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Abstract

In domains with privacy constraints, most knowledge resides in siloed datasets, hindering
the development of a model with all relevant knowledge for a task. Clinical NLP is a prime
example of these constraints in practice. Research in this area typically falls back to the
canonical setting of sequential transfer learning, where a model pre-trained on large corpora
is finetuned on a smaller annotated dataset. An avenue for knowledge transfer among diverse
clinics is multi-step sequential transfer learning since models1 are more likely to be shared
than private clinical data. This setting poses challenges of cross-linguality, domain diversity,
and varying label distributions which undermine generalisation. We propose SPONGE, an
efficient prototypical architecture that leverages competing sparse language representations.
These encompass distributed knowledge and create the necessary level of redundancy for
effective transfer learning across multiple datasets. We identify that prototypical classifiers
are critically sensitive to label-recency bias which we mitigate with a novel strategy at infer-
ence time. SPONGE in combination with this strategy significantly boosts generalisation
performance to unseen data. With the help of medical professionals, we show that the
explainability of our models is clinically relevant. We make all source code2 available.

1 Introduction

In real-world machine learning applications, access to labeled data is often limited, whether due to intellectual
property reasons or privacy constraints. Clinical Natural Language Processing (NLP) tasks exemplify this
challenge, where these limitations hinder the unification of all medical knowledge. A common approach to
handling decentralised and private data is Federated Learning (FL). However, FL performance suffers when
data are non-i.i.d. (Nguyen et al., 2023), which is prevalent for most of the clinically relevant outcome
classes (diagnoses, medications, procedures). Sequential transfer learning (Howard & Ruder, 2018) is a well-
established and simple alternative to FL when model checkpoints, rather than data, are used for knowledge
transfer. This approach is also the de facto standard for tasks with limited labeled data, usually involving a
two-step approach: pretraining on large data corpora and fine-tuning on a smaller domain-specific dataset.
Nevertheless, more than two steps (datasets) have also proven beneficial for knowledge transfer (Poth et al.,
2021; Jeong et al., 2020).

At the core of clinical data are Electronic Health Records (EHR), which document the medical history of
patients. Upon patient admission, predictions of diagnoses, procedures, medications, and mortality risk help
optimize resource allocation in clinical facilities. Clinical Decision Support Systems (CDSS) increasingly
rely on NLP methods to assist medical professionals. Models from various clinics and specialties have been
made available by researchers in large hosting platforms like Huggingface (Wolf et al., 2020). For example,
clinical BERT models trained by Zhongshan and Qingpu Hospitals3 (Wang et al., 2023) or Charite Hospital4
(Bressem et al., 2024) among others are publicly available and can be finetuned by other clinical facilities
for downstream tasks.

1Huggingface biomedical models
2https://anonymous.4open.science/r/HSPONGE-6DDD
3BERT from Zhongshan and Qingpu Hospitals.
4BERT from Charite Hospital.
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https://huggingface.co/GerMedBERT/medbert-512
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In diagnoses prediction state-of-the-art (SOTA) methods augment Transformer representations (BioMed-
BERT (Tinn et al., 2023)) with prototypical networks (Figueroa et al., 2024; van Aken et al., 2022). Diag-
noses prediction generally poses significant challenges: 1) In practice diagnoses occur with widely varying
prevalence, exhibiting a pronounced long-tail distribution (Papaioannou et al., 2022). 2) Medical knowl-
edge and data are unevenly distributed across regions and languages. For example, the higher incidence
of gastric cancer in Japan (Naylor et al., 2006) or Chagas disease in South America (Martins-Melo et al.,
2014). 3) Privacy concerns isolate patient data across medical facilities, hindering unified model training.
These challenges are amplified by the fact that Transformer models are usually pretrained on large corpora
in high-resource languages (mainly English) limiting performance in low-resource languages.

Sequential transfer learning addresses the constraints of clinical data, namely privacy and data isolation,
uneven diagnosis distribution, low-resource settings, and multilinguality. Multiple fine-tuning steps have
also been shown to improve downstream performance on low-resource diagnoses prediction (Papaioannou
et al., 2022). Research has centered on finding optimal sequences of tasks (Lim et al., 2024; Poth et al., 2021),
highlighting the performance sensitivity of Transformers to the task order. However, finding a training order
for optimal knowledge transfer requires access to all datasets, which does not comply with the clinical data
restrictions mentioned above. We argue that creating robust solutions subject to these constraints involves
1) A realistic simulation of knowledge transfer that reflects the challenges of working with clinical data, 2)
An architecture that is agnostic to the fine-tuning sequence.

We gather a collection of six clinical datasets encompassing different clinics, writing styles, languages, number
of patients, and diagnoses distributions. In Figure 1 we illustrate the label spaces of our five training
datasets, which we complement with an additional dataset used only for testing. We train and evaluate
SOTA architectures strictly following clinical data constraints, i.e. using model checkpoints rather than
data as the medium of knowledge transfer (see Figure 1 right). Additionally, we focus on assessing sequence-
agnostic performance, reflecting the realistic scenario in which clinics are unaware of the data seen by publicly
available models.
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Figure 1: (Left) Label space relationships across five clinical datasets used for training. Legend: number of
training samples for each dataset. (Right) Six (two-steps or more) training sequences are generated from
two 5-step permutations of the datasets that start with MIMIC (M). Each node is the end of a sequence
and results in a model checkpoint; e.g, C indicates the model checkpoint for M → C. In our experiments,
we ensure that the model checkpoints (and not data) are the only medium of knowledge transfer.

We find that SOTA models for diagnoses prediction such as S-Proto (Figueroa et al., 2024) struggle under
realistic clinical conditions. We argue that building non-interfering knowledge redundancy during sequential
fine-tuning is key for knowledge transfer in this scenario. However, deep neural networks are usually dense,
i.e., they utilize all parameters during prediction. In sequential settings, deep neural networks often suffer
from knowledge overwriting, which impairs effective transfer (Ling et al., 2024).

