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Abstract
Diffusion transformers (DiT) have demonstrated
exceptional performance in video generation.
However, their large number of parameters and
high computational complexity limit their deploy-
ment on edge devices. Quantization can reduce
storage requirements and accelerate inference by
lowering the bit-width of model parameters. Yet,
existing quantization methods for image genera-
tion models do not generalize well to video gener-
ation tasks. We identify two primary challenges:
the loss of information during quantization and
the misalignment between optimization objectives
and the unique requirements of video generation.
To address these challenges, we present Q-VDiT,
a quantization framework specifically designed
for video DiT models. From the quantization
perspective, we propose the Token-aware Quanti-
zation Estimator (TQE), which compensates for
quantization errors in both the token and feature
dimensions. From the optimization perspective,
we introduce Temporal Maintenance Distillation
(TMD), which preserves the spatiotemporal cor-
relations between frames and enables the opti-
mization of each frame with respect to the overall
video context. Our W3A6 Q-VDiT achieves a
scene consistency of 23.40, setting a new bench-
mark and outperforming current state-of-the-art
quantization methods by 1.9×. Code will be avail-
able at https://github.com/cantbebetter2/Q-VDiT.

1. Introduction
Diffusion models (DMs) (Ho et al., 2020; Song et al., 2020)
have demonstrated remarkable success across a wide range
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Figure 1. Evaluation on VBench of different quantization methods
under W3A6 setting.

of generative tasks, including image generation (Ho et al.,
2020; Rombach et al., 2022; Dhariwal & Nichol, 2021; Feng
et al., 2024; Yang et al., 2025), image super-resolution (Lin
et al., 2025; Wang et al., 2024b; Wu et al., 2024b), and video
generation (HPC-AI, 2024; Ma et al., 2024). Diffusion
Transformers (DiT) (Peebles & Xie, 2023) have emerged
as a prominent architecture for generation tasks, leverag-
ing their ability to capture long-range dependencies and
scale to large parameter spaces. However, up to billions
of parameters (Black-Forest-Labs, 2024) and the increased
computational complexity pose significant challenges for
their deployment on edge devices.

As an effective model compression technique, quantization
reduces the bit-width of parameters and enhances inference
speed by utilizing integer operations (Gholami et al., 2022).
This approach has been extensively applied to compress
CNN-based (Pilipović et al., 2018; Ding et al., 2024) and
Transformer-based (Chitty-Venkata et al., 2023) architec-
tures. However, existing quantization methods for Diffusion
Transformers (DiT) have primarily focused on image gener-
ation tasks, with limited exploration in the context of video
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Figure 2. Overview of proposed Q-VDiT. The framework includes Token-aware Quantization Estimator (TQE) for forward process and
Temporal Maintenance Distillation (TMD) for optimization. The middle part denotes the quantized forward process. ⊗ denotes matrix
multiplication, ⊙ denotes token-wise multiplication.

generation. Directly applying existing quantization meth-
ods (Li et al., 2023; Ashkboos et al., 2024; Chen et al.,
2024; Wu et al., 2024a) to video-generation DiT leads to
significant performance degradation (Zhao et al., 2024).

Compared to image generation, video generation models
require modeling additional temporal dimensions across
multiple frames, significantly increasing the information
density relative to image generation tasks. Quantization in-
troduces information loss (Qin et al., 2020; Liu et al., 2020;
Feng et al., 2025), which can lead to considerable perfor-
mance degradation in video generation models, given their
higher information density (Zhao et al., 2024). Furthermore,
video generation involves strong semantic and temporal
correlations between frames. Existing optimization meth-
ods (Wu et al., 2024a; He et al., 2023) typically use Mean
Squared Error (MSE) to align model outputs directly, which
fails to account for these correlations. As a result, these
approaches do not calibrate the quantization process from
the perspective of the entire video, leading to a degradation
in video quality.

To address the aforementioned challenges, we propose
Q-VDiT (Quantization of Video-Generation Diffusion
Transformers), a novel framework specifically designed for
quantizing video diffusion transformers. Q-VDiT comprises
two key components: Token-aware Quantization Estimator
(TQE) and Temporal Maintenance Distillation (TMD). An
overview of Q-VDiT is illustrated in Fig. 2. From quantiza-
tion perspective, quantizing weights introduces significant
information loss, which is a primary factor contributing to
the degradation of video quality. To mitigate this, we employ
a small number of parameters to estimate the low-rank quan-
tization error of the weights from two orthogonal tokens and

feature dimensions. From optimization perspective, relying
solely on Mean Squared Error (MSE) for optimization ne-
glects the inter-frame information and fails to capture the
overall temporal dynamics of the video. We construct the
similarity distribution between frames in the full-precision
(FP) model as prior knowledge. Using KL divergence, we
align the temporal distributions of the quantized model with
the FP model, enabling the quantized model to maintain se-
mantic and temporal coherence across frames. We compare
the quantized model’s performance in Fig. 1.

The main contributions are summarized as follows:

• We theoretically prove that the quantization error of
weights carries less information entropy than the origi-
nal weights. To address this, we introduce the Token-
aware Quantization Estimator (TQE), which employs a
small number of additional parameters to perform low-
rank approximation of the quantization errors from two
orthogonal token and feature dimensions.

• We identify that using MSE alone fails to capture the
inter-frame optimization information in video gener-
ation. To address this, we propose Temporal Main-
tenance Distillation (TMD), which models the inter-
frame distribution to ensure that the optimization of
each frame considers the overall distribution of video
characteristics across all frames.

• We propose Q-VDiT, a framework specifically de-
signed for quantizing video diffusion transformers. Ex-
tensive experiments on generative benchmarks show
that Q-VDiT significantly outperforms current SOTA
post-training quantization methods.
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2. Related Work
2.1. Diffusion Model

Diffusion models (Ho et al., 2020; Rombach et al., 2022)
perform a forward sampling process by gradually adding
noise to the data distribution x0 ∼ q(x). In DDPM, the
forward noise addition process of the diffusion model is a
Markov chain, taking the form:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√
αtxt−1, βtI),

(1)

where αt = 1 − βt, βt is time-related schedule. Diffu-
sion models generate high-quality images by applying a
denoising process to randomly sampled Gaussian noise
xT ∼ N (0, I), taking the form:

pθ(xt−1|xt) = N (xt−1; µ̂θ,t(xt), β̂tI), (2)

where µ̂θ,t and β̂t are outputed by the diffusion model.

