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Abstract

The standard paradigm of modeling marked point processes is by parameterizing
the intensity function using an attention-based (Transformer-style) architecture.
Despite the flexibility of these methods, their inference is based on the computa-
tionally intensive thinning algorithm. In this work, we propose a framework where
the advantages of the attention-based architecture are maintained and the limitation
of the thinning algorithm is circumvented. The framework depends on modeling
the conditional distribution of inter-event times with a mixture of log-normals
satisfying a Markov property and the conditional probability mass function for
the marks with a Transformer-based architecture. The proposed method attains
state-of-the-art performance in predicting the next event of a sequence given its
history. The experiments also reveal the efficacy of the methods that do not rely
on the thinning algorithm during inference over the ones they do. Finally, we
test our method on the challenging long-horizon prediction task and find that it
outperforms a baseline developed specifically for tackling this task; importantly,
inference requires just a fraction of time compared to the thinning-based baseline.

1 Introduction

Continuous-time event sequences are commonly found in real-world scenarios and applications such
as financial transactions [3], communication in a social network [34], and purchases in e-Commerce
systems [16]. This abundance of data for discrete events occuring at irregular intervals has lead to an
increasing interest of the community in the last decade to marked temporal point processes which are
the standard way of modeling this kind of data.

Historically, Hawkes processes [14] and Poisson processes [7] have been extensively applied to
various domains such as finance [13], seismology [15], and astronomy [1]. Despite their elegant
mathematical framework and interpretability, the strong assumptions of the models reduce their
flexibility and fail to capture the complex dynamics of real-world generating processes.

Advances in deep learning have allowed the incorporation of neural models like LSTMs [17] or
recurrent neural networks (RNN) into temporal point processes [5, 12, 24, 26, 29, 35, 38]. As a
result, these models are able to learn more complex dependencies and attain superior performance
than Hawkes/Poisson processes. Recently, the introduction of the (self-) attention mechanism [36] to
modeling temporal point processes [41, 42, 44] has led to new state-of-the-art methods with extra
flexibility.

Despite the advantages of these neural-based models, their dependence on modeling the conditional
intensity function creates limitations for both training and inference [35]. Training usually requires a
Monte Carlo approximation of an integral that appears in the log-likelihood. [29] proposed a method to
circumvent this approximation; however, the main shortcomings remained as discussed in [35]. More
importantly, inference is based on the thinning algorithm [21, 22] which is computationally intensive
and sensitive to the choice of intensity function. To deal with these downsides, [35] parameterized the
conditional distribution of the inter-event times by combining a log-normal mixture density network
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with an RNN. The model’s performance is comparable to that of the other intensity-based methods
which use RNN/LSTM architecture but still inferior to the Transformer-based methods.

A more recent work [30] has referred to the decomposition of the log-likelihood of a marked point
process [6] to parameterize the distribution of marks given the time and history and the distribution
of times given the history. This decomposition, as with [35], eliminates the need for the thinning
algorithm and additional approximations, while offering a rigorous, yet flexible framework for
defining different distributions for occurrence times and marks. [30] used two different parametric
models for each distribution, and their results for the time prediction task, despite the simplicity of
their framework, were competitive or superior to neural-based baselines.

Inspired by the state-of-the-art performance of the Transformer-based architectures and the com-
putational efficiency/flexibility of the intensity-free models, we develop a model for marked point
processes that combines the advantages of these two methodologies. Our contributions are summa-
rized below:

• We propose a novel model that is defined by two distributions: a distribution for the marks
based on a Transformer architecture and a simple log-normal mixture model for the inter-
event times which satisfies a simple Markov property.

• Through an extensive experimental study, we show the efficiency of our model in the next-
event prediction task and the suitability of the intensity-free models for correctly predicting
the next occurrence time over the methods relied on the thinning algorithm.

• To the best of our knowledge, we are the first to experimentally show the limitations of the
thinning algorithm on the predictive ability of the neural point processes.

• We test our model on the more challenging long-horizon prediction task and we provide
strong evidence that we can achieve better results in a fraction of time compared to models
that have been specifically designed to solve this task and, uncoincidentally, depend on the
thinning algorithm.

2 Background

A marked temporal point process (MTPP), observed in the interval (0, T ), is a stochastic process
whose realizations are sequences of discrete events occurring at times 0 < t1 < . . . < tN < T
with corresponding event types (or marks) k1, . . . , kN , where ki ∈ {1, . . . ,K}. The entire sequence
is denoted by HT = {(t1, k1), . . . , (tN , kN )}. The process is fully specified by the conditional
intensity function (CIF) of the event of type k at time t conditioned on the event history Hti =
{(tj , kj) | tj < ti}, λ∗

k(t) := λk(t | Hti) ≥ 0, t > ti; we use the asterisk ∗ to denote the dependence
on Hti . The CIF is used to compute the infinitesimal probability of event k occurring at time t,
i.e. λ∗

k(t)dt = P (ti+1 ∈ [t, t+ dt], ki+1 = k | ti+1 /∈ (ti, t),Hti). The log-likelihood of such an
autoregressive multivariate point process is given by [14, 22]

L(HT ) =

N∑
i=1

λ∗
ki
(ti)−

K∑
k=1

∫ T

0

λ∗
k(t) dt. (1)

Modeling the intensity function by a flexible model and then learning its parameters by maximizing
Eq. (1) has been the standard approach of many works [5, 12, 24, 26, 29, 35, 38, 41, 42, 44].

An equivalent way of deriving the log-likelihood in (1) without the use of λ∗
k(t) is by following the

decomposition of a multivariate distribution function in [6] (expression 2), expressed as

L(HT ) =

N∑
i=1

{log p∗(ki | ti) + log f∗(ti)}+ log (1− F (T | HtN )) , (2)

where p∗(k | ti) := p(k | ti,Hti)
1 and f∗(t) := f(t | Hti) are the conditional probability mass

function (CPMF) of the event types and the conditional probability density function (CPDF) for the
occurrence times, respectively. F (t | Hti) =

∫ t

ti
f∗(t)dt ,∀t > ti is the cumulative distribution

function of f∗(t). The last term in (2) is the logarithm of the survival function that expresses

1The notation of ∗ is slightly different compared to λ∗
k but the definition remains consistent.
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the probability that no event occurs in the interval (tN , T ). The relation between λ∗
k(t) and the

density/PMF is given by λ∗
k(t) =

f∗(t)p∗(k|t)
1−F (t|Ht)

; see Section 2.4 in [33].