We introduce SPONGE: an efficient architecture that boosts knowledge transfer in diagnoses prediction
by creating end-to-end sparse language representations. We construct these by integrating concepts from
parameter-efficient fine-tuning (PEFT) (Pfeiffer et al., 2020; Poth et al., 2023), prototypical networks (Snell
et al., 2017), and conditional computation (Bengio et al., 2013) using a non-parametric winner-takes-all
(Yuille & Grzywacz, 1989) mechanism. Inspired by biological neural circuits, the sparse subnetworks in
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SPONGE are full-fledged predictors that compete to predict a diagnosis. While requiring only ≈2.6% of
the trainable parameters, our method outperforms current SOTA in diagnoses prediction. We validate this
extensively by analyzing both single and multi-step transfer learning scenarios.

Catastrophic forgetting (McCloskey & Cohen, 1989) during sequential fine-tuning impairs generalization.
We find that prototypical classifiers tend to focus disproportionately on recent labels when compared to
traditional Transformers, reducing generalization to unseen datasets. However, explicitly preventing catas-
trophic forgetting can degrade performance on target tasks (Pfeiffer et al., 2020). We propose an alternative
approach: Hydra, a strategy that improves generalization to unseen datasets without modifying SPONGE’s
architecture. Hydra efficiently improves macro AUROC and PRAUC by 7.5 and 3.5 percentage points, re-
spectively, with a negligible increase in inference parameters. SPONGE and Hydra function as adapters
that can be loaded and fine-tuned by clinics as needed to boost knowledge transfer.

Additionally, our method inherits the explainability properties of previous SOTA (Figueroa et al., 2024)
by predicting in a latent prototypical space (Chen et al., 2019). With input from medical professionals,
we validate that the observed improvement in knowledge transfer is underpinned by clinically meaningful
explanations (van Aken et al., 2022).

Contributions

• To our knowledge, our evaluation of multi-step sequential transfer learning is the largest to date in
simulating knowledge transfer for diagnoses prediction with real-world clinical data constraints.

• We propose a novel architecture of sparse competing subnetworks that achieves superior knowledge
transfer in diagnoses prediction.

• Our analysis identifies weaknesses in current SOTA approaches, which we address with an efficient
strategy that mitigates catastrophic forgetting and improves generalization to unseen datasets.

2 Related Work

Diagnoses prediction from textual data. Transformer models have widely been applied to diagnoses
prediction (van Aken et al., 2021; Roehr et al., 2024). S-Proto (Figueroa et al., 2024) boosts classification
performance by enhancing a Transformer with a sparse prototypical network. In contrast to S-Proto, we
create competing end-to-end subnetworks, i.e., networks that include both the prototypical network and the
Transformer.

Cross-lingual transfer is a popular topic in NLP (Hämmerl et al., 2024; Philippy et al., 2023). Most
research has focused on identifying optimal dataset sequences and configurations, extracting dataset prop-
erties that enhance performance on downstream tasks (Lim et al., 2024; Protasov et al., 2024; Lin et al.,
2019; Malkin et al., 2022). Given clinical data constraints, Papaioannou et al. (2022) find that sequential
training for diagnoses prediction boosts downstream performance for low-resource datasets, however, only for
optimal dataset sequences. In contrast, we propose a robust architecture that enables cross-lingual transfer
independently of sequence order, and the dataset properties; i.e., size, labels, distribution, and language.

Parameter efficient fine-tuning (PEFT) and generalization. Liu et al. (2024); Lialin et al. (2023);
Chalkidis et al. (2021) highlight the importance of PEFT using adapters to improve zero-shot classification
performance. In our work, adapters play a crucial role in inducing sparsity. We use a pool of adapters to
generate multiple Transformer representations, which compete via a winner-takes-all (Yuille & Grzywacz,
1989) mechanism. Additionally, PEFT enables our model to scale the number of subnetworks efficiently.

Parameter selective training approaches have centered on using masks to update specific parameters
(Somayajula et al., 2024; Sung et al., 2021; Winter et al., 2022). Similarly, we selectively update only a
subset of model parameters. However, rather than applying weight level updates, we constrain updates
to subnetworks responsible for end-to-end representations. Moreover, Ansell et al. (2022) use sparse fine-
tuning to boost cross-lingual transfer using prior knowledge of the target task and language. In contrast,
our subnetwork selection strategy operates without prior knowledge of downstream tasks.
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Subnetwork routing and lateral inhibition. With ever-growing parameters in Transformers, a Mixture
of Experts (MoE) offers an efficient path for scaling computation (Shazeer et al., 2017; Lepikhin et al., 2021;
Fedus et al., 2022; Du et al., 2022; Chi et al., 2022). Our approach differs from MoE in that 1) it does
not fragment the input (tokens) 2) we use no additional routing loss functions or gating mechanisms 3)
our subnetworks are independent predictors that compete to produce the best representation. In fact, we
leverage conditional computation (Bengio et al., 2013), and are closer to single-layer biologically inspired
neural networks (Bricken et al., 2023; Liang et al., 2021; Figueroa et al., 2025) to learn sparse representations
through lateral inhibition. However, we extend this to deeper architectures integrating Transformer models
with prototypical classification in a latent metric space.

Sequential learning and catastrophic forgetting. Sequential learning presents significant challenges
for deep neural networks. A well-established trade-off in this setting is the stability-plasticity dilemma,
which is central to continual learning (Biesialska et al., 2020; Huang et al., 2021). In cross-lingual transfer,
explicitly mitigating catastrophic forgetting (i.e., optimizing for stability) may result in reduced downstream
performance (Pfeiffer et al., 2020). We use a non-parametric inhibition approach that creates non-interfering
parallel representations, improving both plasticity and stability. However, our objective is to maximize
knowledge transfer under clinical data constraints; hence, we evaluate downstream performance on low-
resource datasets of clinics.

3 Multilingual Clinical Datasets

We train and test our models on sequences constructed from five different clinical datasets across multiple
languages (see Figure 1, right). Additionally, we evaluate their generalization performance on a multilingual
dataset with the same EHRs in seven different languages in a zero-shot setting. For all datasets, we map
the diagnoses to the CCSR5 code space. CCSR offers advantages over ICD-10, including improved clinical
relevance and simplified categorization.

