure. AFMO accurately solves the PDE problems on
diverse geometries and effectively handles singularities and long-range dependencies of
PDE solutions, Furthermore, we develop theoretical foundations for AFMO and prove that
AFMO performs AFD approximation of PDE solutions.

2. The design of every component of AFMO is fully guided by the AFD theory, leading
to a mathematically interpretable and grounded architecture. Using a TM layer, AFMO
projects the input into TM systems in a Hardy space, and constructs the reproducing kernels
from adaptively selected poles. These adaptive poles serve to construct the reproducing
kernels adaptively. We demonstrate the importance of utilizing adaptive poles as opposed
to fixed poles and investigate how the number of adaptive poles influences the performance
of AFMO.

3. AFMO outperforms state-of-the-art neural operator solvers in terms of accuracy across a
diverse set of benchmark PDE problems, including plasticity, elasticity, airfoil, pipe flow,
Navier-Stokes, and Darcy flow on various geometries. It also achieves outstanding perfor-
mance in financial applications, such as solving the Black-Scholes equation for the Euro-
pean option pricing problem.

2 RELATED WORK

Frequency-based neural operators. Early advancements in operator learning exploited spectral
decompositions to encode global information efficiently. A notable example is FNO (Li et al.,
2020), which parameterizes integral kernels in the Fourier domain to enable resolution-invariance.
However, FNO does not generalize well to irregular geometries (Li et al., 2020). Later, Geo-FNO
(Li et al., 2023) was proposed to solve PDEs on general geometries. U-FNO (Wen et al., 2022)
introduced architectural modifications to better capture localized details while maintaining FNO’s
global properties. Meanwhile, F-FNO (Tran et al., 2021) generalizes the FNO architecture for more
efficient spectral layers and deeper architectures. On the other hand, neural operators based on the
wavelet transform include WNO (Tripura & Chakraborty, 2023), MWT (Gupta et al., 2021), Padé
(Gupta et al., 2022), and CMWNO (Xiao et al., 2023a). Fourier and wavelet transforms are both
special cases of spectral decomposition, and neural operators based on spectral decomposition has
recently been proposed (Fanaskov & Oseledets, 2023).

Attention-based neural operators. Attention mechanisms have been widely studied in neural op-
erator domain. Some of the notable works include orthogonal attention (Xiao et al., 2023b), physics-
cross-attention (Wang & Wang, 2024), and nonlocal attention (Yu et al., 2024). The Transformer
structure is also a promising building block for neural operators. Some of the related works in-
clude OFormer (Li et al., 2022), LSM (Wu et al., 2023), and Transolver (Wu et al., 2024). However,
Transformers struggle to capture kernel integral transforms efficiently in complex, high-dimensional
continuous PDEs (Guibas et al., 2021).
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SSM-based neural operators. To address the computational inefficiency of Transformer-based
neural operators, SSM and Mamba emerge as promising architectures for neural operator designs
(Tiwari et al., 2025). Previous studies of SSM-based neural operators (Zheng et al., 2024; Cheng
et al., 2024; Hu et al., 2024; Tiwari et al., 2025) have been applied to nonlinear PDEs on irregular
geometries and dynamical systems. These works incorporate traditional SSMs with different scan
strategies without considering the information in the frequency domain. On the other hand, our
AFMO considers the frequency information via its explicit kernel and SSMs from a transfer function
perspective (Parnichkun et al., 2024).

3 ADAPTIVE FOURIER MAMBA OPERATOR

3.1 PROBLEM STATEMENT

We frame our task as learning a solution operator for a family of parametric PDEs. In general,
consider a PDE defined on a spatial domain Ω ⊂ Rd and a time interval (0, T ]:

La[u(x, t)] = f(x, t), ∀(x, t) ∈ D × (0, T ], (1)

which is subject to a set of initial and boundary conditions. Here, the parameter function a ∈ A
specifies the coefficients and initial and boundary conditions of Equation 1. In operator learning,
our goal is to construct an accurate approximation for G : A → F(D × [0, T ]), which maps the
parameter function a to the corresponding solution function u(x, t) ∈ F , via a parametric mapping
Gθ. The aim is to learn θ such that Gθ ≈ G from a set of training data {(aj , uj)}j .

3.2 AFMO ARCHITECTURE

AFMO is a novel neural operator architecture that synergizes the mathematical groundness of AFD
theory with the efficiency of structured SSMs in the frenquency domain (Gu & Dao, 2023; Par-
nichkun et al., 2024). Different from LaMO (Tiwari et al., 2025), which compresses the physical
tokens into a fixed-size latent representation, AFMO utilizes a multi-layer fully-connected feedfor-
ward neural network (MLP) to first map the encoded tokens to their counterparts on the reproducing
kernel Hilbert space (RKHS), and then iteratively refine them by a series of processing blocks. Each
block uniquely integrates two components: (i) a TM layer containing global spectral transform via
data-dependent TM bases, and (ii) a bidirectional SSM (Gu et al., 2021; Gu & Dao, 2023) parame-
terized by transfer functions in the frequency domain (Parnichkun et al., 2024) to efficiently capture
long-range dependencies within the RKHS.

Neural architecture. Given the parameter function (input) a, the output of AFMO, denoted as
ûN,θ, is:

ûN,θ = Gθ(a) =
(
Q ◦ SN ◦ LN ◦ · · · ◦ S1 ◦ L1 ◦ R ◦ P

)
(a), (2)

where ◦ is the function composition, N is the number of processing blocks, P is the lifting operator
which encodes into a lower-dimensional space (maps the input to the first latent representation z0)
(Tiwari et al., 2025; Li et al., 2020), Q is the corresponding projection operator mapping the lower-
dimensional space back to the original space (maps the final latent representation zN+1 to the output)
(Tiwari et al., 2025; Li et al., 2020), R is a multi-layer neural network mapping the physical token
to an RKHS, Li = SSMi ◦ TMi (i = 1, . . . , N ) is the processing block of AFMO (which consists
of a TM layer and a bidirectional SSM), and Si (i = 1, . . . , N ) are aggregation layers with skip
connections. These aggregation layers not only receive the final output from the layer sequence but
also have access to the intermediate outputs from each of the preceding layers.

The lifting operator, P , projects the Ns physical token inputs into a compressed set of M encoded
tokens, where M ≪ Ns. This projection is achieved via a cross-attention mechanism. A learnable
query array, L ∈ RM×Dembed , acts as the query. The key and value pairs are constructed by combining
a linear projection of the input features xphys with a positional embedding of their coordinates gphys

generated by a positional encoding network PEN. Here, xphys ∈ RNs×Din stacks the feature vectors
{xi}Ns

i=1 and gphys ∈ RNs×d stacks the coordinates {gi}Ns
i=1, and the physical token is essentially
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pair (gi,xi). The process for generating the initial representation z0 is formally defined as:

kv = Linear(xphys) + PEN(gphys),

z′0 = CrossAttn(query = L, key = kv, value = kv),

z0 = z′0 + FFN(z′0),

(3)

where the output of the cross-attention module is processed through a residual connection and a
standard feed-forward network FFN.