We can represent the temporal part of the process in terms of the inter-event times τi := ti − ti−1 ∈
R+, t0 = 0; the two representations are isomorphic and the relation between the conditional PDF
of the inter-event time τi until the next event and the conditional intensity function is given by
g∗(τi) := g∗(τi | Hti) =

∑K
k=1 λ

∗
k(ti−1 + τi) exp

(
−∑K

k=1

∫ τi
0

λ∗
k(ti−1 + x)dx

)
= f∗(ti).

3 Decomposable Transformer Point Processes

To develop our proposed framework Decomposable Transformer Point Process (DTPP), we adopt
the decomposition in (2) and model g∗(τ) and p∗(k | t), separately. Despite the advantages of
modeling the intensity function and the arguments in favor of this [9], we believe that modeling the
probability density/mass function offers not only the same benefits as modeling the intensity function
as discussed in [35], but, more importantly, it allows us not to depend on the thinning algorithm
during inference. The technical details of each model are described in the next two sections.

3.1 Distribution of Marks

The conditional distribution of the event types is parameterized by a continuous-time Trans-
former architecture as the one described in [41]. More specifically, for any pair of events (t, k),
we evaluate an embedding hk(t) ∈ RD based on the history Ht. Assuming an L-layer ar-
chitecture, hk(t) is given by the concatenation of the embedding of each individual layer, i.e.
hk(t) = [h

(0)
k (t);h

(1)
k (t); . . . ;h

(L)
k (t)]. The embedding of the base layer h(0)

k (t) is independent of
time and it is learned by a simple weight vector for each mark, i.e. h(0)

k (t) := h
(0)
k ∈ RD(0)

. The
embedding of layer ℓ ∈ {1, . . . , L} for (t, k) is defined as

h
(ℓ)
k (t) := h

(ℓ−1)
k (t) + tanh

 ∑
(ti,ki)∈Ht

v
(ℓ)
ki

(ti) α
(ℓ)
ki

(ti; t, k)

1 + C

 ∈ RD(ℓ)

, (3)

where C > 0 is the normalization constant given by C =
∑

(ti,ki)∈Ht
α
(ℓ)
ki

(ti, t, k) and the unnor-
malized attention weight is

α
(ℓ)
ki

(ti; t, k) = exp

(
1√
D
k
(ℓ)
ki

(ti)
⊤q

(ℓ)
k (t)

)
> 0. (4)

The operation of the non-linear activation function tanh is element-wise and D =
∑L

ℓ=0 D
(ℓ).

The query, key, and value vectors q
(ℓ)
k (t),k

(ℓ)
k (t), and v

(ℓ)
k (t), respectively, can be computed by

using the embedding of the previous layer and the corresponding weight matrices Q(ℓ),K(ℓ) ∈
RD×(D+D(ℓ−1)), V (ℓ) ∈ RD(ℓ)×(D+D(ℓ−1)) as follows,

q
(ℓ)
k (t) = Q(ℓ)Xℓ

t , k
(ℓ)
k (t) = K(ℓ)Xℓ

t , v
(ℓ)
k (t) = V (ℓ)Xℓ

t , (5)

where Xℓ
t =

[
z(t);h

(ℓ−1)
k (t)

]
∈ RD+D(ℓ−1)

. By z(t) ∈ RD, we denote a temporal embedding of
time defined as

[z(t)]d =

 cos
(
t/10

4(d−1)
D

)
, if d is odd,

sin
(
t/10

4d
D

)
, if d is odd,

(6)

where d = 0, . . . , D − 1. This encoding is the same as in [44] with small differences than the one
used in [41] where we found empirically the former to work slightly better than the latter. For a
more detailed discussion regarding the architecture of the model and how it compares to previous
Transformer-based methods, see Appendix A in [41]. Finally, we note that for extra model flexibility,
multi-head self-attention can be easily obtained by the three equations in (5).
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Having computed the top-layer embeddings hk(t) for all k = 1, . . . ,K, we model the conditional
PMF p∗(k | t) as

p∗(k | t) = exp
(
w⊤

k hk(t)
)∑K

l=1 exp
(
w⊤

l hl(t)
) , (7)

where wk are the learnable classifier weights. As is typical for these architectures, to avoid any data
leakage from future events, we mask all future events (ti, ki) where t < ti and only use previous
events for computing these embeddings.

3.2 Distribution of Inter-Event Times

For the modeling of the inter-event times, since they always take positive values, we choose a mixture
of log-normal distributions whose parameters depend on the value of the previously seen mark.
Specifically, given that the previous occurred mark is k, the PDF2 of the next inter-event time τ is
defined as

g∗(τ) = g(τ | k) =
M∑

m=1

w(k)
m

1

τs
(k)
m

√
2π

exp

−1

2

(
log τ − µ

(k)
m

s
(k)
m

)2
 , (8)

where {w(k)
m }Mm=1 ∈ ∆M are the mixture weights, {µ(k)

m }Mm=1 ∈ RM are the mixture means, and
{s(k)m }Mm=1 ∈ RM

+ are the standard deviations, for any k = 1, . . . ,K. The log-normal mixture has
several desirable features that justifies our choice: (i) it efficiently approximates distributions in
low dimensions such as 1-d distributions of inter-event times [23, 35] while satisfying a universal
approximation property that provides theoretical guarantees regarding its approximation ability [8],
(ii) closed-form moments are available and can be used for predicting the next time; for instance, the
mean of the distribution is given as the weighted average of each of the log-normal means, i.e.

E(k)
g [τ ] =

M∑
m=1

w(k)
m exp

(
µ(k)
m +

(s
(k)
m )2

2

)
, (9)

(iii) learning the small number of parameters {w(k)
m , µ

(k)
m , s

(k)
m }Mm=1 can be done in a fraction of

time using fast off-the-shelf implementations based on the EM algorithm [10]. Finally, note that the
dependence of the model only on the most recent mark implies a Markov property since we do not
need the entire historyH<t to define our distribution.

