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ABSTRACT

Recent works have shown that neural networks optimized by gradient-based meth-
ods can adapt to sparse or low-dimensional target functions through feature learn-
ing; an often studied target is the sparse parity function on the unit hypercube.
However, such isotropic data setting does not capture the anisotropy and low in-
trinsic dimensionality exhibited in realistic datasets. In this work, we address this
shortcoming by studying how gradient-based feature learning interacts with struc-
tured (anisotropic) input data: we consider the classification of k-sparse parity on
high-dimensional orthotope where the feature coordinates have varying magnitudes,
and analyze the learning complexity of the mean-field Langevin dynamics (MFLD),
which describes the noisy gradient descent update on two-layer neural network. We
show that the statistical complexity (i.e. sample size) and computational complexity
(i.e. network width) of MFLD can both be improved when prominent directions of
the anisotropic input data align with the support of the target function. Moreover,
by employing a coordinate transform determined by the gradient covariance, the
width can be made independent of the target degree k. Lastly, we demonstrate the
benefit of feature learning by establishing a kernel lower bound on the classification
error, which applies to neural networks in the lazy regime.

1 INTRODUCTION

We consider the learning of a two-layer nonlinear neural network (NN) with N neurons:

f(z) = 1
N

∑N
i=1 hx(i)(z), z ∈ Rd, hx(i)(z) : Rd → R, (1)

where hx(i)(z) is one neuron with trainable parameter x(i), e.g., we may set x(i) ∈ Rd and hx(i)(z) =
σ(⟨z, x(i)⟩) with some nonlinearity σ : R → R. One crucial benefit of the model (1) is the ability
to learn representation that adapts to the learning problem, such as sparsity and low-dimensional
structures. Indeed, it has been shown that this feature learning ability enables NNs trained with
gradient-based algorithms to avoid the curse of dimensionality and outperform non-adaptive methods
such as kernel models in learning various low-dimensional target functions (Abbe et al., 2022; Ba
et al., 2022; Damian et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al., 2022; Abbe et al., 2023).

A noticeable example of low-dimensional problem is the classification of k-sparse parity, where the
target label is defined as the sign of the product of k ≪ d coordinates: f∗(zi) = sign

(∏k
i=1 zi

)
,

where zi denotes the i-th coordinate of vector z. The classical XOR problem corresponds to the
case where k = 2 and input on the unit hypercube. Efficiently learning this target function requires
the first-layer parameters of the NN to identify the relevant k-dimensional subspace, which can be
achieved via gradient-based feature learning (Daniely and Malach, 2020; Refinetti et al., 2021; Frei
et al., 2022; Barak et al., 2022; Ben Arous et al., 2022).
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One particularly relevant feature learning paradigm for the parity problem is the mean-field analysis,
which lifts the optimization problem into the space of measures (Nitanda and Suzuki, 2017; Chizat
and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018). For isotropic input (zi ∈
{−1,+1}), mean-field NN can learn the parity function with linear sample complexity. Specifically,
Wei et al. (2019); Chizat and Bach (2020); Telgarsky (2023) proved a O(d/n) classification error for
2-parity (XOR), when the NN is optimized by (modified) gradient flow. Very recently, Suzuki et al.
(2023b) considered a noisy variant of gradient descent termed the mean-field Langevin dynamics
(MFLD), and showed that the O(d/n) rate remains valid for the isotropic k-parity problem with
dimension-free k. While the computational complexity is demanding due to the exponential width
required in the mean-field analysis, one remarkable feature is the statistical complexity decouples the
degree k from the exponent in the dimension dependence; this contrasts the NTK analysis where a
sample size of n = Ω(dk) is typically needed to learn a degree-k polynomial on isotropic input data
(Ghorbani et al., 2019; Mei et al., 2022), and thus demonstrates the benefit of feature learning.

Feature learning under structured data. Noticeably, most existing analyses on the parity problem
are restricted to the isotropic setting, where the input features do not provide any information of the
support of the target function. On the other hand, realistic datasets are often structured, and different
feature directions may have different magnitudes that guide the algorithm towards efficient learning.
For example, real-world data often has low intrinsic dimensionality (Fodor, 2002; Pope et al., 2021),
and the observation that input directions with larger variation tend to have good predictive power has
motivated various data preprocessing procedures such as PCA (Hastie et al., 2009).

Recent works have indeed illustrated that in certain regression settings with low-dimensional target,
anisotropic input data can improve the performance of both kernel methods and NNs. However, these
results either did not take into account the optimization dynamics of NN (Suzuki and Nitanda, 2019;
Ghorbani et al., 2020), or characterized the feature learning dynamics in a “narrow-width” setting
(Ba et al., 2023; Mousavi-Hosseini et al., 2023) which differs from the mean-field regime. Moreover,
classification and regression problems have fundamentally different structures, and thus existing
regression analyses do not directly translate to the k-parity classification problem. Therefore, our
goal is to investigate the interplay between structured data and feature learning in the problem setting
of classifying k-sparse parity function on anisotropic input data with mean-field NN.

1.1 OUR CONTRIBUTIONS

We study the statistical and computational complexity of the mean-field Langevin dynamics in
learning a k-sparse parity target function on anisotropic input data. Specifically, we consider the
following generating process of the data-label pairs (z, y),

z = Az̃, y = sign
(∏

i∈Ik
z̃i
)
, where z̃i

i.i.d.∼ Unif
(
{−1/

√
d, 1/
√
d}
)
,

for some matrix A ∈ Rd×d which controls the anisotropy. Extending the convergence analysis of
MFLD in Suzuki et al. (2023a;b), we prove discrete-time and finite-width learning guarantees for
two-layer neural network optimized with noisy gradient descent for this general data setting. We then
specialize our general learnability result to specific examples where MFLD benefits from structured
data through an improvement of the constant in the logarithmic Sobolev inequality of a proximal
Gibbs measure associated with the training dynamics, and demonstrate that both the statistical and
computational complexity improves upon that in the isotropic setting. In particular, we show that

• When the feature directions of z with large magnitude align with the support of the target function
Ik, then MFLD can achieve better statistical complexity (required sample size) and computational
complexity (required network width) compared to the isotropic setting in Suzuki et al. (2023b).

• If we apply a coordinate transformation based on the gradient covariance matrix, then the required
width for MFLD can be made independent of the degree k. This is equivalent to an anisotropic ℓ2
regularization, and we prove that the weighting matrix can be estimated from the first gradient step.

• We also provide a classification error lower bound for kernel methods in the anisotropic parity
setting, which highlights the advantage of gradient-based feature learning via MFLD.

In Table 1 we summarize and compare our results against prior works on learning sparse parity
functions. To clearly illustrate the improved dimension dependence, we state our rates for a simple
spiked covariance model analogous to the setting in Ghorbani et al. (2020); Ba et al. (2023) (see
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data result type regime/method sample size width iterations authors
NTK/SGD d2/ϵ d8 d2/ϵ Ji and Telgarsky (2019)

two-phase SGD dk+1/ϵ2 O(1) d/ϵ2 Barak et al. (2022)
mean-field/GF d/ϵ ∞ ∞ Wei et al. (2019)
mean-field/GF d/ϵ dd/2 ∞ Telgarsky (2023)

MFLD d/ϵ exp(d) exp(d) Suzuki et al. (2023b)
random features – dk – Barak et al. (2022)

MFLD deff/ϵ exp(deff) exp(deff) Theorem 1
MFLD (transformed) dkeffd+ 1/ϵ d3 O(1) Theorem 2

kernel dkeff – – Theorem 3

Isotropic
upper bound

lower bound

Anisotropic
upper bound

lower bound

Table 1: Statistical and computational complexity for the k-sparse parity classification, omitting polylogarithmic
terms. d is the dimensionality, and n is the sample size. We set y = sign

(∏k
i=1 z̃i

)
, A = diag(s1, s2, ..., sd),

where s1 = ... = sk = dα/2 for α ≥ 0, and sk+1 = ... = sd = 1; following Ghorbani et al. (2020) we define
the effective dimension as deff := d1−α ≪ d when α > 0. We note that results from Wei et al. (2019); Telgarsky
(2023) do not cover the general k-parity setting, so we state the complexity for 2-parity (XOR). For the lower
bound, we restate (Barak et al., 2022, Theorem 5) for bounded norm random features predictor. Finally, for the
kernel lower bound in Theorem 3 we only track the dimension dependence.

(10) in Section 4.1): the data-label pairs (z, y) are generated as y = sign
(∏k

i=1 zi
)

for k = Od(1),
where the informative directions are given as zi ∈ {±d(α−1)/2} (i = 1, · · · , k) for α ∈ [0, 1], and
the uninformative directions zi ∈ {±d−1/2} (i = k + 1, · · · , d). In this example, larger α (hence
smaller deff = d1−α) corresponds to stronger anisotropy, which facilities feature learning due to the
alignment between the low-dimensional structure and the target function. As shown in Table 1, this
benefit is evident in both the original MFLD and the coordinate-transformed version.

2 PROBLEM SETTING

k-sparse parity classification. We consider the following binary classification problem.
Definition 1 (k-sparse parity problem under linear transformation). Given invertible matrix A, the
input random variable Z and the corresponding label Y are generated as

Z = AZ̃, Y = sign
(∏

i∈Ik
Z̃i

)
,

where Z̃ is distributed from the uniform distribution on {±1/
√
d}d, and ∥Z∥ ≤ 1 almost surely.

This definition includes the well-studied XOR (Wei et al., 2019; Telgarsky, 2023) as a special case.

Example 1 (Isotropic XOR). We take A = Id and Y = sign(Z̃1Z̃2) (k = 2).

Similarly, we can also cover k-parity on isotropic data (Barak et al., 2022; Suzuki et al., 2023b).

As for anisotropic data, an example that we will consider in the subsequent sections is the following
axis-aligned setting, where the coordinates are independent but may have different magnitudes.
Example 2 (Axis-aligned anisotropic k parity). There exist positive reals si > 0 (i = 1, . . . , d) such
that the support of PZ (the distribution of Z) is given by S := {±s1}× {±s2}× · · · × {±sd} where∑d

j=1 s
2
j = 1, and (zi)

d
i=1 are mutually independent and P (zi = si) = P (zi = −si) = 1/2. The

k-sparse parity label corresponds to the sign of the product of k-indices Ik ⊂ {1, . . . , d}.

Mean-field two-layer network. Let hx(·) : Rd → R be one neuron associated with parameter
x = (x1, x2, x3) ∈ Rd+1+1 in a two-layer neural network: given an input z ∈ Rd,

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3, (2)

where R̄ ∈ R is an output scale of the network and an extra tanh activation for the bias term x3 ∈ R
is placed to make the function bounded following Suzuki et al. (2023b). Let P be the set of Borel
probability measures on Rd̄ where d̄ = d + 2 and Pp be the subset of P with finite p-th moment:
Eµ[∥X∥p] <∞ (µ ∈ P). The mean-field neural network is defined by integrating infinitely many
neurons hx over Rd̄ with the distribution µ ∈ P: fµ(·) =

∫
hx(·)µ(dx).