The mapping operator, denoted by R, acts on the encoded representation produced by the lifting
operator P , which transforms this discrete encoded tokens into a representation within a continuous
function space. Let z0 ∈ RM×Dembed be the set of encoded tokens generated by P , the operator
R : RM×Dembed → H maps this representation to its counterpart in an RKHS H. This mapping is
typically implemented as a multi-layer fully-connected feedforward network MLP, which processes
each token independently as:

z1 = R(z0) = MLP(z0), (4)

where z1 denotes the projected tokens in the RKHS. We remark that, the mapping operator R maps
the encoded tokens z0 to the new tokens z1 in H without knowing the physical information xphys
and gphys.

The TM layer, denoted by TMi (i = 1, . . . , N ), performs a global convolution via a spectral
transform, where the reproducing kernels and TM bases are constructed from data-dependent poles.
To define the reproducing kernels, we parameterize a small MLP to predict a set of i complex values
called “poles” {ak}ik=1 (denoted as a1:i) located in the unit disk D = {z ∈ C : |z| < 1} from tokens
zi. Once we have the set of poles, we can explicitly define the reproducing kernel Ka(z) as:

Ka(z) =
1

1− az
, (5)

where z ∈ H and a is a single pole satisfying |a| < 1. Intuitively, we remark that each pole can be
viewed as a “tuning knob” that selects a particular spatial pattern in the solution, with its location in
the complex plane controlling how localized that pattern is. Adaptive poles allow AFMO to survey
more heavily in regions where the parameters change rapidly, while using fewer poles in smooth
regions. Across layers, the poles evolve from broad, coarse patterns in early layers to more refined,
problem-specific patterns in deeper layers.

To generalize on irregular geometries, the kernels in Equation 5 need to be modified to become
orthonormal. These modified kernels are also known as the TM bases due to their deep connection
to TM systems. The first basis, denoted as B1, is simply the normalized kernel of Equation 5

with pole a1 as B1(z; a1) =

√
1−|a1|2
1−a1z

. Then, we start with
√

1−|a2|2
1−a2z

, but it is not orthogonal to
B1. We reach the orthogonality by subtracting its projection onto B1, and we get B2(z; a1:2) =√

1−|a2|2
1−a2z

(
z−a1

1−a1z

)
after normalization. This way, the bases Bi are finally formulated as:

Bi(z; a1:i) =

√
1− |ai|2
1− aiz

i−1∏
j=1

z − aj
1− ajz

, (6)

where z ∈ H and a1:i are poles learned by the small MLP satisfying |ak| < 1 for k = 1, . . . , i.
Overall, the i-th TM layer TMi applies a small MLP zi 7→ a1:i, and then construct the TM bases
Bi according to 6. We remark that, the tokens zi will be kept as the input of SSMi along with the
TM bases Bi.

Bidirectional SSM block is effective in solving PDEs on irregular geometries (Tiwari et al., 2025)
and employs inherent kernel integrals. However, this inherent kernel does not contain information
in the frequency domain, thereby falling short in capturing high-frequency and singular features. To
address this limitation, we utilize the transfer function in training SSMs in the frequency domain
(Parnichkun et al., 2024). The SSM block SSMi generates the spectrum of output in the frequency
domain Yi(e

iω) as the product of the spectrum of input Z(eiω) and the transfer function Hi(e
iω),

4
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i.e., Z(eiω)Hi(e
iω). We point out that the output is essentially the coefficient of discrete AFD

operation with the form ⟨zi,Bi⟩ (Qian, 2010; Qian et al., 2011), where the inner product is defined
as ⟨x, f⟩ = 1

Ñ

∑Ñ−1
n=0 x[n]f(ei2πn/Ñ ). Here, Ñ denotes the length of signal x = {x[n]}Ñ−1

n=0 .

Let us consider the impulse response hi of SSM block SSMi (linear time-invariant system) as:

hi[n] =
1

2π

∫ 2π

0

Bi (eiω; a1:i)e
iωn dω. (7)

Then, the corresponding transfer function Hi can be obtained as:

Hi(e
iω) = Bi (eiω; a1:i). (8)

By setting the transfer function of SSM to be Equation 8, the SSM block computes a correlation of
the input zi and Bi:

Yi(e
iω) = Hi(e

iω)X(eiω) = Bi(eiω; a1:i)X(eiω) (9)

in the frequency domain. In the time domain, Equation 9 leads to the update of zi:

ẑi+1[ℓ] = (hi ∗ zi)[ℓ] =
M−1∑
n=0

zi[n]Bi

(
ei2π(n−ℓ)/M ; a1:i

)
, (10)

where ℓ denotes the time shift in the correlation operations. The zero-lag sample gives the final
output:

ẑi+1[0] = (hi ∗ zi)[0] =
M−1∑
n=0

zi[n]Bi

(
ei2πn/M ; a1:i

)
= ⟨zi,Bi⟩. (11)

Aggregation layers Si has N neural layers and combines the skip connection zi with the inter-
mediate outputs ẑi+1[0] = Li(zi) and Bi = TMi(zi):

z2 = Si(z1, ẑ2[0],B1) = ẑ2[0]⊙ B1 for i = 1,

zi+1 = Si(zi, ẑi+1[0],Bi) = zi + (ẑi+1[0]⊙ Bi) for i > 1,
(12)

where ⊙ denotes the element-wise (Hadamard) product.