At first glance, this assumption might seem restrictive when it comes to capturing the complex
dynamics of the process. Nevertheless, this assumption holds only for g∗ while p∗ is modeled by the
flexible Transformer architecture that models the full history up to the current time t. Hence, we do
not sacrifice any modeling power at all to achieve efficiency. On the contrary, we can maintain both
modeling power and computational efficiency due to the decomposition in (2) and the chosen models
in (8) and (7). Moreover, as our extensive experiments on the real-world data show, this assumption
provides a robust predictive model which is less prone to overfitting compared to more flexible neural
net architectures since the Markov property can act as a strong regularizer.

3.3 Training and Prediction

The parameters {w(k)
m , µ

(k)
m , s

(k)
m }m,k, of g∗(τ) and the parameters {wk,h

(0)
k , Q(ℓ),K(ℓ), V (ℓ)}ℓ,k

of p∗(k | t) can be estimated by maximizing the log-likelihood in (2) using any stochastic gradient
method. A crucial benefit of using the decomposition in (2) is that it permits us to learn the above
parameters separately as follows:

{w(k)∗

m , µ(k)∗

m , s(k)
∗

m }m,k = argmax

N∑
i=1

log g∗(τi) + log (1−G(T | HT )) (10)

{w∗
k,h

(0)∗

k , Q(ℓ)∗ ,K(ℓ)∗ , V (ℓ)∗}ℓ,k = argmax

N∑
i=1

log p∗(ki | ti), (11)

2To avoid notation cluttering, we use τ and k in lieu of τi and ki−1, respectively, to define the PDF.
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where G(T | HT ) =
∫ T−tN
0

g∗(τ)dτ . This is a major difference from previous work where the
parameters of the neural net parameterizing the conditional intensity function had to be learned all at
once. By dividing the main objective function into two sub-objectives, since there is no parameter-
sharing between the two models, we can maximize the two objectives independently, and thus, having
an easier optimization task than maximizing a single set of parameters of a given objective, such as
(1).

The trained models g∗ and p∗ can now be used to predict either the time/type of the next event (next-
event prediction) or the next P > 1 events (long-horizon prediction). For the next-event-prediction,
the predicted time t̂ given the historyHti is computed by using the mean of the appropriate mixture
of log-normals while the corresponding predicted type of this event k̂ is evaluated based onHti and
the true time ti+1, i.e.

t̂ = ti + E(ki)
g [τ ], k̂ = argmax

k
p∗(k | ti+1). (12)

The above procedure is based on the minimum Bayes risk (MBR) principle [24] which aims to
predict the time and type that minimizes the expected loss. This is an average L2 loss in the case of
time prediction (deriving a root mean squared error) and an average 0-1 loss for the type prediction
(deriving an error rate).

For the long-horizon prediction task [11, 40], we need to predict a sequence of events where, unlike
the next-event prediction task, we do not have access to the true time when we predict the next event
type. This could potentially lead to a cascading error effect due to the autoregressive nature of the
models designed for the less challenging task of next-event prediction. This is because after an error
is made in the sequence of the predictions, it cannot be corrected, and thus the error accumulates and
affects all subsequent predictions. We argue that this pathology can be alleviated by using a model
of times that provides accurate and robust predictions given the history. This assumption is verified
experimentally in Section 5.2. To generate a predicted sequence, we require the trained models g()
and p() to sequentially predict events as in (12). Since we have no access to the true time ti+1, we
use as a proxy the prediction t̂ to predict k̂ in turn. After the prediction of the new event, we append it
to the history and then we repeat the same step given the updated history until we generate a sequence
of P events. The exact procedure is described in Algorithm 1 in the Appendix.

The main advantage of Algorithm 1 over other methods [40] that are based on the thinning algorithm
is its computational efficiency. The algorithm is fully parallelizable, and it can produce single
steps in parallel for a batch of event sequences. This is not possible for thinning-based methods
that require one to consider single sequences each time [40]. Consequently, our method is able to
generate sequences orders of magnitude faster, which is verified by our experiments. Unlike other
competitors [40] that are based on the thinning algorithm and therefore require random sampling, our
algorithm is fully deterministic; for comparison the thinning algorithm is described in Algorithm 2 of
the Appendix.

4 Related Work

The decomposition in (2) has been used in the past to provide both expressive and interpretable
models [27, 30]. For instance, [30] model the mark distribution with a parametric model, inspired
by the exponential intensity function of a Hawkes process and the time distribution with a single
log-normal; however, they use the mode instead of the mean of the distribution for predicting the
time of the next event. They learn the parameters of their models separately, as we describe in (10)
and (11), but they use Variational Inference [4] to learn the parameters of p∗. They attain competitive
results in terms of next-time prediction, but the model lacks the flexibility of a Transformer-based
architecture, as our experiments show.

[35] is another work that takes advantage of the mixture of log-normal distributions to model the
distribution of the inter-event times. The model is based on an RNN architecture that produces a
fixed-dimensional embedding of the event history, which is used to generate the parameters of the
mixture model, and the same embedding is employed to define the CPMF of the marks. In our case,
we use a Transformer architecture to obtain this history embedding, which is utilized by the CPMF,
exclusively. Finally, the proposed model in [35] assumes that the marks are conditionally independent
of the time given the history, which is not the case for our framework, as is evident in (2).
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Figure 1: Goodness-of-fit evaluation over the five real-world datasets. We compare our DTPP model
against five strong baselines. Results (larger is better) are accompanied by 95% bootstrap confidence
intervals.

Finally, the CPMF of the marks for our DTPP model shares the same architecture as the Attentive
Neural Hawkes Process (A-NHP) [41]. Nevertheless, they use it to model the CIF while in our case
we model p∗.

5 Experiments

We considered two different tasks to assess the predictive performance of our proposed method:
Goodness-of-fit/next-event prediction and long-horizon prediction. We compared our method DTPP
to several strong baselines over five real-world datasets and three synthetic ones. Description and
summary statistics for all datasets used in this section are given in Appendix A.1. For the competing
methods, we used their published implementations; more details are given in A.3. Experimental
details not available in this section can be found in Appendix A. Our framework was implemented
with PyTorch [31] and scikit-learn [32]; the code is available at https://github.com/aresPanos/
dtpp.