2.2. Diffusion Quantization

For diffusion model quantization, methods such as Q-
DM (Li et al., 2024b), BinaryDM (Zheng et al., 2024b),
BiDM (Zheng et al., 2024a), and TerDiT (Lu et al., 2024)
use quantization-aware training to maintain model perfor-
mance under 1-2 bits. However, these approaches require
extensive additional training time, often lasting several
days. For more efficient quantization, approaches like Q-
Diffusion (Li et al., 2023), PTQ4DM (Shang et al., 2023),
PTQ-D (He et al., 2024), TFMQ-DM (Huang et al., 2024a),
QuEST (Wang et al., 2024a), EfficientDM (He et al., 2023),
and MixDQ (Zhao et al., 2025) explore quantization from
the perspectives of quantization error, temporal features, and
calibration data, particularly for Unet-based diffusion mod-
els. Similarly, Q-DiT (Chen et al., 2024), PTQ4DiT (Wu
et al., 2024a), SVDQuant (Li et al., 2024a), and ViDiT-
Q (Zhao et al., 2024) focus on the quantization of diffusion
transformers, considering their unique data distributions and
computational characteristics. However, existing quantiza-
tion methods primarily focus on image generation tasks,
with limited exploration into the more challenging domain
of video generation. Therefore, this paper focuses on opti-
mizing the quantization performance of video-generation
diffusion transformers.

3. Methods
3.1. Model Quantization

Model quantization maps model weights and activations
to low bit integer values to reduce memory footprint and
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Figure 3. An illustration of TQE in Q-VDiT

accelerate the inference. For a floating vector xf , the quan-
tization process can be formulated as

x̂q = Q(xf , s, z) = clip(⌊xf

s
⌉+ z, 0, 2N − 1),

s =
u− l

2N − 1
, z = −⌊ l

s
⌉,

(3)

where x̂q indicates quantized vector in integer, ⌊·⌉ is round
fuction and clip(·) is function that clamps values into the
range of [0, 2N−1], s is a scale factor and z is a quantization
zero point. l and u are the lower and upper bounds of quan-
tization thresholds, respectively. They are determined by xf

and the target bit-width. Reversely, in order to restore the
low-bit integer quantization vector x̂q to the full precision
representation, the dequantization process is formulated as

x̂f = Q̂(xf ) = (x̂q − z)s, (4)

where x̂f is the dequantized vector used for forward process.

3.2. Token-aware Quantization Estimator

For Diffusion Transformers (DiTs) (Peebles & Xie, 2023;
Ma et al., 2024), the latent representation of the generation
target is denoted as Z ∈ Rn×d, where n is the number of
tokens and d is the hidden dimension. In image genera-
tion (Peebles & Xie, 2023), n corresponds to the spatial
token count s. However, for video generation (Ma et al.,
2024), n = s× t, where s is the spatial token number and t
is the temporal token number, representing t frames. This
means that video DiTs (V-DiTs) contain significantly more
tokens than image DiTs (I-DiTs), greatly enhancing their ex-
pressive capacity. However, quantization, particularly low-
bit quantization, can result in substantial information loss,
which is especially critical for V-DiTs (Zhao et al., 2024).
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Therefore, our goal is to retain as much of the model’s infor-
mation as possible using a minimal number of parameters,
thereby preserving the expressive capability of V-DiTs.

Proposition 3.1. Given a L layer model f{WL
i=1}, the

quantization process for weight is equivalent to applying a
perturbation ∆ to the original weight:

f{
L∑

i=1

Q̂(Wi)} = f{
L∑

i=1

Wi +∆i}, (5)

where Wi stands for i-th layer weight.

Therefore, our goal is to express the quantization error ∆ in
terms of a set of efficient parameters.

Theorem 3.2. Given any layer weight Wi, the correspond-
ing quantization error ∆i has less information entropy com-
pared with original weight Wi:

H(∆i) ≤ H(Wi), (6)

where H(·) denotes the information entropy calculation.

Theorem 3.2 indicates that although the dimension of ∆i

remains unchanged, its information entropy is lower than
that of the original weight Wi. Therefore, compared to the
original weight dimensions, the quantization error can be
estimated in a lower-rank space and represented using fewer
parameters. To achieve this, we use two low-dimensional
vector parameters, α and β, to represent the quantization er-
rors through low-rank estimation. For matrix multiplication
with weight W ∈ Rdout×din and input X ∈ Rn×din , we
approximate the operation during quantization as follows:

∆̇ := Xα,

XW⊤ ≈ XQ̂(W)⊤ + ∆̇β,
(7)

where α ∈ Rdin and β ∈ Rdout . We define ∆̇ ∈ Rn×1 to
represent the low-rank estimated quantization error, with β
aligning the output dimension. By employing this approach,
the additional parameters required to approximate the quan-
tization error are reduced from the original weight size of
(dout × din) to only (dout + din), significantly lowering
the parameter overhead. Furthermore, the computational
efficiency of the model is preserved after quantization.

But for latent representation of the video generation target,
Z ∈ Rn×d, the information is distributed across both the
external token dimension and the internal feature dimension.
When activations are quantized, the degree of information
loss varies across tokens (He et al., 2023; Ashkboos et al.,
2024). Consequently, error estimation based solely on the
feature dimension fails to account for the variation in quanti-
zation information loss among tokens, leading to suboptimal
quantization performance.

To address this issue, we propose Token-aware Quantiza-
tion Estimator (TQE) to estimate overall quantization error
across both the token and feature dimensions. The illus-
tration of TQE is in Fig. 3. In the token dimension, as
information at different token positions tends to be highly
concentrated (Zhao et al., 2024), we pre-scale the quan-
tized activations to estimate the quantization information
loss effectively. Additionally, given the unique temporal
differences across frames in video generation (Ma et al.,
2024; HPC-AI, 2024), we selectively scale the temporal
tokens of individual frames to ensure balanced information
distribution across frames. Formally, we reformulate Eq. (7)
as:

∆̂[fi+1:fi+s,:] := (Mi

⊙
Q̂(X)[fi+1:fi+s,:])α, M ∈ Rt

XW⊤ ≈ Q̂(X)Q̂(W)⊤ + ∆̂β,
(8)

where X ∈ Rn×din , n = s × t, s represents the spatial
token number, and t denotes the temporal token number.
We define fi := i×s, where i ∈ [1, 2, · · · , t]. To enable M
to account for the activation quantization error, we jointly
consider the weight of the token’s salient measurement and
the dissimilarity introduced by activation quantization when
initializing M. The initialization of M is defined as:

ηi =
exp[1− ρ(X[fi+1:fi+s,:], Q̂(X)[fi+1:fi+s,:])]∑t−1

ν=0 exp[1− ρ(X[fν+1:fν+s,:], Q̂(X)[fν+1:fν+s,:])]
,

ωi =

∑fi+s
τ=fi+1 |X[τ,:]|∑t−1

ν=0[
∑fν+s

τ=fν+1 |X[τ,:]]|
,

Mi =
ηi
ωi

,

(9)
where ρ(·, ·) computes the similarity between two se-
quences, and ηi serves as the weighting factor for the activa-
tion quantization error of frame t. To ensure value balance,
the weighting factor is normalized by the salient measure-
ment ωi of the token sequences in frame t.