MIMIC-IV (M) (Johnson et al., 2021; 2023) is an English clinical dataset containing cases from the
Intensive Care Unit (ICU) and other hospital departments. Admission and discharge notes are simulated from
the EHRs as in van Aken et al. (2021).We use only the ICD-10 subset, which we map to the corresponding
CCSR categories.

CodiEsp (C) contains clinical case studies in Spanish, with patients from various medical specialties,
including oncology, urology, cardiology, pneumology, and infectious diseases (Miranda-Escalada et al., 2020).

AHEPA-Cardio (A) are cardiology discharge summaries in Greek (Papaioannou et al., 2022).

SemClinBr (B) comprises Portuguese clinical notes from multiple Brazilian medical institutions across
various specialties (Oliveira et al., 2022).

Stockholm University - Gastrointestinal (S)(Lamproudis et al., 2023) consists of EHRs from a gas-
troenterology department. These are in Swedish and sourced from the Swedish Health Record Research
Bank (Dalianis et al., 2015)6.

Zero-Shot Datasets: DisTEMIST. We use the dataset of Miranda-Escalada et al. (2022) for zero-shot
evaluation. It comprises the same EHRs expressed in Spanish, English, Catalan, Portuguese, French, Italian,
and Romanian.

Data Splits and Label Space. For all datasets, we use stratified sampling (Sechidis et al., 2011) to create
train, validation, and test splits (see Table 5 in Appendix A). We remove EHRs with less than four labels.
Figure 1 summarizes the label space and training sample counts.

5CCSR categories
6This research has been approved by the Swedish Ethical Review Authority under permission no.2019-05679. The use of

Stockholm EPR Gastro ICD-10 Pseudo Corpus II with the amendment no 2022-02386-02.

4
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4 Sequential Transfer Learning for Diagnoses prediction

Diagnoses prediction is a multilabel classification task with a large label space, in our case, comprising 509
CCSR codes (98% of the full CCSR specification). We focus on knowledge transfer for this task using only
model checkpoints for transfer to simulate real-world clinical constraints. Accordingly, we adopt the canonical
sequential transfer learning setup involving both single and multi-step fine-tuning (Ruder, 2019). This
involves sequential training with all permutations of our datasets, evaluating performance independently
of any specific fine-tuning order.

We initialize all architectures on this task with MIMIC, our high-resource dataset. Next, we construct all
permutations of the four low-resource datasets to generate sequence variations. This process results in 64+1
distinct sequences (including the one-step sequence on MIMIC, see Appendix E). Figure 1 (right) illustrates
two example sequences.

Evaluation. The goal of our experiments is to assess how effectively our architecture transfers relevant
knowledge and generalizes to unseen data at each step of the sequence. For example, sequences involving
one training dataset are evaluated on four unseen test datasets, those trained on two evaluated on three, and
so on. DisTEMIST is used exclusively as a test set. We evaluate all resulting model checkpoints (64 + 1),
measuring averages of macro AUROC, micro AUROC, and macro PRAUC to capture sequence agnostic
scores.

MIMIC - (High-resource). We report results on this dataset as it serves as the standard benchmark for
diagnosis prediction (Roehr et al., 2024; van Aken et al., 2021). This evaluation corresponds to the one-step
sequential transfer learning scenario, i.e., the sole single-dataset sequence in our experiments.

Final datasets (Low-resource). We rank architectures based on the performance on the final dataset
in each sequence. This evaluation measures downstream performance independently of the datasets seen
by the model during sequential training. This is consistent with the performance expected by clinics when
fine-tuning models without explicit knowledge of their prior training data. In this evaluation, we average all
performances in all sequence configurations. We evaluate 64 sequences of two datasets or more, with a total
of 16 sequences for every target dataset (see Appendix E).

Zero-shot generalization. In contrast to the standard zero-shot cross-lingual transfer setting (Hu et al.,
2020), we focus on models trained sequentially on multiple datasets. This implies that variations in data
distributions, label spaces, and language typologies may contribute or interfere with every additional training
dataset. We probe the generalization capabilities of all models on DisTEMIST in addition to all unseen
datasets. We evaluate 64 + 1 checkpoints per model and report the average for each metric for 1) all unseen
datasets, 2) unseen languages within DisTEMIST, and 3) seen languages within DisTEMIST.

5 Methods

Several works have tackled diagnoses prediction with Transformer networks and architectural augmenta-
tions. van Aken et al. (2022) incorporate prototypical classifiers to use latent metric spaces, enhancing
both the explainability and performance of model predictions. Figueroa et al. (2024) extend this approach
in S-Proto by adding sparsity to the prototypical classification layer using a winner-takes-all mechanism.
Specifically, S-Proto leverages competing subnetworks to model distinct phenotypes of diagnoses, further
boosting performance. These architectural enhancements to Transformer representations achieve state-of-
the-art performance in diagnoses prediction. However, they struggle when exposed to multi-step sequential
transfer learning, since sequentially updating a single Transformer representation creates inter-task interfer-
ence. We speculate that this is due to the competing subnetworks, which share a large number of parameters,
leading to entangled representations. To address this, we propose extending sparsity throughout the entire
network, rather than limiting it to the classification layer.

5
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Figure 2: Classifying a clinical note with SPONGE: A pool of T adapters (left) create multiple transformer
representations. P down-projection layers map these representations, which are then classified in a latent
metric space with sparse label-wise attention. ξ is the winner network among all competing subnetworks
that map the input to the label space, resulting in sparse gradient updates.

5.1 End-To-End Sparse Representation

The dense (non-sparse) modules of S-Proto are the Transformer and the projection matrix to the prototypical
space. We add competing subnetworks to these components to create end-to-end sparse representations.
This entails 1) creating in parallel multiple Transformer representations for the same input, 2) expanding
the dimensionality of the projection layer to the prototypical space, and 3) selecting a winner subnetwork,
hence, the winner-takes-all mechanism must be generalized for the entire architecture. We show an overview
of the resulting architecture in Figure 2.

Creating multiple Transformer representations would require parallel embedding Transformers, which
is computationally prohibitive. We opt for a simpler solution using multiple adapters, which significantly
improves efficiency. Trainable adapters combined with a language model have shown competitive performance
on classification tasks (Houlsby et al., 2019). We add T task adapters (Pfeiffer et al., 2020) as modular
components, freezing the rest of the Transformer while training.