Output. Finally, the output of ûN,θ is the projection of zN+1 by the local transformation Q as (Li
et al., 2020):

ûN,θ = Q

(
N+1∑
i=1

(
M−1∑
n=0

zi[n]Bi

(
ei2πn/M ; a1:i

))
⊙ Bi

)
. (13)

4 PROPERTIES OF AFMO

Connections to AFD theory. Adaptive Fourier decomposition (AFD) is a novel signal decom-
position technique that leverages the Takenaka-Malmquist system and adaptive orthogonal bases
(Qian, 2010; Qian et al., 2012). It admits a proved convergence of any signal s ∈ H such that
s =

∑∞
i=1⟨s,Bi⟩Bi (Qian et al., 2011; Wang et al., 2022) for the chosen orthonormal bases Bi

(Saitoh et al., 2016). Thus, the output of Equation 12 zi+1, is equivalent to the AFD operation,
i.e., zi+1 =

∑i
k=1⟨zk,Bk⟩Bk. Furthermore, the output in Equation 13 can be approximated as

ûN,θ = Q
(∑N+1

i=1 ⟨zi,Bi⟩Bi

)
≈
∑N+1

i=1 ⟨ûi−1,θ,Bi⟩Bi, where ûi−1,θ = Q(zi). This is also
equivalent to the AFD operation. Thus, several theoretical properties of AFMO, including conver-
gence and error bound (see theorems and proofs in Appendix D), can be guaranteed with efficiently
large layers, thanks to AFMO’s deep connections with AFD theory.
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Connections to Parnichkun et al. (2024). Parnichkun et al. (2024) proposed a state-free inference
of SSMs by learning the coefficients of the rational transfer function H instead of the traditional
state-space matrices A,B, and C (Gu & Dao, 2023), which is called rational transfer function (RTF)
approach. Specifically, the RTF learns H as:

H(z) = h0 +
b1z

−1 + b2z
−2 + · · ·+ bnz

−n

1 + a1z−1 + a2z−2 + · · ·+ anz−n
, (14)

where ai, bi, and h0 are denominator coefficients, numerator coefficients, and feedthrough term,
respectively. When it comes to AFMO, we push the formulation of transfer function in Equation 8
and learn the rational transfer function by learning the poles a1:n (for n terms). In Appendix E, we
show that our way of learning poles leads to a similar form of Equation 14 with n learned parameters
(poles) as opposed to learning 2n+ 1 parameters in RTF.

Computational complexity. In terms of computational complexity, AFMO has an overall compu-
tational complexity of O

(
N(M logM +MD)

)
+O(NsMD). The former is from the processing

block, whereas the latter comes from P and Q. When M is treated as a constant with M ≪ Ns and
a local decoder is used, the dominant cost reduces to O(NsD) + O(N M logM). Consequently,
the complexity grows linearly with the number of mesh points Ns. With mesh size fixed, it is
approximately linear in the number of latent tokens M and the number of blocks N .

5 NUMERICAL EXPERIMENTS

To illustrate the effectiveness of AFMO, we conduct numerical experiments with multiple baseline
neural operators on diverse datasets including three categories: (i) regular grids: 2-D Darcy flow
equation and 2-D Navier-Stokes equation (Li et al., 2020), (ii) irregular geometries: plasticity, air-
foil, pipe, and elasticity (Li et al., 2023), (iii) PDEs with singularities: European option pricing
under the Black-Scholes equation, and 3-D Brusselator (reaction-diffusion) equation from Cao et al.
(2024) (see Appendix B).

Metric. In the training and evaluation stage, we utilize relative L2 error as the metric for accuracy
for all problems:

Rel-L2 =
1

N

N∑
i=1

||Gθ(ai)− G(ai)||L2

||G(ai)|L2

, (15)

where N denotes the number of samples. We also consider training time, the number of parameters,
and/or GPU memory usage as metrics for computational efficiency.

Implementation details. For baselines, we follow the implementation settings of their works.
Note that the architecture of FNO (Li et al., 2020) has been updated after publication, we evaluate
FNO using the newest architecture. For AFMO, we train 500 epochs on all datasets. We use AdamW
optimizer with decoupled weight decay 1 × 10−5, base learning rate 2 × 10−4, and a cosine decay
schedule (Loshchilov & Hutter, 2017) with a linear warm-up over the first 10% of total steps. The
nonlinearity is GELU inside the processing blocks. We clip global grad-norm at 0.5 each step. Un-
less stated otherwise, we use batch size 16, latent width 128, 64 latent tokens, 32 adaptive poles, and
4 processing blocks with SSM state size 16, depthwise 1-D convolution (per channel) of kernel size
4, channel expansion ratio 2. Experiments are conducted on a Linux workstation running Ubuntu
(kernel 6.14, glibc 2.39) with Python 3.13.5 (Anaconda), PyTorch 2.8.0+cu129 (CUDA 12.9), an
AMD Ryzen 9 9950X (16-core) processor, and a single NVIDIA GeForce RTX 4090 (48 GB) GPU.
CUDA is enabled.

5.1 NUMERICAL RESULTS OF BENCHMARK DATASETS

Table 1 shows the comprehensive comparison with various baselines on the six benchmark problems.
Among those problems, N-S and Darcy flow datasets apply regular grids, elasticity dataset uses point
clouds, whereas others are generated under structured meshes (Li et al., 2020; 2023). AFMO con-
sistently outperforms existing SOTA models by an average improvement of 28.42%. In particular,
for airfoil, Darcy, and N-S datasets, the relative L2 error decreased more than 30% compared to

6
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the existing SOTA models, demonstrating the superior performance of AFMO compared to existing
frequency-, transformer-, and Mamba-based models when solving complex dynamics and handling
irregular geometries. To solve the complex dynamics, Tiwari et al. (2025) incorporates latent repre-
sentations and SSMs, which can be considered as integral kernels without orthogonality. Meanwhile,
ONO (Xiao et al., 2023b) uses an orthogonal attention to ensure orthogonality. Numerical results on
irregular geometries, including elasticity (0.0050 → 0.0043), plasticity (0.0007 → 0.0006), airfoil
(0.0041 → 0.0020), and pipe (0.0026 → 0.0023), show that the systematic integration of orthonor-
mal kernels and SSMs leads to an exact AFD approximation and in turn improves PDE solution
accuracy in irregular geometries.

Table 1: Relative L2 error comparisons of AFMO with baselines across six benchmark datasets.
Lower relative L2 error is better. We quantify the improvement as the gain of AFMO relative to the
L2 error of the second best model. Bold means the best model, underline means the second best
model, red means the third best model, and blue means the fourth best model.

Models Elasticity Plasticity Airfoil Pipe N-S Darcy
FNO (Li et al., 2020) 0.0229 0.0074 0.0138 0.0067 0.0417 0.0052
U-FNO (Wen et al., 2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183
F-FNO (Tran et al., 2021) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077
LNO (Wang & Wang, 2024) 0.0052 0.0029 0.0051 0.0026 0.0845 0.0049
ONO (Xiao et al., 2023b) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076
WMT (Gupta et al., 2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082
Galerkin (Cao, 2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084
LSM (Wu et al., 2023) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065
OFormer (Li et al., 2022) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124
Transolver (Wu et al., 2024) 0.0062 0.0013 0.0053 0.0047 0.0879 0.0059
Transolver++ (Luo et al., 2025) 0.0064 0.0014 0.0051 0.0027 0.1010 0.0089
LAMO (Tiwari et al., 2025) 0.0050 0.0007 0.0041 0.0038 0.0460 0.0039
AFMO (ours) 0.0043 0.0006 0.0020 0.0023 0.0278 0.0021
Improvement 14.0% 14.3% 51.2% 11.5% 33.3% 46.2%

Computational Efficiency. To explore the computational efficiency of AFMO, we focus on Darcy
and airfoil problems. On average, AFMO reaches 46.2% and 51.2% reduction in training time over
SOTA models in these two problems, as shown in Figure 1. With light architectures and small
GPU memory, AFMO achieves the best training speed. Compared to the SOTA neural operator,
LaMO (Tiwari et al., 2025), AFMO is ∼ 1.2× faster and ∼ 2.5× lighter with similar GPU memory.
Instead of using orthogonal attention as in ONO (Xiao et al., 2023b), AFMO employs bases in the
orthogonal form (Equation 6), which does not require an orthogonalization process, thereby saving
∼ 2.7× in training time and ∼ 3× in GPU memory compared to ONO.