Overall, we initialize M using Eq. (9), set α with Kaiming
initialization (He et al., 2015), and initialize β to zero follow-
ing common practices (Hu et al., 2021; He et al., 2023). The
modified quantization forward process is then implemented
using Eq. 8, replacing the original forward computation.
Leveraging the LoRunner Kernel (Li et al., 2024a), this re-
placement process introduces negligible latency. Details can
be found in the Appendix Sec. F.

3.3. Temporal Maintenance Distillation

For diffusion transformer optimization, existing meth-
ods (Wu et al., 2024a; He et al., 2023) optimize the training
parameters of the quantization model by minimizing the
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Figure 4. An illustration of TMD in Q-VDiT. We have enlarged
the upper left and lower right corners additionally.

output error between the full-precision (FP) model and the
quantization model by

Ltask = ||OFP (X;W), OQ(Q̂(X); Q̂(W))||2, (10)

where OFP (X;W) ∈ Rn×d represents the output of the
full-precision model, which serves as the ground truth, while
OQ(Q̂(X); Q̂(W)) ∈ Rn×d denotes the quantized output.
To simplify the notation, we redefine the outputs of both
models as SFP and SQ, where SFP and SQ represent the
restored image information required for each frame in the
generated video. Accordingly, Eq. (10) is rewritten as:

Ltask = ||SFP ,SQ||2

=

t−1∑
i=0

||SFP
[fi+1:fi+s,:],S

Q
[fi+1:fi+s,:]||

2,
(11)

In contrast to image generation which involves the image
information of a single frame, video generation requires S
to capture the image information across multiple frames.
For the quantization model that needs to be optimized, the
gradient for each frame i in SQ, derived from Eq. (11) is
given by:

∂Ltask

∂SQ
[fi+1:fi+s,:]

= −2(SFP
[fi+1:fi+s,:] − SQ

[fi+1:fi+s,:]),

(12)

In this approach, the optimization of each frame in the quan-
tized model only considers the information gap between it
and the corresponding frame in the FP model. However,
the information between different frames is not indepen-
dent in a complete video (Huang et al., 2024b; Ma et al.,
2024). Therefore, using Eq. (11) alone to optimize a video
generation quantized model is insufficient. It neglects the
inter-frame information dependencies, which may lead to
sub-optimal optimization results (Yang et al., 2022) and fail
to ensure the coherence of video content.

To directly perceive the inter-frame information during opti-
mization, we introduce Temporal Maintenance Distillation
as illustrated in Fig. 4. We calculate the relationship distri-
bution between token sequences from different frames, al-
lowing for direct interaction of information between frames.
We use KL divergence to minimize the gap between them.
Formally, we compute the temporal relation between the
i-th and j-th frames as follows:

Ti,j = ρ(S[fi+1:fi+s,:],S[fj+1:fj+s,:]),

i, j ∈ [1, 2, · · · , t],
(13)

where Ti,j presents the relationship between i-th frame and
j-th frame. Thus, we can formulate the temporal relation
distribution for the i-th frame by

Di = softmax(concat[Ti,1, · · · ,Ti,t]),Di ∈ Rt, (14)

where Di presents the temporal relation distribution be-
tween i-th frame and whole video frames, and we use
softmax to formulate probability distribution. For SFP and
SQ from the full-precision model and quantized model, we
can formulate DFP and DQ correspondingly. Thus, we
present Temporal Maintenance Distillation by

Ltemporal =

t∑
i=1

KL(DFP
i ,DQ

i ), (15)

From Eq. (15), we can derive the gradient for single frame
SQ
[fi+1:fi+s,:] by

∂Ltemporal

∂SQ
[fi+1:fi+s,:]

=

t∑
j=1

[
∂Ltemporal

∂TQ
i,j

·
∂TQ

i,j

∂SQ
[fi+1:fi+s,:]

+

∂Ltemporal

∂TQ
j,i

·
∂TQ

j,i

∂SQ
[fi+1:fi+s,:]

]
,

(16)
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Table 1. Performance of text-to-video generation on VBench evaluation benchmark suite. The bit-width “16” represents FP16 without
quantization. Bold: the best result. Underline: the second-best result.

Method Bit-width
(W/A)

Imaging
Quality

Aesthetic
Quality

Motion
Smooth.

Dynamic
Degree

BG.
Consist.

Subject
Consist.

Scene
Consist.

Overall
Consist.

- 16/16 63.68 57.12 96.28 56.94 96.13 90.28 39.61 26.21
Q-DiT 4/6 55.99 52.99 95.94 51.39 94.85 86.40 32.67 24.50
PTQ4DiT 4/6 55.58 53.31 94.57 56.94 93.70 86.90 33.65 23.48
SmoothQuant 4/6 54.16 52.20 94.83 55.56 93.55 87.08 31.40 22.54
Quarot 4/6 53.79 51.95 93.26 51.39 93.15 85.26 32.77 22.89
EfficientDM 4/6 55.63 53.92 95.19 51.39 95.10 86.58 35.90 23.90
SVDQuant 4/6 55.23 53.38 95.90 47.22 95.70 87.76 32.19 23.18
ViDiT-Q 4/6 55.63 53.68 96.13 56.94 95.38 86.94 32.70 24.53
Q-VDiT 4/6 57.49 55.18 96.25 68.06 95.72 87.78 38.66 25.02
Q-DiT 3/8 36.23 31.97 86.77 13.89 95.86 90.09 0.08 10.29
PTQ4DiT 3/8 46.98 40.88 93.63 16.67 92.38 84.57 7.63 18.04
SmoothQuant 3/8 36.86 33.24 91.32 27.78 93.16 82.42 1.02 11.03
Quarot 3/8 35.94 32.99 90.76 27.78 93.65 83.44 2.51 11.14
EfficientDM 3/8 49.97 43.78 95.49 31.94 95.92 89.14 13.99 16.61
SVDQuant 3/8 43.54 32.51 90.52 23.61 94.28 83.68 4.65 10.43
ViDiT-Q 3/8 50.62 42.83 95.84 31.94 96.35 88.06 15.19 18.53
Q-VDiT 3/8 54.94 49.94 97.11 50.00 95.96 90.14 25.07 22.39
Q-DiT 3/6 37.47 32.58 86.02 13.89 94.84 88.72 0.07 10.57
PTQ4DiT 3/6 45.31 40.20 93.43 19.45 91.59 83.15 7.85 16.55
SmoothQuant 3/6 36.88 33.57 91.18 33.33 93.02 81.99 1.24 11.01
Quarot 3/6 36.02 32.54 91.15 23.61 93.86 82.14 2.26 11.06
EfficientDM 3/6 48.82 42.11 95.04 34.72 95.17 88.17 12.04 15.85
SVDQuant 3/6 43.67 32.32 90.28 23.61 94.18 83.09 3.56 10.30
ViDiT-Q 3/6 48.76 42.70 95.51 37.50 95.34 86.86 11.99 18.38
Q-VDiT 3/6 53.60 49.66 96.98 55.56 95.41 89.06 23.40 22.58