Let ℓ(·, ·) : R×R→ R≥0 be a smooth and convex loss function for the binary classification. Typically,
we consider the logistic loss function ℓ(f, y) = log(1 + exp(−yf)) where f ∈ R, y ∈ {±1}. We
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also denote ℓ(yf) = ℓ(f, y) Then, the empirical risk and the population risk of fµ are defined as

L(µ) := 1
n

∑n
i=1 ℓ(yifµ(z

(i))), L̄(µ) := E[ℓ(Y fµ(Z))].

To avoid overfitting, we consider a regularized empirical risk F (µ) := L(µ) + λEX∼µ[λ1∥X∥2]
with the regularization parameters λ, λ1 ≥ 0. In addition, we introduce the entropy regularized risk:

L(µ) = F (µ) + λEnt(µ). (3)
We can immediately see that L is equivalent to L(µ) + λKL(ν, µ) up to constant, where KL(ν, µ) =∫
log(µ/ν)dµ is the KL divergence between ν and µ, and ν is the Gaussian distribution with mean

0 and variance I/(2λ1). A remarkable advantage of mean-field parameterization is that the above
objectives become convex functional with respect to the distribution µ, since µ linearly acts on fµ.

3 MEAN-FIELD LANGEVIN DYNAMICS

The mean-field Langevin dynamics is defined by the following stochastic differential equation:

dXt = −∇ δF (µt)
δµ (Xt)dt+

√
2λdWt, µt = Law(Xt), (4)

starting at X0 ∼ µ0, where (Wt)t≥0 is the d-dimensional standard Brownian motion, and δF (µt)
δµ is the

first variation of F , which, in our setting, is written as δF (µ)
δµ (x) = 1

n

∑n
i=1 ℓ

′(yifµ(z
(i)))yihx(zi) +

λ(λ1∥x∥2). The Fokker-Planck equation of SDE (4) is given by1

∂tµt = λ∆µt +∇ ·
[
µt∇ δF (µt)

δν

]
= ∇ ·

[
µt∇

(
λ log(µt) +

δF (µt)
δν

)]
. (5)

Several studies (Mei et al., 2018; Hu et al., 2019) showed that MFLD (4) globally optimizes the
objective (3), that is, when t→∞ we have L(µt)→ L(µ[λ]), where µ[λ] := argminµ∈P L(µ).
For a practical algorithm, we need to consider a space- and time-discretized version of the MFLD,
that is, we approximate the solution µt by an empirical measure µX = 1

N

∑N
i=1 δXi

corresponding
to a set of finite particles X = (Xi)Ni=1 ⊂ Rd̄. Let Xτ = (Xi

τ )
N
i=1 ⊂ Rd̄ be N particles at the τ -th

update (τ ∈ {0, 1, 2, . . . }), and define µτ = µXτ
as a finite particle approximation of the population

counterpart. Then, the discretized MFLD is defined as follows: Xi
0 ∼ µ0, and Xτ is updated as

Xi
τ+1 = Xi

τ − η∇ δF (µτ )
δµ (Xi

τ ) +
√
2ληξiτ , (6)

where η > 0 is the step size, ξiτ ∼i.i.d. N(0, I). Note that in the context of mean-field neural network
(1), the discretized update (6) simply corresponds to the noisy gradient descent algorithm, where a
Gaussian perturbation is added at each gradient step. We write fX := fµX for simplicity of notation.

3.1 LOGARITHMIC SOBOLEV INEQUALITY

Nitanda et al. (2022); Chizat (2022) have established the exponential convergence of MFLD by
exploiting the proximal Gibbs distribution pµ associated with µ ∈ P . The density of pµ is given by

pµ(X) ∝ exp
(
− 1

λ
δF (µ)
δµ (X)

)
.

The smoothness of the loss function and the tanh activation guarantee the existence of the unique
minimizer µ∗ of L , which also solves the equation: µ = pµ (see Proposition 2.5 of Hu et al. (2019)).
The key in their proofs is to show a logarithmic Sobolev inequality (LSI) on the Gibbs measure pµ.
Definition 2 (Logarithmic Sobolev inequality). Let µ be a Borel probability measure on Rd. We say
µ satisfies the LSI with a constant α > 0 if for any smooth function ϕ : Rd → R with Eµ[ϕ

2] <∞,

Eµ[ϕ
2 log(ϕ2)]− Eµ[ϕ

2] log(Eµ[ϕ
2]) ≤ 2

αEµ[∥∇ϕ∥22].

We can apply the classical Bakry-Emery and Holley-Stroock arguments (Bakry and Émery, 1985;
Holley and Stroock, 1987) to derive the LSI constant on the Gibbs distribution whose potential is the
sum of the strongly convex function and bounded function. In particular, if ∥ δL(µ)

δµ ∥∞ ≤ B, we can
establish the LSI for the proximal Gibbs distribution with α ≥ λ1 exp (−4B/λ) . In our case, since
the logistic loss is employed and each neuron hx is bounded by R̄, we have B = R̄ and therefore

α ≥ λ1 exp
(
−4R̄/λ

)
. (7)

1This should be interpreted in a weak sense, that is, for any continuously differentiable function ϕ with a
compact support,

∫
ϕdµt −

∫
ϕdµs = −

∫ t

s

∫
∇ϕ · (∇ log(µt)−∇ δF (µt)

δν
)dµτdτ .
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3.2 QUANTITATIVE ANALYSIS OF MFLD

Convergence guarantee. As shown in Chen et al. (2022); Suzuki et al. (2022), the LSI constant
determines not only the convergence rate of the continuous dynamics, but also the number of particles
(i.e., width of the neural network) to approximate the mean-field limit. Let us consider the linear
functional of a distribution µ(N) of N particles X = (Xi)Ni=1 ⊂ Rd̄ defined by

LN (µ(N)) = NEX ∼µ(N) [F (µX )] + λEnt(µ(N)).

Let µ(N)
τ be the distribution of particles Xτ = (Xi

τ )
N
i=1 at the τ -th iteration, and define ∆τ =

1
NL

N (µ
(N)
τ )− L(µ[λ]). Suzuki et al. (2023a) established the convergence rate of MFLD as follows.

Proposition 1. Let B̄2 := E[∥Xi
0∥2]+ 1

λλ1

[(
1
4 + 1

λλ1

)
R̄2+λd

]
and δη := C1L̄

2(η2 + λη), where

L̄ = 2R̄ + λλ1 and C1 = 8(R̄2 + λλ1B̄
2 + d) = O(d+ λ−1). Then, if λαη ≤ 1/4 and η ≤ 1/4,

then the neural network trained by MFLD converges to the optimal network f[λ] as

E
Xτ∼µ

(N)
τ

[
supz∈supp(PZ)(fXτ

(z)− fµ[λ]
(z))2

]
≤ 4L̄2

λα ∆τ + 2
N R̄2,

where ∆τ is further bounded by ∆τ ≤ exp (−λαητ/2)∆0+
2
λα L̄

2C1

(
λη + η2

)
+ 4Cλ

λαN .

In particular, for a given ϵ∗ > 0, the right hand side can be bounded by ϵ∗ + 2R̄2

N after T =

O
(

1
λαη log(1/ϵ∗)

)
iterations with the step size η = O

(
λα2ϵ∗/C1 + λα

√
ϵ∗/C1

)
. In terms of

generalization error (Proposition 2), the optimization error can be set as ϵ∗ = O(1/(nλ)2). Then, the
required total number of iteration T and the number of particles N can be bounded by

T ≤ O
(
(d+ λ−1)n2 exp(16R̄/λ) log(nλ)

)
, N ≤ O((ϵ∗λα)−2) = O

(
n2 exp(8R̄/λ)

)
. (8)

From this evaluation, we see that it is crucial to select the regularization strength λ so that the loss is
sufficiently small. In the following section, we investigate how structured data affects the choice of λ.

Generalization error bound. Now we state the classification error bound of the neural network
optimized by MFLD. For this purpose, we introduce the following assumption which will be verified
later on for the anisotropic parity setting.

Assumption 1. There exists c0 > 0 and R > 0 such that the following conditions are satisfied:

• There exists µ∗ ∈ P such that KL(ν||µ∗) ≤ R and L(µ∗) ≤ ℓ(0)− c0.

• For any λ < c0/R, the risk minimizer µ[λ] of L(µ) satisfies Y fµ[λ]
(X) ≥ c0 almost surely.

Here c0 characterizes the margin of a solution µ∗ and R controls “difficulty” of the problem. Indeed,
if larger R is required, the Bayes optimal solution should be far away from the prior ν. Hence, we
expect that obtaining a good classifier is more difficult. Let µ̂ be an approximately optimal solution of
L with ϵ∗ accuracy: L(µ̂) ≤ minµ∈P L(µ) + ϵ∗; we have the following generalization error bounds.

Proposition 2 (Suzuki et al. (2023b)). Let M0 = (ϵ∗ + 2(R̄+ 1))/λ and suppose that λ < c0/R.

(i) If the sample size n satisfies

n > C R̄2

c20λ
2

[
λ
(
R̄+ λ

R̄2n

)
+ R̄2(1 + log log2(n

2M0R̄)) + nλϵ∗
]
=: S,

with an absolute constant C, then fµ̂ satisfies P (Y fµ̂(Z) ≤ 0) = 0 (the Bayes optimal classifier)
with probability 1− exp(− nλ2

32R̄4 (c
2
0 − S/n)).

(ii) When the sample size does not satisfy the condition n > S, we still have an alternative error
bound: there exists an absolute constant C > 0 such that

P (Y fµ̂(Z) ≤ 0) ≤ Cβ(c0)
[
R̄2

nλ

(
1 + t+ log log2(n

2M0R̄)
)
+ 1

n

(
R̄+ λ

R̄2n

)
+ ϵ∗

]
,

with probability 1− exp(−t), where β(c0) := 1/[ℓ(0)− (ℓ(c0)− c0ℓ
′(c0))].
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This result states that if we take the regularization parameter λ sufficiently small as λ < O(1/R), then
for sufficiently large sample size such that n > S = Ω(1/λ2), we have an exponential convergence
of the expected classification error as EDn [P (Y fµ̂(Z) ≤ 0)] ≤ exp(−Ω(nλ2)); otherwise, we sill
have a linear decay EDn [P (Y fµ̂(Z) ≤ 0)] = O(1/(nλ)). Hence, the classification error and its
convergence rate is almost completely characterized by R through the choice of λ = O(1/R): for a
problem with large R, we need to pay greater sample complexity.