TAt(emb, r) = U t(ReLU(Dt(emb))) + r (1)

Dt and U t are the task adapter t down and up projections, emb is the encoder representation and r is
the residual for a layer within the Transformer. We compute multiple representations, one with every task
adapter: ηt ∈ Rs×h, where h is the hidden dimension of the encoder, and s ∈ E the index of a token in a
given EHR.

Expanding the dimensionality of the projection layer. Additionally, we increase the number of
down-projection layers L ∈ Rh×d to L ∈ RP ×h×d, where d is the hidden dimension and P is the number
of projection layers. We project ηt which results in a representation ψt,p = ⟨ηt, Lp⟩ ∈ RE×d, where t ∈ T ,
p ∈ P define a subnetwork. We refer to this as the input subnetwork, specified by t and p, which enables an
end-to-end sparse encoding of the EHR and is core to our contributions.

Let γ ∈ Γ be an output subnetwork index in the prototypical layer, c ∈ C be a specific class, therefore
ξ ∈ T × P × Γ defines the subnetwork that spans through the entire model and involves the combination of
t, p, γ. We first map the token vectors ψt,p.

ϕξ = ⟨ψt,p,W γ⟩⊤ ∈ RC×E

where W γ ∈ Rd×C are the labelwise-attention vectors. A score Sξ = softmax
E

(ϕξ) is computed for every
token s in the EHR for every class c. The mapped EHR, for a subnetwork ξ, in prototypical space is vξ.

vξ = ⟨Sξ, ψt,p⟩ ∈ RC×d

6
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SPONGE: Generalizing winner-takes-all. The Euclidean distance from a mapped EHR vξ to a pro-
totype uξ is denoted by ϵξ = ∥uξ − vξ∥2 and the prediction of a subnetwork ŷξ = σ(−ϵξ), where σ is the
sigmoid function. We select the winner subnetwork

⋆

ξ with the winner-takes-all mechanism inhibiting all
other subnetworks:

ŷ = ŷξδ
ξ,

⋆

ξ
(2)

where δ is the Kronecker δ function. To compute the winning subnetwork
⋆

ξ we start by selecting the winner
output subnetwork:

⋆
γ

t,p
= argmax

γ
(ŷξ) (3)

We use ⋆
γ

t,p
to select the winner input subnetwork

⋆
t,

⋆
p with the mode over the classes for an EHR.

⋆
t,

⋆
p = mode

c
[argmax

t,p
(ŷξδ

γ,
⋆
γ

t,p)] (4)

Finally, the end-to-end winner subnetwork is:

⋆

ξ = argmax
γ

(ŷ
⋆

t,
⋆
p,γ) (5)

We define the loss as the binary cross-entropy between ŷ (see: Equation (2)) and the true labels y.

Subnetwork exploration. Training of sparse networks with winner-takes-all may result in dead subnet-
works that are never selected and, thus, never updated. We modify the approach in (Bricken et al., 2023),
inspired by ϵ− greedy (Sutton, 1995) exploration, to ensure broader subnetwork activation during training.
At the start of training, we explore the top k subnetworks ξ, choosing one of these randomly. During this
phase, we anneal k linearly until k = 1. Training proceeds with the top-1 subnetwork as in Equation (2).
This strategy helps initialize and train all subnetworks, avoiding dead units, while still limiting computation
by updating only one subnetwork per sample.

5.2 Boosting generalization

Prototypical networks use a latent distance to make predictions. Guided by the loss, these classifiers map
tokens and shift prototypes in latent space. During sequential training, the learned prototypes become overly
biased toward the most recent label distribution, severely restricting generalization in different label spaces.
We argue that distributed knowledge still exists in the input subnetworks of SPONGE due to the overall
sparsity (we examine this further in Section 8).

Hydra: exploiting distributed knowledge. To counter the label recency bias, we store the prototypical
parameters (u and W ) learned for each dataset in a training sequence, using them only for inference. Impor-
tantly, we only use parameters from past training steps for knowledge transfer, respecting the constraints of
clinical data. Despite the growing number of output subnetworks, the winner subnetwork selection strategy of
SPONGE remains applicable without requiring architectural changes. Although the number of parameters
for inference increases after each dataset in a sequence, the increase is small w.r.t. the Transformer’s size.
In our experiments, in a five-dataset sequence, the added vectors amount to 6.6M parameters or 2.4% of the
Transformer’s 270M. A key advantage of the winner-takes-all selection is its compatibility with parameter
accumulation, requiring no architectural changes nor added complexity like weight consolidation (Kirkpatrick
et al., 2017) or knowledge distillation (Ermis et al., 2022).

HSPONGE: Hydra facilitates effective knowledge transfer to previously unseen data distributions. Impor-
tantly, SPONGE and Hydra scale very well to larger Transformers since the dimensionality of the parameters
is independent of their hidden size h. This approach supports modular scaling to arbitrary dataset sequences
during sequential training. Furthermore, in the case of growing label spaces, this modularity would enable
our models to train only the new parameters.

7
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6 Experiments

Although generative large language models (LLMs) have shown strong performance in many language tasks,
they still fall short of SOTA in many classification scenarios (Yang et al., 2024), particularly those with
large label spaces. For diagnoses prediction, the best-performing approach remains fine-tuning Transformer
representations with a classification head, for both encoder (Roehr et al., 2024; Figueroa et al., 2024) and
decoder models (Gema et al., 2024).

We investigate how sparse subnetworks impact sequential transfer learning for diagnoses prediction. There-
fore, we control for one Transformer architecture. We use XLM-R (Conneau et al., 2020) for all experiments,
as it has been extensively studied for cross-lingual transfer (Philippy et al., 2023; Pfeiffer et al., 2020; Hu
et al., 2020; Choi et al., 2020; Conneau et al., 2020). Although our methods are applicable to any Transformer
architecture, we favor XLM-R over significantly larger Transformers, given the large number of experiments.

Baselines. We focus on the following architectures: 1) XLM-R, which is a cross-lingual model and the
least sparse method (single dense network); 2) XLM-R + A to ablate the effect of PEFT and a single
adapter in our architecture; and 3) S-Protoxlm-r (Figueroa et al., 2024), the current SOTA architecture
for diagnoses prediction, which combines a dense Transformer with a sparse prototypical classifier. For the
latter, we replace the BiomedBERT (Tinn et al., 2023) with XLM-R, since the former is not a cross-lingual
Transformer.