For any ∂Ltemporal

∂TQ
i,j

, we can calculate it using the chain rule

∂Ltemporal

∂TQ
i,j

=

t∑
k=1

∂Ltemporal

∂DQ
i,k

·
∂DQ

i,k

∂TQ
i,j

= −DFP
i,j (1−DQ

i,j) +
∑
k ̸=j

DFP
i,k DQ

i,j

=
∑
k

DFP
i,k DQ

i,j −DFP
i,j ,

(17)

From Eq. (17), any correlation between i-th and j-th frame
TQ

i,j is numerically affected by all frames which ensures the
perception of overall video information. For any sequences
vi and vj stands for i-th and j-th frame used in Eq. (13),
the gradient for i-th frame ∂Ti,j

∂vi
can be derived by

∂TQ
i,j

∂vi
=

∥vi∥∥vj∥vj − (vi · vj)
vi

∥vi∥

∥vi∥2∥vj∥2
,

vi := SQ
[fi+1:fi+s,:],

(18)

By applying Eq. (17) and Eq. (18) to Eq. (16), the optimiza-
tion of any single frame SQ

[fi+1:fi+s,:] is jointly guided by all

frames. This enables direct interaction between frames and
optimizes the temporal coherence across the entire video.
Ltemporal effectively compensates for the lack of alignment
that arises when focusing solely on single-frame optimiza-
tions. Through this approach, the video information from
both the FP network and the quantized network is enhanced
by capturing the overall temporal representations of the
video. In summary, the overall optimization objective can
be reformulated as follows:

Ltotal = Ltask + γLtemporal (19)

4. Experiments
4.1. Experimental and Evaluation Settings

Experimental Settings: Following previous work ViDiT-
Q (Zhao et al., 2024), we apply our Q-VDiT to Open-
SORA (HPC-AI, 2024) and Latte (Ma et al., 2024) for
video generation task. We mainly focus on harder settings
of W4A6 (4-bit weight quantization and 6-bit activation
quantization), W3A8, and W3A6. We follow the exper-
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Table 2. Performance of text-to-video generation on OpenSORA prompt set. Bold: the best result. Underline: the second-best result.

Method Bit-width
(W/A) CLIPSIM CLIP-Temp VQA-

Aesthetic
VQA-

Technical
∆ FLOW
Score.(↓) Warping Error (↓)

- 16/16 0.1797 0.9986 66.91 53.49 - 0.016
Q-DiT 4/6 0.1757 0.9987 57.11 38.12 0.913 0.015
PTQ4DiT 4/6 0.1777 0.9978 62.37 37.68 0.287 0.022
SmoothQuant 4/6 0.1781 0.9981 55.66 22.37 1.076 0.019
Quarot 4/6 0.1778 0.9980 56.24 30.75 1.013 0.018
EfficientDM 4/6 0.1753 0.9986 62.43 43.85 0.649 0.021
SVDQuant 4/6 0.1780 0.9983 64.84 36.24 0.956 0.015
ViDiT-Q 4/6 0.1782 0.9985 54.66 49.78 0.306 0.012
Q-VDiT 4/6 0.1784 0.9989 67.05 53.75 0.281 0.013
Q-DiT 3/8 0.1707 0.9955 22.31 3.84 1.167 0.018
PTQ4DiT 3/8 0.1764 0.9952 35.21 8.56 1.389 0.039
SmoothQuant 3/8 0.1758 0.9965 16.55 1.08 1.227 0.064
Quarot 3/8 0.1755 0.9961 26.59 5.66 1.048 0.038
EfficientDM 3/8 0.1762 0.9987 45.67 28.42 1.306 0.017
SVDQuant 3/8 0.1735 0.9986 42.13 18.96 1.457 0.019
ViDiT-Q 3/8 0.1733 0.9985 41.00 13.48 1.619 0.020
Q-VDiT 3/8 0.1766 0.9988 54.92 61.59 0.839 0.011
Q-DiT 3/6 0.1681 0.9961 11.90 0.69 1.412 0.028
PTQ4DiT 3/6 0.1765 0.9947 26.35 5.42 1.185 0.042
SmoothQuant 3/6 0.1768 0.9959 18.07 1.33 1.286 0.068
Quarot 3/6 0.1762 0.9950 25.89 3.95 1.084 0.042
EfficientDM 3/6 0.1747 0.9982 43.54 29.58 1.217 0.020
SVDQuant 3/6 0.1712 0.9975 40.75 16.51 1.656 0.026
ViDiT-Q 3/6 0.1716 0.9984 39.82 10.26 1.695 0.020
Q-VDiT 3/6 0.1785 0.9986 53.53 59.10 0.914 0.012

imental settings in ViDiT-Q (Zhao et al., 2024). For the
Open-Sora (HPC-AI, 2024) model, we use the setting in
Appendix Sec. D.1 for benchmark evaluation and use 10
prompts provided by OpenSora prompt sets to generate 10
videos for multi-aspects metrics evaluation. More experi-
ments and details can be found in the Sec. 4.3, Appendix
Sec. B, and E.