5.1 Goodness-of-Fit / Next-Event Prediction

We evaluated our DTPP model to determine how well it generalizes and predicts the next event given
the history on the held-out dataset. For comparison, we used five state-of-the-art baselines where the
three of them model the CIF using Transformers, while the other two model the CPDF of inter-event
times and the CPMF of marks (see Section 4). The CIF-based baselines are the Transformer Hawkes
Process (THP) [44], the Self-Attentive Hawkes Process (SAHP) [42], and the Attentive Neural
Hawkes Process (A-NHP) [41]. The CPDF-based ones are the Intensity-Free Temporal Point
Process (IFTPP) [35], and the VI-Decoupled Point Process (VI-DPP) [30].

We fit the above six models on a diverse collection of five popular real-world datasets, each with
varied characteristics: MIMIC-II [19], Amazon [28], Taxi [37], Taobao [43], and StackOverlfow-
V1 [20, 41]. Training details are given in Appendix A.2.

Goodness-of-Fit. Figure 1 shows the average log-likelihood for each model on the held-out data
of the five real-world datasets. Our DTPP model consistently outperforms the simple parametric
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Table 1: Performance comparison between our model DTPP and various baselines in terms of next-
event prediction. The root mean squared error (RMSE) measures the error of the predicted time of
the next event, while the error rate (ERROR-%) evaluates the error of the predicted mark given the
true time. The results (lower is better) are accompanied by 95% bootstrap confidence intervals. †,◁ ,▷

denote the CIF-based methods, the CPDF-based methods that use a single model, and the ones using
a seperate model, respectively.

AMAZON TAXI TAOBAO STACKOVERFLOW-V1

METHODS RMSE ERROR RMSE ERROR RMSE ERROR RMSE ERROR

THP† 0.62 ±0.03 65.06 ±1.04 0.37 ±0.02 8.55 ±0.65 0.13 ±0.02 41.43 ±0.78 1.32 ±0.03 53.86 ±0.76

SAHP† 0.58 ±0.01 62.58 ±0.32 0.28 ±0.04 8.37 ±0.43 2.26 ±0.59 45.63 ±0.58 1.93 ±0.04 53.00 ±0.32

A-NHP† 0.42 ±0.01 65.94 ±0.31 0.29 ±0.02 7.67 ±0.44 1.44 ±0.53 43.96 ±0.55 1.18 ±0.01 52.17 ±0.32

IFTPP◁ 0.41 ±0.05 64.08 ±0.34 0.39 ±0.09 8.17 ±0.46 0.33 ±0.00 41.92 ±0.54 1.91 ±0.10 53.68 ±0.30

VI-DPP▷ 0.38 ±0.00 65.49 ±0.34 0.11 ±0.02 9.49 ±0.42 0.07 ±0.00 41.89 ±0.57 1.68 ±0.04 55.06 ±0.32

DTPP▷ 0.12 ±0.00 59.06 ±0.35 0.08 ±0.01 7.12 ±0.40 0.05 ±0.00 40.12 ±0.59 1.07 ±0.03 50.41 ±0.31

VI-DPP, indicating the flexibility of using the self-attention mechanism to model the CPDF. Except
Mimic-II, DTPP achieves the highest or the second highest log-likelihood across the remaining
datasets. Therefore, the separate parameterization of p∗ and g∗ does not hurt performance compared
to the models with a common set of learnable parameters. Finally, notice that DTPP outperforms all
the CPDF-based methods on average, while the two CPDF-based methods that employ deep learning
architectures, i.e., DTPP and IFTPP, exhibit better performance than the CIF-based baselines. A
plausible explanation is that the log-likelihood computation for the CIF-based baselines requires
Monte Carlo integration, which could cause approximation errors; for the CPDF-based methods,
this computation is exact. A-NHP is the clear winner among the CIF-based methods, as also shown
in [41].

Next-Event Prediction. We evaluate the predictive capacity of all models by predicting each event
(ti, ki) given its history Hti , i = 2, . . . , N on held-out data. Event time prediction is measured by
root mean squared Error (RMSE) and event type prediction by error rate; Table 1 summarizes the
results. DTPP outperforms all the baselines in both tasks. The wider performance gaps in RMSE
between our model and the other baselines justify our choice of a inter-event distribution satisfying
a Markov property; this result also implies that we do not need long event histories to capture the
dynamics of these datasets. We also compare the average performance between CIF-based and
CPDF-based (excluding VI-DPP) methods. We see that for the CIF-based baselines the average
RMSE is 0.58 and the average error rate is 35.39% while for the CPDF-based ones we have 0.95
and 37.0%, respectively. These results support our argument that the thinning algorithm tends to
harm the time prediction accuracy; they also highlight the efficiency of using a separate model for the
inter-event times. Additional results on Mimic-II can be found in Appendix B.1.

Synthetic datasets. To extra investigate the capabilities of our model in a more controlled manner,
we created a dataset by generating sequences from a randomly initialized SAHP model. Although,
each event has strong dependence on its history, Figure 2 shows that our model approximates the
true log-likelihood as well as A-NHP. Moreover, DTPP’s mixture model is more accurate than the
thinning-based A-NHP in time prediction. Moreover, we found that the only case that DTPP was
significantly outperformed by A-NHP was on a synthetic dataset generated by a 1-d Hawkes process.
Since no event types are present we only use a single mixture of log-normals which apparently is the
wrong model for this data. The results are illustrated in Figure 4 of the Appendix.

5.2 Long-Horizon Prediction

To test the performance of our model for this task, we followed the experimental setup of [40].
From the same work, we used the proposed HYPRO, which is the state-of-the-art method for the
long-horizon prediction task, to compare with DTPP. HYPRO is a globally normalized model that
aims to address cascading errors that occur in auto-regressive and locally normalized models, such as
the models in Section 5.1. HYPRO and DTPP are based on the same Transformer architecture of
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Figure 2: Performance comparison between DTPP and A-NHP over the SAHP-Synthetic dataset.

A-NHP so the main difference is that HYPRO is a CIF-based method, and thus, it requires the thinning
algorithm to sample sequences. For our experiments, we use the distance-based regularization variant
of HYPRO with a Multi-NCE loss as this method attains the best results in [40]. As DTPP and
HYPRO share the same Transformer architecture, so we used the exact same hyperparameters for
fair comparison. Note that even in this case, HYPRO has more than double number of parameters
compared to DTPP since HYPRO requires an extra Transformer to model the energy function used
for global normalization. More details on HYPRO training and hyperparameters can be found in the
Appendix A.
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Figure 3: Performance comparison over the three real-world datasets measured by RMSE⋆ and
average OTD (lower is better). The reported results for HYPRO are based on 16 weighted samples,
i.e. M = 16 for Algorithm 2 in [40].