It is also worth noting that the value of R affects not only the statistical complexity but also the compu-
tational complexity. Remember that the number of iterations T and the network width N also depend
on λ through Eq. (8). Indeed, by taking λ = c0/R, we arrive at T = O(exp(16R̄R/c0) log(n)) and
N = O(exp(8R̄R/c0)), which has exponential dependence on R.

Therefore, the goal of the subsequent sections is to answer the following question in the affirmative:

Can we utilize the anisotropy of input data to reduce the value of R,
hence improving the statistical and computational complexity of MFLD?

4 MAIN RESULT: LEARNING UNDER STRUCTURED DATA

4.1 STATISTICAL AND COMPUTATIONAL COMPLEXITY FOR ANISOTROPIC DATA

Now we analyze how the anisotropic property of the input affects the generalization error and the
computational complexity through the aforementioned measure of problem difficulty R. We first
present a framework for the general problem setting in Definition 1. Let ϕ̃ = (ϕ̃1, . . . , ϕ̃d)

⊤ ∈ Rd as

ϕ̃i =

{√
d (i ∈ Ik),

0 (i ̸∈ Ik).
(9)

Then, we have the following proposition that controls R in terms of the transformation matrix A.

Proposition 3. Define ϕ := A−1ϕ̃ where ϕ̃ is defined by Eq. (9). For R̄ = k, there exists µ∗ ∈ P
and R such that

KL(ν||µ∗) ≤ R = c1(∥ϕ∥2 + k2) log(k)2,

and L(µ∗) ≤ ℓ(0)− c2, where c1, c2 > 0 are absolute constants.

Under the conditions in this proposition, we can show that the minimizer of the MFLD objective
achieves the Bayes optimal classifier with a positive margin as follows.

Proposition 4. Assume that there exists µ∗ ∈ P such that the conditions in Proposition 3 is satisfied
with R and R̄ in the statement. Then, if we choose the regulaization parameter λ as λ < c2/(2R),
then the minimizer µ[λ] of the MFLD objective satisfies

max{L̄(µ[λ]), L(µ[λ])} < ℓ(0)− c2
2 ,

and fµ[λ]
is a perfect classifier with margin c2, i.e., Y fµ[λ]

(Z) ≥ c2
2 almost surely.

The proofs of both propositions can be found in Appendix A in the appendix. These general results
state that Assumption 1 is satisfied for the general problem setting in Definition 1. Now we consider
special cases where concrete sample complexity and computational complexity can be derived. For
example, we have the following evaluation for the k-sparse parity with anisotropic covariance.

Example: Anisotropic k-sparse parity. In the k-parity setting (Example 2), Assumption 1 is
satisfied with constants specified in the following propositions, which follow from Proposition 4.

Corollary 1 (Anisotropic k-sparse parity). Suppose that (Z, Y ) is generated from the anisotropic k
parity problem (Example 2). Then, for R̄ = k, there exists µ∗ ∈ P satisfying KL(ν||µ∗) ≤ R where

R = c1

(∑
i∈Ik

s−2
i

)
log(k)2,

and L(µ∗) ≤ ℓ(0)− c2, where c1, c2 > 0 are absolute constants.
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This result highlights the benefit of structured data. Observe that isotropic covariance corresponds to
si = 1/

√
d (i = 1, . . . , d), where R needs to be Õ(kd), which then leads to exponential dimension

dependency in the computational complexity, and also dimension-dependent sample complexity, as
shown in Suzuki et al. (2023b). On the other hand, if the input covariance is anisotropic so that
s2j > Ω(1/k) for j ∈ Ik (i.e., the input Zj is large for the informative coordinates j ∈ Ik and other
coordinates are small), then the value of R becomes dimension-free: R = O(k2 log(k)2).
Substituting the values of R and R̄ to the generalization error and computational complexity bounds,
we obtain the following corollary.
Theorem 1 (k-sparse parity setting). Define S2

Ik
:=
∑

j∈Ik
s−2
j . Under the same setup as Corollary

1, we may take R = O(S2
Ik

log(k)2), R̄ = k and λ = O(1/R) = O(1/(S2
Ik

log(k)2)) so that the
classification error is bounded by

P (Y fµ[λ]
< 0) ≤ O

(
kS2

Ik
log(k)2

n
(log(1/δ) + log log(n))

)
,

with probability 1−δ. Moreover, if n = Ω(k4S4
Ik

log(k)4), then P (Y fµ[λ]
≤ 0) = 0 with probability

1− exp[−Ω(n/(k4S4
Ik

log(k)4))].

For the computational cost, it suffices to take the number of iterations T and network width N as

T = O(S2
Ik

log(k)2n log(nd) exp[O(kS2
Ik

log(k)2)]), N = O(n2 exp(O(kS2
Ik

log(k)2)))),

respectively, to achieve the same statistical complexity as described above.

As mentioned above, for sufficiently anisotropic data such that S2
Ik

= k2, the computational complex-
ity becomes completely polynomial order with respect to the dimension d; this is in stark contrast to
the isotropic setting, where the complexity has exponential order with respect to d.

Now we provide two examples of the k-parity problem in Example 2 (i.e., Ik = {1, . . . , k}) where
covariance structure allows us to smoothly interpolate between the isotropic and anisotropic setting.

• Power-law decay. We set

s2i = cdi
−α, cd = Θ(d1−α), where α ∈ [0, 1).

We have that S2
Ik

= O(d1−α) leading to R = O(k1+αd1−α log(k)2). This interpolates between
the isotropic and the completely anisotropic setting S2

Ik
= k2 by adjusting α between (0, 1).

• Spiked covariance. Similar to Ghorbani et al. (2020); Ba et al. (2023), we set

s2i = Θ(dα−1) for i ∈ Ik, si = Θ(d−1) otherwise, where α ∈ [0, 1]. (10)

In this case we have R = kd1−α log(k)2, which becomes dimension-free when α approaches 1.
Remark 1. For the spiked covariance setting above, the computational and statistical complexity of
MFLD is governed by the effective dimensions deff = d1−α defined in Ghorbani et al. (2020). As the
input becomes more anisotropic, deff decreases and hence the learning problem becomes easier.

4.2 ENHANCING ANISOTROPY VIA COORDINATE TRANSFORM

From the previous analysis, we see that anisotropic data can indeed improve both the statistical and
computational complexity. This being said, it is worth noting that unless the problem is sufficiently
anisotropic such that R becomes cost, the computational cost would still be super-polynomial in
terms of dimension dependence. The goal of this section is to show that the computational complexity
can be further improved by exploiting the anisotropy of the learning problem. Specifically, we utilize
the gradient covariance matrix to estimate the informative subspace, similar to the one-step gradient
feature learning procedure studied in Ba et al. (2022); Damian et al. (2022); Barak et al. (2022).

Let σ(w⊤z) = hx(z) for (x1, x2, x3) = (w, b1, b2) for fixed b1 and b2. We initialize the particles
X0 = {(wl, b1, b2)}N/2

l=1 ∪ {(−wl,−b1,−b2)}N/2
l=1 by generating wl from the uniform distribution

U(Bc0) on the ball with sufficiently small radius c0 > 0. The gradient for each neuron is given as

g(wl) =
1

n

n∑
i=1

ℓ′(yifX0
(z(i)))yizσ

′(w⊤
l z

(i)).

7
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Note that we have fX0
(Z) = 0 almost surely. We then calculate the covariance as

G = 1
N

∑N
l=1 g(wl)g(wl)

⊤,

to estimate the informative subspace. Define the “regularized covariance" Ĝ = G+ λ̂0I . For this
choice of Ĝ, we apply the following coordinate transform to the input Z:

Ẑ ← cAĜ
1/2Z,

where cA is a scaling parameter so that ∥Ẑ∥ ≤ 1 almost surely. We denote by ẑi = cAĜ
1/2zi

accordingly. After the transformation, we train the neural network via MFLD; that is, we optimize the
objective µ 7→ 1

n

∑n
i=1 ℓ(fµ(ẑi)yi)+λ(λ1Eµ[∥X∥2]+Ent(µ)). Intuitively, this coordinate transform

amplifies the informative coordinates (j ∈ Ik) and suppress the non-informative coordinates (j ̸∈ Ik).
Hence the covariance of the input features becomes more well-specified to the target signal Y leading
to a better LSI constant. We remark that such coordinate transformation is equivalent to employing
an anisotropic weight decay regularization on the weight parameters r(x) = ∥x∥2

Ĝ−1
.

Taken into account the sample complexity to estimate the gradient covariance, we obtain the following
evaluation of the KL divergence between the prior distribution ν and a Bayes optimal solution µ∗.
Theorem 2. Assume that dmaxj′∈Ic

k
s2j′ = O(1). Suppose that c0 is taken sufficiently small such

that
∑d

j=1 w
2
j s

2
j ≤ 1 almost surely for w ∼ U(Bc0) and E[|wj |] = Θ(1)2, and the regularization

parameter λ̂0 is set to be λ̂0 =
∏

j′∈Ik
s2j′ ·maxj′ ̸∈Ik s

2
j′ . We assume that the sample size n and the

number of particles N satisfies

n ≥ Ck
kdR̄2 log(2N/δ)2∏

j′∈Ik
s2j′

, N ≥ Ck
k2d2 log(d/δ)

maxj′ ̸∈Ik s
4
j′

, (11)

for given δ ∈ (0, 1), where Ck is a constant depending on k. Then, for R̄ = k and sufficiently small
Ck, there exists µ∗ ∈ P such that L(µ∗) ≤ ℓ(0)− c2 and KL(ν||µ∗) ≤ R where

R = c1k
2

(
maxj′∈[d] s

2
j′

minj′∈Ik s
2
j′

+ 1

)
log(k)2,

for a constant c1 independent of the dimensionality d, with probability 1− δ. Here, the probability is
with respect to the randomness of training data and generating the initial parameters (wl)

N
l=1.

We make the following remarks on the theorem.

• This theorem implies a significant improvement on the LSI constant since R is independent of d as

long as
maxj′∈[d] s

2
j′

minj′∈Ik
s2
j′

= O(1), which is satisfied even for the isotropic setting. The dimension-free R

then implies that no exponential dependence is present in the computational complexity. Moreover,
the runtime and the network width both “decouples” k from the exponent in dimension dependence.

• In order to accurately estimate the gradient matrix, there is an additional cost in the statistical
complexity. For the isotropic setting, (11) implies a sample complexity of n = Ω(dk+1), which
matches the total sample size in the stochastic gradient descent procedure as in Barak et al. (2022).

• If the input is anisotropic so that
∏

j′∈Ik
s2j′ ≫ d−k, then the sample complexity to estimate

the informative direction is also improved. For instance, in the spiked setting (10), the sample
complexity is improved to n ≍ d(1−α)kd = dkeffd, and in the most extreme case, when the signal is
well-specified by the principle components (i.e., denominator is Ω(1)), the complexity becomes
linear in d. This observation also demonstrates the benefit of structured data in feature learning.