Evaluation Settings: The evaluation contains two settings
like ViDiT-Q (Zhao et al., 2024). We first evaluate the quan-
tized model on VBench (Huang et al., 2024b) to provide
comprehensive results for benchmark evaluation. To align
with ViDiT-Q, we select 8 major dimensions from Vbench.
We select representative metrics and measure them on Open-
SORA prompt sets for multi-aspects metrics evaluation
like ViDiT-Q. Following EvalCrafter (Liu et al., 2024), we
select CLIPSIM, CLIP-Temp, Warping Error to measure
consistency, and DOVER (Wu et al., 2023) video quality as-
sessment (VQA) metrics to evaluate the generation quality,
Flow-score are used for evaluating the temporal consistency.
For Open-SORA model, we use 100-step DDIM with CFG
scale of 4.0. For Latte, we adopt the class-conditioned
Latte model trained on UCF-101 and use the 20-step DDIM
solver with CFG scale of 7.0. More details can be found in

Appendix Sec. D.

Compared Methods: We compare different base-
line PTQ methods. For LLM baseline, we compare
SmoothQuant (Xiao et al., 2023) and Quarot (Ashkboos
et al., 2024). For DM baseline, we mainly compare Effi-
cientDM (He et al., 2023) and SVDQuant (Li et al., 2024a).
For DiT baseline, we mainly compare Q-DiT (Chen et al.,
2024), PTQ4DiT (Wu et al., 2024a), and ViDiT-Q (Zhao
et al., 2024). It is worth mentioning that only ViDiT-Q and
Q-DiT have conducted video-generation task evaluation.
We rerun all compared methods for fair comparison.

4.2. Main Results

Benchmark evaluation: In benchmark evaluation, we use
vbench (Huang et al., 2024b) to evaluate quantization video
diffusion transformer from three key video aspects among
8 details dimensions. As present in Tab. 1, our proposed
Q-VDiT achieves notable improvement across dimensions
under W4A6, W3A8, and W3A6 settings compared with all
existing quantization methods. Especially under the hardest
3-bit weight settings, Q-VDiT exceeds the optimal results of
existing methods by a large margin. Like in W3A6 setting,
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Table 3. Higher bit setting performance of text-to-video generation on OpenSORA prompt set.

Method Bit-width
(W/A) CLIPSIM CLIP-Temp VQA-

Aesthetic
VQA-

Technical
∆ FLOW
Score.(↓) Warping Error (↓)

- 16/16 0.1797 0.9986 66.91 53.49 - 0.016
Q-Diffusion 8/8 0.1781 0.9987 51.68 38.27 0.328 0.024
Q-DiT 8/8 0.1788 0.9977 61.03 34.97 0.473 0.017
PTQ4DiT 8/8 0.1836 0.9991 54.56 53.33 0.440 0.018
SmoothQuant 8/8 0.1951 0.9986 59.78 51.53 0.331 0.019
Quarot 8/8 0.1949 0.9976 58.73 52.28 0.215 0.020
ViDiT-Q 8/8 0.1950 0.9991 60.70 54.64 0.089 0.016
Q-VDiT 8/8 0.1950 0.9987 64.43 56.40 0.099 0.015
Q-DiT 6/6 0.1710 0.9943 11.04 1.869 41.10 0.024
PTQ4DiT 6/6 0.1799 0.9976 59.97 43.89 0.997 0.019
SmoothQuant 6/6 0.1807 0.9985 56.45 48.21 29.26 0.020
Quarot 6/6 0.1820 0.9975 61.47 53.06 0.146 0.023
ViDiT-Q 6/6 0.1791 0.9984 64.45 51.58 0.625 0.016
Q-VDiT 6/6 0.1798 0.9984 67.31 54.03 0.061 0.019
Q-DiT 4/8 0.1687 0.9833 0.007 0.018 3.013 0.018
PTQ4DiT 4/8 0.1735 0.9973 2.210 0.318 0.108 0.024
SmoothQuant 4/8 0.1832 0.9983 31.96 22.85 0.415 0.021
Quarot 4/8 0.1817 0.9965 47.36 33.13 0.326 0.020
ViDiT-Q 4/8 0.1809 0.9989 60.62 49.38 0.153 0.012
Q-VDiT 4/8 0.1811 0.9989 71.32 55.56 0.147 0.012

Table 4. Ablation studies of Q-VDiT techniques on W3A8 Open-Sora model.

Method Bit-width
(W/A)

Imaging
Quality

Aesthetic
Quality

Motion
Smooth.

Dynamic
Degree

BG
Consist.

Subject
Consist.

Scene
Consist.

Overall
Consist.

- 16/16 63.68 57.12 96.28 56.94 96.13 90.28 39.61 26.21
PTQ4DiT 3/6 45.31 40.20 93.43 19.45 91.59 83.15 7.85 16.55
+TQE (w/o M) 3/6 51.36 47.69 96.14 47.22 94.86 88.21 21.94 21.65
+TQE (w M) 3/6 52.35 48.97 96.77 51.39 95.12 88.86 22.38 22.00
+TMD 3/6 53.46 48.70 96.00 52.78 95.24 89.01 22.87 22.31
Q-VDiT 3/6 53.60 49.66 96.98 55.56 95.41 89.06 23.40 22.58

Q-VDiT improves SOTA scene consistency from 12.04 to
23.40 which is almost doubled.

Multi-aspects metrics evaluation: In multi-aspects met-
rics evaluation, Q-VDiT also achieves notable improve-
ment across all metrics in Tab. 2. Q-VDiT achieves almost
lossless performance under W4A6 setting and greatly im-
proves existing quantization methods under the hardest 3-bit
weight settings. In W3A6 setting, Q-VDiT improve VQA-
Technical from current SOTA 29.58 to 59.10, CLIPSIM
from 0.1768 to 0.1785 by a great margin.

4.3. Additional Results on Higher Bit Settings

Tab. 1 shows that Q-VDiT achieves notable improvement
under relatively harder settings with 3-4bit weight quanti-
zation. In Tab. 3, we present more bit settings on Open-
Sora (HPC-AI, 2024) model quantization. It can be seen
that our Q-VDiT still outperforms the current quantization

Table 5. Efficiency comparisons of different methods across GPU
memory and time under W8A8 setting.

Method GPU Memory
(MB)

GPU Time
(hours)

VQA-
Aesthetic

ViDiT-Q 16600 12.5 60.70
EfficientDM 19460 12.6 61.25

PTQ4DiT 17650 12.8 54.56
Q-VDiT 18770 12.9 64.43

methods under higher bit settings. On W4A8 setting, Q-
VDiT achieves 71.32 VQA- Aesthetic which is even higher
than the FP model. This further proves our Q-VDiT’s supe-
riority at different bits. Notably, Q-VDiT achieves the best
VQA metrics under W4A8 setting which even surpass the
full-precision performance.
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Figure 5. Visualization of different frames in a single video.