SPONGE Variations. We evaluate multiple configurations of sparse subnetworks by varying the number of
adapters and projection matrices. We name each variant SPONGET,P where T and P stand for the number
of task adapters and projections respectively. SPONGE1,1 establishes the effect of having no sparsity in
the encoder. SPONGE1,6 displays the effect of having sparsity only in the projection stage before the
prototypical layer. SPONGE6,1 highlights the impact of no sparsity in the projection, but only in the
Transformer using a pool of adapters. Given the effectiveness of adapters for cross-lingual transfer (He et al.,
2021), our sparsest model, SPONGE6,3, uses more adapters than projections.

All prototypical models (SPONGE and S-Protoxlm-r) have five output subnetworks as in Figueroa et al.
(2024). We detail hyperparameters in Appendix C.

7 Results

Performance on MIMIC. This dataset is a standard benchmark for NLP models in diagnoses prediction.
We present the performance of all models in Table 1 (left). S-Protoxlm-r outperforms all dense base-
lines (lack subnetworks): XLM-R and XLM-R + A. Our variant with the largest number of subnetworks:
SPONGE6,3, outperforms all evaluated methods.

Subnetwork exploration. We show the impact of this strategy in the bottom section of Table 1 (left).
The models SPONGE1,1 and SPONGE6,3 (marked with -x) indicate that they do not use exploration. In
both cases, exploration improves PRAUC, benefiting the sparser SPONGE6,3 more.

Table 1: (Left) model performance when trained solely on MIMIC. (Right) average performance on the last
dataset of each sequence. SPONGE6,3 consistently outperforms across both settings.

MIMIC Only Sequential Training
Model macro AUROC micro AUROC macro PRAUC macro AUROC micro AUROC macro PRAUC

S-Protoxlm-r 87.51 93.89 28.08 80.08 86.62 37.01
SPONGE1,1 89.68 94.67 33.18 87.47 91.78 52.07
SPONGE1,6 86.63 93.75 22.94 83.57 89.71 43.71
SPONGE6,1 86.55 90.42 31.42 86.19 90.71 48.93
SPONGE6,3 89.70 94.70 34.17 88.58 92.09 54.24
XLMR 86.21 93.67 27.27 83.10 88.89 45.92
XLMR + A 85.74 93.31 26.38 83.81 89.10 45.11

SPONGE1,1-x 89.28 94.66 32.51 – – –
SPONGE6,3-x 89.48 94.56 32.56 – – –
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Sequential training performance. We show in Table 1 (right) the average performance of all models
across the 64 training sequences (16 per target dataset; see Appendix E). XLM-R+A performs similarly
to XLM-R, reinforcing the effectiveness of PEFT. S-Protoxlm-r performs the worst. This emphasizes the
inter-task interference created by updating a single Transformer representation for sequential training. PEFT
with output subnetworks shows significant gains. Specifically, 7.39 points in macro AUROC and 15.06 points
in macro PRAUC when comparing SPONGE1,1 to S-Protoxlm-r.

Creating input subnetworks exclusively with either the adapter component or the projection is not as benefi-
cial as creating them with both simultaneously. This is evident when comparing SPONGE6,1, SPONGE1,6

against SPONGE6,3. In general, increasing sparsity via more subnetworks boosts PRAUC, aligning with
findings from Figueroa et al. (2024).

SPONGE6,3 consistently demonstrates the best performance regardless of dataset order, language mix,
label space diversity, or fine-tuning sequence length, while requiring ≈ 2.6% of the training parameters of
XLM-R or S-Protoxlm-r(see Table 8 in Appendix F). We therefore focus on SPONGE6,3 for all subsequent
analyses.

Downstream dataset performance. We further analyze sequential training results by examining all
permutations ending with each specific target dataset. We present this in Table 2 (top) and highlight how
SPONGE6,3 outperforms all methods for all metrics, showcasing the robustness to large distribution shifts
(languages, dataset sizes, and labels). Generally, downstream dataset performance significantly benefits from
multi-step sequential transfer learning, we detail this in Appendix B.

Number of training datasets. We analyze the performance w.r.t. the number of datasets used in a
training sequence. We present this in Table 2 (bottom). SPONGE6,3 also significantly outperforms all
other methods regardless of the number of datasets. We observe that updating all Transformer parameters
(XLM-R, and S-Protoxlm-r) leads to performance degradation as the sequences increase in length.

Table 2: Classification performance per target dataset (top) and number of datasets (bottom) averaged over
all permutations of sequences. SPONGE6,3outperforms all methods in both settings.

macro AUROC micro AUROC macro PRAUC
Model/Dataset A B C S A B C S A B C S
S-Protoxlm-r 81.83 70.75 83.33 84.42 88.18 80.81 88.51 88.96 42.22 23.83 34.66 47.33
SPONGE6,3 90.05 82.65 91.03 90.62 94.18 86.68 93.97 93.53 59.93 42.16 55.22 59.67
XLM-R 85.78 73.30 85.67 87.63 91.39 81.78 89.70 92.69 58.85 27.73 39.20 57.90
XLM-R+A 84.83 75.93 86.38 88.08 90.27 83.05 90.33 92.76 55.65 28.54 38.77 57.52

Model/ # datasets 2 3 4 5 2 3 4 5 2 3 4 5

S-Protoxlm-r 81.83 70.75 83.33 84.42 88.18 80.81 88.51 88.96 42.22 23.83 34.66 47.33
SPONGE6,3 90.05 82.65 91.03 90.62 94.18 86.68 93.97 93.53 59.93 42.16 55.22 59.67
XLM-R 85.78 73.30 85.67 87.63 91.39 81.78 89.70 92.69 58.85 27.73 39.20 57.90
XLM-R+A 84.83 75.93 86.38 88.08 90.27 83.05 90.33 92.76 55.65 28.54 38.77 57.52

Performance on unseen data. In Table 3 (left) we present the results for all unseen datasets: DisTEMIST
and all datasets absent in a training sequence. Additionally, we adapt S-Protoxlm-r and SPONGE with
the Hydra strategy. We denote this with H preceding the name of the model. S-Protoxlm-r performs worse
than XLM-R and XLM-R+A and fails to improve when employing Hydra. SPONGE6,3 performs better
than XLM-R and XLM-R + A in PRAUC; however, it falls behind on AUROC. Hydra proves effective, since
HSPONGE6,3 outperforms all other methods.