Tradeoff between statistical and computational complexity. By comparing the complexity
derived in Theorem 1 and Theorem 2, we observe a tradeoff between the statistical and computational
complexity: estimating the gradient covariance matrix requires additional samples, but consequently
the required width and iterations of MFLD significantly decrease. An interesting question is whether
such tradeoff naturally occurs in more general data settings and feature learning procedures.

2This condition implicitly assumes s2j = O(1/d) (∀j); we observe that
∑

j w
2
j s

2
j ≤ maxj s

2
j

∑
j w

2
j =

maxj s
2
jd, which can be bounded by O(1) only when maxj s

2
j = O(1/d).

8
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5 KERNEL LOWER BOUND FOR ANISOTROPIC PARITY

To complement our feature learning results, in this section we prove a classification lower bound
for kernel methods on the (axis-aligned) anisotropic k-parity problem in Example 2 in a spiked
covariance setting. We assume y = y(z) = sign(

∏k
i=1 zi), and for k∗ ≤ k, the input features satisfy

|zi| = dα/2 for i = 1, · · · , k∗. |zi| = 1 for i = k∗+1, · · · , d. (12)

This is to say, the first k∗ coordinates of the k-parity target function are aligned with the prominent
directions of the input, but the target can also depend on an additional k − k∗ coordinates that are not
amplified. It is clear that the following two settings are special cases of the above definition:

(i) α = 0 : isotropic data. (ii) k = k∗ : the (well-specified) spiked covariance model in (10).

We emphasize that most existing kernel lower bounds are tailored for regression with the squared
error (Ghorbani et al., 2020; Hsu, 2021; Abbe et al., 2022). Even for the simplest isotropic setting
(i), to our knowledge the only classification lower bound for the parity problem is given in Wei et al.
(2019) which only handles the k = 2 case (XOR).

Our lower bound applies to rotationally invariant kernels: K(z, z′) = h(∥z∥, ∥z′∥, ⟨z, z′⟩) as consid-
ered in El Karoui (2010); Donhauser et al. (2021). In the hypercube setting, ∥z∥ is fixed, and hence
we may restrict ourselves to a positive semidefinite inner-product kernel which can be written as

K(z, z′) =
∑∞

l=0 γl

(
⟨z,z′⟩

d

)l
, {γl}∞l=0 : non-negative and bounded.

Note that this covers the a wide range of NTK of fully-connected NNs (Liang et al., 2020; Donhauser
et al., 2021). Given n i.i.d. samples, we construct the kernel estimator fβ(z) with β ∈ Rn chosen
arbitrarily: fβ(z) =

∑n
i=1 βiK(z, z(i)). We have the following classification error lower bound.

Theorem 3. Consider the spiked covariance setting in (12). Given any fixed δ > 0, if the sample size

n ≲ d⌊(1−α)k∗⌋+k−k∗−δ,

then for sufficiently large d, with probability at least 0.99 over the samples, for all choices of β ∈ Rn,
fβ(z) =

∑n
i=1 βiK(z, z(i)) will misclassify the sign of y at Ω(1) fraction of the time, that is,

Pz∼PZ
[fβ(z)y < 0] = Ω(1).

The proof can be found in Appendix C. First, we lower bound the failure probability by the probability
that |fβ(z)| is large, by extending Wei et al. (2019) based on finer evaluation on the correlation
yK(z, z(i)). Then we reduce the problem to controlling the lowest eigenvalue of some kernel matrix.

We make the following remarks on the kernel lower bound.

• Recall that α ∈ (0, 1) controls the anisotropy of input features. When α→ 0, the input becomes
isotropic, and we obtain a n ≍ dk−δ lower bound on the sample complexity for the classification
error, which matches the regression lower bound in Ghorbani et al. (2019).

• In the “well-specified” setting where k = k∗ as in (10), the kernel sample complexity simplifies to
n ≍ d(1−α)k = dkeff which is strictly worse than that of MFLD given in Theorem 1 for k > 1. On
the other hand, the required sample size is d times better than the covariance estimation procedure in
Theorem 2 (although we believe the factor d stems from a technical artifact of the proof); however,
in terms of computational complexity at test time, the kernel estimator needs to store n training
points which scales with dk, whereas for the NN we only need to store poly(d, k) neurons, which
decouples the degree k in the exponent of the dimension dependence.

6 EXPERIMENT

We validate our theoretical analysis by numerical experiments. We consider the anisotropic 3-sparse
parity problem: y = z1z2z3, s1 = s2 = s3 = κ/

√
d, and s4 = · · · = 1/

√
d. We fixed d = 300 and

varied n and κ to train the neural network (2) with the logistic loss. More details are in Appendix D.
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Figure 1: Test accuracy of NN trained by MFLD to
learn an anisotropic d-dimensional 3-parity problem.

In Figure 1 we plot the test accuracy as a func-
tion of the sample size n and κ, which con-
trols the level of anisotropy. As clearly seen,
increasing κ enables smaller the model to learn
the problem with smaller sample complexity n,
which demonstrates how anisotropy helps learn-
ing. Moreover, let us focus on the “phase transi-
tion” boundary between yellow and blue regions.
According to Theorem 1, the classification error
is bounded by

∑
j∈Ik

s−2
j /n = κ−2d/n up to

a constant, which predicts that there would be
a boundary around κ2 = Θ(n), as indicated by
the red line in the figure. We therefore conclude
that the empirical findings match the theoretical
result in Theorem 1.

7 CONCLUSION

We studied the interplay between structured data (in the form of input anisotropy) and the efficiency
of feature learning in the context of classifying k-sparse parity using two-layer neural network
optimized by noisy gradient descent (mean-field Langevin dynamics). We showed that anisotropy
can improve both the statistical and computational complexity of MFLD, leading to a separation
from kernel methods (including neural networks in the NTK regime). Interesting future directions
include (i) extending this observation to a more general class of target functions, (ii) improving the
sample complexity to obtain the covariance estimator in Theorem 2, and (iii) deriving a more precise
description on the tradeoff between statistical and computational complexity in NN training.
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—————————– Appendix —————————–

A PROOFS OF PROPOSITIONS 3 AND 4 AND COROLLARY 1

Proof of Proposition 3. We follow the proof strategy from Suzuki et al. (2023b). Remember that

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3.

Let bi = 2i−k for i = 0, . . . , k, let ζ > 0 be the positive real such that Eu∼N(0,1)[2 tanh(ζ+u)] = 1
(note that, this also yields Eu∼N(0,1)[2 tanh(−ζ + u)] = −1 by the symmetric property of tanh and
the Gaussian distribution). Let

Σ :=

(
I/(2λ1) 0 0

0 1/(2λ1) 0
0 0 1

)
∈ R(d+1+1)×(d+1+1),

and ρ > 1 be a constant which will be adjusted later on. Then, for ξ2j := [log(ρk)ϕ⊤,− log(ρk)(bj−
1), ζ]⊤ ∈ Rd̄ and ξ2j+1 := −[log(ρk)ϕ⊤,− log(ρk)(bj + 1), ζ]⊤ ∈ Rd̄ for j = 0, . . . , k, we define

µ̂2j := N(ξ2j ,Σ), µ̂2j+1 := N(ξ2j+1,Σ).

By noticing that for z ∈ supp(PZ) there exists z̃ ∈ {±1/
√
d}d such that z = Az̃, we can see that

Ex∼µ̂2j
[hx(z)] = R̄Eu∼N(0,1/λ1){tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj − 1)) + u] + 1}/3

because we have

⟨x1, z⟩+ x2 = log(ρk)(⟨ϕ, z⟩ − (bj − 1)) +

d∑
i=1

uizi + ud+1

= log(ρk)(⟨A−1ϕ̃, Az̃⟩ − (bj − 1)) +

d∑
i=1

uizi + ud+1,

for x ∼ N([ϕ⊤, (bj − 1)]⊤, I/(2λ1)) where ui ∼ N(0, 1/(2λ1)) (i.i.d.) and
∑d

i=1 uizi + ud+1

obeys the Gaussian distribution with mean 0 and variance 1
2λ1
∥z∥2 + 1

2λ1
= 1

2λ1

(
1 + ∥z∥2

)
≤ 1

λ1

for all z ∈ supp(PZ), where we used the assumption on A. In the same vein, we also have

Ex∼µ̂2j+1 [hx(z)] = −R̄Eu∼N(0,(1+∥z∥2)/2λ1){tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj + 1)) + u] + 1}/3.

Here, define |z̃|0 := |{i ∈ Ik | z̃i > 0}| for z̃ ∈ supp(PZ̃) which is the number of positive elements
of z in the informative index set Ik. For a fixed number j ∈ {0, . . . , k}, we let

f1(z;u) = {tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj − 1)) + u] + 1}/3,
f2(z;u) = {tanh[log(ρk)(⟨ϕ̃, z̃⟩ − (bj + 1)) + u] + 1}/3,

then we can see that

f1(z; 0) =

{
O(1/(ρk)) (|z̃|0 < j),

1−O(1/(ρk)) (|z̃|0 ≥ j),

and

f2(z; 0) =

{
O(1/(ρk)) (|z̃|0 < j + 1),

1−O(1/(ρk)) (|z̃|0 ≥ j + 1),

because ⟨ϕ̃, z̃⟩ − bj =
∑k

j′=1 sign(z̃j′)− bj = 2|z̃|0 − k − bj = 2(|z̃|0 − j). Hence, we have that

f(z;u) := f1(z;u)− f2(z;u) =

{
Ω(1) (|z̃|0 = j),

O(1/(ρk)) (otherwise),

and f(z;u) > 0 for |z̃|0 = j. Then, since tanh(u) + 1 = eu−e−u

eu+e−u + 1 = 2
1+e−2u , if |z̃|0 = j and

|u| ≤ 1/λ1,
f(z;u) ≥ Ω(1),
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and if |z̃|0 ̸= j and |u| ≤ log(ρk)/2,

f(z;u) ≤ O(1/(ρk)).

Therefore, when |z̃|0 = j,

Eu∼N(0,(1+∥z∥2)/2λ1)[f(z;u)] ≥
∫ 1/λ1

−1/λ1

f(z;u)g(u)du > Ω(1).

where g is the density function of N(0, (1 + ∥z∥2)/2λ1), and when |z̃|0 ̸= j,

Eu∼N(0,(1+∥z∥2)/2λ1)[f(z;u)] ≤
∫ log(ρk)/2

− log(ρk)/2

f(z;u)g(u)du+

∫
|u|≥log(ρk)/2

f(z;u)g(u)dz

≤ O(1/(ρk)) +O

(
exp(−λ1 log(ρk)

2/2)

log(ρk)

)
= O(1/(ρk)),

where we used the upper-tail inequality of the Gaussian distribution in the second inequality. Hence,
it holds that

f̂i(z) := Ex∼µ̂2i [hx(z)] + Ex∼µ̂2i+1 [hx(z)] =

{
Ω(k) (|z̃|0 = j),

O(1/ρ) (otherwise),

because R̄ = k. Therefore, by taking ρ > 1 sufficiently large, we also have

f̂(z) :=
1

2(k + 1)

k∑
i=0

(−1)if̂i(z) =
{
Ω(1) (|z̃|0 is even),
−Ω(1) (|z̃|0 is odd),

where the constant hidden in Ω(·) is uniform over any |z̃|0. Hence, there exists c′2 > 0 such that
Y f̂(Z) > c′2 almost surely. Now if we let µ⟨a⟩(B) := µ(aB) for a ∈ R, a probability measure µ

and a measurable set B, we can see that f̂ is represented as

f̂(·) = Ex∼µ∗ [hx(·)],
where

µ∗ =
1

2(k + 1)

k∑
i=0

(µ̂2i,⟨(−1)i⟩ + µ̂2i+1,⟨(−1)i⟩).

