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ABSTRACT

Given the black box nature of machine learning models, a plethora of explainability
methods have been developed to decipher the factors behind individual decisions.
In this paper, we introduce a novel problem of black box (probabilistic) explanation
certification. We ask the question: Given a black box model with only query
access, an explanation for an example and a quality metric (viz. fidelity, stability),
can we find the largest hypercube (i.e., ℓ∞ ball) centered at the example such
that when the explanation is applied to all examples within the hypercube, (with
high probability) a quality criterion is met (viz. fidelity greater than some value)?
Being able to efficiently find such a trust region has multiple benefits: i) insight
into model behavior in a region, with a guarantee; ii) ascertained stability of the
explanation; iii) explanation reuse, which can save time, energy and money by not
having to find explanations for every example; and iv) a possible meta-metric to
compare explanation methods. Our contributions include formalizing this problem,
proposing solutions, providing theoretical guarantees for these solutions that are
computable, and experimentally showing their efficacy on synthetic and real data.

1 INTRODUCTION

Numerous feature based local explanation methods have been proposed (Ribeiro et al., 2016; Lundberg
& Lee, 2017; Simonyan et al., 2013; Lapuschkin et al., 2016; Selvaraju et al., 2016; Dhurandhar
et al., 2022; Ramamurthy et al., 2020; Dhurandhar et al., 2023) to explain individual decisions of
black box models (Goodfellow et al., 2016). However, these methods in general do not come with
guarantees of how stable and widely applicable the explanations are likely to be. One typically has to
find explanations independently for each individual example of interest by invoking these methods as
many times. This situation motivates the following question considered in our work:

Given a black box model with only query access, an explanation for an example and a quality metric
(viz. fidelity, stability), can we find the largest hypercube (i.e. ℓ∞ ball) centered at the example such
that when the explanation is applied to all examples within the hypercube, (with high probability) a
quality criterion is met (viz. fidelity greater than some value)?

Answering this question affirmatively has benefits such as: i) providing insight into the behavior
of the model over a region with a quality guarantee, a.k.a. a trust region that could aid in recourse;
ii) ascertaining stability of explanations, which has recently been shown to be important (Liao
et al., 2022) for stakeholders performing model improvement, domain learning, adapting control
and capability assessment; iii) explanation reuse, which can save on time, energy and even money
(Dhurandhar et al., 2019); and iv) serving as a possible meta-metric to compare explanation methods.

Since we assume only query access to the black box model, the setting is model agnostic and hence
quite general. Furthermore, note that the explanation methods being certified could be model agnostic
or white-box. Our certification methods require only that the explanation method can compute
explanations for different examples, with no assumptions regarding its internal mechanism. We
discuss general applicability in Section 8. As such, our contributions are the following: 1) We
formalize the problem of explanation certification. 2) We propose an approach called Explanation
certify (Ecertify) with three strategies of increasing complexity. 3) We theoretically analyze the whole
approach by providing finite sample exponentially decaying bounds that can be estimated in practice,
along with asymptotic bounds and further analysis of special cases. 4) We empirically evaluate the
quality of the proposed approach on synthetic and real data, demonstrating its utility.
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2 PROBLEM FORMULATION

Before we formally define our problem note that vectors are in bold, matrices are in capital letters
unless otherwise specified or obvious from the context, all operations between vectors and scalars are
element-wise, [[n]] denotes the set {1, ..., n} for any positive integer n and log(.) is base 2.

Let X × Y denote the input-output space where X ⊆ Rd. We are given a predictive model1

g : Rd → R, an example x0 ∈ Rd for which we have a local explanation function ex0
: Rd → R

(viz. linear like in LIME or rule lists or decision trees) and a quality metric h : R2 → R (higher
the better, viz. fidelity, stability, etc.). Note that ex0

(x) denotes the explanation computed for x0

applied to x. For instance, if the explanation is linear, we multiply the feature importance vector of
x0 with x. We could also have non-linear explanations too, such as a (shallow) tree or a (small) rule
list (Wang & Rudin, 2015). Also for ease of exposition, let us henceforth just refer to the quality
metric as fidelity (defined in eq. 14), although our approach should apply to any such metric. Given
the above and a threshold θ, our goal is to find the largest ℓ∞ ball B∞(x0, w) centered at x0 with
radius (or half-width) w such that ∀x ∈ B∞(x0, w), fx0

(x) ≜ h (ex0
(x), g(x)) ≥ θ. Formally,

max w s.t. fx0
(x) ≥ θ ∀x ∈ B∞(x0, w). (1)

We say that a half-width w or region B∞(x0, w) is certified if the constraint in equation 1 holds for
w, and violating if not. Problem 1 is a challenging search problem even if we fix a w, since certifying
the corresponding region is infeasible as the set is uncountably infinite. Moreover, we do not have an
upper bound on w a priori. Thus for arbitrary g(.), given that we have just query access and a finite
query budget, we can only aim to approximately certify a region. Our desire is that the proposed
methods will correctly certify a region with high probability, converging to certainty as the budget
tends to infinity, while also being computationally efficient. The latter is important as one might want
to obtain such trust regions for explanations on entire datasets, which may be very large. Sometimes,
we equivalently state we query f(.) rather than querying g(.) and computing f(.).

3 RELATED WORK

Explainable AI (XAI) has gained prominence (Gunning, 2017) over the last decade with the prolifer-
ation of deep neural models (Goodfellow et al., 2016) which are typically opaque. Many explanation
techniques (Ribeiro et al., 2016; Lundberg & Lee, 2017; Selvaraju et al., 2016; Sundararajan et al.,
2017; Dhurandhar et al., 2022; Ramamurthy et al., 2020; Montavon et al., 2017; Bach et al., 2015)
have been proposed to address this issue and appropriate trust in these models. However, it is unclear
how widely applicable are the provided explanations and whether they are consistent over neighboring
examples. In this work, we provide this complementary perspective where rather than proposing
yet another explainability method, we propose a way to certify explanations from existing methods
by finding a region around an explained example where the explanation might still be valid. This
has benefits like those mentioned in the introduction, as well as possibly leading to more robust
explanation methods as we discuss later. The need for stable explanations (Liao et al., 2022), possible
recourse (Ustun et al., 2019) and even robust recourse (Pawelczyk et al., 2023; Maragno et al., 2023;
Hamman et al., 2023; Black et al., 2021) further motivate our problem, where the latter methods try
to find robust counterfactual explanations – not certify a given explanation – using white/black-box
access. Our work also complements works in formal explanations (Ignatiev, 2020; Arenas et al.,
2022), which try to find feature based explanations that satisfy criterion such as sufficient reason (or
prime implicants) and are typically restricted to tree based models or quantized neural networks.

Another related area, adversarial robustness (Muhammad & Bae, 2022), also studies the problem of
certification (e.g. Katz et al. (2017); Gehr et al. (2018); Weng et al. (2018a); Dvijotham et al. (2018);
Raghunathan et al. (2018); Cohen et al. (2019); Tjeng et al. (2019); Chen et al. (2019)) but for the
robustness of a single model to changes in the input, where no explanation is involved. Robustness
certification can be seen as a special case of our problem where the explanation is a constant function.
Within the robustness certification literature, randomized smoothing methods are more similar to
our work in also using only query (a.k.a. black box) access to the model. However, they certify
a smoothed version of the original model (Li et al., 2023), where an example is perturbed using
Gaussian smoothing to facilitate robustness guarantees. We are not aware of robustness certification
works that use only query access to certify the original model. Zeroth order (ZO) optimization

1One can assume one-hot encoding or frequency map approach (Dhurandhar et al., 2019) for discrete features.
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Figure 1: Illustration of our three certification strategies. (a) depicts one of the final steps of the unif strategy,
while (b) and (c) depict two consecutive close-to-final steps of unifI and adaptI respectively. The setup is the
same as in Section 7 with d = 2, Q = 1000. The boxes have width w = 0.5 which is the optimal width. The
star in the center denotes the example whose explanation we want to certify, while the orange lines are level
sets for fidelity (θ = 0.75). The methods’ different behaviors are apparent: unif queries examples uniformly at
random, while unifI uniformly samples prototypes (blue stars) and then queries examples around these prototypes
(green blobs). From one step to the next, unifI doubles the number of prototypes and halves the number of
examples queried around each prototype. Contrastingly, adaptI, in the innermost loop, halves the number of
prototypes where it adaptively queries more around prototypes close to low fidelity examples (lower left and
upper right corners). Please see the uploaded videos to view the evolution of all steps for the three strategies.

methods have been proposed for adversarial attacks (Chen et al., 2017; Tu et al., 2019; Zhao et al.,
2019), i.e., finding adversarial examples. In the experiments, we adapt a ZO method from a state-
of-the-art toolbox (Liu et al., 2022) to our setting, and show that our proposed methods scale much
better while still being accurate. In Weng et al. (2018b), extreme value theory is used for robustness
certification, providing only asymptotic bounds for a special case of our problem (see Section 6.1).
Moreover, their approach assumes access to gradients and is therefore not black box.

Algorithm 1: Explanation certify (Ecertify). (Code uploaded as supplementary file)
Input: example to be certified x0, quality metric f(.) (viz. fidelity), threshold θ, number of

regions to check Z, query budget per region Q, lower and upper bounding half-widths (lb, ub)
of initial region, and certification strategy to use (s = {unif, unifI, adaptI}).

Initialize: w = 0, B = ∞
if f(x0) < θ then Output: -1 # Even x0 fails certification.
for z = 1 to Z do

σ = ub−lb
d #Standard deviation of Gaussians in unifI and adaptI

(t, b) = Certify(lb, ub,Q, θ, f(.),x0, σ, s)
# Find half-width of hypercube to certify.
if t == True then

w = ub, lb = ub, ub = min
(
B+ub

2 , 2ub
)

else
B = min {|bi − xi| s.t. |bi − xi| > lb ∀i ∈ [[d]]}, ub = B+lb

2
Output: w

4 METHOD

Our approach comprises Algorithms 1 and 2. Given the problem elements x0, f, θ defined in
Section 2, Algorithm 1 outputs the largest half-width w that it claims is certified. Each iteration of
Algorithm 1 decides which region to certify next based on whether the previous region was certified
or not. The actual certification of a region happens in Algorithm 2, where we provide three strategies
s to do so. If Algorithm 2 certifies a region, defined by lower and upper bounding half-widths lb and
ub, then Algorithm 1 will either double ub or choose it to be midway between the current ub and
B, where B is an upper bound on half-widths to be considered. Otherwise, if the region is found
to be violating, the next ub is the midpoint between B and lb, the width of the last certified region.
Algorithm 1 will continue for a pre-specified number of iterations Z, after which it will output the
largest certified region it found.