Scalability. We examine the computational scalability of AFMO on 2-D Darcy flow problem.
From Table 2, we observe that, as the grid dimension changes from 64 to 128 (Ns becomes 4 times
larger), both training and inference times increase approximately linearly (by about 4 times), which
aligns with the computational complexity result mentioned earlier. The memory usage remains rel-
atively constant with only a slight increase. This reflects the architectural characteristics of AFMO,
where the main computations (SSM blocks) are performed on M latent tokens rather than on Ns

physical points, and thus the memory footprint is largely decoupled from the input resolution Ns.

Table 2: AFMO is computationally scalable with respect to input resolution Ns.

Grid dimensions Grid size Ns Training time (sec/epoch) Inference time (sec/epoch) GPU memory (GB)
64× 64 4096 14.0 0.007 2.3

128× 128 16384 52.5 0.28 2.4
256× 256 65536 205.0 1.12 2.7
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Learned pole distributions across layers. To understand how the adaptive poles are selected
and evolved, Figure showcases the distributions per layer for 2-D Darcy flow and 3-D Brusselator
equations. The learned poles of AFMO on Darcy flow problem tend to approach to the boundary of
the unit disk, while those on the Brusselator problem tend to be in the interior of the unit disk. The
reason is that, the challenging characteristics and singularities of the Darcy flow problem are located
at the boundaries, and then more adaptive poles would be put there. Meanwhile, the complexity of
the Brusselator problem does not come from the boundaries. It comes from the local, non-linear
reaction that happens at every single point inside the domain. Therefore, most of the learned poles
should be put inside the unit disk.

5.2 EUROPEAN OPTIONS PRICING

To demonstrate the versatility of AFMO in solving different PDEs in different contexts, we consider
the European calls/puts problem modeled using the Black–Scholes equation with continuous divi-
dend yield q. For contract/market parameters (r, σ, q,K, T,is call), the price V (S, t) satisfies
the Black–Scholes equation (Barles & Soner, 1998):

∂tV + 1
2σ

2S2 ∂SSV + (r − q)S ∂SV − rV = 0, S ∈ [Smin, Smax], t ∈ [0, T ], (16)

with terminal payoff V (S, T ) = max(±(S − K), 0) (+ sign for calls, − for puts) and the linear
boundary conditions V (0, t) = 0 for calls, V (0, t) = Ke−r(T−t) for puts, and controlled growth
as S → ∞. This problem setting leads to two singular features: (i) the terminal payoff kink at
S = K (jump in ∂SV , concentration in ∂SSV ) as tnorm ↑ 1; and (ii) degeneracy near small S as
a result of the S2∂SSV diffusion term. Our goal is to learn the operator that maps the parameters
(r, σ, q,K, T,is call) to the price V (S, t). By comparing AFMO with a set of top-performing
solvers, we observe from Table 3 that average improvements of 25%, 4.1%, and 52.7% have been
achieved by AFMO in terms of relative L2 error, training time, and parameter counts, respectively.
This indicates that AFMO can accurately and efficiently solve PDE problems with singular features.

Figure 1: Comparisons of training time per epoch, number of parameters, and GPU memory among
existing SOTA models on (a) Darcy and (b) airfoil, where AFMO exhibits the strongest incremental
gains.

5.3 ABLATION STUDIES

Adaptive kernels vs. static kernels. We now consider the need and benefits of using adaptive
kernels. A kernel is adaptive when its parameterization (e.g., coefficients) varies with the input. In
this work, the formulation of Equation 6 varies with the learned poles a1:i and thus is an adaptive
kernel. We also randomly fix the value of a1:i for static kernels for comparison. Furthermore,
although a total of i poles are needed for i-th processing block, one can still identify more poles
and select the best i poles for implementation. Table 4 shows the relative L2 error results across six
benchmark datasets and the European options (EO) dataset. We find that, using adaptive kernels, the
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Table 3: European option pricing: relative L2 error and resource profile. Lower is better for error,
GPU memory, and training time. Parameter counts shown in millions. Bold = best, underline =
second best, and red = third best.

Models Rel. L2 (↓) Training Time (sec/epoch, ↓) Params (M, ↓)
FNO (Li et al., 2020) 0.0016 25.1 3.78
LNO (Wang & Wang, 2024) 0.0010 21.7 2.56
Transolver (Wu et al., 2024) 0.0012 22.3 5.91
LAMO (Tiwari et al., 2025) 0.0008 22.5 3.52
AFMO (ours) 0.0006 20.8 1.21

relative L2 errors reduce significantly compared to using static poles for all benchmark problems
considered. In fact, the relative L2 errors when selecting only 4 poles are lower than those when
selecting 32 static poles.

Table 4: Relative L2 error comparisons for Static vs. Adaptive kernels across seven benchmarks.
Lower is better.

Models Number of poles Elasticity Plasticity Airfoil Pipe N-S Darcy EO
AFMO (static) 32 0.0097 0.0021 0.0067 0.0072 0.1103 0.0174 0.0035

AFMO (adaptive)

4 0.0056 0.0012 0.0033 0.0029 0.0311 0.0057 0.0014
6 0.0051 0.0010 0.0031 0.0027 0.0298 0.0047 0.0010
8 0.0049 0.0008 0.0027 0.0025 0.0281 0.0036 0.0009

16 0.0046 0.0008 0.0023 0.0028 0.0290 0.0029 0.0008
32 0.0043 0.0006 0.0020 0.0023 0.0278 0.0021 0.0006
64 0.0048 0.0007 0.0036 0.0031 0.0372 0.0046 0.0009

Need for ensuring orthogonality. To understand how orthogonal kernels affect AFMO per-
formance, we conduct another ablation study by using non-orthogonal kernels (i.e., Equation 5)
in the AFMO framework. In this case, the transfer functions used in SSMs are Hi(e

iω) =

(1− |ai|2)
∑∞

n=0(ai)
neinω to match the output of AFD operation. Without orthogonality, AFMO

experiences higher relative L2 error, especially for problems with irregular geometries (e.g., airfoil
0.0020 → 0.0083 and elasticity 0.0043 → 0.0094). At the same time, the training time also in-
creases by ∼ 50.3% per epoch on average across all six benchmark datasets. This shows that the use
of orthogonal kernels (i.e., TM systems) helps improve both accuracy and computational efficiency
of AFMO solver.