Then, by letting c2 = ℓ(0)− ℓ(c′2), we have

L(µ∗) ≤ ℓ(0)− c2.

Next, we bound the KL divergence between ν and µ∗. The convexity of KL divergence yields that

KL(ν, µ∗) ≤ 1

2(k + 1)

k∑
i=0

(KL(ν, µ̂2i) + KL(ν, µ̂2i+1))

≤ λ1 log(ρk)
2[∥ϕ∥2 + (max

j
|bj |+ 1)2] + log(1/(2λ1)) + λ1(1 + ζ2)

= O
(
log(k)2

(
∥ϕ∥2 + k2

))
.

This gives the assertion.

Next, we prove Proposition 4.

Proof of Proposition 4. The proof of this statement resembles Proposition 4 of Suzuki et al. (2023b).
The key step in their proof is to show that the optimal solution satisfies

|fµ[λ](z)| = |fµ[λ](z′)|

for any z, z′ ∈ supp(PZ). We prove that this still holds in our general setting. Let TA : Rd̄ → R be

TAx = (Ax1, x2, x3),

14
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where x = (x1, x2, x3) for x1 ∈ Rd, x2 ∈ R and x3 ∈ R. Then, we can see that

fµ(z) = fTA#µ(z̃)

for µ ∈ P and TA# is the push-forward with respect to TA, and z = Az̃. Based on this coordinate
transform, we can reduce the problem to the standard parity setting where the input obeys the
uniform distribution on {±1/

√
d}d. According to this coordinate transform, the prior distribution

ν is transformed to νA := TA#ν, which is again a normal distribution with mean 0 and variance
AA⊤/(2λ1). We also let Tj be the map which flips the sign of the i-th coordinate. Then, the key
argument in the proof of Suzuki et al. (2023b) is to show that

KL(νA||µ) = K(νA||Tj#µ)

for a measure µ ∈ P (which is supposed to be TA#µ̂ for a population risk minimizer µ̂). This equality
is true because the normal distribution is point symmetric. Indeed, we have

KL(νA||µ) = KL(Tj#νA||Tj#µ) = KL(νA||Tj#µ),

where the first equality is by the invariance of the KL divergence against any bijective coordinate
transform and the second equality is by the point symmetry of the normal distribution. Then, following
the same argument to Suzuki et al. (2023b), we obtain the assertion.

Finally, Proposition 1 can be obtained as a corollary of Proposition 3 where we set A =

diag
(
s1
√
d, s2
√
d, . . . , sd

√
d
)

. For this setting, we can easily see that

∥ϕ∥2 =
∑
j∈Ik

s−2
j .

Combining with this evaluation and the fact that

k =
∑
i∈Ik

1 =
∑
i∈Ik

sis
−1
i ≤

√∑
i∈Ik

s2i

√∑
i∈Ik

s−2
i ≤

√∑
i∈Ik

s−2
i

we obtain the assertion.

B ESTIMATING THE INFORMATION MATRIX

Without loss of generality, we may take Ik = {1, . . . , k}. Let σ(w⊤z) = hx(z) for (x1, x2, x3) =
(w, b1, b2) for a fixed b1 and b2. Then,

σ(w⊤z) =

∞∑
ℓ=0

1

ℓ!
σ(ℓ)(0)︸ ︷︷ ︸
=:cℓ

(w⊤z)ℓ.

Note that the gradient of the loss with respect to wj can be written as

gj(w) =
1

n

n∑
i=1

ℓ′(yifµ0(zi))yizi,jσ
′(w⊤zi).

Suppose that fµ0(zi) = 0, then since Y =
∏

j∈Ik
(s−1

j Zj), its expectation can be expressed as

ḡj(w) := E

 ∏
j′∈Ik

(s−1
j′ Zj′)Zjσ

′(w⊤Z)

 .

(1) If j ∈ Ik, then we have that

ḡj(w) := sj
∏

j′∈Ik\j

s−1
j′ E

 ∏
j′∈Ik\j

Zj′σ
′(w⊤Z)

 .

15
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Then, by the Taylor expansion of σ, it holds that

ḡj(w) =sj
∏

j′∈Ik\j

s−1
j′

k−1∑
ℓ=0

1

ℓ!
∂
(ℓ)

θ̃
E

 ∏
j′∈Ik\j

Zj′σ
′((θ̃w)⊤Z)

 ∣∣∣∣∣
θ̃=0

+

∞∑
ℓ=k

1

ℓ!
∂
(ℓ)

θ̃
E

 ∏
j′∈Ik\j

Zj′σ
′((θ̃w)⊤Z)

 ∣∣∣∣∣
θ̃=0


= sj

∏
j′∈Ik\j

s−1
j′

E

 ∏
j′∈Ik\j

Zj′
ck

(k − 1)!
(w⊤Z)k−1


+

∞∑
ℓ=k

E

 ∏
j′∈Ik\j

Zj′ ·
cℓ+1

ℓ!
(w⊤Z)ℓ


= sj

∏
j′∈Ik\j

s−1
j′

 ∏
j′∈Ik\j

s2j′
ck

(k − 1)!
(k − 1)!

∏
j′∈Ik\j

wj′ + (higher order term)︸ ︷︷ ︸
=:(a)


= ck ·

∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

wj′ + (higher order term).

The higher order term (a) in the above expression can be evaluated as

∞∑
ℓ=k

E

 ∏
j′∈Ik\j

Zj′ ·
cℓ+1

ℓ!
(w⊤Z)ℓ


=

∞∑
ℓ=k

E

{ ∏
j′∈Ik\j

Zj′ ·
cℓ+1

ℓ!

[ ∑
{j1,...,jk−1}=Ik\j

∑
0≤ℓ1<ℓ2<···<ℓk−1<ℓ

 ∑
j′∈(Ik\j)c

wj′Zj′

ℓ1

wj1Zj1

·

 ∑
j′∈(Ik\{j,j1})c

wj′Zj′

ℓ2−ℓ1−1

wj2Zj2 ·

 ∑
j′∈(Ik\{j,j1,j2})c

wj′Zj′

ℓ3−ℓ2−1

wj3Zj3

. . .

 ∑
j′∈(Ik\{j,j1,j2,...,jk−2})c

wj′Zj′

ℓk−1−ℓk−2−1

wjk−1
Zjk−1

· (w⊤Z)ℓ−ℓk−1−1

]}

=

∞∑
ℓ=k

E

{ ∏
j′∈Ik\j

(s2j′wj′) ·
cℓ+1

ℓ!

[ ∑
{j1,...,jk−1}=Ik\j

∑
0≤ℓ1<ℓ2<···<ℓk−1<ℓ

 ∑
j′∈(Ik\j)c

wj′Zj′

ℓ1

·

 ∑
j′∈(Ik\{j,j1})c

wj′Zj′

ℓ2−ℓ1−1

·

 ∑
j′∈(Ik\{j,j1,j2})c

wj′Zj′

ℓ3−ℓ2−1

. . .

 ∑
j′∈(Ik\{j,j1,j2,...,jk−2})c

wj′Zj′

ℓk−1−ℓk−2−1

· (w⊤Z)ℓ−ℓk−1−1

]}
.

Then, applying Hölder’s inequality, we can bound the right hand side as

∞∑
ℓ=k

∏
j′∈Ik\j

(s2j′wj′) ·
cℓ+1

ℓ!
·

∑
{j1,...,jk−1}=Ik\j

∑
0≤ℓ1<ℓ2<···<ℓk−1<ℓ

E


∣∣∣∣∣∣
∑

j′∈(Ik\j)c
wj′Zj′

∣∣∣∣∣∣
ℓ−k+1


ℓ1

ℓ−k+1
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· E


∣∣∣∣∣∣

∑
j′∈(Ik\{j,j1})c

wj′Zj′

∣∣∣∣∣∣
ℓ−k+1


ℓ2−ℓ1+1
ℓ−k+1

· · ·E


∣∣∣∣∣∣

∑
j′∈(Ik\{j,j1,...,jk−2})c

wj′Zj′

∣∣∣∣∣∣
ℓ−k+1


ℓk−1−ℓk−2+1

ℓ−k+1

· E
[∣∣w⊤Z

∣∣ℓ−k+1
] ℓ−ℓk−1+1

ℓ−k+1

.

Now, we use the moment bound of sub-Gaussian random variables to bound each term
E[|
∑

j′∈(Ik\{j,j1,...,ja})c wj′Zj′ |ℓ−k+1]
ℓa−ℓa−1+1

ℓ−k+1 . Indeed, we can see that, for any index set J ⊂ I ,
w⊤

J ZJ is a sub-Gaussian random variable with parameter ∥wJ ⊙ sJ∥3 where a sub-Gaussian random
variable X with a parameter u satisfied E[|X|ℓ] ≤ (cu)ℓℓℓ/2 (∀ℓ ≥ 1) with an absolute constant c (see
Proposition 2.5.2 of Vershynin (2020), for example). Hence, by noticing that ∥wJ⊙sJ∥2 ≤ ∥w⊙s∥2
and ℓ1 +

∑k−1
b=2 (ℓb − ℓb−1 + 1) + ℓ− ℓk−1 + 1 = ℓ− k + 1, the right hand side can be bounded by∏

j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

wj′ ·
∞∑
ℓ=k

cℓ+1

ℓ!
(k − 1)!

ℓ!

(ℓ− k + 1)!(k − 1)!
(c∥w ⊙ s∥)ℓ−k+1(ℓ− k + 1)(ℓ−k+1)/2

=
∏

j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

wj′ ·
∞∑
ℓ=k

cℓ+1(c∥w ⊙ s∥)ℓ−k+1 (ℓ− k + 1)(ℓ−k+1)/2

(ℓ− k + 1)!
.