Some remarks on Algorithm 1: i) The lower bound lb will typically be 0 initially, unless one already
knows a region that is surely certified. If so, one could start from there. As we discuss later, if g(.)
is known to be Lipschitz for instance and the explanation function is linear, then one could also set
a higher lb value. ii) Although the end goal is to certify a hypercube around x0, Algorithm 1 asks
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Algorithm 2: (t, b) = Certify(lb, ub,Q, θ, f(.),x0, s)

Let R = [x0 + ub,x0 − ub] \ [x0 + lb,x0 − lb] be the region to query in and let q = ⌊ Q
log(Q)⌋

# Choose sampling strategy as Uniform, Uniform Incremental or Adaptive Incremental
if s == unif then

Uniformly sample Q examples r1, ..., rQ ∈ R and query f(.)
Let r = argmin

{r1,...,rQ}
f(ri)

if f(r) ≥ θ then Output(True,0) else Output: (False, r)
else if s == unifI then

for i = 1 to ⌊log(Q)⌋ do
Let n = min(2i, q)
Uniformly sample n examples (a.k.a. prototypes) r1, ..., rn in R
Sample ⌊ q

n⌋ examples (in R) from each Gaussian N (rj , σ
2I) (j ∈ [[n]]) and query f(.)

Let r be the minimum fidelity example amongst the q queried examples
if f(r) < θ then Output: (False, r)

Output: (True,0)
else if s == adaptI then

for i = 1 to ⌊log(Q)⌋ do
if i2i ≤ q then n = 2i, k = i else n = 2k

Let m = n
Uniformly sample m examples (a.k.a. prototypes) r1, ..., rm in R
for j = 1 to ⌈log(n)⌉ do

Sample ⌊ q
m⌈log(n)⌉⌋ examples (in R) from each Gaussian N (rk, σ

2I) where rk
belongs to (selected) m prototypical examples and query f(.)

Find the minimum fidelity example (mfe) for each of the m Gaussians
if the mfe amongst these is r and f(r) < θ then Output: (False, r)
Otherwise, select the ⌈m

2 ⌉ prototypes which are associated with the lowest minimum
fidelity examples and set m = ⌈m

2 ⌉
Output: (True,0)

Algorithm 2 to certify regions between hypercubes with half-widths lb and ub. This is because the
region with half-width lb has already been certified at that juncture, and hence when certifying a larger
region ub we need not waste queries on examples that lie inside lb, instead saving the query budget
for the region in between the two that has not yet been certified. We implement this by sampling
examples from the larger hypercube and only querying those that lie outside the smaller hypercube.2
iii) Other ways of updating the upper bound B are discussed in Appendix F.

In Algorithm 2 we present three strategies: unif, unifI and adaptI. The first strategy, uniform (unif),
is a simple uniform random sampling strategy that simply queries g(.) in the region specified by
Algorithm 1. If the fidelity is met for all examples queried then a boolean value of True is returned,
else False is returned along with the example where the fidelity was the worst. In the second strategy,
uniform incremental (unifI), we uniformly randomly sample at each iteration (i.e. from 1 to ⌊log(Q)⌋)
a set of n examples and then using them as centers of a Gaussian we sample ⌊ q

n⌋ examples. Again
examples belonging to the region are queried and True or False (with the failing example) is returned.
This method in a sense is performing a dynamic grid search over the region in an incremental fashion
in an attempt to certify it. Our third, and possibly, most promising strategy is adaptive incremental
(adaptI), where like in unifI we uniformly at random sample centers or prototypical examples, but
then adaptively decide how many examples to sample around each prototype depending on how
promising it was in finding the minimum quality example. So at each stage in the innermost loop we
choose half of the most promising prototypes and sample more around them until we reach a single
prototype or find a violating example. This method thus focuses the queries in regions where it is
most likely to find a violating example. More intuition is provided in Figure 1 and Appendix D.

2we set σ ∝ 1
d

in Algorithm 1 since, with increasing dimension it becomes easier for an example sampled
from a Gaussian to lie outside the hypercube as all dimensions need to lie within the specified ranges.
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5 ANALYSIS

In this section, we provide probabilistic performance guarantees for Algorithms 1 and 2. We also
verify that the total query budget used by each strategy is at most Q. Without loss of generality
(w.l.o.g.) assume x0 is at the origin, i.e., x0 = 0. Then any hypercube of (half-) width w, where
w ≥ 0, can be denoted by [−w,w]d, and d is the dimensionality of the space. Let f∗

w be the minimum
fidelity value in [−w,w]d, and let f̂∗

w be the estimated minimum fidelity in that region based on the
methods mentioned in Algorithm 2. Note that we always have f∗

w ≤ f̂∗
w.

Given the above notation, the output of Algorithm 1 is a region [−w,w]d that is claimed to be
certified, implying f̂∗

w ≥ θ. However, the condition that we would ideally like to hold is f∗
w ≥ θ,

involving the unknown f∗
w. Thus, we would like f̂∗

w to be close to f∗
w. In what follows, we provide

bounds on the probability that f̂∗
w and f∗

w differ by at most ϵ, i.e., P [f̂∗
w − f∗

w ≤ ϵ] ≥ 1− p, for any
ϵ > 0 and p ∈ [0, 1].

One way to interpret our bounds is as follows:3 Fix a value for ϵ and suppose that the region [−w,w]d

is actually violating, by a “margin” of at least ϵ: f∗
w ≤ θ − ϵ. Then the probability that Algorithm 1

incorrectly certifies [−w,w]d (f̂∗
w ≥ θ) is at most p. On the other hand, if [−w,w]d is truly certified,

then f̂∗
w ≥ f∗

w ≥ θ and Algorithm 1 also certifies the region. In the last case, if θ − ϵ < f∗
w < θ, then

[−w,w]d is violating but within the specified margin ϵ so we do not insist on a guarantee.

We note for our first result below that Algorithm 1 doubles or halves the range every time we certify
or fail to certify a region respectively. Hence, to certify the final region [−w,w]d we will take
m = O(log(w)) steps. W.l.o.g. assume the number of subsets of [−w,w]d certified by the algorithm
is c ≤ m. Let w1 ≤ · · · ≤ wc denote the upper bounds (ub in Algorithm 1) of the certified regions
in increasing order, where wc = w. Let us also denote the fidelity of an example x in between two
hypercubes [−j, j]d, [−i, i]d where j ≥ i ≥ 0 by f

(x)
j,i .The following lemma is a consequence of

certification in a region being independent of certification in a disjoint region (all proofs in Appendix).

Lemma 1. The probability that f̂∗
w and f∗

w differ by at most ϵ decomposes over regions as follows:

P
[
f̂∗
w − f∗

w ≤ ϵ
]
= 1−

c∏
i=1

P
[
f̂∗
wi,wi−1

− f∗
w > ϵ

]
≥ max

i∈{1,...,c}
P
[
f̂∗
wi,wi−1

− f∗
w ≤ ϵ

]
, (2)

where w0 = 0.

From equation 2 it is clear that we need to lower bound P [f̂∗
wi,wi−1

− f∗
w ≤ ϵ] ∀i ∈ {1, ..., c}. Since

the mathematical form of the bounds will be similar ∀i, let us for simplicity of notation denote the
fidelities for the ith region by just the integer subscript i, i.e., denote f̂∗

wi,wi−1
by f̂∗

i and similarly the
fidelities for other examples in that region. We thus now need to lower bound P [f̂∗

i − f∗
w ≤ ϵ] for the

three different certification strategies proposed in Algorithm 2.

Uniform Strategy: This is the simplest strategy where we sample and query Q examples uniformly
in the region we want to certify. Let U denote the uniform distribution over the input space in the ith

region and let F (u)
i (.) denote the cumulative distribution function (cdf) of the fidelities induced by

this uniform distribution, i.e., F (u)
i (v) ≜ Pr∼U [f

(r)
i ≤ v] for some real v and r in the ith region.

Lemma 2. Given the above notation we can lower bound the probability of unif in a region i,

P [f̂∗
i − f∗

w ≤ ϵ] ≥ 1− exp (−QF (u)
i (f∗

w + ϵ)) (3)

Uniform Incremental Strategy: In this strategy, we sample n ≤ q samples uniformly ⌊log(Q)⌋
times. Then using each of them as centers we sample ⌊ q

n⌋ examples and query them. Let the cdfs
induced by each of the centers through Gaussian sampling be denoted by F

Nj,k

i (.), where j denotes
the iteration number that goes up to ⌊log(Q)⌋ and k the kth sampled prototype/center.
Lemma 3. Given the above notation we can lower bound the probability of unifI in a region i,

P [f̂∗
i − f∗

w ≤ ϵ] ≥ 1− exp

(
− max

j∈{1,...,⌊log(Q)⌋},k∈{1,...,n}

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)

)
(4)

3Another way is to regard p as given and solve for ϵ to get a (1− p)-confidence interval [f̂∗
w − ϵ, f̂∗

w] for f∗
w.
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The above expression conveys the insight that if we find a good prototype rj,k (i.e. close to f∗
i ) then

F
Nj,k

i (f∗
w + ϵ) will be high, leading to a higher (i.e., better) lower bound than in the uniform case.

Adaptive Incremental Strategy: This strategy explores adaptively in more promising areas of the
input space, unlike the other two strategies. As with unifI, let the cdfs induced by each of the centers
through Gaussian sampling be denoted by F

Nj,k

i (.), where j denotes the iteration number that goes
up to ⌊log(Q)⌋ and k the kth sampled prototype for a given n.