Choice of SSMs. Finally, we evaluate the choice of bidirectional SSMs in AFMO compared to
unidirectional SSMs and multidirectional SSMs. Results in Figure 2 indicate that the choice of
bidirectional SSMs in AFMO consistently outperforms other two SSMs in all datasets.

5.4 EXPERIMENT USING REAL-WORLD NOISY DATASET

To validate AFMO’s performance on noisy real-world datasets, we perform experiments using the
latex glove DIC (Digital Image Correlation) original dataset (You et al., 2022). The goal is to learn
the mechanical response of a nitrile glove sample directly from experimental data, without assuming
a known constitutive law. The goal is to predict the displacement field at the current loading step.
The input includes the spatial coordinates, the displacement field from the previous step, and the
current boundary displacement. We compare the performance of AFMO to the current SOTA of this
dataset, IFNO, as well as FNO as follows. To ensure fair comparison, we conduct experiments using
the same settings as IFNO with the number of hidden layers ranging from 3 to 12.

In addition, You et al. (2022) also reported the results of generalized Mooney-Rivlin (GMR) model
in two settings. The relative L2 errors of GMR model fitting and GMR inverse analysis are 3.30E-01
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Figure 2: Contribution of three SSMs across seven benchmark datasets. Note that we do not apply
weights shared for all experiments. Lower is better.

Table 5: Relative L2 error of AFMO and other baselines using the latex glove DIC (Digital Image
Correlation) original dataset.

Number of hidden layers AFMO IFNO FNO
3 2.87E-02 ± 4.29E-04 3.43E-02 ± 4.96E-04 3.40E-02 ± 4.09E-04
6 2.50E-02 ± 3.28E-04 3.34E-02 ± 4.53E-04 3.84E-02 ± 4.21E-04

12 2.32E-02 ± 4.20E-04 3.32E-02 ± 4.41E-04 4.66E-02 ± 1.47E-03

and 2.91E-01, respectively. We can observe that our AFMO consistently outperforms other models
in every L. Finally, the best reported result of IFNO is 3.30E-02 ± 4.63E-04 when L = 24 (You
et al., 2022). Although we do not conduct the experiment L = 24 due to the limited time, our
AFMO still performs better than the best result of IFNO.

6 CONCLUSIONS

In this paper, we propose a novel neural operator AFMO for solving nonlinear PDEs on irregular
geometries and singularities. AFMO maps the physical tokens in an RKHS where the global spec-
tral transform and data-dependent orthogonal kernels are incorporated. By conducting a tailored
design of the TM layer and SSM block fully guided by the AFD theory, we show that the out-
put of AFMO exactly matches with AFD oepration, hence offering rigorous convergence guarantee
and other desirable properties. We show that the novel architecture of AFMO enables its outstand-
ing performance compared to existing SOTA neural operators in a series of physical and financial
benchmark problems.

7 REPRODUCIBILITY STATEMENT

All code and datasets have been either made publicly available in an anonymous repository or as
a part of supplementary material to facilitate replication and verification. The experimental setup,
including training steps, model configurations, and hardware details, is described in detail in the
paper. We have also provided a full description of implementation details, to assist others in repro-
ducing our experiments. Additionally, six benchmark datasets, such as pipe, are publicly available,
ensuring consistent and reproducible evaluation results.
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A NOTATION LIST

a Parameter function (input)

ûN,θ Output of AFMO with N blocks and parameters θ

N Number of processing blocks

Ns Number of input physical tokens

M Number of encoded latent tokens (M ≪ Ns)

Dembed Embedding dimension of latent tokens

xphys Input physical features

gphys Positional embedding of coordinates

zi Token representation after the i-th block

z0 Encoded tokens produced by the lifting operator P
z1 Tokens mapped into RKHS by operator R
P Lifting operator mapping physical tokens to encoded tokens

Q Projection operator mapping latent tokens back to output space

R Mapping operator from latent tokens to RKHS

Li Processing block at layer i (SSMi ◦ TMi)

Si Aggregation operator with skip connections at block i

TMi TM layer performing spectral transform via TM bases

SSMi Bidirectional SSM block parameterized by transfer function

Bi(z; a1:i) i-th TM basis generated by poles a1:i
a1:i Set of learned poles {a1, . . . , ai} in the unit disk D
Ka(z) Reproducing kernel 1

1−az

Hi(e
iω) Transfer function of the i-th SSM block

hi[n] Impulse response of the i-th SSM block

⟨x, f⟩ Inner product 1
Ñ

∑Ñ−1
n=0 x[n]f(ei2πn/Ñ )

⊙ Element-wise (Hadamard) product

H Reproducing Kernel Hilbert Space (RKHS)

Ñ Length of signal in inner product definition

B ILLUSTRATIVE EXAMPLES

1-D advection PDE with high-frequency perturbation. We evaluate LaMO on a 1-D linear ad-
vection benchmark governed by

ut + c ux = 0 (17)

on a periodic unit interval. Initial conditions u0(x) are synthesized as smooth Fourier mixtures∑kmax

k=1 ak sin(2πkx + ϕk) with amplitudes decaying as ak ∼ (1 + k)−1, to which we add a weak
high-frequency spike at wavenumber khi to probe aliasing and phase accuracy. Trajectories are
advanced to time T with a conservative first-order upwind scheme at Courant number CFL =
c∆t/∆x ≤ 0.5, ensuring stability while preserving sharp phase relationships; the target is the
advected field u(·, T ).
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Figure 3: Phase error of solutions predicted by LaMO.

Figure 3 visualizes the phase error of LaMO’s predictions, revealing a pronounced degradation
for high-frequency modes (approximately k ∈ [140, 250]). This suggests that LaMO struggles
to faithfully capture phase at the upper end of the spectrum.