Performance on DisTEMIST. The clinical notes of this dataset are multiple versions of the same EHR
in different languages, therefore it is a good test bed for generalization. We distinguish between unseen and
seen languages for all trained sequences. We present results in Table 3 center and right. Intuitively, for all
models the performance on seen languages is higher than on unseen languages. HSPONGE6,3 consistently
outperforms in both cases.

9
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Table 3: Average zero-shot performance of all sequences. Left: all datasets (DisTEMIST + those unseen
during training). Center, right: DisTEMIST only, for both seen and unseen languages respectively.

Unseen datasets + DisTEMIST DisTEMIST unseen languages DisTEMIST seen languages
macro micro macro macro micro macro macro micro macro

Model AUROC AUROC PRAUC AUROC AUROC PRAUC AUROC AUROC PRAUC
S-Protoxlm-r 68.77 65.40 12.58 69.36 65.11 10.91 72.69 67.23 14.97
HS-Protoxlm-r 54.39 54.76 8.32 54.69 54.32 6.86 51.41 51.93 8.08
SPONGE6,3 74.46 71.15 20.91 74.44 70.69 19.27 77.74 73.23 23.47
HSPONGE6,3 81.99 77.86 24.40 82.22 77.26 22.21 85.80 81.11 27.28
XLM-R 75.15 73.38 19.03 75.40 72.60 16.42 81.52 78.23 25.17
XLM-R+A 76.18 72.65 18.67 77.14 72.82 17.51 80.50 75.69 21.97

8 Analysis and Discussion

Our experiments show that multi-step sequential transfer learning is generally beneficial for diagnoses pre-
diction. SPONGE outperforms all other methods on all target datasets, regardless of the sequence. Never-
theless, SPONGE struggles to generalize to unseen datasets, often underperforming XLM-R and XLM-R +
A (Table 3). However, we demonstrate that Hydra is an effective strategy to address this. We attribute the
increased performance of HSPONGE6,3 to two main factors: 1) the sparsity and the modular architecture
in SPONGE induced by winner-takes-all, which creates distributed Transformer representations; and 2)
Hydra’s ability to leverage these representations, alleviating label recency bias.

Distributed Representations in SPONGE. We investigate the existence of distributed knowledge after
sequential training. For this, we test on the first dataset (MIMIC) after training on each of the 64 dataset
sequences. As before, we report the average performance of all checkpoints which we denote as Original in
Table 4. Additionally, we evaluate a variant of each checkpoint where we replace the classification layer with
the one trained only on MIMIC; we denote this as M. This allows the model’s feature-building network to
better align existing knowledge with the MIMIC label space. In other words, we decouple the Transformer
representation from the classification layer and measure its impact. M favors the label space of MIMIC and
thus mitigates label recency bias.

We observe that S-Protoxlm-r does not improve when employing M. We argue that this degradation in
performance is related to the dense projection L which is crucial to map to the prototypical space. In
contrast, XLM-R and XLM-R + A benefit from M, hinting that the bare Transformer representations can
recover knowledge from MIMIC, further emphasizing the need for sparsity in L for S-Protoxlm-r. Although
SPONGE underperforms XLM-R and XLM-R + A, it outperforms all methods when employing M. This
significant boost in performance confirms that SPONGE retains MIMIC knowledge but is unable to access
it once the prototypical parameters u and W have shifted after sequential-training. The M strategy is a
simplification of Hydra that explains how the latter enables access to distributed knowledge in the model
for better generalization as seen in Table 3.

Table 4: Average performance on MIMIC of all 64 checkpoints. Every checkpoint has been trained on
two or more datasets. Original denotes scores of the unmodified checkpoints; M corresponds to checkpoints
modified by replacing their classification head with the one trained only on MIMIC; ∆ denotes the difference.

Model Macro AUROC Micro AUROC Macro PRAUC
Original M ∆ Original M ∆ Original M ∆

S-Protoxlm-r 63.97 46.91 -17.06 68.08 63.34 -4.74 6.85 6.08 -0.77
SPONGE6,3 68.43 82.30 +13.87 79.62 83.50 +3.88 14.58 20.39 +5.81
XLM-R 76.87 78.91 +2.04 80.74 87.48 +6.74 16.68 18.53 +1.85
XLM-R+A 73.00 78.79 +5.79 76.68 87.04 +10.36 11.27 17.40 +6.13

Winner-takes-all and optimal subnetwork. We expand on the analysis of distributed knowledge by
focusing on all subnetworks (full-fledged predictors) of SPONGE6,3. For every kth subnetwork (90 in total)

10



Under review as submission to TMLR

0 20 40 60 80
k-winner subnetwork

20

30

40

50

60

70

80

90

Sc
or

e

*
*

*

macro AUROC
micro AUROC
macro PRAUC

Figure 3: Scores achieved by SPONGE6,3 for all subnetworks, ordered by the winner-takes-all selection
mechanism (see Equation (5)). The decreasing nature of the curves highlights how the top activated sub-
networks highly correlate with classification performance, reinforcing the suitability of this selection strategy.
Asterisks ∗ point to the k with the highest scores which are close to the winner-takes-all selection at k = 0.

of this model, we compute all metrics which we present in Figure 3. The Winner-takes-all mechanism defines
the order of the subnetworks indexed by k (x-axis in the figure). For instance, k = 89 is the most inhibited
subnetwork. In contrast, k = 0 is the single winner subnetwork that yields a prediction. We highlight with
∗ the best-performing subnetwork, which proves to be within the top-18 for all metrics. Generally, given
the aggregation in Equation (4), predictions are bundled in groups of 18 where performance is very similar,
stemming from the 6 adapters T and 3 projections L. This supports the idea that the inhibition mechanism
in winner-takes-all produces multiple non-interfering predictors that are almost optimal.