Then, by the Stirling’s formula, the right hand side can be bounded by∏
j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

|wj′ | ·
∞∑
ℓ=k

cℓ+1∥w ⊙ s∥ℓ−k+1 (ℓ− k + 1)(ℓ−k+1)/2

√
2π(ℓ− k + 1)ℓ−k+1+1/2e−(ℓ−k+1)

=
∏

j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

|wj′ | ·
∞∑
ℓ=k

cℓ+1∥w ⊙ s∥ℓ−k+1 1√
2π

(
e

(ℓ− k + 1)1/2

)ℓ−k+1
1

(ℓ− k + 1)1/2

≤ck
2

∏
j′∈Ik\j

s2j′ ·
∏

j′∈Ik\j

|wj′ |,

where we used the assumption ∥w ⊙ s∥ is sufficiently small such that
∑∞

ℓ=k cℓ+1(c∥w ⊙

s∥)ℓ−k+1 1√
2π

(
e

(ℓ−k+1)1/2

)ℓ−k+1
1

(ℓ−k+1)1/2
≤ ck

2 . Therefore, we can see that

ḡj(w) = ck ·
∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

wj′ + (higher order term),

|ḡj(w)| ≥
ck
2
·
∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

|wj′ |,

|ḡj(w)| ≤
3

2
ck ·

∏
j′∈Ik

sj′ ·
∏

j′∈Ik\j

|wj′ |. (13)

(2) In the same vein, we also have that, for j ̸∈ Ik, it holds that

ḡj(w) = ck+2 ·
∏

j′∈Ik∪j

sj′ ·
∏

j′∈Ik∪j

wj′ + (higher order term),

|ḡj(w)| ≤ 2ck+2 ·
∏

j′∈Ik∪j

sj′ ·
∏

j′∈Ik∪j

|wj′ |. (14)

Next, we show the concentration of the empirical gradient gj(w) around its expectation. Observe that

sup
Y,Z
|ℓ′(Y fµ0

(Z))Y Zjσ
′(w⊤Z)| ≤ R̄sj ,

3Here, x⊙ y := (xjyj)
d
j=1.

17



Published as a conference paper at ICLR 2024

VarY,Z [ℓ
′(Y fµ0

(Z))Y Zjσ
′(w⊤Z)] ≤ R̄2s2j .

Therefore, by Bernstein’s inequality, we obtain that

P

(
|gj(w)− ḡj(w)| ≥

4R̄sj√
n

log(2/δ)

)
≤ δ

for any δ ∈ (0, 1). Hence, if we let n

n ≥ 16kR̄2 log(2N/δ)2d(
C0ck ·

∏
j′∈Ik

sj′
)2 ,

for a sufficiently small constant C0, then we have that

|gj(wl)− ḡj(wl)| ≤ C0ck
∏
j′∈Ik

sj′ · sj/
√
kd, (15)

uniformly over l = 1, . . . , N with probability δ.

For that purpose, we evaluate the expectations of gj1(w)gj2(w) carefully. Let H(w) =∑∞
ℓ=k

cℓ+1

(ℓ−k+1)!EZ

[
(w⊤Z)ℓ−k+1

]
= 1

2∥w ⊙ s∥2 +
∑∞

ℓ=0
ck+4+2ℓ

(4+2ℓ)! EZ

[
(w⊤Z)4+2ℓ

]
. We evaluate

for each condition on j1 and j2.

(a) If j1 = j2 ∈ Ik, then it holds that

EW [ḡj1(W )ḡj1(W )] = c2k
∏
j′∈Ik

s2j′EW

 ∏
j′∈Ik\j1

W 2
j′(1 +H(W ))2


= Ω

 ∏
j′∈Ik

s2j′

 .

(b) If j1 ̸= j2 and j1, j2 ∈ Ik, then it holds that

EW [ḡj1(W )ḡj2(W )] = c2k
∏

j′∈Ik
s2j′E

[∏
j′∈Ik\{j1,j2} W

2
j′ ·Wj1Wj2(1 +H(W ))2

]
= 0,

where we used that the distribution of W is symmetric and H(W ) satisfies H(W ) = H(−W ).

(c) If j1 ̸= j2 and j1 ∈ Ik and j2 ̸∈ Ik, then

EW [ḡj1(W )ḡj2(W )] = ckck+2

∏
j′∈Ik

s2j′sj2E

 ∏
j′∈Ik\j1

W 2
j′ ·Wj2(1 +H(W ))2

 = 0.

(d) If j1 ̸∈ Ik and j2 ̸∈ Ik, then

EW [ḡj1(W )ḡj2(W )] = c2k+2

∏
j′∈Ik

s2j′sj1sj2E

 ∏
j′∈Ik

W 2
j′ ·Wj1Wj2(1 +H(W ))2


=

{
0 (j1 ̸= j2),

O(
∏

j′∈Ik∪j1
s2j′) (j1 = j2).

Summarizing these evaluations, we can see that Ḡ = (Ḡj1,j2)
d,d
j1=1,j2=1 ∈ Rd×d defined by

Ḡj1,j2 = EW [ḡj1(W )ḡj2(W )]

is a diagonal matrix where Ḡj1,j1 for j1 ∈ Ik has larger values than that for j1 ̸∈ Ik. We define its
empirical average version G = (Gj1,j2)

d,d
j1=1,j2=1 ∈ Rd×d as

Gj1,j2 =
1

N

N∑
l=1

gj1(wl)gj2(wl).
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Now, we show the concentration of G around its population version Ḡ. Note that

1

N

N∑
l=1

gj1(wl)gj2(wl) =
1

N

N∑
l=1

(gj1(wl)− ḡj1(wl) + ḡj1(wl))(gj2(wl)− ḡj2(wl) + ḡj2(wl))

=
1

N

N∑
l=1

(gj1(wl)− ḡj1(wl))(gj2(wl)− ḡj2(wl))

+
1

N

N∑
l=1

(gj1(wl)− ḡj1(wl))ḡj2(wl)

+
1

N

N∑
l=1

(gj2(wl)− ḡj2(wl))ḡj1(wl)

+
1

N

N∑
l=1

ḡj1(wl)ḡj2(wl).

Therefore, if we let ∆Gj1,j2 = Gj1,j2 − Ḡj1,j2 , Ĝj1,j2 = 1
N

∑N
l=1 ḡj1(wl)ḡj2(wl) and Ġj1,j2 :=

1
N

∑N
l=1(gj1(wl)− ḡj1(wl))(gj2(wl)− ḡj2(wl)), then for any u ∈ Rd, it holds that

|u⊤∆Gu| ≤2u⊤

(
1

N

N∑
l=1

(g(wl)− ḡ(wl))(g(wl)− ḡ(wl))
⊤

)
u+ 2u⊤

(
1

N

N∑
l=1

ḡ(wl)ḡ(wl)
⊤

)
u

≤2u⊤Ġu+ 2u⊤(Ĝ− Ḡ)u+ 2u⊤Ḡu. (16)

Here, the term Ĝ− Ḡ can be bounded by the matrix Bernstein’s inequality as

P

[
∥Ĝ− Ḡ∥op ≥ K

(√
Q2(t+ log(d))

N
+

(t+ log(d))Q

N

)]
≤ exp(−t),

where K is an absolute constant and Q = d
∏

j′∈Ik
s2j′ because ∥ḡ(wl)ḡ

⊤(wl)∥op ≤ O(Q). There-
fore, taking N = Ω(d2k2 log(d/δ)/(C0 maxj′ ̸∈Ik s

4
j′)) for sufficiently small C0 yields that

∥Ĝ− Ḡ∥op = O

C0

∏
j′∈Ik

s2j′ · max
j′ ̸∈Ik

s2j′/k

 ,

with probability 1− δ. In the same manner, we also have that

G ⪰ 1

2
Ḡ+ (Ĝ− Ḡ)− Ġ. (17)

In the following, we let Q1 :=
∏

j′∈Ik
s2j′ , and Q2 :=

∏
j′∈Ik

s2j′ ·maxj′ ̸∈Ik s
2
j′ .

Then, by modifying the objective as

L(µ) + λ1Eµ[∥X∥2(G+λ̂0I)−1 ]

with a regularization parameter λ̂0 = Q2. This is equivalent to the alternative objective
L(µ) + λ1Eµ[∥X∥2] where the input is transformed as Z ← AZ̃ where A = cA

√
G+ λ̂0IB with

B = diag
(
s1
√
d, . . . , sd

√
d
)

and a constant cA = O((kQ1 maxj′ s
2
j′)

−1/2) such that ∥AZ̃∥ ≤ 1.
Indeed, we can take such cA because∥∥∥√G+ λ̂0IBZ̃

∥∥∥2 ≤ Z̃⊤B
(
2Ġ+ (Ĝ− Ḡ) + 3Ḡ

)
BZ̃

≲

 d∑
j1,j2=1

s2j1s
2
j2

Q1/(kd) +Q2(dmax
j′

s2j′) + max
j′

s2j′(kQ1 + (d− k)Q2)
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≲ kQ1 max
j′

s2j′ ,

where we used the assumption of
∑d

j=1 s
2
j = 1 and the fact that dQ2 = dQ1 ·maxj′ ̸∈Ik s

2
j′ ≲ Q1

due to the assumption dmaxj′ ̸∈Ik s
2
j′ = O(1). Then, we can see that

∥A−1ϕ̃∥2 = c−2
A ϕ̃⊤B−1(G+ λ̂0I)

−1B−1ϕ̃ = c−2
A ζ⊤s (G+ λ̂0I)

−1ζs,

for ζs = (s−1
1 , . . . , s−1

k , 0, . . . , 0)⊤. Now, let

G+ λ̂0 =

(
G[1,1] G[1,2]

G[2,1] G[2,2]

)
.

Then, we can see that

(G+ λ̂0I)
−1 =

(
(G[1,1] −G[1,2]G

−1
[2,2]G[2,1])

−1 ∗
∗ ∗

)
.

We know that ∥G−1
[2,2]∥op ≤ ∥(λ̂0I)

−1∥op = Q−1
2 and ∥G[1,2]∥op ≲ C0

√
k(d− k)Q1Q2/(kd) by

the same argument as Eq. (16) and the assumption dmaxj′ ̸∈Ik s
2
j′ = O(1). Hence, we can see that

G[1,1] −G[1,2]G
−1
[2,2]G[2,1] ≿ Q1I −O(C2

0 (k(d− k)Q1Q2/(kd))/Q2)I ≿ [Q1 −O(C2
0Q1)]I,

by Eq. (17). Therefore, by taking C0 sufficiently small, we have that

(G[1,1] −G[1,2]G
−1
[2,2]G[2,1])

−1 ≾ Q−1
1 I.

Therefore, we finally arrive at

∥A−1ϕ̃∥2 ≤ c−2
A ∥ζs∥

2∥(G[1,1] −G[1,2]G
−1
[2,2]G[2,1])

−1∥op

≲ kQ1

(
max
j′

s2j′

)
· k
(
min
j′∈Ik

s2j′

)−1

·Q−1
1 = k2

maxj′∈[d] s
2
j′

minj′∈Ik s
2
j′
.