Lemma 4. Given the above notation and assuming w.l.o.g. F
Nj,k

i (.) ≤ F
Nj,k+1

i (.) ∀j ∈
{1, ..., ⌊log(Q)⌋}, k ∈ {1, ..., n − 1} i.e., the first prototype produces the worst estimates of the
minimum fidelity, while the nth prototype produces the best, we can lower bound the probability of
adaptI in a region i,

P [f̂∗
i − f∗

w ≤ ϵ] ≥ 1− exp

(
− max

j∈{1,...,⌊log(Q)⌋}

⌊
(n− 1)q

n log n

⌋
F

Nj,n

i (f∗
w + ϵ)

)
(5)

We see above that we sample exponentially more around the most promising prototypes (see Lemma
4 proof in the Appendix), unlike the uniform strategies which do not adapt. Hence, in practice we are
likely to estimate f∗

w more accurately with adaptive incremental especially in high dimensions.

Remark: It is easy to see (when the cdfs Fi(f
∗
w+ϵ) ̸= 0) that for all the three methods asymptotically

(i.e., as Q → ∞) the lower bound on P [f̂∗
i − f∗

w ≤ ϵ] approaches 1 at exponential rate for arbitrarily
small ϵ, which is reassuring as it implies that we should certify correctly a region given enough
number of queries. Moreover, Fi(f

∗
w + ϵ) = 0 is unlikely to happen in practice as can be surmised

from proposition 2 in the Appendix. Now we can also lower bound equation 2 for each strategy.
Theorem 1. Based on Lemmas 1, 2, 3 and 4 we have,

P [f̂∗
w − f∗

w ≤ ϵ] (6)

≥



1− min
i∈{1,...,c}

exp (−QF (u)
wi

(f∗
w + ϵ)) unif

1− min
i∈{1,...,c}

exp

(
− max

j∈{1,...,⌊log(Q)⌋},k∈{1,...,n}

⌊
q
n

⌋
F

Nj,k
wi (f∗

w + ϵ)

)
unifI

1− min
i∈{1,...,c}

exp

(
− max

j∈{1,...,⌊log(Q)⌋}

⌊
(n−1)q
n logn

⌋
F

Nj,n
wi (f∗

w + ϵ)

)
adaptI

We also have the following proposition regarding the number of queries used by each strategy.
Proposition 1. unif, unifI and adaptI query the black box at most Q times in any call to Algorithm 2.

6 BOUND ESTIMATION AND SPECIAL CASES

In Section 5, we derived (with minimal assumptions) finite sample bounds on the probability of
estimated and true minimum fidelities being close, which is directly related to correct certification.
However, the cdfs Fi(.) are generally unknown. In Section 6.1, we discuss the estimation of our
bounds, and we also provide alternative asymptotic bounds that are cdf-free. In Section 6.2, we first
provide a partial characterization of Fi(.) for a piecewise linear black box and then discuss settings
where the trust region can be identified even more efficiently using our strategies.

6.1 BOUND ESTIMATION

Cdf Fi(.) Estimation: An attractive property of our bounds is that the cdfs are all one-dimensional,
irrespective of the dimensionality of the input space. Hence, it is efficient to estimate the correspond-
ing (univariate) densities. More specifically, given fidelity values sampled in a region by any of the
three strategies, one can estimate a distribution of these fidelities using standard techniques such
as kernel density estimation. The only challenge is that the point of evaluation f∗

w + ϵ is unknown
because f∗

w is unknown. We propose using f̂∗
w or θ as proxies for f∗

w. Since the bounds depend only
on subsets that are certified, if we assume that these certifications are correct (i.e. f∗

w ≥ θ), then using
f̂∗
w should provide (somewhat) optimistic bounds (since f̂∗

w ≥ f∗
w) while, θ will provide conservative

ones. As we shall see in the experiments, both proxies are close.
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Table 1: Synthetic results for x = [0]d, Z = 10, θ = 0.75, explanation is slope 0.75 hyperplane and optimal
half-width is 1

d
. Standard errors for the half-width (w), bounds computed using Theorem 1 and EVT bounds for

unif and unifI are in Tables 2, 5 and 6 respectively in the Appendix.

d Q
unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .012
102 1 .006 1 .004 1 .002 1 1.221
103 1 .055 1 .041 1 .026 1 1.724
104 1 .53 1 .418 1 .189 1 1.641

10

10 .06 .001 .037 .001 .142 .001 .3 .012
102 .082 .003 .06 .007 .08 .003 .1 .125
103 .09 .036 .085 .049 .11 .044 .1 1.354
104 .1 .363 .117 .615 .1 .551 .1 14.944

102

10 .012 .001 .006 .001 .007 .001 .05 .031
102 .012 .005 .007 .012 .008 .005 .025 .3
103 .011 .054 .009 .158 .01 .09 .012 4.072
104 .01 .632 .01 1.692 .01 .51 .009 55.87

103

10 5 × 10−4 .003 3 × 10−4 .004 5 × 10−4 .002 .037 .307

102 6 × 10−4 .011 .001 .073 6 × 10−4 .044 .012 2.579

103 8 × 10−4 .077 .001 1.074 8 × 10−4 .511 .003 28.335

104 .001 .588 .001 13.786 9 × 10−4 5.097 .001 288.523

104

10 6.3 × 10−5 .012 5.1 × 10−5 .098 5.8 × 10−5 .021 .006 3.76

102 6.6 × 10−5 .072 7.7 × 10−5 1.187 7.8 × 10−5 .43 .004 34.602

103 8.3 × 10−5 .771 8.4 × 10−5 12.452 8.5 × 10−5 7.91 8.4 × 10−4 391.494

104 8.9 × 10−5 4.83 9.1 × 10−5 112.58 9.4 × 10−5 88.342 9.3 × 10−5 4384.76

Asymptotic (Cdf-free) Bounds: Rather than finite sample bounds that depend on cdfs Fi, one could
instead take an asymptotic (Q → ∞) perspective and obtain results that are free of Fi. Extreme Value
Theory (EVT) (Smith, 2003) is useful in this regard. Given our setting where the minimum fidelity
f∗
i in each region i is finite, we can assume Fi(f

∗
i + ϵ) ≈ ηϵκ as ϵ → 0 for some η > 0, κ > 0

as is standard in EVT (Smith, 2003). This would apply to all three strategies. We state an explicit
asymptotic result for the case of i.i.d. fidelity samples, as it naturally follows from EVT. This i.i.d. case
covers the unif strategy and an i.i.d. version of unifI discussed in the Appendix. Here in addition to
the empirical minimum fidelity f̂∗

i , we also use the second-smallest empirical value, denoted as ˆ̂f∗
i .

Then the result of de Haan (1981) (also re-derived in De Carvalho (2011)) implies the following.

Corollary 1. For the unif and i.i.d. unifI strategies, as Q → ∞, we have

P
[
f̂∗
i − f∗

i ≤ ϵ
]
=

(
1 +

ˆ̂f∗
i − f̂∗

i

ϵ

)−κ

. (7)

Corollary 1 is reminiscent of Lemmas 2–4 except that the region-specific minimum f∗
i has taken

the place of the overall minimum f∗
w. However, the two coincide for i = i∗ ∈ argmini f

∗
i . For

i = i∗, the right-hand side of equation 7 is a valid lower bound on the probability P [f̂∗
w − f∗

w ≤ ϵ]
in Theorem 1, as we discuss further in the Appendix. In our experiments, we estimate i∗ using the
empirical minimum fidelities as î = argmini f̂

∗
i . The exponent κ, as argued in de Haan (1981), can

be taken to be κ = d/2, and thus the bound is completely determined given the fidelity samples.

6.2 SPECIAL CASES

Characterizing cdfs Fi(.) for a piecewise linear black box: In Appendix B we provide a (partial)
characterization of the cdfs Fi(.) for piecewise linear black box functions, which cover widely
used models such as neural networks with ReLU activations (Hanin & Rolnick, 2019), trees and
tree ensembles, including oblique trees (Murthy et al., 1994) and model trees (Gama, 2004). This
characterization assumes a linear explanation function and a commonly defined fidelity function
(Dhurandhar et al., 2022; Ramamurthy et al., 2020).

More Efficient Certification: In Appendix C we discuss how having a black box model that
is Lipschitz or piecewise linear can further speed up our methods. In the Lipschitz case we can
automatically (i.e. without querying) certify a region and set a non-trivial lb value with additional
speedups possible. In the piecewise linear case instead of a head start (i.e. higher lb) we could stop
our search early.
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Figure 2: Each row corresponds to a dataset (Row #: 1-ImageNet, 2-CIFAR10, 3-Arrhythmia, 4,5-HELOC).
First two columns are LIME half-width and timing results, while the last two columns are the same for SHAP.
Our methods are significantly faster than ZO+, while still converging to similar w in most cases. It seems unif,
unifI and adaptI are best for low (100s or lower), intermediate (≈ 1000) and high dimensionality (10000s)
respectively. Trusting the converged upon half-widths, one can also compare XAI methods as discussed below.

7 EXPERIMENTS

We perform synthetic and real data experiments to verify the accuracy and judge the efficiency of
our methods. For real data we additionally report interesting insights that can be obtained by finding
trust regions. Since the problem setup is novel there aren’t existing baselines in the explainability
literature. Nonetheless, we adapt a ZO toolbox (Liu et al., 2022) to be usable in our setup. We refer to
this method as ZO+, where our Ecertify algorithm calls this toolbox as a routine similar to our three
strategies. In all the experiments the quality metric is fidelity as defined in eqn. 14 (in Appendix),
results are averaged over 10 runs, Q is varied from 10 to 10000, Z is set to 10, θ = 0.75 (in the main
paper) and we used 4-core machines with 64 GB RAM and 1 NVIDIA A100 GPU.

Synthetic Setup: We create a piecewise linear function with three pieces where the center piece lies
between [−2, 2] in each dimension, has an angle of 45 degrees with each axis, and passes through the
origin. The other two pieces start at −2 and 2 respectively and are orthogonal to the center piece.
The example we want to explain is at the origin. We vary dimensions d from 1 to 10000. In the main
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paper we report results for the explanation being a hyperplane with slope 0.75 passing through the
origin. The optimal half-width is thus 1

d . Other variations are reported in the Appendix.