4.4. Qualitative Comparison

In Fig. 5, we present different frames in a single video under
W3A6 with the same prompt to qualitatively compare video
generation ability. We evenly sample 4 frames from the
complete video. All other comparison methods may not
even produce clear images, and some may not even produce
meaningful images. Our proposed Q-VDiT not only pro-
duces clear and meaningful images but also has significant
coherent motion changes between different frames. This
indicates that Q-VDiT can still produce good and meaning-
ful complete videos even when other methods fail. More
results can be found in Appendix Sec. G.

4.5. Ablation Study

Different techniques of Q-VDiT: In Tab. 4, we compared
different proposed techniques used in Q-VDiT. All proposed
techniques can improve the performance of quantized model.
We also compare TQE without M. After introducing token-
aware M, the effect of TQE is further enhanced which
proves the necessity of considering both token and feature
dimensions. By combining TQE and TMD, our Q-VDiT
achieves the best results across all 8 dimensions.

Different hyperparameters used in TMD: In Fig. 6, we
compare different γ used in Eq. (19) and PTQ baseline
method PTQ4DiT (Wu et al., 2024a). We conduct experi-
ment on W3A8 Open-Sora model. It can be seen that all
different γ used in TMD can notably enhance model perfor-

Imaging
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Subject
Consist.

Scene
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Overall
Consist.
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Figure 6. Ablation study on different γ in TMD.

mance compared with baseline PTQ4DiT. This shows that
our TMD is not sensitive to hyperparameter selection. In
our practice, we use γ = 100 for balanced choice.

4.6. Training Resource Cost

In Tab. 5, we present the training cost of GPU memory cost
and time cost between different PTQ methods under W8A8
setting. Compared to no-calibration method ViDiT-Q, we
only bring 3% additional time cost and less compared with
other calibration methods. Yet we achieve the best video
quality metrics.

5. Conclusion
In this paper, we have proposed Q-VDiT, a quantization
method tailored specifically for video Diffusion Transform-
ers. To address severe model quantization information loss,
we have proposed Token-aware Quantization Estimator to
compensate for quantization errors from both token and
feature dimensions. To maintain the spatiotemporal correla-
tion between different frames in videos, we have proposed
Temporal Maintenance Distillation to optimize each frame
from the perspective of the overall video. Our extensive
experiments have demonstrated the superiority of Q-VDiT
over baseline and other previous quantization methods.
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A. Proof of Theorem 3.2
Lemma A.1. For any surjection f : X → Y , we have

H(Y ) ≤ H(X) (20)

Proof of Lemma A.1.

For any surjection f : X → Y , we have p(y) =
∑

f(x)=y p(x). Thus, we have

H(Y ) = −
∑
y∈Y

p(y) log p(y)

= −
∑

p(y)=p(x)

p(y) log p(y)−
∑

p(y) ̸=p(x)

p(y) log p(y)

= −
∑

p(y)=p(x)

p(y) log p(y)−
∑

p(y) ̸=p(x)

( ∑
x=f−1(y)

p(x) log
( ∑

x=f−1(y)

p(x)
))

= −
∑

p(f(x))=p(x)

p(x) log p(x)−
∑

p(f(x))̸=p(x)

p(x) log
( ∑

z=f−1(f(x))

p(z)
)

≤ −
∑

p(f(x))=p(x)

p(x) log p(x)−
∑

p(f(x))̸=p(x)

p(x) log p(x)

= H(X)

(21)

Therefore, Lemma A.1 holds.

Proof of Theorem 3.2.

To simplify the proof, we omit z in the quantization process of Eq. (3) and Eq. (4). Therefore, for any weight quantization
error ∆, we have

H(∆) = H(W − Q̂(W))

= H(W − s⌊W
s
⌉)

= H(s
W

s
− s⌊W

s
⌉)

= H(
W

s
− ⌊W

s
⌉)

(22)

where (Ws − ⌊W
s ⌉) denotes only truncating the decimal part of W

s . For any item Wi and Wj in W, we have
(Wi

s − ⌊Wi

s ⌉) = (
Wj

s − ⌊Wj

s ⌉), if Wi = Wj ,

(Wi

s − ⌊Wi

s ⌉) = (
Wj

s − ⌊Wj

s ⌉), if Wi ̸= Wj and (Wi

s − ⌊Wi

s ⌉) = (
Wj

s − ⌊Wj

s ⌉),
(Wi

s − ⌊Wi

s ⌉) ̸= (
Wj

s − ⌊Wj

s ⌉), if Wi ̸= Wj and (Wi

s − ⌊Wi

s ⌉) ̸= (
Wj

s − ⌊Wj

s ⌉),
(23)

Obviously, for mapping g : W → W
s − ⌊W

s ⌉, g is a surjection. Therefore, using Lemma A.1, we have

H(∆) = H(
W

s
− ⌊W

s
⌉) ≤ H(W) (24)

Therefore, Theorem 3.2 holds.
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Table 6. Performance of text-to-video generation on UCF-101 Dataset.

Method Bit-width
(W/A) FVD(↓) FVD-FP16(↓) CLIPSIM CLIP-T VQA-

Aesthetic
VQA-

Technical
∆ FLOW
Score.(↓)

Temp.
Flick.

- 16/16 99.90 0.00 0.1970 0.9963 36.33 91.23 3.37 96.22
Naive-PTQ 4/6 197.85 244.06 0.1702 0.9921 4.98 0.36 66.51 63.72
ViDiT-Q 4/6 96.72 80.59 0.1940 0.9968 20.25 31.73 3.29 94.86
Q-VDiT 4/6 95.51 79.17 0.1944 0.9971 23.62 35.76 2.70 95.46
Naive-PTQ 3/8 220.83 251.74 0.1698 0.9913 3.23 0.17 69.06 61.42
ViDiT-Q 3/8 99.74 84.28 0.1925 0.9957 17.32 20.56 4.34 92.51
Q-VDiT 3/8 97.07 80.14 0.1935 0.9966 21.74 30.23 3.08 94.37
Naive-PTQ 3/6 221.09 252.37 0.1693 0.9910 3.16 0.16 69.85 61.14
ViDiT-Q 3/6 100.05 84.79 0.1923 0.9955 16.83 19.61 4.42 92.08
Q-VDiT 3/6 98.15 82.09 0.1934 0.9963 19.79 25.81 3.46 93.13