2-D Darcy flow equation with fractal noise. We construct a challenging 2-D Darcy dataset by
solving

−∇·
(
k(x, y)∇u(x, y)

)
= f(x, y) (18)

on [0, 1]2 with homogeneous Dirichlet boundaries, where the permeability k is positive, highly het-
erogeneous, and fractal-like. Specifically, k is generated by exponentiating a band-limited fractional
Gaussian field (small Hurst parameter for roughness) and then modulating it with narrow channel
masks and inclusions to induce strong anisotropy and high contrast. The forcing f combines a weak
background term with several randomized Gaussian sources/sinks, which produce near-singular be-
havior in the solution. The variable-coefficient elliptic problem is discretized on a Cartesian grid
using a flux-conservative 5-point stencil with harmonic averaging of k, and solved to tight tolerance
via conjugate gradients. For learning, each sample is subsampled irregularly: we draw P points
{(xi, yi)} and record u(xi, yi), yielding pairs (XY, U) without exposing k or f .

To visualize and stress singular structures, we show in Figure 4 (a) and (c): (i) contours of the
potential u highlighting global flow topology, and (ii) a logarithmic map of the gradient magnitude,
log |∇u|, computed on a reconstructed dense grid via triangulation. Figure 4 shows LAMO cannot
capture the singularities of u and log |∇u|. Furthermore, once the complex singularities appear, the
performance of LAMO will be affected.

3-D Brusselator problem. We introduce a new 3-D Brusselator (diffusion-reaction equation)
problem using the dataset from Laplace neural operator (LNO) (Cao et al., 2024). The Brussela-
tor problem is formulated as:

D
∂2y

∂x2
+ ky2 − ∂y

∂t
= f(x, t), (19)
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Figure 4: The predicted results produced by LaMO compared to the ground truth.
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Figure 5: Learned poles distribution for the 2-D Darcy flow equation.

where y(x, t) represents the concentration of chemical substances or particles at location x and time
t, f(x, t) is the source term and A is the amplitude of the source term. In this problem, the diffusion
coefficient, D = 0.01, and the reaction rate, k = 0.01.

C DISTRIBUTION OF SELECTED POLES REFLECTS PROBLEM
CHARACTERISTICS

To understand how AFMO’s pole selection process is adaptive to the characteristics and nature of
the problem, we illustrate the learned pole distributions for the 2-D Darcy flow problem and 3-D
Brusselator problem in Figures 5. To clarify, here we give a brief overview of the visualization
results: The distribution of selected poles for the 2-D Darcy flow problem is shown in Figures 5 and
6, respectively.

We observe that, across the layers, the learned poles of AFMO on Darcy flow problem tend to
approach to the boundary of the unit disk, while those on the Brusselator problem tend to be in
the interior of the unit disk. The reason is that, Darcy flow problem is an elliptic equation, which
is a smoothing operator. Thus, even though the input coefficient (the permeability) is very rough
and discontinuous, the solution inside the domain will be well-behaved. Therefore, the challenging
characteristics and singularities of the Darcy flow problem are located at the boundaries, and then
more adaptive poles would be put there. Meanwhile, the complexity of the Brusselator problem does
not come from the boundaries. It comes from the local, non-linear reaction that happens at every
single point inside the domain. Therefore, most of the learned poles should be put inside the unit
disk.
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Figure 6: Learned poles distribution for the 3-D Brusselator equation.

D THEORETICAL RESULTS OF AFMO

Basic settings. Let D = {z ∈ C : |z| < 1}. Consider a reproducing kernel Hilbert space (RKHS)
(H, ⟨·, ·⟩H) of complex-valued functions on D with the following properties.

Assumption D.1. There is a family of normalized reproducing kernels {ea : a ∈ D} ⊂ H such that

ea(z) =

√
1− |a|2
1− az

∈ H, ⟨f, ea⟩H = f(a)
√
1− |a|2 ∀ f ∈ H, a ∈ D. (20)

Given a pole sequence a1:∞ = (a1, a2, . . . ) ⊂ D, define the Takenaka–Malmquist (TM) system by

B1(z) = ea1
(z), Bi(z) = eai

(z)

i−1∏
j=1

z − aj
1− ajz

(i ≥ 2). (21)

Assume {Bi}i≥1 is an orthonormal system in H, and its closed linear span equals the model space

KB := span{Bi : i ≥ 1} ⊆ H, (22)

where B is the Blaschke product with zeros {ai}.

AFMO notation. Let s ∈ H be the latent target representation and u⋆ = Q(s), where Q : H → U
is a Lipschitz decoder with constant LQ. Define the ideal TM coefficients and partial sums

c⋆i := ⟨s,Bi⟩H, sN :=

N∑
i=1

c⋆i Bi. (23)

AFMO learns estimates ĉi of c⋆i (via an SSM in the frequency domain) and aggregates them through
the skip connection:

zi+1 := zi + ĉi Bi, z1 := 0. (24)
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D.1 AGGREGATION IDENTITY AND FREQUENCY-DOMAIN COEFFICIENT EXTRACTION

Lemma D.2. Under 24, one has, for every N ∈ N,

zN+1 =

N∑
i=1

ĉi Bi. (25)

Proof. The proof is by induction. For N = 1, z2 = z1 + ĉ1B1 = ĉ1B1, so 25 holds. Assume 25
holds for N , i.e., zN+1 =

∑N
i=1 ĉi Bi. Then

zN+2 = zN+1 + ĉN+1BN+1 =

N+1∑
i=1

ĉi Bi,

which establishes the claim for N + 1.

Lemma D.3. Suppose the i-th SSM has transfer function

Hi(e
iω) = Bi(eiω), (26)

so that the block multiplies the input spectrum by Bi and outputs the zero-lag correlation. If the
discrete inner product used by AFMO is a consistent quadrature for ⟨·, ·⟩H on the class {s}∪{Bi},
then

ĉi → ⟨s,Bi⟩H = c⋆i as the quadrature is refined. (27)

Proof. By 26, the block forms (pointwise on the grid) Yi = Bi ·s in the transform domain; the zero-
lag correlation is the discretized inner product ⟨s,Bi⟩disc. Consistency of the quadrature implies
⟨s,Bi⟩disc → ⟨s,Bi⟩H as the grid is refined. Hence ĉi → c⋆i .

D.2 CONVERGENCE IN THE MODEL SPACE AND PROJECTION ERROR

Theorem D.4. Under Assumption D.1, if AFMO recovers the exact coefficients c⋆i = ⟨s,Bi⟩H, then

sN :=

N∑
i=1

c⋆i Bi
H−−−−→

N→∞
ΠKB

s, (28)

the orthogonal projection of s onto KB . Consequently,

∥u⋆ −Q(sN )∥ ≤ LQ ∥s−ΠKB
s∥H + LQ ∥ΠKB

s− sN∥H −−−−→
N→∞

LQ dist(s,KB). (29)

Proof. Because {Bi} is an orthonormal basis (ONB) of KB , the Fourier expansion of ΠKB
s in this

ONB has coefficients ⟨s,Bi⟩H, and the N -th partial sum equals sN . Convergence in norm to the
projection is standard for orthogonal series in a Hilbert space, giving 28. The bound 29 follows from
Lipschitz continuity of Q:

∥u⋆ −Q(sN )∥ = ∥Q(s)−Q(sN )∥ ≤ LQ∥s− sN∥ ≤ LQ
(
∥s−ΠKB

s∥+ ∥ΠKB
s− sN∥

)
.