Real Setup: We experiment on two image datasets, namely ImageNet (Deng et al., 2009) (224× 224
dimensions) and CIFAR10 (Krizhevsky, 2009) (32 × 32 dimensions), and two tabular datasets,
HELOC (FICO, 2018) (23 dimensional) and Arrhythmia (Vanschoren et al., 2013) (195 dimensional).
The model for tabular datasets is Gradient Boosted trees (with default settings) in scikit-learn
(Pedregosa et al., 2011). For ImageNet we used a ResNet50 and for CIFAR10 we used a VGG11
model. We also consider arguably the two most popular local explainers: LIME and SHAP. To
have a more representative selection of examples to find explanations and half-widths, we chose
five prototypical examples (Gurumoorthy et al., 2019) from each dataset. We show one to two
examples for each dataset in the main paper where the others are in the Appendix. More details such
as explainer settings, certification strategy settings (etc.) for each dataset are in the Appendix.

Observations: From the synthetic experiments, we see in Table 1 that although all methods converge
close to the true certified half-width, our methods are an order of magnitude or more efficient than
ZO+. Also they seem to converge faster (in terms of queries) in high dimensions (100 to 10000
dimensions). Comparing between our methods it seems unif is best (and sufficient) for lowish
dimensions (up to 100), while unifI is preferable in the intermediate range (1000) and adaptI is best
when the dimensionality is high (10000). Thus the incremental and finally adaptive abilities seem
to have an advantage as the search space increases. Although we query (at most) Q times in each
strategy, adaptI and unifI are typically slower than unif because we sample from n different Gaussians
log(Q) times as opposed to sampling Q examples with a single function call. This however, will
not always happen if a violating example is found faster, as seen for adaptI on some real datasets in
Figure 2. We also report our Theorem 1 bounds (estimated as in Section 6.1) on the probability of
closeness and the (additional) time to compute them in Table 5 in the Appendix. As can be seen the
bounds converge fast to 1 especially for adaptI and are efficient to compute (at most a few minutes).
EVT bounds based on Corollary 1, shown in Table 6, are also high enough to be meaningful for unifI
and improve with increasing Q, but become looser with increasing input dimensionality.

From the experiments on real data, we again see from Figure 2 that our methods are significantly
faster than ZO+, while they still converge to (roughly) the same half-widths in most cases. The
running times are especially higher in the LIME image cases because LIME has to create masks
for each image we certify. We also observe that adaptI is generally faster in most cases because it
finds the violating examples faster that the other strategies. As such, in terms of convergence of the
estimated half-width with increasing number of queries balanced against efficiency, we observe that
unif is probably best for HELOC and Arrythmia which are low dimensional datasets, unifI is best
for CIFAR10 which has dimension close to 1000, and adaptI is best for ImageNet which has 40K+
dimensions. Probability bounds are reported in Table 7 for ImageNet. Here again like in the synthetic
case we see fast convergence especially for adaptI with the bound computation being efficient.

Interestingly, our analysis can also be used to compare XAI methods. We observe that LIME
widths are typically much larger than those found for SHAP, and hence the explanations are more
generalizable beyond the specific example. This however, does not mean that LIME is always more
robust than SHAP as the quality of the explanation depends on the desired fidelity. SHAP typically
has fidelity of 1 at x0, while LIME may have lower fidelity at x0 but generalizes farther in the sense
of fidelity remaining above the threshold. For instance, in row 4 in Figure 2 LIME has a fidelity of
0.87 which is greater than our set threshold of 0.75. The explanation here considers AvgMlnFile and
NumSatisfactoryTrades as important factors, while SHAP considers ExternalRiskEstimate as the
most important factor. The latter is more informative for the specific example but doesn’t generalize
as well nearby. The last row shows the downside of generalizability where LIME fidelity even for
the example we want to explain is lower than our threshold of 0.75 and so we return −1, but SHAP
produces a trust region. Thus, one could select which method to use based on the desired threshold for
the quality metric. As such, this type of analysis can be used to compare and contrast XAI methods
on individual examples, on regions, as well as on entire datasets, and across different models.

8 DISCUSSION

Please see Appendix G for discussion on extensions and interesting future directions.
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A PROOFS FOR RESULTS IN SECTION 5

Lemma 1 proof. To prove the first equality, we recall that f̂∗
w is the minimum of the fidelities sam-

pled from [−w,w]d, while f̂∗
wi,wi−1

is the minimum over the samples restricted to the ith region
[−wi, wi]\[−wi−1, wi−1]. Since [−w,w]d is the disjoint union of these regions, it follows that

f̂∗
w = min

i∈{1,...,c}
f̂∗
wi,wi−1

(8)

and
P
[
f̂∗
w > f∗

w + ϵ
]
= P

[
f̂∗
w1,w0

> f∗
w + ϵ, . . . , f̂∗

wc,wc−1
> f∗

w + ϵ
]
.

Since samples in different regions are independent, the joint probability above factors to yield the
equality in the lemma (after taking the complement).

The inequality in the lemma follows from bounding all but the smallest of the P
[
f̂∗
wi,wi−1

> f∗
w + ϵ

]
factors by 1. The inequality is tight if the argmin corresponding to equation 8 is a single region,

i∗ = argmin
i∈{1,...,c}

f̂∗
wi,wi−1

,

and ϵ is small enough so that f∗
w + ϵ < f∗

wi,wi−1
for i ̸= i∗ (recall that f∗

wi,wi−1
is the true minimum

fidelity in the region [−wi, wi]\[−wi−1, wi−1]). In this case,

P
[
f̂∗
wi,wi−1

> f∗
w + ϵ

]
= P

[
f̂∗
wi,wi−1

≥ f∗
wi,wi−1

]
= 1, i ̸= i∗,

and
c∏

i=1

P
[
f̂∗
wi,wi−1

− f∗
w > ϵ

]
= P

[
f̂∗
wi∗ ,wi∗−1

− f∗
w > ϵ

]
= min

i∈{1,...,c}
P
[
f̂∗
wi,wi−1

− f∗
w > ϵ

]
.

From equation 2 it is clear that we need to lower bound P [f̂∗
wi,wi−1

− f∗
wi,wi−1

≤ ϵ] ∀i ∈ {1, ..., c}.
Since, the mathematical form of the bounds will be similar ∀i, let us for simplicity of notation
denote the fidelities for the ith region by just the suffix i, i.e., denote f∗

wi,wi−1
by f∗

i and similarly the
minimum estimated fidelity and fidelities for other examples in that region. We thus now need to
lower bound P [f̂∗

i − f∗
w ≤ ϵ] for the three different certification strategies proposed in Algorithm 2.

13
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Uniform Strategy: This is the simplest strategy where we sample and query Q examples uniformly
in the region we want to certify. Let U denote the uniform distribution over the input space in the ith

region and let F (u)
i (.) denote the cumulative distribution function (cdf) of the fidelities induced by

this uniform distribution, i.e. F (u)
i (v) ≜ Pr∼U [f̂

(r)
i ≤ v] for some real v and r belonging to the ith

region. Then if f̂ (r1)
i , ..., f̂

(rQ)
i are the fidelities of the Q examples sampled by this strategy, we have

Lemma 2 proof.

P [f̂∗
i − f∗

w ≤ ϵ] = 1− P [f̂∗
i > f∗

w + ϵ]

= 1−
Q∏

j=1

P [f̂
(rj)
i > f∗

w + ϵ]

= 1− (1− F (u)
i (f∗

w + ϵ))Q

≥ 1− exp (−QF (u)
i (f∗

w + ϵ)) (9)

In the last step we use the following inequality for x ∈ [0, 1], (1− x)n ≤ exp−nx.

Uniform Incremental Strategy: In this strategy, we sample n ≤ q samples uniformly ⌊log(Q)⌋
times. Then using each of them as centers we sample ⌊ q

n⌋ examples and query them. Let the cdfs
induced by each of the centers through Gaussian sampling be denoted by F

Nj,k

i (.), where j denotes
the iteration number that goes up to ⌊log(Q)⌋ and k the kth sampled prototype/center. With an
analogous definition as before and similar steps we get,

Lemma 3 proof.

P [f̂∗
i − f∗

w ≤ ϵ] = 1−
⌊log(Q)⌋∏

j=1

n=min(2j ,q)∏
k=1

(
1− F

Nj,k

i (f∗
w + ϵ)

)⌊ q
n ⌋

≥ 1− exp

−
⌊log(Q)⌋∑

j=1

n=min(2j ,q)∑
k=1

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)


≥ 1− exp

−
⌊log(Q)⌋∑

j=1

max
k∈{1,...,n}

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)


≥ 1− exp

(
− max

j∈{1,...,⌊log(Q)⌋},k∈{1,...,n}

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)

)
(10)

The above expressions convey the insight that if we find a good prototype rj,k implying that
F

Nj,k

i (f∗
w + ϵ) is high it will lead to a higher (i.e. better) lower bound than in the uniform case.

Intuitively, if we find a good prototype, exploring the region around it should be beneficial to find a
good estimate of f∗

i .

Adaptive Incremental Strategy: This is possibly the most interesting strategy, where we explore
adaptively in more promising areas of the input space unlike the other two strategies. Here too let
the cdfs induced by each of the centers through Gaussian sampling be denoted by F

Nj,k

i (.), where j
denotes the iteration number that goes up to ⌊log(Q)⌋ and k the kth sampled prototype/center for a
given n. W.l.o.g. assume F

Nj,k

i (.) ≤ F
Nj,k+1

i (.) ∀j ∈ {1, ..., ⌊log(Q)⌋}, k ∈ {1, ..., n− 1} i.e. the
first prototype produces the worst estimates of the minimum fidelity, while the nth prototype produces
the best4.