B. Implementation Details
We follow the setup used in ViDiT-Q (Zhao et al., 2024) for different layer bits. We only quantize linear weight and use
channel-wise quantization for weight, and dynamic token-wise quantization for activation like ViDiT-Q. We apply the same
quantization setting for different methods for a fair comparison. We follow the quantization scheme used in PTQ4DiT (Wu
et al., 2024a) and EfficientDM (He et al., 2023) to perform post-training calibration which fine-tunes the quantization
parameters. For post-training quantization, we calibrate 5k iters for 6-8 bit, 10k iters for 4-bit, and 15k iters for 3-bit. For
calibration parameters, we use a batch size of 4, learning rate of 1e-6 for weight quantization parameters, and 1e-5 for TQE
parameters. We apply the same setting for other post-training-based methods. For calibration dataset, we use 10 prompts
provided by Open-Sora (HPC-AI, 2024) and uniformly select 50 steps as used in ViDiT-Q (Zhao et al., 2024).

C. Experimental Settings
For the Latte (Ma et al., 2024) Model, due to the lack of ground-truth videos for prompt-only datasets, we also report
FVD-FP16 which chooses the FP16-generated video as ground-truth. All metrics are evaluated on 101 prompts (1 for each
class) for UCF-101 (Soomro, 2012).

D. Detailed Description of Selected Evaluation Metrics
D.1. Benchmark Evaluation

Following VBench (Huang et al., 2024b) and previous work ViDiT-Q (Zhao et al., 2024), we select 8 dimensions from three
key aspects in video-generation task.

1. Frame-wise Quality. In this aspect, we assess the quality of each individual frame without taking temporal quality
into concern.

• Imaging Quality assesses distortion (e.g., over-exposure, noise) presented in the generated frames using the
MUSIQ (Ke et al., 2021) image quality predictor trained on the SPAQ (Fang et al., 2020) dataset.

• Aesthetic Quality evaluates the artistic and beauty value perceived by humans towards each video frame using
the LAION aesthetic predictor (LAION-AI, 2022).

2. Temporal Quality. In this aspect, we assess the cross-frame temporal consistency and dynamics.

• Dynamic Degree evaluates the degree of dynamics (i.e., whether it contains large motions) generated by each
model.

• Motion Smoothness evaluates whether the motion in the generated video is smooth, and follows the physical law
of the real world.

• Subject Consistency assesses whether the subject’s appearance remains consistent throughout the whole video.
• Background Consistency evaluate the temporal consistency of the background scenes by calculating CLIP (Rad-

ford et al., 2021) feature similarity across frames.
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3. Semantics. In this aspect, we evaluate the video’s adherence to the text prompt given by the user. consistency.

• Scene evaluates whether the synthesized video is consistent with the intended scene described by the text prompt.

• Overall Consistency further use overall video-text consistency computed by ViCLIP (Wang et al., 2023) on
general text prompts as an aiding metric to reflect both semantics and style consistency.

We use three different prompts set provided by the official github repository of VBench to generate videos. We generate one
video for each prompt for evaluation same as ViDiT-Q (Zhao et al., 2024).

• overall consistency.txt: includes 93 prompts, used to evaluate overall consistency, aesthetic quality and imaging
quality.

• subject consistency.txt: includes 72 prompts, used to evaluate subject consistency, dynamic degree, and motion
smoothness.

• scene.txt: includes 86 prompts, used to evaluate scene and background consistency.

D.2. Multi-aspects Metrics Evaluation

CLIPSIM and CLIP-Temp: CLIPSIM computes the image-text CLIP similarity for all frames in the generated videos and
we report the averaged results. This quantifies the similarity between input text prompts and generated videos. CLIP-Temp
computes the CLIP similarity of each two consecutive frames of the generated videos and then gets the averages on each
two frames. This quantifies the semantics consistency of generated videos. We use the CLIP-VIT-B/32 (Wang et al., 2023)
model to compute CLIPSIM and CLIP-Temp. We use the implementation from EvalCrafter (Liu et al., 2024) to compute
these two metrics.

DOVER’s VQA: VQA-Technical measures common distortions like noise, blur, and over-exposure. VQA-Aesthetic reflects
aesthetic aspects such as the layout, the richness and harmony of colors, the photo-realism, naturalness, and artistic quality
of the frames. We use the Dover (Wu et al., 2023) method to compute these two metrics.

∆ FLOW Score: Flow score wae proposed in (Liu et al., 2024) to measure the general motion information of the video. We
use RAFT (Teed & Deng, 2020), to extract the dense flows of the video in every two frames and we calculate the average
flow on these frames to obtain the average flow score of each generated video. In practice and in previous work (Zhao
et al., 2024) finds, some poorly performing methods can cause the generated video to crash, resulting in an abnormally high
FLOW Score. Thus, the difference Flow Score between the quantized Model and the FP Model is used as ∆ FLOW Score
for better comparison.

Warping Error: Warping error first obtain the optical flow of each two frames using the pre-trained optical flow estimation
network (Teed & Deng, 2020). Then calculate the pixel-wise differences between the warped image and the predicted image.
We calculate the warp differences on every two frames and calculate the final score using the average of all the pairs.

FVD and FVD-FP16: FVD measures the similarity between the distributions of features extracted from real and generated
videos. We employ one randomly selected video per label from the UCF-101 dataset (101 videos in total) (Soomro, 2012)
as the reference ground-truth videos for FVD evaluation. We follow (Zhao et al., 2024; Blattmann et al., 2023) to use a
pretrained I3D model to extract features from the videos. Lower FVD scores indicate higher quality and more realistic
video generation. However, due to relatively smaller video size (e.g. 101 videos in our case), employing FVD to evaluate
video generation models faces several limitations. Small sample size cannot adequately represent either the diversity of the
entire dataset or the complexity and nuances of video generation, leading to inaccurate and unstable results. To mitigate
the limitations above, we propose an enhanced metric, FVD-FP16, for assessing the semantic loss in videos generated by
quantized models relative to those produced by pre-quantized models. Specifically, we utilize 101 videos generated by the
FP16 model as ground-truth reference videos. The FVD-FP16 has a significantly higher correlation with human perception.