We used three of the previous real-world datasets for evaluation because of their long sequences. These
are Taxi, Taobao, and StackOverflow-V2 [20, 40]. For each dataset, our goal is to predict the last 20
events in a sequence, denoted byHP , given the history; that is, P = 20 in Algorithm 1. As is typical
for the long-horizon prediction, the standard scores used for evaluating the model’s performance are
the The optimal transport distance (OTD) [25] and the long-horizon RMSE (RMSE∗) [40].

In Figure 3, we see that our DTPP method outperforms HYPRO across all datasets in terms of
average OTD and RMSE. HYPRO achieves a lower RMSE score only in StackOverflow. These
results provide corroborating evidence on our argument that the thinning algorithm might negatively
affect the performance of a neural point process even in the case of globally normalized models as
HYPRO. It is also evident that a locally normalized CPDF-based model such as DTPP is much more
robust against the cascading error which CIF-based methods are vulnerable [41]. We believe that this
robustness stems from the accurate predictions of the log-normal mixture model.

Apart from the predictive performance, we investigated the time required for the two methods to
generate all the predicted sequences of the held-out dataset. Since HYPRO’s inference time is
heavily relied on the thinning algorithm and a hyperparameter that indicates the number of proposal
sequences (denoted as M in [40]), we conducted an ablation study for a varied number of proposals
to investigate the inference time and performance of HYPRO against DTPP. For HYPRO’s inference
time, apart from the prediction time, we included the time required to generate the noise sequences
so the energy function can be trained on. The inclusion of this time is justified by the importance the
energy function has as a component of the framework, and it can be seen as a necessary pre-inference
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Table 2: Performance comparison between our model DTPP and HYPRO for the long-horizon
prediction task. For HYPRO, we use {2, 4, 8, 16, 32} weighted proposals (Algorithm 2 in [40]).
We report the average optimal transport distance (avg OTD) and the time (in minutes) required for
predicting all the long-horizon sequences of the held-out dataset (lower is better). “Params” denotes
the number (×103) of trainable parameters of each method. We include error bars based on five runs.

TAXI TAOBAO STACKOVERFLOW-V2

METHODS PARAMS AVG OTD TIME AVG OTD TIME AVG OTD TIME

HYPRO-2

850

20.35 ±0.24 44.81 ±0.01 39.73 ±0.37 43.53 ±0.03 39.84 ±0.12 46.32 ±0.01

HYPRO-4 19.86 ±0.18 47.31 ±0.04 38.93 ±0.22 46.57 ±0.08 39.57 ±0.17 48.84 ±0.06

HYPRO-8 19.25 ±0.30 52.61 ±0.20 37.30 ±0.48 53.10 ±0.17 39.37 ±0.30 54.14 ±0.22

HYPRO-16 18.90 ±0.34 62.36 ±0.27 37.08 ±0.39 65.63 ±0.44 38.99 ±0.16 64.82 ±0.34

HYPRO-32 18.81 ±0.16 81.30 ±0.23 36.96 ±0.19 89.11 ±0.71 38.84 ±0.20 83.05 ±0.45

DTPP 400 15.00 ±0.30 0.01 ±0.00 28.83 ±0.26 0.17 ±0.01 36.75 ±0.40 0.03 ±0.00

SPEEDUP 8, 130× 524.2× 2768.3×

step. However, for completeness, we compute only the prediction time of HYPRO and report it in
Table 6 of the Appendix.

The results are presented in Table 2 where we measure the performance using the average OTD;
a similar table for RMSE∗ is in Appendix B.3. We see that our parallelizable framework takes
advantage of modern GPU hardware and performs inference in a few seconds. Instead, the thinning
algorithm constitutes HYPRO extremely slow and impractical for inference on large datasets. In
some cases like the Taxi dataset, HYPRO needs 8, 130× more time than DTPP to perform inference.
Moreover, DTPP attains better performance across all datasets even for a larger number of proposals
in HYPRO. These results verify our assumption about the robustness of the mixture model to predict
accurately the next time; they also highlight the inaccurate predictions and computational burden of
the thinning algorithm.

6 Discussion

We have presented DTPP, a Transformer-based probabilistic model for continuous-time event se-
quences. The model has been derived using the decomposability of the likelihood of a MTPP in terms
of its CPDF and CPMF. We have used a mixture of log-normals and a Transformer architecture to
model CPDF and CPMF, respectively. Our model satisfies some desirable properties compared to
previous works that tried to model the CIF such as closed-form computation of the log-likelihood
and inference without resorting to the thinning algorithm. Extensive experiments on the standard
task of next-event prediction showed that our method outperformed all state-of-the-art autoregressive
models, The results also reveal a more robust performance of the methods that do not require the
thinning algorithm to generate event sequences over those they do. Finally, we have tested our model
on the challenging task of long-horizon prediction of event sequences. Although our model has not
been designed for this task, it outperformed the state-of-the-art baseline HYPRO which is also based
on the thinning algorithm. This performance for DTPP was achieved in orders of magnitude faster
than HYPRO.

Limitations and future work. The main limitation of the model stems from the modeling of p∗
using a deep learning architecture which is usually data-hungry and thus requires large amount of
data to learn the model’s parameters. For this reason, the model might be unsuitable for data-scarce
regimes since it could be prone to overfit. Regarding future work, the limitations of the thinning
algorithm revealed by the experiments raise many interesting questions on how can we improve this
pathology for the CIF-based methods so they match the performance of the CPDF-based ones since
their representations are equivalent. Another interesting research direction would be the development
of a globally normalized model similar to HYPRO for CPDF-based models.

9



Acknowledgements

We would like to thank Petros Dellaportas and Lina Gerontogianni for helpful discussions. This work
was funded by Toyota Motor Europe.

References
[1] Gutti Jogesh Babu and Eric D Feigelson. Spatial point processes in astronomy. Journal of

Statistical Planning and Inference, 50(3):311–326, 1996.

[2] E. Bacry, M. Bompaire, S. Gaïffas, and S. Poulsen. tick: a Python library for statistical learning,
with a particular emphasis on time-dependent modeling. ArXiv e-prints, July 2017.