4When sampling not always will the best cdf produce the best estimate, although it will be most likely (i.e.
highest probability). We assume this probability to be 1 for each cdf based on its position in the ordering of cdfs
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Lemma 4 proof. Now we know that for j ∈ {1, ..., ⌊log(Q)⌋},

n =

{
2j if j2j ≤ q

2l otherwise, where l is the largest j such that j2j ≤ q
(11)

then the number of examples that will be sampled around the kth prototype will be,

⌊
(2v − 1)q

n log n

⌋
where, v =


1 if k ∈ {1, ...,

⌊
n
2

⌋
}

2 else if k ∈ {
⌈
n
2

⌉
, ...,

⌊
3n
4

⌋
}

...
...

log(n) else if k = n

(12)

Then we have,

P [f̂∗
i − f∗

w ≤ ϵ] = 1−
⌊log(Q)⌋∏

j=1

n∏
k=1

(
1− F

Nj,k

i (f∗
w + ϵ)

)⌊ (2v−1)q
n log n

⌋

≥ 1− exp

−
⌊log(Q)⌋∑

j=1

n∑
k=1

⌊
(2v − 1)q

n log n

⌋
F

Nj,k

i (f∗
w + ϵ)


≥ 1− exp

(
− max

j∈{1,...,⌊log(Q)⌋}

⌊
(n− 1)q

n log n

⌋
F

Nj,n

i (f∗
w + ϵ)

)
(13)

Proposition 1 proof. For the unif strategy we query Q times uniformly so its obvious that the query
budget will be Q.

For unifI we query n ≤ q samples ⌊log(Q)⌋ times and then using them as centers query ⌊ q
n⌋

examples each time. Given that q = ⌊ Q
log(Q)⌋, the total number of queries is thus n⌊ q

n⌋⌊log(Q)⌋ =
n⌊ Q

log(Q)n⌋⌊log(Q)⌋ ≤ Q. This value however will be very close to Q which is what we want.

For adaptI too one can verify that the total query budget will be close but utmost Q. This is because
we sample and query ⌊ q

m⌈log(n)⌉⌋ examples for m prototypes ⌈log(n)⌉⌊log(Q)⌋ times making the
total query budget used equal to ⌊ q

m⌈log(n)⌉⌋m⌈log(n)⌉⌊log(Q)⌋ ≤ q⌊log(Q)⌋ ≤ Q.

Proposition 2. Fi(f
∗
w + ϵ) = 0 iff all sets of inputs in region i corresponding to fidelities in

[f∗
w, f

∗
w + ϵ] have measure zero w.r.t. the sampling densities that are non-zero everywhere in region i.

Proof. First direction, all sets of inputs in region i corresponding to values in [f∗
w, f

∗
w + ϵ] having

measure zero =⇒ Fi(f
∗
w + ϵ) = 0: Since all sets of inputs in region i corresponding to values

in [f∗
w, f

∗
w + ϵ] have measure zero this would imply that the probability of getting any value in

[f∗
w, f

∗
w + ϵ] would also have measure zero and hence the sum of these probabilities/measures would

also be zero. Second direction, one or more sets of inputs corresponding to values in [f∗
w, f

∗
w + ϵ]

having non-zero measure =⇒ Fi(f
∗
w + ϵ) ̸= 0: If ∃ a set of inputs in region i whose values lie

in [f∗
w, f

∗
w + ϵ] with non-zero measure p then Fi(f

∗
w + ϵ) ≥ p > 0 , since this set will contribute a

probability mass of p to its corresponding value in [f∗
w, f

∗
w + ϵ].

The densities are non-zero since, we sample using Uniform for unif and Gaussians for unifI and
adaptI in each bounded region.

for clarity of exposition. One could multiply by these probabilities for posterity, but it doesn’t change the nature
of the bound or its interpretation.
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B CHARACTERIZING CDFS Fi(.) FOR A PIECEWISE LINEAR BLACK BOX

Several popular classes of models are piecewise linear or piecewise constant, for example neural
networks with ReLU activations (Hanin & Rolnick, 2019), trees and tree ensembles, including oblique
trees (Murthy et al., 1994) and model trees (Gama, 2004). We provide a partial characterization of the
cdfs Fi(.) for such piecewise linear black box functions g : Rd → [0, 1], a linear explanation function
ey : Rd → [0, 1] estimated for the point y ∈ Rd, and the following fidelity function (Dhurandhar
et al., 2022; 2023; Ramamurthy et al., 2020):

fy(x) ≜ 1− |g(x)− ey(x)|. (14)

Assume that the black box g has t ≤ p linear pieces within the ith region Ri. In the sth piece,
s = 1, . . . , t, g can be represented as a linear function gs(x) = βT

s x, where βs ∈ Rd. Moreover, the
sth piece is geometrically a polytope, which we denote as Pi,s ⊂ Rd. The explanation ey(x) = αT

yx
is linear throughout. Thus within the sth piece, the difference ∆s(x) = gs(x)−ey(x) that determines
the fidelity equation 14 is also linear, ∆s(x) = (βs − αy)

Tx.

Let us first consider the unif strategy where examples are sampled uniformly from Ri. The distribution
of fidelity values is a mixture of t distributions, one corresponding to each linear piece of g:

Fi(·) =
t∑

s=1

πsFi,s(·), (15)

where
∑t

s=1 πs = 1. In the uniform case, the probability πs that the sth piece is active is given by
the ratio of volumes πs = vol(Pi,s ∩Ri)/vol(Ri). The cdf Fi,s, or, equivalently, the corresponding
probability density function (pdf), is largely determined by the pdf of ∆s(x). The property of the
latter pdf that is clearest to reason about is its support. The endpoints of the support can be determined
by solving two linear programs, ∆s,min/max = min/maxx∈Pi,s∩Ri

(βs − αy)
Tx. (The shape of the

pdf is harder to determine; intuitively, the density at a value δ is proportional to the volume of the
δ-level set of ∆s(x) intersected with the polytope, vol({x : (βs −αy)

Tx = δ}∩Pi,s ∩Ri).) Given
the pdf of ∆s(x), the absolute value operation in equation 14 corresponds to folding the pdf over
the vertical axis, and the 1 − operation flips and shifts the result. Overall, we can conclude that
Fi,s is supported on an interval that is determined by ∆s,min and ∆s,max. A larger difference vector
(βs − αy) in the sth piece will tend to produce larger ∆s,min, ∆s,max in magnitude, and hence lower
fidelities. The minimum fidelity f∗

i corresponds to the largest |∆s,min|, |∆s,max| over s.

We now consider how the above reasoning changes for the unifI and adaptI strategies. First, instead
of a single uniform distribution of examples, we have a mixture of Gaussians Nj,k indexed by
iteration number j and prototype k. Hence equation 15 is augmented with summations over j and
k, and πs, Fi,s gain indices to become πj,k

s , F j,k
i,s . Second, instead of volumes, the weight πj,k

s is
given by a ratio of probabilities under each Gaussian: πj,k

s = PNj,k
(Pi,s ∩ Ri)/PNj,k

(Ri). Third,
we now have multiple pdfs of ∆s(x) to consider, one for each Gaussian Nj,k, and their shapes
depend on how each Gaussian weights the points in Pi,s ∩Ri. What does not change however is the
support [∆s,min,∆s,max] of ∆s(x), as this is a geometric quantity depending on the black box g and
explanation ey but not the distribution (uniform, Nj,k, or otherwise). Hence, the same statements
above apply regarding the relationship between the the difference vectors (βs − αy) and the range of
fidelities, mediated by ∆s,min, ∆s,max.

C MORE EFFICIENT CERTIFICATION DETAILS

1) Lipschitz Black Box: Let the black box function be denoted by g(.) : Rd → R and the
explanation function by ey(.) : Rd → R, where the subscript y denotes that the explanation function
was estimated at y ∈ Rd. Let us assume the explanation function is linear i.e., ey(x) = αT

yx (viz.
in LIME and variants), where αy ∈ Rd. Let the (in)fidelity function (complement of the fidelity
function) for some explanation function ey(.) be then defined as,

f̄(x) ≜ |g(x)− ey(x)| (16)
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Now for certification, we would want to find a rectangular region R in the input space such that
f̄(x) ≤ θ̄ ∀x ∈ R, where θ̄ is our certification level (complement of θ) and R is symmetric around
x. Given that the black box is l-lipschitz we would have,

|g(x)− g(y)| ≤ l||x− y|| (17)

for some l > 0. Assume for simplicity that g(x) = ex(x), i.e., the explanation function perfectly
mimics the black box if it is estimated at the same input x. In other words, infidelity is zero if the
estimation is at the same example. Even if we allow for some error it does not fundamentally change
the results5, but our simplifying assumption conveys the main idea more clearly in our opinion.

To certify a region R around x we now want to find ∀y ∈ R, |g(y)− ex(y)| ≤ θ̄. Upper bounding
the left hand side and forcing it to be ≤ θ̄ will give us a conservative estimate of the region around x
which will be certified without having to query it. Let us thus now upper bound this quantity,

|g(y)− ex(y)| = |ex(x)− ex(y) + g(y)− ex(x)|
≤ |ex(x)− ex(y)|+ |g(y)− ex(x)|
= |αT

x(x− y)|+ |g(y)− g(x)|
≤ ||αx|| · ||x− y||+ l||x− y||
= ||x− y|| (||αx||+ l) (18)

The derivation mainly uses Cauchy-Schwartz inequality and that g(.) is l-lipschitz. Therefore, we
can now readily obtain a certification region Rx which is a hypercube around x such that

Rx ⊆
{
y, where ||x− y|| ≤ θ̄

||αx||+ l

}
(19)

The region Rx can be used to set the initial lower bounds when calling Algorithm 1, rather than the
typical zero. Thus, we already would have a non-trivial region that is certified before we even make a
single query for reasonable values of θ̄.

Interestingly, one could potentially apply this approach in an alternating fashion where once a certain
region is certified by our algorithm we could try to estimate how far beyond it, again conservatively,
will the infidelity not worsen below θ̄. However, this will have to be done more carefully as our
algorithm may not have certified a region with certainty and hence errors may cascade.

2) Piecewise Linear Black Box: In general, knowing that the black box is piecewise linear with
say p pieces may not help boost our certification algorithm. However, if the fidelity is computed
in a way which corresponds to the number of pieces then that can potentially be very useful. For
instance, again assume the explanation function is linear ey(x) = αT

yx, and that fidelity in this case
is computed as the correlation between the explanation and the corresponding linear piece βx in the
black box function (which can be estimated) as follows: f(x) ≜ |βT

xαy|
||βx||·||αy|| . In such a case, we

would know that the maximum number of fidelities we would encounter for an explanation would be
utmost p. So at any stage in our algorithm if we encounter p different values for fidelity and if all of
them are ≥ θ, then we would know that the entire input space is certified and can stop our search.