Hydra and label recency. Prototypical classifiers underperform when not modified with Hydra (see
S-Protoxlm-r and SPONGE6,3 vs. XLM-R and XLM-R + A in Table 3). HSPONGE6,3 outperforms all
methods on unseen data. We investigate the impact of label recency on prototypical models when exposed to
unseen data. Therefore, we compare HSPONGE6,3 and S-Protoxlm-r since it is the SOTA architecture for
this task. For a fair comparison to S-Protoxlm-r we focus on its best-performing checkpoint on DisTEMIST
i.e., the sequence M→B→C (see performance of S-Protoxlm-r in Table 7 in Appendix D and Table 3). We
analyze the performance of both models w.r.t. the recency of the labels for this sequence. For each label, we
define recency as the proportion of the most recently trained samples (C) w.r.t all samples in M, B, and C.

Recency and PRAUC. We divide the labels into 8 logarithmically spaced recency groups, each containing
at least 10 labels to ensure reliable estimation. Figure 4 (bottom left) shows the label distribution across
these recency groups. In Figure 4 (top left) we present the difference(∆) between the two models in macro
PRAUC for the labels sorted by recency (see x-axis). HSPONGE6,3 performs significantly better on all but
one label group, thus, ∆ PRAUC is positive. This difference decreases as recency increases; notably, it is
significantly larger for labels with lower recency. This illustrates the positive effect of Hydra at mitigating
the recency bias.

Recency and explainability. Prototypical methods create token saliencies that explain their predictions.
Faithfulness quantifies how gradually masking the input according to these saliencies, deteriorates model
performance. A lower faithfulness score indicates greater explainability (Atanasova et al., 2020). We generate
token saliencies for HSPONGE6,3 and S-Protoxlm-r, and compute faithfulness for macro AUROC and
macro PRAUC for the aforementioned recency groups. Figure 4 (right) presents the difference in faithfulness
for HSPONGE6,3 and S-Protoxlm-r. We expand these scores for all DisTEMIST languages (rows in the
Figure). Similar to ∆ PRAUC, the largest difference is in the first (least recent) label group. This relationship
appears to hold independently of the language.

Both classification (PRAUC) and explainability (Faithfulness) metrics confirm that the prototypical layer
alone (S-Protoxlm-r) struggles to generalize in sequential training, likely due to an overemphasis on the most
recent labels. However, HSPONGE6,3 overcomes this in both classification and explainability, reinforcing
the importance of combining the distributed representations of SPONGE with Hydra.
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Figure 4: Left top: ∆(HSPONGE6,3 − S-Protoxlm-r) in PRAUC over label recency. Bottom: number of
labels by recency group. On average (gray dotted line) HSPONGE6,3generalizes better for all label groups.
Right ∆(HSPONGE6,3 − S-Protoxlm-r) Difference in faithfulness for zero-shot datasets (lower is better).
Although faithfulness is similar for both models (∆ is roughly 0), S-Protoxlm-r is less explainable for the
under-represented labels in the last fine-tuning (most negative left region).

Analysis of saliencies with doctors. We further examine 30 patients and five diagnoses with the help of
medical doctors. We compare the saliencies of S-Protoxlm-r and HSPONGE6,3 for the previously analyzed
sequence M→B→C. We aim to understand how the performance gap between the two models manifests in
qualitative differences from a domain expert’s perspective. We focus on testing AHEPA (A), which is not
included in the sequence and contains the typologically most distant language (Greek). We observe the same
performance gap in faithfulness on the least recent labels as with the DisTEMIST languages. The physicians
were tasked with ranking patients according to their relevance to describe a diagnosis. Remarkably, both
models rank the patients similarly, i.e., they successfully identify prototypical patients. In terms of the qual-
itative differences of the saliencies, doctors find that S-Protoxlm-ris more sensitive to learning annotation
artifacts (Zellers et al., 2019) like stopwords or explicit mentions of acronyms of the diagnosis, explaining
its weakness in generalization to distinct languages. This issue is compounded by S-Protoxlm-r assigning
near-uniform relevance scores to most tokens. In contrast, HSPONGE6,3 sharply highlights key terms re-
lated to each diagnosis. These qualitative findings suggest that the zero-shot generalization capabilities of
HSPONGE6,3 is underpinned by clinically meaningful and explainable saliencies.

9 Conclusion

We address the challenges of sequential transfer learning when data is subject to privacy constraints by the
example of the clinical domain. We focus on a multi-step sequential transfer learning setting, transferring
knowledge via model checkpoints rather than raw data. We propose SPONGE, a novel architecture that
excels at knowledge transfer and achieves superior performance in diagnoses prediction. We generalize
winner-takes-all, a mechanism of neural inhibition inspired by nature, creating competing representations.
Extensive analysis reveals that these representations combined with the ability of Hydra to mitigate label-
recency bias, are key to strong generalization performance. We confirm with medical doctors that the
explanations provided by SPONGE are supported by clinical relevance.

Future Work. We examine a set of six datasets in nine different Indo-European languages, in multi-step
sequential transfer learning. While this evaluation is significant, it is not exhaustive; further analysis will be
conducted as more clinical data becomes available. Although we focus on a multi-label classification task,
Transformers are widely used for solving generative tasks. Given that our architecture may also enhance
decoder-based Transformer models, future evaluation on generative tasks is warranted as LLMs become more
computationally efficient.

Deployment considerations. In our evaluation, SPONGE performs strongly across high- and low-
resource data, sequential training, and generalization tasks. However, the scores achieved still leave room for
improvement, which is crucial for the clinical domain. We emphasize that this work does not aim to replace
doctors; the applications of technologies to the clinical environment must meet stringent legal and ethical
requirements.
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A Datasets

We present in Table 5 all data splits created with stratified sampling for the datasets used for training
and evaluation in our experiments. DisTEMIST comprehends the same 439 EHR notes in seven different
languages, for a total of 3,073 samples.