Remark. No greedy or maximal selection is used. The MLP-generated poles determine KB ; AFMO
converges to ΠKB

s, and to s whenever s ∈ KB .

D.3 BEST N -TERM ERROR AND RATES WITHOUT GREEDY SELECTION

Definition D.5. Let D := {Bi(·; a1:i) : a1:i ∈ Di, i ∈ N} be the TM dictionary. Define the best
N -term error

EN (s) := inf
a1:N , c1:N

∥∥∥s− N∑
i=1

ci Bi(·; a1:i)
∥∥∥
H
. (30)
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Theorem D.6. Let ã1:N be the poles output by the MLP and set c⋆i = ⟨s,Bi(·; ã1:i)⟩H. If AFMO
learns ĉi, then∥∥∥s− N∑

i=1

ĉi Bi(·; ã1:i)
∥∥∥
H

≤ EN (s) + ∆pole(N) +
( N∑

i=1

|ĉi − c⋆i |2
)1

2

, (31)

where

∆pole(N) := inf
c1:N

∥∥∥s− N∑
i=1

ci Bi(·; ã1:i)
∥∥∥
H
− EN (s) ≥ 0. (32)

Proof. Choose abest1:N , cbest1:N that attain (or ε-attain) EN (s) and denote sbestN :=∑N
i=1 c

best
i Bi(·; abest1:i ). Then∥∥∥∥∥s−
N∑
i=1

ĉiBi(·; ã1:i)

∥∥∥∥∥ ≤ ∥s− sbestN ∥+

∥∥∥∥∥sbestN −
N∑
i=1

c⋆i Bi(·; ã1:i)

∥∥∥∥∥+
∥∥∥∥∥

N∑
i=1

(c⋆i − ĉi)Bi(·; ã1:i)

∥∥∥∥∥
≤ EN (s) + ∆pole(N) +

( N∑
i=1

|c⋆i − ĉi|2
)1/2

.

The last inequality uses the definition of ∆pole(N) and orthonormality of {Bi(·; ã1:i)}Ni=1.

Corollary D.7. Assume for the fixed MLP-produced poles ã1:i that the exact TM coefficients satisfy
the weak-ℓp decay

|c⋆i |∗ ≤ C i−1/p, 0 < p < 2,

where (|c⋆i |∗) is the nonincreasing rearrangement. Then

inf
c1:N

∥∥∥s− N∑
i=1

ci Bi(·; ã1:i)
∥∥∥
H

= O
(
N

1
2−

1
p
)
. (33)

If, in addition, ∆pole(N) = o(1) and
(∑N

i=1 |ĉi − c⋆i |2
)1/2

= o(1), then the AFMO error in 31 is
O
(
N

1
2−

1
p
)
.

Proof. For an orthonormal system, the best N -term error equals the ℓ2 tail of the rearranged coeffi-
cients. With |c⋆i |∗ ≤ Ci−1/p and p < 2,∑

i>N

(|c⋆i |∗)2 ≤ C2
∑
i>N

i−2/p = O
(
N1− 2

p
)
,

hence the norm error (square root) is O(N
1
2−

1
p ).

D.4 LEARNING AND DISCRETIZATION ERRORS

Assumption D.8. Each ĉi is obtained by ERM over m i.i.d. frequency samples using a hypothesis
class with effective capacity deff under sub-Gaussian noise, so that

E
[
|ĉi − c⋆i |

]
= O

(√
deff

m

)
. (34)

Lemma D.9. Let ⟨·, ·⟩Ñ be a discrete inner product (e.g., uniform frequency grid) that is a consistent
quadrature for ⟨·, ·⟩H on the class generated by {s} ∪ {Bi}. Then there exists εdisc(Ñ) ↓ 0 such
that ∣∣⟨f, g⟩H − ⟨f, g⟩Ñ

∣∣ ≤ εdisc(Ñ) for all f ∈ {s}, g ∈ {Bi}i≥1. (35)

Proof. Since point evaluations are continuous linear functionals in an RKHS and the involved func-
tions are continuous on compact subsets, standard quadrature consistency yields 35. (If f, g are
analytic in an annulus around the unit circle, one gets exponential rates; under Sobolev regularity,
algebraic rates.)
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Theorem D.10. Under Assumptions D.1 and D.8 and Lemma D.9, the AFMO output after N blocks
and Ñ grid points satisfies

∥u⋆ − ûN,θ∥ ≤ LQ

(
EN (s) + ∆pole(N) +

( N∑
i=1

|ĉi − c⋆i |2
)1/2)

+ εdisc(Ñ), (36)

with E[|ĉi − c⋆i |] = O(
√
deff/m) and εdisc(Ñ) → 0 as Ñ → ∞.

Proof. Apply Theorem D.6 to bound the latent H-error. Then use Lipschitz continuity of Q to
transfer the bound to the output space. The discretization error adds εdisc(Ñ) due to 35.

D.5 STABILITY TO POLE PERTURBATIONS

Lemma D.11. For a, b ∈ D and z ∈ D,∣∣∣ 1

1− az
− 1

1− bz

∣∣∣ ≤ |a− b|
(1− |a|)(1− |b|)

, (37)∣∣∣√1− |a|2 −
√

1− |b|2
∣∣∣ ≤ |a− b|√

1−max{|a|, |b|}2
, (38)

and for F (z; a) =
z − a

1− az
,

|F (z; a)− F (z; b)| ≤ 4 |a− b|
(1− |a|)(1− |b|)

, |F (z; a)| ≤ 1. (39)

Proof. For 37,
1

1− az
− 1

1− bz
=

(a− b)z

(1− az)(1− bz)
,

and |1−az| ≥ 1−|a||z| ≥ 1−|a|, |z| ≤ 1, yielding the bound. For 38, use the mean-value theorem
on x 7→

√
1− x with x = |a|2, |b|2 and ||a|2 − |b|2| ≤ |a− b|(|a|+ |b|) ≤ 2|a− b|. For 39, expand

F (z; a)− F (z; b) =
(b− a) + (a− b)z2 + (ab− ba)z

(1− az)(1− bz)
,

and bound the numerator by C|a − b| for |z| ≤ 1, while the denominator is bounded below by
(1− |a|)(1− |b|).