[3] Emmanuel Bacry, Adrian Iuga, Matthieu Lasnier, and Charles-Albert Lehalle. Market impacts
and the life cycle of investors orders. Market Microstructure and Liquidity, 1(02):1550009,
2015.

[4] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

[5] Alex Boyd, Robert Bamler, Stephan Mandt, and Padhraic Smyth. User-dependent neural
sequence models for continuous-time event data. Advances in Neural Information Processing
Systems, 33:21488–21499, 2020.

[6] David R Cox. Partial likelihood. Biometrika, 62(2):269–276, 1975.

[7] Daryl J Daley and David Vere-Jones. Basic properties of the Poisson process. An introduction
to the theory of point processes: Volume I: Elementary theory and methods, pages 19–40, 2003.

[8] Anirban DasGupta. Asymptotic theory of statistics and probability, volume 180. Springer, 2008.

[9] Abir De, Utkarsh Upadhyay, and Manuel Gomez-Rodriguez. Temporal point processes. Techni-
cal report, Technical report, Saarland University, 2019.

[10] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (methodological),
39(1):1–22, 1977.

[11] Prathamesh Deshpande, Kamlesh Marathe, Abir De, and Sunita Sarawagi. Long horizon
forecasting with temporal point processes. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages 571–579, 2021.

[12] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1555–1564, 2016.

[13] Joel Hasbrouck. Measuring the information content of stock trades. The Journal of Finance,
46(1):179–207, 1991.

[14] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90, 1971.

[15] Alan G Hawkes and David Oakes. A cluster process representation of a self-exciting process.
Journal of Applied Probability, pages 493–503, 1974.

[16] Sergio Hernandez, Pedro Alvarez, Javier Fabra, and Joaquin Ezpeleta. Analysis of users’
behavior in structured e-commerce websites. IEEE Access, 5:11941–11958, 2017.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10



[19] Joon Lee, Daniel J Scott, Mauricio Villarroel, Gari D Clifford, Mohammed Saeed, and Roger G
Mark. Open-access mimic-ii database for intensive care research. In 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pages 8315–8318. IEEE,
2011.

[20] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection,
2014.

[21] PA W Lewis and Gerald S Shedler. Simulation of nonhomogeneous Poisson processes by
thinning. Naval research logistics quarterly, 26(3):403–413, 1979.

[22] Thomas Josef Liniger. Multivariate hawkes processes. PhD thesis, ETH Zurich, 2009.

[23] Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite mixture models. Annual
review of statistics and its application, 6:355–378, 2019.

[24] Hongyuan Mei and Jason M Eisner. The neural Hawkes process: A neurally self-modulating
multivariate point process. In Advances in Neural Information Processing Systems, pages
6754–6764, 2017.

[25] Hongyuan Mei, Guanghui Qin, and Jason Eisner. Imputing missing events in continuous-time
event streams. In International Conference on Machine Learning, pages 4475–4485. PMLR,
2019.

[26] Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason Eisner. Neural datalog through time:
Informed temporal modeling via logical specification. In International Conference on Machine
Learning, pages 6808–6819. PMLR, 2020.

[27] Santhosh Narayanan, Ioannis Kosmidis, and Petros Dellaportas. Flexible marked spatio-
temporal point processes with applications to event sequences from association football. Journal
of the Royal Statistical Society Series C: Applied Statistics, page qlad085, 2023.

[28] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th international joint conference on natural
language processing (EMNLP-IJCNLP), pages 188–197, 2019.

[29] Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based model for
general temporal point processes. arXiv preprint arXiv:1905.09690, 2019.

[30] Aristeidis Panos, Ioannis Kosmidis, and Petros Dellaportas. Scalable marked point processes for
exchangeable and non-exchangeable event sequences. In International Conference on Artificial
Intelligence and Statistics, pages 236–252. PMLR, 2023.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 32:8026–8037, 2019.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[33] Jakob Gulddahl Rasmussen. Lecture notes: Temporal point processes and the conditional
intensity function. arXiv preprint arXiv:1806.00221, 2018.

[34] Diego Rybski, Sergey V Buldyrev, Shlomo Havlin, Fredrik Liljeros, and Hernán A Makse.
Communication activity in a social network: relation between long-term correlations and
inter-event clustering. Scientific reports, 2(1):560, 2012.

[35] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal
point processes. In International Conference on Learning Representations, 2019.

11



[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[37] Chris Whong. Foiling nyc’s taxi trip data. https://chriswhong.com/open-data/foil_
nyc_taxi/, 2014.

[38] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen Chu. Modeling the
intensity function of point process via recurrent neural networks. In Proceedings of the AAAI
conference on artificial intelligence, 2017.

[39] Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Fan Zhou, Hongyan Hao, Caigao Jiang,
Chen Pan, Yi Xu, James Y Zhang, et al. Easytpp: Towards open benchmarking the temporal
point processes. arXiv preprint arXiv:2307.08097, 2023.

[40] Siqiao Xue, Xiaoming Shi, James Zhang, and Hongyuan Mei. Hypro: A hybridly normalized
probabilistic model for long-horizon prediction of event sequences. Advances in Neural
Information Processing Systems, 35:34641–34650, 2022.

[41] Chenghao Yang, Hongyuan Mei, and Jason Eisner. Transformer embeddings of irregularly
spaced events and their participants. In International Conference on Learning Representations,
2022.

[42] Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process.
In International Conference on Machine Learning, pages 11183–11193. PMLR, 2020.

[43] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. Learning
tree-based deep model for recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1079–1088, 2018.

[44] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process. In International Conference on Machine Learning, pages 11692–11702. PMLR, 2020.

12

https://chriswhong.com/open-data/foil_nyc_taxi/
https://chriswhong.com/open-data/foil_nyc_taxi/


A Experimental details

A.1 Dataset Details

Summary statistics and characteristics of the datasets used are given in Table 3. A more detailed
description is given below:

• Hawkes1-Synthetic. This dataset contains synthetic event sequences from a univariate
Hawkes process sampled using Tick [2] whose conditional intensity function is defined by
λ∗(t) = µ+

∑
ti<t

∑J
j=1 αjβj exp(−βj(t− ti)). We use J = 1, µ = 1, α1 = 0.8, β1 =

1.0. This dataset has been used in [29].

• Hawkes2-Synthetic. Same as Hawkes1-Synthetic where the parameters here are set as
J = 2, µ = 0.2, α1 = 0.4, β1 = 1.0, α2 = 0.4, β2 = 20.