C KERNEL LOWER BOUND

In this section, we derive the kernel lower bound for the k-parity classification problem (Example 2)
in the spiked covariance setting. Our proof is divided into two steps. First, we translate the event when
prediction fails into when the value of |fβ(z)| is away from zero. We combine the proof for 2-parity
(Wei et al., 2019) and an additional observation that K(z, zi) have d−(1−α)k∗−(k−k∗) correlation to
y, to get the tighter bound for general higher order parities than that in Wei et al. (2019). Then, we
show that the probability of that event is evaluated by the the smallest eigenvalue of some kernel
matrix defined in Lemma 3. Finally, we apply the lower bound of the smallest eigenvalue using the
technique of Misiakiewicz (2022).

Note that, we do not need to prove Theorem 3 for 1− 1
k∗ < α ≤ 1, because ⌊(1− α)k∗⌋ = 0 holds

for such α. Thus in the following we assume 1− 1
k∗ < α ≤ 1, hence 1− α > 0.

Lemma 1. For n ≤ d(1−α)k∗+(k−k∗), with probability 1− exp(−Ω(d)) over the random draws of
the training sample, we have

Pz∼PZ
[fβ(z)y < 0] ≳ Pz∼PZ

[
|fβ(z)| ≥

c

d(1−α)k∗+(k−k∗)

n∑
i=1

|βi|

]
− 1/d,

where c is a constant depending on k and {γl}l.

Proof. Consider randomly drawn zk+1:d, which we fix in the following. Suppose fβ(z)y(z) ≥ 0 for
all choices of z1:k and |fβ(z)| ≳ c

d(1−α)k

∑n
i=1 |βi| for some z1:k for the sake of contradiction (with

high probability). Then, consider the average of K(z, zi)y over the choices of z1:k as follows:

Ez1:k

[
K(z, zi)y(z)

∣∣ zk+1:d

]
= Ez1:k

[ ∞∑
l=0

αl

(
z⊤zi

d

)l

y(z)

∣∣∣∣∣ zk+1:d

]

20
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=

∞∑
l=k

γlEz1:k

(z⊤zi

d

)l k∏
j′=1

zj′

∣∣∣∣∣∣ zk+1:d

 (18)

Let us evaluate Ez1:k [(
z⊤zi

d )l
∏k

j′=1 zj′ |zk+1:d]. For k ≤ l ≤ ⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉, we expand

( z
⊤zi

d )l = (
∑d

i=j

zjz
i
j

d )l to obtain

Ez1:k

(z⊤zi

d

)l k∏
j′=1

zj′

∣∣∣∣∣∣ zk+1:d

 ≤ l∑
l′=k

lCl′k
l′(d− k)l−l′

︸ ︷︷ ︸
terms containing each z1, · · · , zk at least once

(
dα

d

)k∗ (
1

d

)k−k∗ (
1

d

)l−l′

≲ d−(1−α)k∗−(k−k∗).

For l ≥ ⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉ + 1, we have | z

⊤zi

d | ≲ d−(1−α)/2
√
log d with probability 1 −

1/d(1−α)k+(k−k∗)+1 over the choice of zk+1:d, and therefore
∑∞

l=2k+1 Ez1:k [| z
⊤zi

d |
l|zk+1:d] ≲

d−(1−α)k∗−(k−k∗). By using them for (18), we have

Ez1:k

[
K(z, zi)y(z)

∣∣ zk+1:d

]
= Ez1:k

[ ∞∑
l=0

αl

(
z⊤zi

d

)l

y(z)

∣∣∣∣∣ zk+1:d

]
≲ d−(1−α)k∗−(k−k∗)

for randomly drawn zk+1:d, with probability more than 1− 1/d(1−α)k∗+(k−k∗)+1. Therefore,

Ez1:k [fβ(z)y(z)| zk+1:d] = Ez1:k

[∑
i

βiK(z, zi)y(z)

∣∣∣∣∣ zk+1:d

]
(19)

≲
1

d(1−α)k∗+(k−k∗)

n∑
i=1

|βi| (20)

with probability more than 1− 1/d.

On the other hand, if fβ(z)y(z) ≥ 0 for all z1:k and |fβ(z)| ≳ c
d(1−α)k∗+(k−k∗)

∑n
i=1 |βi| for some

z1:k, we have

Ez1:k [fβ(z)y(z)| zk+1:d] =
1

2k

∑
z1:k

fβ(z)y(z) ≥
1

2k
· c

d(1−α)k∗+(k−k∗)

n∑
i=1

|βi|. (21)

By comparing (20) and (21), we have the contradiction for more than 1 − 1/d probability of the
choice of zk+1:d by taking c sufficiently large. Therefore, if |fβ(z)| ≳ c

d(1−α)k∗+(k−k∗)

∑n
i=1 |βi| for

some z1:k, there exists some z1:k that yields fβ(z)y < 0, for zk+1:d that is drawn with probability
more than 1− 1/d, which yields the conclusion.

Now we evaluate the probability Pz∼PZ
[|fβ(z)| ≥ c

d(1−α)k∗+(k−k∗)

∑n
i=1 |βi|]. Since fβ(z) can have

very high order terms, make the following approximation.
Lemma 2. Let us define g1 : [−1, 1]→ R as

g1(t) =

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

γlt
l.

Suppose n ≤ d(1−α)k∗+(k−k∗). Then,

Pz∼PZ

[
∃i ∈ [n],

∣∣∣∣K(z, zi)− g1

(
z⊤zi

d

)∣∣∣∣ ≤ d−(1−α)k∗−(k−k∗)

]
≥ 1− 1/d.

Proof. First, we note∣∣∣∣K(z, zi)− g1

(
z⊤zi

d

)∣∣∣∣ =
∣∣∣∣∣∣∣
∞∑
l=0

αl

(
z⊤zi

d

)
−

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

γl

(
z⊤zi

d

)∣∣∣∣∣∣∣
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=

∞∑
⌈ 2((1−α)k∗+(k−k∗))

1−α ⌉+1

γl

∣∣∣∣z⊤zid

∣∣∣∣ . (22)

With probability 1 − 1/d(1−α)k∗+(k−k∗)+1,
∣∣∣ z⊤zi

d

∣∣∣ ≲ d−(1−α)/2
√
log d. This means that (22) is

bounded by ≲
(

log d
d1−α

)(⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉+1)/2

≤ d−(1−α)k∗+(k−k∗) for a sufficiently large d. By
taking the uniform bound over all i, we get the assertion.

Owing to this lemma, it suffices to bound Pz∼PZ
[|
∑n

i=1 βig1(
z⊤zi

d )| ≥ c
d(1−α)k∗+(k−k∗)

∑n
i=1 |βi|]

by Ω(1), because

Pz∼PZ

[
|fβ(z)| ≥

c

d(1−α)k∗+(k−k∗)

n∑
i=1

|βi|

]

≥ Pz∼PZ

[∣∣∣∣∣
n∑

i=1

βig1

(
z⊤zi

d

)∣∣∣∣∣ ≥ c+ 1

d(1−α)k∗+(k−k∗)

n∑
i=1

|βi|

]
− 1/d.

For this, we lower bound the second moment, which captures the variation of fβ .
Lemma 3. Suppose al are all positive and define K2 ∈ Rn×n as

(K2)i,j =

k∑
l=0

(
zik+1:d

⊤
zjk+1:d

d− k

)l

.

Then, for sufficiently large d, we have

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2
 ≳ d−⌊(1−α)k∗⌋+(k−k∗)β⊤K2β.

The proof requires several auxiliary lemmas as follows. We defer the proofs of them after the proof
of Lemma 3.
Lemma 4. For any integers p, g ≥ 0,

Ez

[(
n∑

i=1

βi(z
⊤zi)p

)(
n∑

i=1

βi(z
⊤zi)q

)]

≥ Ezk+1:d

[(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

p

)(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

q

)]
≥ 0

Lemma 5. Let zi, zj ∈ {−1, 1}d, z ∈ {−1, 1}d be a vector sampled uniformly from the hypercube,
and let l be any integer. Then, we can expand the expectation as

Ez

[(
z⊤zi

d

)l(
z⊤zj

d

)l
]
=

l∑
l′=0

d−lcd,l,l′

(
zi

⊤
zj

d

)l′

.

Furthermore, for sufficiently large d, cd,l,l′ ≥ 0 and especially cd,l,l = (l!)2.

Proof of Lemma 3. Let us first expand the target:

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2


= Ez


 n∑

i=1

βi

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

γl

(
z⊤zi

d

)l


2
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= Ez


⌈ 2((1−α)k∗+(k−k∗))

1−α ⌉∑
l=0

γl

n∑
i=1

βi

(
z⊤zi

d

)l


2

=
∑

0≤l1,l2≤⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉

γl1γl2Ez

[(
n∑

i=1

βi

(
z⊤zi

d

)l1
)(

n∑
i=1

βi

(
z⊤zi

d

)l2
)]

(23)

From Lemma 4 and γl1 , γl2 > 0, each term is non-negative and (23) is lower bounded by

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

γ2
l Ezk+1:d


 n∑

i=1

βi

(
z⊤k+1:dz

i
k+1:d

d

)l
2


≳

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

γ2
l Ezk+1:d


 n∑

i=1

βi

(
z⊤k+1:dz

i
k+1:d

d− k

)l
2
 . (24)

Let us define a matrix K1 ∈ Rn×n so that (24) is equal to β⊤K1β. For that, we define

(K1)i,j =

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

γ2
l Ezk+1:d

(z⊤k+1:dz
i
k+1:d

d− k

)l(
z⊤k+1:dz

j
k+1:d

d− k

)l
 .

According to Lemma 5,

(K1)i,j =

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

γ2
l

l∑
l′=0

(d− k)−lcd−k,l,l′

(
zik+1:d

⊤
zjk+1:d

d

)l′

=

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l=0

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑
l′′=l

γ2
l′′(d− k)−l′′cd−k,l′′,l

(zik+1:d
⊤
zjk+1:d

d− k

)l

.

Because cd−k,l′′,l ≥ 0 and cd−k,l,l = (l!)2, (d− k)−lcl :=
(∑2k

l′′=l γ
2
l′′(d− k)−l′′cd−k,l′′,l

)
≳ d−l

holds. Thus, we have (d− k)−lcl ≥ d−⌊(1−α)k∗⌋+(k−k∗)c for all l ≤ ⌊(1− α)k∗⌋+ (k − k∗) for
sufficiently small c, and by defining K2,K3 ∈ Rn×n as

(K2)i,j =

⌊(1−α)k∗⌋+(k−k∗)∑
l=0

(
zik+1:d

⊤
zj

d− k

)l

(K3)i,j =

⌊(1−α)k∗⌋+k−k∗∑
l=0

((d− k)−lcl − d−(⌊(1−α)k∗⌋+k−k∗)c)

(
zik+1:d

⊤
zjk+1:d

d− k

)l

+

⌈ 2((1−α)k∗+(k−k∗))
1−α ⌉∑

l=⌊(1−α)k∗⌋+k−k∗+1

(d− k)−lcl

(
zik+1:d

⊤
zjk+1:d

d− k

)l

,

we have K1 = cd−⌊(1−α)k∗⌋+k−k∗
K2 +K3. Moreover, K3 is positive semi-definite because K3 is

written as a sum of polynomial kernels with positive coefficients. Thus, we can lower bound β⊤K1β
by d−⌊(1−α)k∗⌋−(k−k∗)β⊤K2β (up to a constant factor).