Theorem D.12. Let a1:i, ã1:i ∈ D with |ãj−aj | ≤ δj . Then there exist constants Ci > 0 (depending
on a1:i) such that

∥Bi(·; ã1:i)− Bi(·; a1:i)∥H ≤ Ci

i∑
j=1

δj
1− |aj |

. (40)

Consequently, for any coefficients ĉi,∥∥∥ N∑
i=1

ĉi Bi(·; ã1:i)−
N∑
i=1

ĉi Bi(·; a1:i)
∥∥∥
H

≤
( N∑

i=1

|ĉi|Ci

)( N∑
j=1

δj
1− |aj |

)
. (41)

Proof. Write

Bi(·; a1:i) = eai

i−1∏
j=1

F (·; aj), Bi(·; ã1:i) = eãi

i−1∏
j=1

F (·; ãj).

Use the product telescoping identity
i∏

k=1

Pk −
i∏

k=1

Qk =

i∑
k=1

(∏
j<k

Pj

)
(Pk −Qk)

(∏
j>k

Qj

)
,
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with P1 = eãi
, Q1 = eai

, and Pk = F (·; ãk−1), Qk = F (·; ak−1) for k ≥ 2. Taking sup-norms on
D and using |F (·; a)| ≤ 1,

∥Bi(·; ã1:i)− Bi(·; a1:i)∥∞ ≤ ∥eãi
− eai

∥∞ +

i−1∑
j=1

∥F (·; ãj)− F (·; aj)∥∞.

Apply Lemma D.11 to bound each term by a constant times δj/(1 − |aj |). Since evaluation func-
tionals are continuous and the kernel is bounded on compact subsets, there exists an embedding
constant Cemb with ∥f∥H ≤ Cemb∥f∥∞ on the set considered; thus 40 follows with Ci absorbing
all constants. Finally,∥∥∥ N∑

i=1

ĉi
(
Bi(·; ã1:i)− Bi(·; a1:i)

)∥∥∥
H

≤
N∑
i=1

|ĉi| ∥Bi(·; ã1:i)− Bi(·; a1:i)∥H,

giving 41.

D.6 END-TO-END CONVERGENCE WITHOUT GREEDY SELECTION

Theorem D.13. Assume:

1. s ∈ KB;

2.
∑∞

i=1 E[|ĉi − c⋆i |2]1/2 < ∞ (as sample size m → ∞ and model capacity increase);

3. εdisc(Ñ) → 0 as Ñ → ∞.

Then
lim

N→∞
∥u⋆ − ûN,θ∥ = 0.

Proof. Since s ∈ KB and {Bi} is an ONB of KB , Theorem D.4 gives sN → s in H. In 36, for this
fixed pole sequence one has EN (s) = ∆pole(N) = 0. Using (2) and (3), we obtain ∥u⋆ − ûN,θ∥ →
0.

D.7 CONNECTION OF SSM TO CORRELATION AND AFMO OUTPUT

Proposition D.14. With Hi(e
iω) = Bi(eiω), the i-th SSM block computes ĉi ≈ ⟨zi,Bi⟩H. Hence,

by Lemma D.2, after N blocks

zN+1 =

N∑
i=1

ĉi Bi, ûN,θ = Q(zN+1). (42)

Proof. The coefficient claim follows from Lemma D.3 applied to zi in place of s. The aggregation
identity is Lemma D.2. The last equality is the definition of Q.

Corollary D.15. All latent-space error bounds transfer to the PDE output space via

∥u⋆ − ûN,θ∥ ≤ LQ

∥∥∥s− N∑
i=1

ĉiBi

∥∥∥+ εdisc(Ñ).

E TRANSFER FUNCTION

We consider a (finite) Blaschke product

H(z) =

n∏
j=1

1− pjz

z − pj
, |pj | < 1, (43)

and convert it into a single ratio of polynomials whose coefficients match the parameterization used
to train SSMs.
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Polynomial expansion and z−1 form. Denote numerator and denominator polynomials

Bpoly(z) =

n∏
j=1

(z − pj), Apoly(z) =

n∏
j=1

(1− pjz), (44)

so that H(z) =
Apoly(z)
Bpoly(z)

. Let d = degBpoly = degApoly = n. To obtain the form with a unit
constant term in the denominator, divide numerator and denominator by zd and then normalize:

H̃(z) =

∑d
k=0 αkz

−k∑d
k=0 βkz−k

normalize−−−−−→ h0 +

d∑
k=1

bk
1
z−k

/ (
1 +

d∑
k=1

akz
−k
)
. (45)

The SSM coefficients are then reduced as:

h0=
α0

β0
, bk=

αk

β0
, ak=

βk

β0
, k = 1, . . . , d.

Example (n = 2). With p1, p2 ∈ C, expand

Bpoly(z) = (z − p1)(z − p2) = z2 − (p1+p2)z + p1p2,

Apoly(z) = (1− p1z)(1− p2z) = 1− (p1+p2)z + (p1p2)z
2.

Divide by z2 to get polynomials in z−1 and normalize by the denominator’s constant term (β0 =
p1p2), yielding

H(z) =
1− (p1+p2)z

−1 + (p1p2)z
−2

p1p2 − (p1+p2)z−1 + z−2
=

h0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
,

with
h0 =

1

p1p2
, b1 = −p1 + p2

p1p2
, b2 = 1, a1 = −p1 + p2

p1p2
, a2 =

1

p1p2
.

Efficient computation for large n. Direct symbolic expansion scales poorly. Instead, we multiply
degree-1 polynomials using FFT-based convolution. Represent each factor by its coefficient vector:

(z − pj) ↔ [1, −pj ], (1− pjz) ↔ [1, −pj ],

and iteratively convolve to form Bpoly and Apoly. By the convolution theorem, polynomial multipli-
cation is element-wise in the frequency domain, giving O(d log d) complexity. After both polyno-
mials are assembled, convert to z−1 by dividing by zd, then normalize by the denominator’s constant
term to obtain (h0, {ak}, {bk}) as in 45.

22


	Introduction
	Related work
	Adaptive Fourier Mamba operator
	Problem Statement
	AFMO Architecture

	Properties of AFMO
	Numerical Experiments
	Numerical results of benchmark datasets
	European Options Pricing
	Ablation studies
	Experiment using real-world noisy dataset

	Conclusions
	Reproducibility Statement
	Notation List
	Illustrative Examples
	Distribution of selected poles reflects problem characteristics
	Theoretical Results of AFMO
	Aggregation identity and frequency-domain coefficient extraction
	Convergence in the model space and projection error
	Best N-term error and rates without greedy selection
	Learning and discretization errors
	Stability to pole perturbations
	End-to-end convergence without greedy selection
	Connection of SSM to correlation and AFMO output

	Transfer function