• SAHP-Synthetic. We sample sequences from a randomly initialized SAHP model using the
thinning algorithm. The number of layers and the dimension of hidden states are 4 and 32,
respectively. The same dataset has been used in [41].

• MIMIC-II. The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-II) is a
medical dataset of de-identified clinical visit records of intensive care unit patients for seven
years. There are records of 650 patients/sequences where each one contains the time of the
visit and the diagnosis of this visit; there are K=75 unique diseases. We try to predict the
time and the diagnosis of a patient.

• Amazon. This dataset includes time-stamped user product reviews behavior from January,
2008 to October, 2018. Each user has a sequence of review events with each event containing
the timestamp and category of the reviewed product, with each category corresponding to an
event type. As in [39], we use a subset of 5200 most active users with an average sequence
length of 70 which is comprised of K = 16 event types.

• Taxi. This dataset records the times of taxi pick-up and drop-off events across the five
boroughs of the New York city (Manhattan, Brooklyn, Queens, The Bronx, Staten Island).
For each borough, we can have pick-up or drop-off event and thus, there are K = 10 event
types in total. As in [40], we pick a randomly sampled subset of 2000 drivers where each
driver has a sequence.

• Taobao. The dataset comes from the 2018 Tianchi Big Data Competition. It consists of
time-stamped behavior records (e.g., browsing, purchasing) of anonymous users on the
online shopping platform Taobao from the 25th of November through the 3rd of December
in 2017. The K=17 event types represent a category group (e.g. men’s clothing). The
browsing sequences of the most active 2000 users are picked as event sequences. The time
unit is 3 hours and the average inter-arrival time is 0.06.

• StackOverflow-V1. The data comes from the well-known question-answering website
StackOverflow where users are encouraged to answer questions so they can earn badges.
There are 22 different types of badges. Each sequence corresponds to a user and each
event gives the time and the type of budge a user has been awarded. This dataset is the one
processed and used in [12].

• StackOverflow-V2. A truncated version of the original StackOverflow-V1.. The time unit
is 11 days and the average inter-arrival time is 0.95. The dataset has been used in [40]

A.2 Training Details

We use the Adam optimizer [18] with its default settings to train all the models in Section 5. We
use 200 epochs in total, a batch size of 8 sequences, and we apply early-stopping based on the
log-likelihood of the held-out dev set.

Following [41], we use a common hyperparameter D to define all dimensionalities of the query,
key, and value vectors for the models with attention mechanisms, i.e. THP, SAHP, A-NHP, and
DTPP-CPMF. For these methods, we also need to specify the number of layers L. We also denote by
D the state space of the IFTPP model.
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Table 3: Characteristics of the synthetic and real-world datasets.

DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN VAL DEV MIN MEAN MAX

HAWKES1-SYNTHETIC 1 65536 16384 32768 64 64 64
HAWKES2-SYNTHETIC 1 65536 16384 32768 64 64 64
SAHP-SYNTHETIC 10 71023 10242 20237 81 101 121
MIMIC-II 75 1930 252 237 2 4 33
AMAZON 16 288377 40995 84048 14 44 94
TAXI 10 51854 7404 14820 36 37 38
TAOBAO 17 75205 11737 28455 32 57 64
STACKOVERFLOW-V1 22 345116 38065 97233 41 72 736
STACKOVERFLOW-V2 22 90497 25762 26518 41 65 101

Table 4: Performance comparison between our model DTPP and various baselines in terms of next-
event prediction on Mimic-II dataset. The root mean squared error (RMSE) measures the error of the
predicted time of the next event, while the error rate (ERROR-%) evaluates the error of the predicted
mark given the true time. The results (lower is better) are accompanied by 95% bootstrap confidence
intervals. †,◁ ,▷ denote the CIF-based methods, the CPDF-based methods that use a single model, and
the ones using a seperate model, respectively.

MIMIC-II

METHODS RMSE ERROR

THP† 1.00 ±0.13 15.12 ±0.99

SAHP† 1.49 ±0.15 16.39 ±5.72

A-NHP† 1.00 ±0.19 15.19 ±5.16

IFTPP◁ 0.74 ±0.39 14.87 ±5.33

VI-DPP▷ 0.95 ±0.40 16.96 ±6.30

DTPP▷ 0.72 ±0.39 14.49 ±5.86

The hyperparameters D and L were fine-tuned for each combination of dataset and model. We grid-
search the two parameters using the search spaces D ∈ {4, 8, 16, 32, 64, 128} and L ∈ {1, 2, 3, 4, 5}.
We pick the set of values that achieve the highest log-likelihood on the dev set.

For IFTPP we use the same search for D as before. Since IFTPP and DTPP (CPDF part) are based
on a mixture of log-normals, we need to define the number of components M . We fine tune M over
the space M ∈ {1, 2, 4, 8, 16}.
VI-DPP has only one hyperparameter that requires tuning. This is the number of cutt-off points
Q [30]. As the original paper, we found that Q = 1 works the best in all of our datasets.

For long-horizon prediction experiments, we chose a common size architecture for the HYPRO /
DTPP transformer by setting D = 128 and L = 2 since this combination worked well on both
A-NHP and DTPP in all datasets in Section 5.1.

All experiments were carried out on the same Linux machine with a dedicated reserved GPU used for
acceleration.

A.3 Implementation Details

For A-NHP, we use the public Github repository at https://github.com/yangalan123/
anhp-andtt. For THP and SAHP, we also use the same repository where the corrected im-
plementations of THP and SAHP are provided. For IFTPP, we use the public Github reposi-
tory at https://github.com/shchur/ifl-tpp while for VI-DPP we use the code at https:
//github.com/aresPanos/Interpretable-Point-Processes. Our code will be made pub-
licly available on a Github repository after the review period.
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B Extra Experimental Results

B.1 Results on Mimic-II

Table 4 presents the results for next-event prediction task on Mimic-II dataset. The results follow
similar patterns as in Table 1.