Table 5: Dataset splits.
Dataset Train Val Test
(M) MIMIC (Johnson et al., 2023) 102,199 9,358 7,618
(A) Achepa (Papaioannou et al., 2022) 1,590 407 394
(S) Stockholm University (Lamproudis et al., 2023) 1,583 256 232
(C) CodieEsp (Miranda-Escalada et al., 2020) 656 158 182
(B) SemclinBr (Oliveira et al., 2022) 453 107 109
(D) DisTEMIST (Miranda-Escalada et al., 2022) — — 3,073 (439 × 7)

B Impact of sequential training on downstream performance

We compare the average performance of models trained sequentially against models trained exclusively on
a single dataset. Table 6 shows the absolute performance difference for every dataset. With very few
exceptions, the performance boost is significant, highlighting the positive effect of knowledge transfer in
sequential training. SPONGE6,3 outperforms all models on all datasets on the average sequence when
finetuned sequentially. S-Protoxlm-r outperforms XLM-R and XLM-R + A when trained and evaluated only
on MIMIC(single dataset). However, for the other datasets that are trained in isolation S-Protoxlm-r is the
worst-performing model, indicating that it is not suitable for low-resource datasets. Moreover, SPONGE6,3

outperforms all models also for the case of single datasets which shows the data efficiency of our approach.

Generally, all models perform better when sequentially trained, this is confirmed by the positive performance
difference for both metrics (bottom of Table 6).
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Table 6: Performance difference when comparing sequential training results versus single-dataset training
for every downstream dataset. We underline the best results when training on a single dataset (top), and
boldface (middle) stands for the best results in sequential-transfer learning. All models benefit signifi-
cantly(bottom) from multi-step sequential transfer learning.

macro AUROC macro PRAUC
Model/Dataset M A B C S M A B C S

Single dataset

S-Protoxlm-r 87.51 78.70 56.55 65.46 69.29 28.08 34.41 7.17 13.38 26.73
SPONGE6,3 89.70 89.48 67.05 82.92 84.17 34.17 60.65 20.53 36.32 43.33
XLM-R 86.21 87.37 65.18 77.74 87.01 27.27 55.80 18.29 28.18 63.80
XLM-R+A 85.74 81.43 63.68 79.69 87.35 26.38 52.08 16.73 31.54 53.12

Sequence average

S-Protoxlm-r - 81.83 70.75 83.33 84.42 - 42.22 23.83 34.66 47.33
SPONGE6,3 - 90.05 82.65 91.03 90.62 - 59.93 42.16 55.22 59.67
XLM-R - 85.78 73.30 85.67 87.63 - 58.85 27.73 39.20 57.90
XLM-R+A - 84.83 75.93 86.38 88.08 - 55.65 28.54 38.77 57.52

Performance
Difference

S-Protoxlm-r - +3.13 +14.20 +17.87 +15.13 - +7.81 +16.66 +21.28 +20.60
SPONGE6,3 - +0.57 +15.6 +8.11 +6.45 - -0.72 +21.63 +18.9 +16.34
XLM-R - -1.59 +8.12 +7.93 +0.62 - +3.05 +9.44 +11.02 -5.90
XLM-R+A - +3.4 +12.25 +6.69 +0.73 - +3.57 +11.81 +7.23 +4.4

C Hyperparameters

We use subnetwork exploration for 10 epochs to build distributed knowledge of MIMIC, with a batch size
of 8 and learning rate as per Pfeiffer et al. (2020). We disable exploration for the remaining datasets of the
training sequences. For S-Protoxlm-r we use hyperparameters as in Figueroa et al. (2024). SPONGE and
S-Protoxlm-r use the same hidden dimensions for the prototypical layer, XLM-R as a Transformer, and are
trained on four A100 GPUs.

Adapter choice We evaluate SPONGE1,1 and XLM-R+A across the four low-resource datasets using
different adapter types: prefix-tuning (Li & Liang, 2021), LoRA (Hu et al., 2022), prompt-tuning (Lester
et al., 2021) and bottleneck adapters (Pfeiffer et al., 2020). Consistent with findings from Poth et al. (2023),
bottleneck adapters are the most effective for downstream classification tasks for SPONGE. For XLM-R,
LoRA delivered the best performance. We use the best performing adapters for each model family. All
models with adapters have significantly less trainable parameters than both S-Protoxlm-r and XLM-R.

Cross-lingual Transformer choice. Because of the large amount of experiments and the extent of our
evaluation, we consider smaller Transformers like XLM-R instead of significantly larger LLMs. We favor
XLM-R over Glot500 (Imani et al., 2023) since the latter performs worse on text classification tasks in all
but one of the languages of our training datasets (see Table 19 in Imani et al. (2023)).

D Best performing sequence checkpoint of S-Proto for DisTEMIST

In Table 7 we report the best performing sequence results of S-Protoxlm-r and compare them to
those of HSPONGE6,3. This sequence corresponds to Mimic(English) → SemClinBr(Portuguese) →
CodiEsp(Spanish) or M→B→C. The two models resulting from this sequence significantly outperform the
average scores over all sequences of all models reported in Table 3.

Table 7: Sequence M → B → C yields the best S-Proto model for DisTEMIST, we report results for this
sequence for HSPONGE6,3.

macro micro macro
Model AUROC AUROC PRAUC

S-Proto 86.16 84.73 25.25
HSPONGE6,3 92.26 91.89 34.19

20



Under review as submission to TMLR

E All training sequences

In Figure 5 we list all generated 64 dataset sequences that start with MIMIC. Every node corresponds to
the end of a sequence and a model checkpoint.
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Figure 5: All 64 training sequences that we evaluate in our experiments.
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F Trainable parameters

Table 8 demonstrates the number of trainable parameters of the models in our experiments. We decompose
these according to the corresponding modules of the architectures. Although SPONGE6,3 features the
largest number of competing subnetworks (90) it is the second smallest model w.r.t. the number of parameters
that are updated. Note, that Hydra is used only for inference and involves no training parameters.

Table 8: Number of subnetworks and trainable parameters for each model
Model Subnetworks Transformer Adapters Projection L Prototypical parameters (W and u) Total

S-Protoxlm-r 1×5 270M - 0.19M 5×0.25M 271.5M
XLM-R 1 270M - - 270M
SPONGE6,3 6×3×5 - 6×0.88M 3×0.19M 5×0.25M 7.15M
XLM-R+A 1 - 0.88M - 0.88M
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