D MORE INTUITION ABOUT OUR APPROACH

To better understand how the different strategies work in practice we provide short video clips
unif.mp4, unifI.mp4 and adaptI.mp4 in the videos folder of the supplement for our three strategies.
The setup is the same synthetic setup that we had in the main paper where θ = 0.75, the explanation
also has slope 0.75 and the black box is a piecewise linear function with three pieces with x being at
the origin. We set d = 2 for ease of visualization and hence the optimal half-width in this case is 0.5.
Q was set to 1000.

The videos show the behavior of the methods as z increases from 1 to Z and the For loops for unifI
and adaptI are rolled out showcasing the specific search patterns where the former successively
samples an increasing number of prototypes (blue) but the samples around it (green circles) are
reduced to meet the query budget constraint, while the latter in addition to this behavior also prunes

5Final bound is shifted proportional to the error.
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half the prototypes whose minimum fidelity samples have the highest values until we reach a single
prototype with a sample that has the lowest minimum fidelity value. If a sample with fidelity below
0.75 is found (i.e. violating example indicated by a red cross) then both unifI and adaptI will stop the
search for that particular iteration of z, thus potentially using fewer than Q queries. The hypercubes
(i.e. squares for d = 2) corresponding to lb and ub for any z are depicted by lightgreen and lightblue
respectively.

E TOPICS RELATED TO EXTREME VALUE THEORY

i.i.d. unifI strategy To facilitate the application of EVT, we use a variant of the unifI strategy that
samples examples in an i.i.d. manner, as opposed to requiring a fixed number ⌊ q

n⌋ of samples from
each Gaussian component (see Algorithm 2) which is not i.i.d. The key is to regard the examples
as being drawn from a mixture distribution, specifically a mixture of Gaussian mixtures. As in
Algorithm 2, the outer mixture consists of ⌊log(Q)⌋ Gaussian mixtures indexed by i, and each
Gaussian mixture has n components where n = min(2i, q). Instead of drawing the same number
of samples from each Gaussian mixture and each Gaussian, we use uniform mixture weights. The
overall mixture distribution is therefore

⌊log(Q)⌋∑
i=1

1

⌊log(Q)⌋

ni=min(2i,q)∑
j=1

1

ni
Ni,j(rj , σ

2I).

As with the unifI strategy, we first sample the centers rj uniformly, and then sample Q examples
from the above mixture distribution for querying the black-box model.

Proof of Corollary 1 A direct translation of the results of de Haan (1981), De Carvalho (2011,
Thm. 2.3) is as follows:

P

f̂∗
i − f∗

i ≤
ˆ̂f∗
i − f̂∗

i

(1− p)−1/κ − 1︸ ︷︷ ︸
ϵEVT
i

 = 1− p. (20)

We then set the quantity ϵEVT
i equal to a given tolerance ϵ and solve for the corresponding value of

1− p. After a bit of algebra, this yields the expression in the corollary.

Using Corollary 1 as an alternative to Theorem 1 As discussed in the main text, Corollary 1
differs from Lemmas 2–4 in having the region-specific minimum f∗

i instead of f∗
w, but for i = i∗ ∈

argmini f
∗
i , we have f∗

i∗ = f∗
w. Hence

P
[
f̂∗
i∗ − f∗

w ≤ ϵ
]
= P

[
f̂∗
i∗ − f∗

i∗ ≤ ϵ
]
=

(
1 +

ˆ̂f∗
i∗ − f̂∗

i∗

ϵ

)−κ

.

On the other hand, Lemma 1 implies that (recalling the shorthand f̂∗
i = f̂∗

wi,wi−1
)

P
[
f̂∗
w − f∗

w ≤ ϵ
]
≥ max

i∈{1,...,c}
P
[
f̂∗
i − f∗

w ≤ ϵ
]
≥ P

[
f̂∗
i∗ − f∗

w ≤ ϵ
]
.

Hence

P
[
f̂∗
w − f∗

w ≤ ϵ
]
≥

(
1 +

ˆ̂f∗
i∗ − f̂∗

i∗

ϵ

)−κ

,

and Corollary 1 for i = i∗ provides a valid alternative to Theorem 1 as claimed.

More interpretable simplification of ϵEVT
i We now provide an upper bound on the confidence

interval width ϵEVT
i in equation 20 that is simpler to interpret. Denoting this upper bound as ϵ̂EVT

i , it
follows that

P
[
f̂∗
i − f∗

i ≤ ϵ̂EVT
i

]
≥ 1− p,
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i.e., [f̂∗
i − ϵ̂EVT

i , f̂∗
i ] is also (at least) a (1− p)-confidence interval for the minimum fidelity f∗

i .

To bound ϵEVT
i from above, it is equivalent to bounding the denominator ((1− p)−1/κ − 1) from

below since the numerator ˆ̂f∗
i − f̂∗

i is non-negative. We regard the denominator as a function of
1/κ, D(1/κ) = ((1− p)−1/κ − 1). This is an exponential function and hence convex in 1/κ. It is
therefore bounded from below by its tangent line at 1/κ = 0:

D

(
1

κ

)
≥ D(0) +

D′(0)

κ
= 0− log(1− p)

κ
=

log(1/(1− p))

κ
.

Hence

ϵEVT
i ≤ ϵ̂EVT

i =
κ( ˆ̂f∗

i − f̂∗
i )

log(1/(1− p))
. (21)

The upper bound in equation 21 is proportional to parameter κ of the extreme value distribution and
to the difference ( ˆ̂f∗

i − f̂∗
i ) between the smallest and second-smallest observed fidelities. It also

depends logarithmically on the confidence level 1− p. As noted in Section 6.2, κ is often taken to
be d/2 (de Haan, 1981) (recall that d is the input dimension). In this case, ϵ̂EVT

i is proportional to
the dimension. The upper bound becomes tighter as 1/κ → 0, i.e., in the limit of high κ and high
dimension.

Table 2: Synthetic results for x = [0]d, Z = 10, θ = 0.75, explanation is slope 0.75 hyperplane and optimal
half-width is 1

d
with standard errors (rounded to 3 decimal places, where if value is 0 after rounding we do not

state it).
d Q

unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .012
102 1 .006 1 .004 1 .002 1 1.221
103 1 .055 1 .041 1 .026 1 1.724
104 1 .53 1 .418 1 .189 1 1.641

10

10 .06 ± .027 .001 .037 ± .028 .001 .142 ± .12 .001 .3 ± .07 .012
102 .082 ± .019 .003 .06 ± .023 .007 .08 ± .02 .003 .1 .125
103 .09 ± .018 .036 .085 ± .019 .049 .11 ± .02 .044 .1 1.354
104 .1 ± .016 .363 .117 ± .008 .615 .1 ± .01 .551 .1 14.944

102

10 .012 ± .005 .001 .006 ± .002 .001 .007 ± .09 .001 .05 .031
102 .012 ± .003 .005 .007 ± .002 .012 .008 ± .002 .005 .025 .3
103 .011 ± .004 .054 .009 ± .001 .158 .01 ± .001 .09 .012 4.072
104 .01 ± .003 .632 .01 ± .001 1.692 .01 ± .001 .51 .009 55.87

103

10 5 × 10−4 .003 3 × 10−4 .004 5 × 10−4 .002 .037 ± .008 .307

102 6 × 10−4 .011 .001 .073 6 × 10−4 .044 .012 2.579

103 8 × 10−4 .077 .001 1.074 8 × 10−4 .511 .003 28.335

104 .001 .588 .001 13.786 9 × 10−4 5.097 .001 288.523

104

10 6.3 × 10−5 .012 5.1 × 10−5 .098 5.8 × 10−5 .021 .006 ± .001 3.76

102 6.6 × 10−5 .072 7.7 × 10−5 1.187 7.8 × 10−5 .43 .004 34.602

103 8.3 × 10−5 .771 8.4 × 10−5 12.452 8.5 × 10−5 7.91 8.4 × 10−4 391.494

104 8.9 × 10−5 4.83 9.1 × 10−5 112.58 9.4 × 10−5 88.342 9.3 × 10−5 4384.76

F EXPERIMENTAL DETAILS AND MORE RESULTS

In our implementation of Ecertify, we also have an additional exit condition that checks how close lb
and ub are in any iteration of Z. If the difference is less than 0.1

d , we return the current best solution.
This prevents the strategies from trying to find samples in this very narrow (low volume) region,
which can be difficult.

Choices for the upper bound B: In Section 4, we introduced the variable B (from Algorithm 1)
that bounds the half-widths to consider from above. Recall that in Algorithm 1, once a violator (b) is
found, we shrink the candidate region by setting the new ub to be the midpoint between B and lb (the
width of the last certified region), and B was set to be the minimum of all the coordinates of b that
exceed lb. In this experiment, we consider other choices for setting B: i) to the maximum value and
ii) to the mean value of the coordinates of b that exceed lb.
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Table 3: Synthetic results for x = [0]d, Z = 10, θ = 0.9, explanation is slope 0.9 hyperplane and optimal
half-width is 1

d
with standard errors (rounded to 3 decimal places, where if value is 0 after rounding we do not

state it).
d Q

unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .011
102 1 .004 1 .005 1 .002 1 1.122
103 1 .06 1 .04 1 .024 1 1.678
104 1 .55 1 .42 1 .181 1 1.666

10

10 .071 ± .022 .001 .039 ± .027 .001 .133 ± .11 .001 .2 ± .09 .015
102 .083 ± .017 .002 .063 ± .019 .005 .08 ± .02 .003 .1 .128
103 .11 ± .012 .032 .081 ± .021 .051 .11 ± .01 .048 .1 1.411
104 .1 ± .011 .369 .115 ± .009 .623 .1 ± .008 .573 .1 14.871

102

10 .013 ± .004 .001 .006 ± .002 .001 .008 ± .08 .001 .053 .034
102 .013 ± .003 .005 .006 ± .003 .014 .009 ± .001 .004 .027 .35
103 .01 ± .005 .051 .01 ± .002 .162 .012 ± .001 .11 .011 4.113
104 .01 ± .002 .655 .01 ± .001 1.679 .01 .56 .01 58.12