Temporal Flickering: Temporal flickering measures temporal consistency at local and high-frequency details of gen-
erated videos. Then, we calculate the average MAE (mean absolute difference) value between each frame. We use the
implementation in VBench (Huang et al., 2024b) to calculate temporal flickering.
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E. Additional Results on Latte Model
In Tab. 6, we present different quantization results about Latte (Ma et al., 2024) model on UCF-101 (Soomro, 2012) dataset.
Compared to main baseline ViDiT-Q, our Q-VDiT still outperforms across all selected metrics under these harder bit settings.
Under the hardest W3A6 setting, Q-VDiT still achieves VQA-Aesthetic of 19.79 and VQA-Technical of 25.81 which
surpass the current method ViDiT-Q of 16.83 and 19.61.

Table 7. The illustration of Q-VDiT’s hardware resource savings.

Method Bit-Width (W/A) Memory Cost Latency Cost VQA-Aesthetic VQA-Technical
- 16/16 1.00× 1.00× 66.91 53.49
ViDiT-Q 4/8 2.42× 1.38× 60.62 49.38
Q-VDiT 4/8 2.40× 1.35× 71.32 55.56

F. Latency Analysis of TQE
Introduced Token-aware Quantization Estimator (TQE) in Sec. 3.2 will bring extra computation cost in the actual quantization
process. This technique is equivalent to a LoRA (Hu et al., 2021) module with rank = 1. SVDQuant (Li et al., 2024a)
finds that the main bottleneck comes from memory access. Thus, SVDQuant proposes LORUNNER Kernel which fuses the
down projection with the quantization kernel and the up projection with the quantization computation kernel, the low-rank
branch can share the activations with the low-bit branch, eliminating the extra memory access and also halving the number
of kernel calls. As a result, the low-rank branch adds only 5% latency with rank = 16, making it nearly cost-free. In our
practice, TQE is only equivalent to rank = 1 which brings less latency burden. In Tab. 7, we present the memory cost and
inference latency on W4A8 Open-Sora model. Compared to the full-precision model, our Q-VDiT can still bring 2.40×
memory saving and 1.35× inference acceleration.

G. More Qualitative Results
In the following pages, we visualize more generative video comparisons across different quantization methods. For better
comparison, we uniformly sample 8 frames of each video.
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Figure 7. The qualitative results with prompt “A soaring drone footage captures the majestic beauty of a coastal cliff, its red and yellow
stratified rock faces rich in color and against the vibrant turquoise of the sea. Seabirds can be seen taking flight around the cliff’s precipices.
As the drone slowly moves from different angles, the changing sunlight casts shifting shadows that highlight the rugged textures of the
cliff and the surrounding calm sea. The water gently laps at the rock base and the greenery that clings to the top of the cliff, and the scene
gives a sense of peaceful isolation at the fringes of the ocean. The video captures the essence of pristine natural beauty untouched by
human structures.”.

Figure 8. The qualitative results with prompt “The video captures the majestic beauty of a waterfall cascading down a cliff into a serene
lake. The waterfall, with its powerful flow, is the central focus of the video. The surrounding landscape is lush and green, with trees
and foliage adding to the natural beauty of the scene. The camera angle provides a bird’s eye view of the waterfall, allowing viewers to
appreciate the full height and grandeur of the waterfall. The video is a stunning representation of nature’s power and beauty.”.
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Figure 9. The qualitative results with prompt “The vibrant beauty of a sunflower field. The sunflowers, with their bright yellow petals and
dark brown centers, are in full bloom, creating a stunning contrast against the green leaves and stems. The sunflowers are arranged in neat
rows, creating a sense of order and symmetry. The sun is shining brightly, casting a warm glow on the flowers and highlighting their
intricate details. The video is shot from a low angle, looking up at the sunflowers, which adds a sense of grandeur and awe to the scene.
The sunflowers are the main focus of the video, with no other objects or people present. The video is a celebration of nature’s beauty and
the simple joy of a sunny day in the countryside.”.

Figure 10. The qualitative results with prompt “A serene underwater scene featuring a sea turtle swimming through a coral reef. The turtle,
with its greenish-brown shell, is the main focus of the video, swimming gracefully towards the right side of the frame. The coral reef,
teeming with life, is visible in the background, providing a vibrant and colorful backdrop to the turtle’s journey. Several small fish, darting
around the turtle, add a sense of movement and dynamism to the scene. The video is shot from a slightly elevated angle, providing a
comprehensive view of the turtle’s surroundings. The overall style of the video is calm and peaceful, capturing the beauty and tranquility
of the underwater world.”.
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Figure 11. The qualitative results with prompt “A vibrant underwater scene. A group of blue fish, with yellow fins, are swimming around
a coral reef. The coral reef is a mix of brown and green, providing a natural habitat for the fish. The water is a deep blue, indicating a
depth of around 30 feet. The fish are swimming in a circular pattern around the coral reef, indicating a sense of motion and activity. The
overall scene is a beautiful representation of marine life.”.

Figure 12. The qualitative results with prompt “A bustling city street at night, filled with the glow of car headlights and the ambient light
of streetlights. The scene is a blur of motion, with cars speeding by and pedestrians navigating the crosswalks. The cityscape is a mix
of towering buildings and illuminated signs, creating a vibrant and dynamic atmosphere. The perspective of the video is from a high
angle, providing a bird’s eye view of the street and its surroundings. The overall style of the video is dynamic and energetic, capturing the
essence of urban life at night.”.
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Figure 13. The qualitative results with prompt “A snowy forest landscape with a dirt road running through it. The road is flanked by trees
covered in snow, and the ground is also covered in snow. The sun is shining, creating a bright and serene atmosphere. The road appears to
be empty, and there are no people or animals visible in the video. The style of the video is a natural landscape shot, with a focus on the
beauty of the snowy forest and the peacefulness of the road.”.

Figure 14. The qualitative results with prompt “The dynamic movement of tall, wispy grasses swaying in the wind. The sky above is
filled with clouds, creating a dramatic backdrop. The sunlight pierces through the clouds, casting a warm glow on the scene. The grasses
are a mix of green and brown, indicating a change in seasons. The overall style of the video is naturalistic, capturing the beauty of the
landscape in a realistic manner. The focus is on the grasses and their movement, with the sky serving as a secondary element. The video
does not contain any human or animal elements.”.
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Figure 15. The qualitative results with prompt “A serene night scene in a forested area. The first frame shows a tranquil lake reflecting the
star-filled sky above. The second frame reveals a beautiful sunset, casting a warm glow over the landscape. The third frame showcases the
night sky, filled with stars and a vibrant Milky Way galaxy. The video is a time-lapse, capturing the transition from day to night, with the
lake and forest serving as a constant backdrop. The style of the video is naturalistic, emphasizing the beauty of the night sky and the
peacefulness of the forest.”.
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