Proof of Lemma 4. The proof idea comes from Lemma B.9 of Wei et al. (2019). For a set S ⊆ [k],
we let zS =

∏k
i=1 zi, and for a set T ⊆ [d] \ [k], we let zT =

∏k
i=1 zi. Expand (z⊤zi)p as

(z⊤zi)p =

 d∑
j=1

zjz
i
j

p

=
∑
S,T

C|S|,|T |,pz
SzT (zi)S(zi)T ,
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where c|S|,|T |,p ≥ 0 depends only on |S|, T , and p due to symmetry. Also, we let

(z⊤k+1:dz
i
k+1:d)

p =
∑
T

C̄|T |,pz
S
k+1:dz

T
k+1:d(z

i
k+1:d)

S(zik+1:d)
T .

Note that C0,|T |,p ≥ C̄|T |,p ≥ 0, because C0,|T |,p considers the case where zi(i ∈ [k]) is multiplied
for even number of times.

As a basic fact in Boolean analysis, we have Ez[z
SzT zS

′
zT

′
] = 0 unless S = S′ and T = T ′.

Therefore,

Ez

[(
n∑

i=1

βi(z
⊤zi)p

)(
n∑

i=1

βi(z
⊤zi)q

)]

= Ez

 n∑
i=1

βi

∑
S,T

C|S|,|T |,pz
SzT (zi)S(zi)T

 n∑
i=1

βi

∑
S,T

C|S|,|T |,qz
SzT (zi)S(zi)T


=
∑
S,T

Ez

[(
n∑

i=1

βiC|S|,|T |,p(z
i)S(zi)T

)(
n∑

i=1

βiC|S|,|T |,qz
SzT (zi)S(zi)T

)]

=
∑
S,T

d2|S|αC|S|,|T |,pC|S|,|T |,q

(
n∑

i=1

βi

)2

≥
∑
T

C0,|T |,pC0,|T |,q

(
n∑

i=1

βi

)2

(25)

Where we used C|S|,|T |,p, C|S|,|T |,q ≥ 0. On the other hand,

Ezk+1:d

[(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

p

)(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

q

)]
=
∑
T

C̄|T |,pC̄|T |,q

(
n∑

i=1

βi

)2

≥ 0.

(26)

Because c|S|,|T |,p ≥ C̄T,p and c|S|,|T |,q ≥ C̄T,q , comparing (25) and (26) yields

Ez

[(
n∑

i=1

βi(z
⊤zi)p

)(
n∑

i=1

βi(z
⊤zi)q

)]

≥ Ezk+1:d

[(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

p

)(
n∑

i=1

βi(z
⊤
k+1:dz

i
k+1:d)

q

)]
≥ 0,

which concludes the proof.

Proof of Lemma 5. LHS is determined by how many coordinates are different between zi and zj ,
which is captured by zi

⊤
zj . Thus, LHS is the polynomial of zi⊤zj . Moreover, its degree is at

most l because the degrees of z⊤zi and z⊤zj are at most l in LHS. Thus the LHS can be written as∑l
l′=0 cd,l,l′(

zi⊤zj

d2 )l
′
. Note that, when l is even, LHS is invariant to the replacement zj 7→ −zj , and

therefore cd,l,l′ = 0 for odd l′. On the other hand, when l is odd, cd,l,l′ = 0 for even l′.

Let us evaluate cd,l,l′ . By multiplying dl on both sides, we have

Ez

[(
z⊤zi√

d

)l(
z⊤zj√

d

)l
]
=

l∑
l′=0

cd,l,l′

(
zi

⊤
zj

d

)l′

.

By taking d→∞ (while fixing the angle zi⊤zj

d ), LHS will converge into

Eg

[(
g⊤zi√

d

)l(
g⊤zj√

d

)l
]
, (27)
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here g follows Sd−1(
√
d). Now consider the Hermite expansion of tl =

∑l
l′=0 cl,l′Hel′(t). If l is

even, cl,l′ = 1

2
l−l′
2 ( l−l′

2 )!l!
> 0 for even l′ and cl,l′ = 0 for odd l′. If l is odd, cl,l′ = 1

2
l−l′
2 ( l−l′

2 )!l!
> 0

for odd l′ and cl,l′ = 0 for even l′. By using these Hermite coefficients, (27) is equal to

l′∑
l′=0

c2l,l′

(
zi

⊤
zj

d

)l′

.

Note that, as a function of the angle zi⊤zj

d ∈ [−1, 1], the convergence is uniform. Therefore, we get

d−lcd,l,l′ → c2l,l′ (d→∞)

for all l and l′. When c2l,l′ = 0, cd,l,l′ = 0 for all d as we saw above. When c2l,l′ > 0, there exists d
such that cd′,l,l′ > 0 for all d′ ≥ d. Therefore, for sufficiently large d, we have cd,l,l′ ≥ 0. Moreover,
by direct calculation, cd,l,l = (l!)2.

After obtained Lemma 3 we would like to bound d−⌊(1−α)k⌋β⊤K2β. For this, we use the lower
bound the smallest eigenvalue of K2.

Let K(d) (d = 1, 2, · · · ) be a sequence of inner-product kernels with K(d)(z, z
′) = h(d)(

z⊤z′

d ).
Consider the case when each K(d) is associated with the same kernel function h : [−1, 1] → R,
so that h(d) = h holds for all z, z′ ∈ {−1, 1}d. The following Lemma requires h is a degree-k
polynomial and its coefficients are positive for all degrees. Note that K2 satisfies these conditions.
Lemma 6 (Misiakiewicz (2022)). Assume the following conditions hold:

(a) h(k′)(0) > 0 for k′ = 0, · · · , k − 1.

(b) h(k)(0) > 0.

(c) h(·) is k-times differentiable.

Now fix δ > 0 arbitrarily, and assume that d ≫ 1 and n ≲ dke−ad

√
log d for some {ad} with

ad →∞(d→∞). Given n i.i.d. sample {zi}ni=1 from PZ , we construct a kernel matrix K ∈ Rn×n

as (K(d))i,j = h( z
i⊤zj

d ). Then, the kernel matrix K(d) can be decomposed into two positive
semi-definite kernel K>k−1 and K≤k−1, and the spectrum of K>k−1 is bounded by

E{zi}n
i=1

[
∥K>k−1 − h(k)(0)I∥2op

]
→ 0 (d→∞).

Proof. See Section 3.2 of Misiakiewicz (2022), where we take κ = k − δ.

Therefore, for any fixed δ > 0 and d ≫ 1 and n ≲ d⌊(1−α)k∗⌋+(k−k∗)−δ, all the assumptions are
satisfied for K2 with k = ⌊(1− α)k∗⌋+ (k − k∗) (if we regard K2 as a kernel in Rd−k × Rd−k).
Note that we can take ad = (log d)

1
4 so that and dke−ad

√
log d ≳ dk−δ . Then, the smallest eigenvalue

of K>k−1 is lower bounded by Ω(1) with probability at least 0.99 over the randomly drawn sample,
for sufficiently large d. This immediately implies that the smallest eigenvalue of K2 is bounded by
Ω(1) with probability at least 0.99.

Now we finalize the proof of Theorem 3.

Proof of Theorem 3. According to Lemmas 3 and 6, for all choices of β, with probability at least
0.99 over the randomly drawn sample, we have

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2
 ≳ d−⌊(1−α)k∗⌋−(k−k∗)

n∑
i=1

β2
i (28)

≥ 1

d⌊(1−α)k∗⌋+(k−k∗)n

(
n∑

i=1

|βi|

)2

(29)
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≳
1

d2⌊(1−α)k∗⌋+2(k−k∗)−δ

(
n∑

i=1

|βi|

)2

. (30)

Because g1 is a degree-2k polynomial, Bonami’s Lemma (e.g., Theorem 9.21 of (O’Donnell, 2014))
yields

Ez

( n∑
i=1

βig1

(
z⊤zi

d

))4
 ≥ 1

(2k − 1)4k
Ez

( n∑
i=1

βig1

(
z⊤zi

d

))2
2

As a result, the Paley–Zygmund inequality (see Theorem 9.4 of (O’Donnell, 2014)) yields

Pz

∣∣∣∣∣
n∑

i=1

βig1

(
z⊤zi

d

)∣∣∣∣∣ ≥ tEz

( n∑
i=1

βig1

(
z⊤zi

d

))2
 1

2

 ≥ (1− t2)2

(2k − 1)4k
(31)

for all 0 ≤ t ≤ 1.

Combining (28) and (31), with probability 0.99 over the sample, we have∣∣∣∣∣
n∑

i=1

βig1

(
z⊤zi

d

)∣∣∣∣∣ ≳ 1

d⌊(1−α)k∗⌋+(k−k∗)−δ/2

n∑
i=1

|βi|.

with probability Ω(1) over the choice of z. By taking sufficiently large d, 1
d⌊(1−α)k∗⌋+(k−k∗)−δ/2 is

larger than 1+c
d⌊(1−α)k∗⌋+(k−k∗) (c is a constant from Lemma 1). Thus, using Lemma 2, we get

Pz∼PZ

[
|fβ(z)| ≥

c

d⌊(1−α)k∗⌋+(k−k∗)

n∑
i=1

|βi|

]
≳ 1− 1/d.

Now we apply Lemma 1 and finally obtain

Pz∼PZ
[fβ(z)y < 0] ≳ 1− 2/d,

which concludes the proof.

D DETAILS OF THE EXPERIMENT

We describe the experiment settings for Figure 1. We considered an anisotropic d-dimensional
3-sparse parity problem (Example 2): y = z1z2z3, s1 = s2 = s3 = α/

√
d, and s4 = · · · = 1/

√
d.

Here α controls the alignment of the distribution to the feature, or the signal-to-noise ratio. We
fixed the dimension d to 300, and varied n and α. We trained the neural network (2) with R̄ = 15.
Specifically, we employed the width N = 2000 as a finite neuron approximation, and initialized
neurons so that each of them followed the standard normal distribution (and thus the network was
rotation invariant at the initialization). By using the logistic loss, we updated the network by the
discretized MLFD (6) by setting η = 0.25, λ1 = 0.1, and λ = 0.1α2/d (fixed during the training)
by following Corollary 1, until T = 10000. We ran the experiment 5 times with different seeds and
plotted the mean for each n and α.
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