103

10 5.3 × 10−4 .003 5.7 × 10−4 .004 5.9 × 10−4 .002 .028 ± .01 .317

102 6.3 × 10−4 .014 9.2 × 10−4 .077 7.9 × 10−4 .042 .009 2.636

103 8.5 × 10−4 .079 .001 1.051 9.1 × 10−4 .563 .002 29.638

104 .001 .613 .001 12.673 9.9 × 10−4 5.165 .001 291.122

104

10 6.7 × 10−5 .011 6.1 × 10−5 .123 6.6 × 10−5 .03 .004 ± .001 3.83

102 7.4 × 10−5 .074 7.9 × 10−5 1.221 8.2 × 10−5 .48 .002 36.671

103 8.7 × 10−5 .777 8.9 × 10−5 12.53 9.3 × 10−5 8.16 8.6 × 10−4 401.821

104 9.5 × 10−5 5.01 9.6 × 10−5 101.99 9.9 × 10−5 90.112 9.6 × 10−5 4517.119

Table 4: Synthetic results for x = [0]d, Z = 10, θ = 0.5, explanation is slope 0.5 hyperplane and optimal
half-width is 1

d
with standard errors (rounded to 3 decimal places, where if value is 0 after rounding we do not

state it).
d Q

unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .015
102 1 .005 1 .005 1 .004 1 1.312
103 1 .051 1 .039 1 .023 1 1.756
104 1 .51 1 .432 1 .181 1 1.611

10

10 .07 ± .028 .001 .032 ± .025 .001 .122 ± .13 .001 .24 ± .08 .011
102 .078 ± .012 .004 .061 ± .022 .005 .08 ± .02 .003 .1 .133
103 .09 ± .01 .04 .083 ± .015 .047 .12 ± .01 .046 .1 1.211
104 .1 ± .013 .351 .109 ± .005 .622 .1 ± .05 .566 .1 15.175

102

10 .012 ± .006 .001 .007 ± .001 .001 .008 ± .08 .001 .06 .037
102 .011 ± .003 .006 .008 ± .002 .014 .008 ± .002 .006 .023 .312
103 .011 ± .002 .051 .009 ± .001 .151 .012 ± .001 .10 .013 4.178
104 .01 ± .002 .611 .01 ± .002 1.633 .01 ± .001 .46 .01 58.62

103

10 5.2 × 10−4 .004 4.8 × 10−4 .005 5.3 × 10−4 .002 .023 ± .008 .365

102 6 × 10−4 .016 8 × 10−4 .075 7.3 × 10−4 .046 .009 2.677

103 8.1 × 10−4 .075 .001 1.033 8.8 × 10−4 .525 .003 27.547

104 .001 .595 .001 12.976 9.9 × 10−4 4.98 .001 285.479

104

10 6.4 × 10−5 .01 6.1 × 10−5 .101 6.8 × 10−5 .019 .003 ± .002 3.82

102 6.7 × 10−5 .073 7.9 × 10−5 1.234 8.1 × 10−5 .46 .002 33.1

103 8.2 × 10−5 .775 8.5 × 10−5 12.437 8.9 × 10−5 8.12 8.5 × 10−4 389.352

104 9.1 × 10−5 4.78 9.4 × 10−5 115.01 9.7 × 10−5 90.103 9.4 × 10−5 4291.438
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We choose the synthetic data set-up as described in Section 7 for this experiment as the true certified
half-widths are known (1/d). In Figures 3 and 4, we report the found w’s and timings for the three
variations of B (for each of the three strategies).

In Figure 3, we observe that for smaller dimensions (≈ 10s) the choice of B has negligible effect,
but for higher dimensions taking the minimum provides much more accurate estimates of the true
half-width albeit slightly conservative, while both max and mean choices overestimate the true
half-width. The reason for this is as follows: note that once the upper bound B is set, the resulting
certified half-width w could at best converge to B, and thus setting B to be the maximum (or mean)
of the violator (b)’s coordinates can be overly optimistic.

In Figure 4, we observe min also enjoys the benefit of faster running time, since it brings about the
largest reduction in (candidate) widths to consider. This analysis supports our choice of using min in
Algorithm 1 as well as in our implementation.
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Figure 3: Certified half-widths vs. dimensions plots for the synthetic data set-up with different choices of
setting B for the proposed 3 strategies. Note that, choosing min is (slightly) conservative as it is almost always
below the true certified width (the black solid curve) and both max and mean overestimate the true width (the
y-axis is in log-scale).
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Figure 4: Timing charts for the 3 strategies with different choices for B. We see that choosing min results in
shorter run-times for all three strategies (the y-axis is in log-scale) since it brings about the largest reduction in
candidate spatial widths to consider.

LIME setting: For tabular classification datasets (heloc and arrhythmia), we obtained LIME
explanations by using 1000 samples around each instance, and with top 5 features in the explanation.
We did not discretize continuous features. We constructed the linear explanation using the coefficients
and intercepts from the explanation to apply it to other instances.

For images applying LIME explanations is not straightforward since each image has its own mask
based on the superpixels it identifies. Hence to apply explanations across images we identified
coefficient values for each pixel in the input image and then depending on the (absolute value of the)
mask for a sampled image in the current to be certified region summed the relevant coefficients. This
intuitively is equivalent multiplying coefficients with feature values for an example. We also reduced
the neighbourhood sample size for LIME to 100 (for CIFAR10) and to 10 (for ImageNet) as this
mask finding procedure was time consuming, especially when the certification was done with a high
query budget.
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SHAP setting: For SHAP, we used the model agnostic KernelSHAP explainer and used mean
values of features from training data as the background values. We obtained shapley values for an
instance by taking 10 features and 1000 explanation samples (nsamples) for tabular, and 1000
features and 500 nsamples for image datasets. To apply the obtained SHAP explanation on other
examples, we obtained an equivalent linear regression model from the shapley values following
Amparore et al. (2021).

F.1 ADDITIONAL SYNTHETIC EXPERIMENTS

As mentioned in the main paper we report results here on more cases along with their standard errors.
In Table 2 we see results of Table 1 with standard errors. Tables 3 and 4 report results for θ = 0.9
and θ = 0.5 respectively where the explanations are hyperplanes having a θ slope with all the axes.
As we can see the insights discussed in the main paper carry over for these cases too.

F.2 ADDITIONAL REAL EXPERIMENTS

In Figures 5, 6, 7 and 8 we see qualitatively similar behavior6 as discussed in the main paper, where
in terms of half-widths, in general, unif seems to be the best for the lower dimensional datasets such
as HELOC and Arrhythmia, while unifI is best for CIFAR10 and adaptI is best for ImageNet. Again
adaptI seems to be the fastest, possibly because of the high efficiency in rejection sampling and it
honing on to the violating examples in a region with (much) fewer queries than the allotted budget Q
on average.
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Figure 5: Rows 1-4 above correspond to prototypes 2-5 from the ImageNet dataset. The first prototype results
are in the main paper. First two columns are LIME half-width and timing results, while last two columns are
SHAP half-width and timing results respectively.

6In Figure 6 ZO+ exited without returning a half-width for Q = 10 on CIFAR10 and hence it is not plotted
for that value. For prototype 2 using LIME ZO+ again exited immediately for Q = 10000 and hence the zero
values for time and half-width.
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Figure 6: Rows 1-4 above correspond to prototypes 2-5 from the CIFAR10 dataset. The first prototype results
are in the main paper. First two columns are LIME half-width and timing results, while last two columns are
SHAP half-width and timing results respectively.
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Figure 7: Rows 1-4 above correspond to prototypes 2-5 from the arrhythmia dataset. The first prototype results
are in the main paper. First two columns are LIME half-width and timing results, while last two columns are
SHAP half-width and timing results respectively.
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Figure 8: Rows 1-3 above correspond to prototypes 3-5 from the HELOC dataset. The first two prototype
results are in the main paper. First two columns are LIME half-width and timing results, while last two columns
are SHAP half-width and timing results respectively.

G EXPANDED DISCUSSION SECTION

Rather than certified hypercubes, one could also find hyper-rectangles or even arbitrary ℓp balls (not
just ℓ∞) with our strategies for which too the main theoretical results should apply. This would
nonetheless require extra book-keeping to correctly demarcate the certified (and violating) boundaries
in each case. From a practical standpoint the strategies could also return the nearest violating example
(i.e. fidelity < θ) than the minimum fidelity one reducing the search space even faster. Moreover, the
outer For loop in unifI and adaptI can be parallelized.

There are multiple interesting future directions which we discuss below.

Applicability to other explanation method types: Although our experiments considered feature
based explanations, one could apply our approach even to contrastive (Dhurandhar et al., 2018;
Wachter et al., 2017) or exemplar (Kim et al., 2016; Gurumoorthy et al., 2019) based explanations, as
long as one can apply the given explanation (e.g. a class-changing perturbation) to different examples
and measure the resulting quality. For instance, in the case of contrastive explanations, one could
apply the same perturbations that change the class of one input example to other examples and check
if the same class change occurs. This would be a potential quality metric in this case.

Multi-armed bandits and hyperparameter optimization: Multi-armed bandit algorithms (Slivkins,
2019) could possibly be adapted to our setting, especially those designed for infinitely many arms
(Auer et al., 2003). We note however that they typically make assumptions such as Lipschitzness,
local smoothness or bounded near-optimality dimension (Bubeck et al., 2011), which we did not have
to make for our main results.

It is worth mentioning that our certification strategies have relations to methods employed in hy-
perparameter optimization (Tong Yu, 2020), where efficient search of the hyperparameter space is
needed. However, in addition to the domain being completely different, methods in hyperparameter
optimization try to find hyperparameter values that will result in the best performing model w.r.t. a
certain quality metric such as accuracy. In our case, we do not have an already provided model that we
wish to optimize and for which we have to assign computational resources to train. Rather, we have to
decipher an intelligent way to find low fidelity examples in a compact region of the input space. It is
a priori unclear how the query budget can be effectively assigned and used (viz. sampling prototypes,
perturbing them, etc.) in such a setup. Moreover, theoretical results in their domain typically involve
making additional assumptions about the loss behavior with more training, something that wasn’t
required for us to prove the bounds, not to mention them having little relevance in our setup.
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Known upper bound: If a priori we know an upper bound on the certification region, there could be
more intelligent ways of assigning the query budget to Certify() in Algorithm 1, rather than simply a
fixed budget of Q. One could possibly keep querying in the region until the certification criterion
is violated. If a violation is found then the new region to certify would be the hypercube contained
within the closest dimension of this example to the input. Now repeat the process with the remaining
query budget in this new region. Once we exhaust the query budget declare the current region being
certified as a valid certified region.