B.2 Results on Synthetic datasets

Figure 4 shows the results for the two synthetic datasets generated by two different one-dimensional
Hawkes processes. The DTPP’s mixture of log-normals fails to model correctly the two processes
since it lacks the flexibility of the neural network that A-NHP and IFTPP are based on. However,
when it comes to next-time prediction, DTPP performs on par with A-NHP, showing once more
that the thinning algorithm decreases prediction accuracy. IFTPP is the clear winner for these two
datasets.

B.3 Results on Long-Horizon Prediction

We present additional results for the long-horizon prediction in Tables 5 and 6. Table 5 reports
the RMSE∗ where the results show that DTPP outperforms HYPRO, regardless of its number of
proposals. The only exception is StackOverflow-v2, where HYPRO achieved a lower score but
required at least 1,544 more running time than DTPP.

Finally, we report HYPRO’s time without considering the time required to generate noise sequences
(Algorithm 1 in [40]) from the trained auto-regressive model pauto for training the energy function
Eθ; see discussion in Section 5.2. Even in this case, our DTPP model is orders of magnitude faster
than HYPRO.

Table 5: Performance comparison between our model DTPP and HYPRO for the long-horizon
prediction task. For HYPRO, we use {2, 4, 8, 16, 32} weighted proposals (Algorithm 2 in [40]). We
report the root mean squared error of the number of tokens for each type of event (RMSE⋆) and the
time (in minutes) required to predict all the long-horizon sequences of the held-out dataset (lower is
better). We include error bars for five runs.

TAXI TAOBAO STACKOVERFLOW-V2

METHODS # PARAMS (K) RMSE⋆ TIME RMSE⋆ TIME RMSE⋆ TIME

HYPRO-2

850

1.39 ±0.03 44.81 ±0.01 2.87 ±0.03 43.53 ±0.03 1.16 ±0.01 46.32 ±0.01

HYPRO-4 1.34 ±0.03 47.31 ±0.04 2.74 ±0.02 46.57 ±0.08 1.15 ±0.01 48.84 ±0.06

HYPRO-8 1.27 ±0.02 52.61 ±0.20 2.65 ±0.03 53.10 ±0.17 1.15 ±0.02 54.14 ±0.22

HYPRO-16 1.24 ±0.03 62.36 ±0.27 2.58 ±0.02 65.63 ±0.44 1.15 ±0.02 64.82 ±0.34

HYPRO-32 1.20 ±0.03 81.30 ±0.23 2.55 ±0.02 89.11 ±0.71 1.14 ±0.01 83.05 ±0.45

DTPP 400 0.96 ±0.03 0.01 ±0.00 2.45 ±0.04 0.17 ±0.01 2.02 ±0.06 0.03 ±0.00

SPEEDUP 8, 130× 524.2× 2768.3×
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Figure 4: Goodness-of-fit and next-time prediction comparison over the two 1-d synthetic examples
generated from a Hawkes process. The reported results are based on the test dataset. The black dotted
line represents the true log-likelihood of the data (in nats).

Table 6: Time comparison (in minutes) between our model DTPP and HYPRO for the long-horizon
prediction task. Unlike Tables 2 and 5, here we only report the prediction time of HYPRO without
including the time required to generate noise sequences (Algorithm 1 in [40]) from the trained
auto-regressive model pauto for training the energy function Eθ . We include error bars based on five
runs.

METHODS # PARAMS (K) TAXI TAOBAO STACKOVERFLOW-V2

HYPRO-2

850

2.41 ±0.01 3.13 ±0.03 2.48 ±0.01

HYPRO-4 4.91 ±0.04 6.17 ±0.08 5.01 ±0.06

HYPRO-8 10.21 ±0.20 12.70 ±0.17 10.30 ±0.22

HYPRO-16 19.96 ±0.27 25.23 ±0.44 20.98 ±0.34

HYPRO-32 38.90 ±0.23 48.70 ±0.71 39.21 ±0.44

DTPP 400 0.01 ±0.00 0.17 ±0.01 0.03 ±0.00

SPEEDUP 3, 890× 286.5× 1, 307×

Algorithm 1 Long-Horizon Prediction for Decomposed Transformer Point Processes
Input: an observed sequenceHT of N events over the interval (0, T ) and the number of prediction
steps P > 1; trained inter-event model g and event types model p
Output: predicted sequence ĤP of P events

1: function LHP(HT , P , g∗, p∗)
2: ĤP ← ∅, Ĥ ← HT

3: for p = 1 to P :
4: ▷ Predict next-event time and event type
5: tN+p = tN+p−1 + E(kN+p−1)

g [τ | Ĥ]
6: kN+p = argmax

k
p(k | tN+p, Ĥ)

7: ▷ Update predicted sequence and event history
8: ĤP ← ĤP ∪ (tN+p, kN+p)

9: Ĥ ← Ĥ ∪ (tN+p, kN+p)
10: end for
11: return ĤP

12: end function
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Algorithm 2 Thinning Algorithm
Input: an observed sequenceHT of N events over the interval (0, T ) and the number of prediction
steps P > 1; intensity function λk

Output: predicted sequence ĤP of P events
1: function Thinning(HT , P , λk)
2: ĤP ← ∅, Ĥ ← HT , p← 0, t̂← T
3: for p = 1 to P :
4: λmax = maxt∈(t̂,∞)

∑K
k=1 λk(t | Ĥ) ▷ Compute

upper bound λmax
5: repeat:
6: τ ∼ Exp(λmax)
7: t̂← t̂+ τ
8: until u ≤∑K

k=1 λk(t̂ | Ĥ)/λmax ▷ Accept proposed occurrence time with probability∑K
k=1 λk(t̂ | Ĥ)/λmax

9: k̂ ∼ Cat(p1, . . . , pK) where pk = λk(t̂ | Ĥ)/
∑K

k=1 λk(t̂ | Ĥ) ▷ Sample
event type k̂ ∈ {1, . . . ,K}

10: tN+p ← t̂, kN+p ← k̂

11: ĤP ← ĤP ∪ (tN+p, kN+p), Ĥ ← Ĥ ∪ (tN+p, kN+p) ▷ Update predicted
sequence and event history

12: end for
13: return ĤP

14: end function
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Section 1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See section 6
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Sections 5 and A.3

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See Sections 5 and A.3

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Sections 5 and A.3

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [TODO]
Guidelines: See Section 5

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
Guidelines: This work is concerned with modeling point processes and this

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Sections 5 and A.1

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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