Applicability to manifolds: It would be desirable to adapt these methods to work on lower dimen-
sional manifolds. As a first step, one could simply apply the current methods to the latent space
(e.g. as learned by an auto-encoder) rather than the input space. Thus, although the regions will
be hypercubes in the latent space they will be more free-form in the input space which might be
interesting.

Designing new explanation methods: One could design new explanation methods that maximize
the size of the certification region while also being faithful. Ideas from constraint generation (Dash
et al., 2018) could be used here where the identified violating examples would serve as the constraints
that get added when finding a suitable explanation possibly leading to more robust explanations.

Limitations: Our approaches rely on random sampling and have probabilistic guarantees, hence
in any particular case it is possible that the half-widths reported may be different than the true
half-widths. Also results may vary run to run. Possible mitigation is by averaging over multiple runs
and/or using sufficient query budget.

H BOUND COMPUTATION

In Tables 5 and 7 we see the bounds computed using Theorem 1 for the synthetic and real data
experiments.
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Table 5: Bounds computed based on Theorem 1 for the synthetic results reported in Table 1. ϵ was set to
0.01 and kernel density estimation (kde) using the scipy library with default settings was done to estimate the
distribution of fidelities. The cdfs were computed based using the true f∗ in the region, as well as two proxies
for f∗, namely f̂∗ i.e. minimum estimated fidelity for the respective region based on the fidelities returned by
the algorithms, and θ i.e. fidelity threshold passed as input to the algorithms. Also time to compute the bounds is
reported given that we have the fidelities already available for samples from running the respective strategies.
The time is an average over three options for f∗ mentioned above each of which takes similar time. As can
be seen the bounds using f∗ or its estimate f̂∗ are quite close, while the bounds using θ as a proxy for f∗ are
slightly conservative. We can see that adaptI converges to probability 1 the fastest in terms of Q, probably
because of its ability to hone in on the low fidelity regions leading to higher values of the cdf and hence tighter
bounds. In terms of time, unif is the fastest since we just have to estimate a single cdf for each region we certify.
For adaptI, approximately log(Q) cdfs have to be estimated per region, while for unifI it is ≈ q(1+ log log(Q)),
which leads to the higher time. Nonetheless, in practical terms, all bounds seem to be reasonably efficient to
compute (within ∼ 6 minutes here).

d Q
unif unifI adaptI

f∗ f̂∗ θ Time (s) f∗ f̂∗ θ Time (s) f∗ f̂∗ θ Time (s)

1

10 0.001 0.001 0.001 0.123 0.001 0.001 0.001 0.127 0.001 0.001 0.001 0.135
102 0.457 0.457 0.457 0.158 0.764 0.764 0.764 1.312 0.971 0.971 0.971 0.411
103 1.000 1.000 1.000 0.213 1.000 1.000 1.000 12.623 1.000 1.000 1.000 0.801
104 1.000 1.000 1.000 0.727 1.000 1.000 1.000 368.671 1.000 1.000 1.000 3.638

10

10 0.001 0.001 0.001 0.125 0.001 0.001 0.001 0.129 0.001 0.001 0.001 0.132
102 0.461 0.461 0.445 0.162 0.764 0.764 0.691 1.396 0.962 0.962 0.949 0.405
103 1.000 1.000 1.000 0.217 1.000 1.000 1.000 13.142 1.000 1.000 1.000 0.793
104 1.000 1.000 1.000 0.79 1.000 1.000 1.000 370.263 1.000 1.000 1.000 3.792

102

10 0.001 0.001 0.001 0.127 0.001 0.001 0.001 0.127 0.001 0.001 0.001 0.130
102 0.466 0.468 0.461 0.161 0.771 0.773 0.768 1.387 0.972 0.971 0.967 0.431
103 1.000 1.000 1.000 0.209 1.000 1.000 1.000 13.128 1.000 1.000 1.000 0.828
104 1.000 1.000 1.000 0.789 1.000 1.000 1.000 370.527 1.000 1.000 1.000 3.716

103

10 0.001 0.001 0.000 0.129 0.001 0.001 0.001 0.127 0.001 0.001 0.000 0.137
102 0.455 0.455 0.441 0.163 0.778 0.780 0.772 1.411 0.970 0.971 0.965 0.429
103 1.000 1.000 0.981 0.222 1.000 1.000 1.000 13.172 1.000 1.000 0.995 0.811
104 1.000 1.000 1.000 0.733 1.000 1.000 1.000 371.321 1.000 1.000 1.000 3.712

104

10 0.001 0.001 0.000 0.130 0.001 0.001 0.000 0.125 0.001 0.001 0.000 0.140
102 0.449 0.450 0.444 0.153 0.765 0.765 0.759 1.344 0.972 0.972 0.969 0.401
103 1.000 1.000 0.998 0.235 1.000 1.000 0.999 12.763 1.000 1.000 1.000 0.789
104 1.000 1.000 1.000 0.766 1.000 1.000 1.000 373.891 1.000 1.000 1.000 3.601
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Table 6: Probability lower bounds from EVT for the synthetic results reported in Table 1 (same as Table 5). As
discussed in Section 6 and Appendix E, the bounds apply to the unif and i.i.d. unifI strategies and are based
on Corollary 1. Ideally, one should apply Corollary 1 with i = i∗ ∈ argmini f

∗
i , but since i∗ is not known to

the algorithms, we use î ∈ argmini f̂
∗
i as an approximation. As in Table 5, ϵ = 0.01, and the exponent κ in

Corollary 1 is set to d/2. We make the following observations: 1) The bounds for i.i.d. unifI in particular are
high enough to be meaningful. 2) At the same time, the bounds in Table 6 are weaker than those in Table 5. This
appears to be the price of using an easily computable asymptotic expression rather than estimating cdfs. While
the Q = 10 results in Table 6 might appear to be better, we recall that EVT holds in the limit of large Q so the
Q = 10 values are questionable. We include them for completeness to match Table 5. 3) The bounds in Table 6
do suffer somewhat from increasing dimension d, due to the exponent κ = d/2. 4) The bounds for i.i.d. unifI are
much better than for unif. This supports the intuition that if one of the prototypes from unifI happens to be good
(having close to minimum fidelity), then sampling more densely around it is better than sampling uniformly
throughout.

d Q unif i.i.d. unifI

1

10 0.624 0.654
102 0.9 0.875
103 0.989 0.981
104 0.998 0.998

10

10 0.077 0.575
102 0.191 0.553
103 0.244 0.563
104 0.317 0.645

102

10 0.066 0.451
102 0.081 0.513
103 0.081 0.493
104 0.083 0.558

103

10 0.016 0.416
102 0.081 0.471
103 0.141 0.479
104 0.109 0.484

104

10 0.02 0.364
102 0.05 0.436
103 0.05 0.454
104 0.07 0.515
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Table 7: Below we see the (estimated) lower bounds on the probability in Theorem 1 and the additional time
to compute them for the example in the main paper on ImageNet (Figure 1 first row), given that we have the
fidelities already available for samples from running the respective strategies. ϵ was set to 0.01 and kernel density
estimation (kde) using the scipy library with default settings was done to estimate the distribution of fidelities.
The cdfs were computed based on two proxies for f∗ (which is unknown): i) f̂∗ i.e. minimum estimated fidelity
for the respective region based on the fidelities returned by the algorithms and ii) θ i.e. fidelity threshold passed
as input to the algorithms. The latter would provide a conservative estimate of our bounds since, f∗ ≥ θ for a
certified region. We can see that adaptI converges to probability 1 the fastest in terms of Q, probably because of
its ability to hone in on the low fidelity regions leading to higher values of the cdf and hence tighter bounds. In
terms of time, unif is the fastest since we just have to estimate a single cdf for each region we certify. For adaptI,
approximately log(Q) cdfs have to be estimated per region, while for unifI it is ≈ q(1 + log log(Q)), which
leads to the higher time. Nonetheless, in practical terms, all bounds seem to be reasonably efficient to compute
(within ∼ 6 minutes here).

Explanation method Criterion Strategies f∗ proxy Q
10 100 1000 10000

LIME

time (s)

unif f̂∗ 0.1350 0.1750 0.2250 0.7350
θ 0.1289 0.1612 0.2023 0.7011

unifI f̂∗ 0.1543 1.4000 13.9179 373.9050
θ 0.1399 1.2234 12.7832 365.1237

adaptI f̂∗ 0.1620 0.4200 0.8100 3.8220
θ 0.1494 0.4012 0.7914 3.5822

bounds

unif f̂∗ 0.0000 0.4833 1.0000 1.000
θ 0.0000 0.4665 0.9892 1.000

unifI f̂∗ 0.0002 0.7746 1.0000 1.000
θ 0.0001 0.7582 0.9862 1.000

adaptI f̂∗ 0.0002 0.9668 1.0000 1.000
θ 0.0002 0.9589 1.0000 1.000

SHAP

time (s)

unif f̂∗ 0.1470 0.1860 0.2340 0.8110
θ 0.1298 0.1821 0.2218 0.7981

unifI f̂∗ 0.1656 1.5200 14.1200 375.3340
θ 0.1581 1.4827 12.2371 369.4216

adaptI f̂∗ 0.1710 0.5100 0.8900 3.9870
θ 0.1601 0.4897 0.8691 3.7456

bounds

unif f̂∗ 0.0000 0.4550 0.9840 1.0000
θ 0.0000 0.4417 0.9612 1.0000

unifI f̂∗ 0.0003 0.7844 1.0000 1.0000
θ 0.0001 0.7519 0.9831 1.0000

adaptI f̂∗ 0.0003 0.9384 1.0000 1.0000
θ 0.0003 0.9272 1.0000 1.0000
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Figure 9: Visualizing trends for the results in Table 7, where f∗ proxy is θ (conservative estimate). Results are
qualitatively similar when f∗ proxy is f̂∗. Left two figures are bounds and timing for LIME respectively. Right
two figures are bounds and timing for SHAP respectively.
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