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Abstract

Adversarial training has been shown to regularize deep neural networks in addition
to increasing their robustness to adversarial examples. However, its impact on very
deep state of the art networks has not been fully investigated. In this paper, we
present an efficient approach to perform adversarial training by perturbing inter-
mediate layer activations and study the use of such perturbations as a regularizer
during training. We use these perturbations to train very deep models such as
ResNets and show improvement in performance both on adversarial and original
test data. Our experiments highlight the benefits of perturbing intermediate layer
activations compared to perturbing only the inputs. The results on CIFAR-10 and
CIFAR-100 datasets show the merits of the proposed adversarial training approach.
Additional results on WideResNets show that our approach provides significant
improvement in classification accuracy for a given base model, outperforming
dropout and other base models of larger size.

1 Introduction

Deep neural networks (DNNs) have shown tremendous success in several computer vision tasks in
recent years [[7],[16],[10]]. However, seminal works on adversarial examples [[5], [21]] have shown
that DNNs are susceptible to imperceptible perturbations at input and intermediate layer activations
respectively. From an optimization perspective, they also showed that adversarial training can be used
as a regularization approach while training the deep networks. However, the effect of such adversarial
training techniques as regularizers for very deep networks has not been systematically explored, since
the computational overhead of adversarial training does not justify the marginal improvements over
conventional regularization techniques.
In this work, we propose a simple and efficient learning algorithm that uses adversarial perturbations
of intermediate layer activations to provide a stronger regularization while improving the robustness of
the deep network to adversarial data. We avoid the expensive step of explicitly generating adversarial
examples at different layers but rather perturb the activations of the current batch by gradients
accumulated from the activations of the previous batch, in a mini-batch setting. Even though these
gradient directions are not adversarial at the input layer, we show that they are strongly adversarial
when applied at the intermediate layers. By using gradients from inputs belonging to a different
class than the current input, we ensure that adversarial perturbations in the intermediate layers are
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directed towards an adversarial class and force the network to learn robust representations at each
layer resulting in improved discriminability.
The proposed pipeline does not add any significant overhead during training and thus can be easily
extended to performing adversarial training in very deep neural networks. Our approach complements
dropout regularizer and achieves regularization beyond dropout. It avoids over-fitting and generalizes
well by achieving significant improvement in performance on the test set. We show that the trained
network is extremely robust against adversarial examples even when it is not explicitly trained with
adversarial inputs. The intent of this paper is not to generate adversarial perturbations for standalone
images but rather use these adversarial gradients to efficiently regularize training. We perform several
ablative experiments to highlight the properties of the proposed approach for adversarial training and
present results for deep networks such as VGG [18], ResNets [7] and state of the art models such as
WideResNets [24] using standard datasets such as CIFAR-10 and CIFAR-100.

2 Related Work
Many approaches have been proposed to regularize the training procedure of very deep networks.
Early stopping and statistical techniques like weight decay are commonly used to prevent overfitting.
Specialized techniques such as DropConnect [22], Dropout [20] have been successfully applied
with very deep networks such as ResNets. Faster convergence of such deep architectures was made
possible by Batch Normalization (BN) [8]. One of the added benefit of BN was that the additional
regularization provided during training even made dropout regularization unnecessary in some cases.
The work of Szegedy et al. [21] showed the existence of adversarial perturbations for computer
vision tasks by solving a box-constrained optimization approach to generate these perturbations. They
also showed that training the network by feeding back these adversarial examples regularizes the
training and makes network resistant to adversarial examples. Due to a relatively expensive layerwise
training procedure, their analysis was limited to small datasets and shallow networks. [5] proposed
the fast gradient sign method to generate such adversarial examples. To perform adversarial training,
they proposed a modified loss function to also account for loss from adversarial examples. They
showed significant improvements in the network’s response to adversarial examples and obtained a
regularization performance beyond dropout. [12] proposes a virtual adversarial training framework
and show its regularization benefits for relatively deep models, while taking three times the normal
training time. [13] proposed an iterative approach to generate much stronger adversarial perturbations
and also presented a score function to measure robustness of classifiers against these examples.
Furthermore, recent approaches such as deep contrastive smoothing [6], distillation [14] and stability
training [25] have focused solely on improving robustness of the deep models to adversarial inputs.
In this work, we present an efficient layerwise approach to adversarial training and demonstrate its
ability as a strong regularizer for very deep models beyond the specialized methods mentioned above,
in addition to improving model robustness to adversarial inputs.
Recent theoretical works such as [[3], [4]] analyze the effect of random, semi-random and adversarial
perturbations on classifier robustness. They presented fundamental upper bounds on the robustness
of classifier which depends on factors such as curvature of decision boundary and distinguishability
between class cluster centers. Wang et al. [23] introduce the notion of strong robustness for classifiers
and point out that the differences between generalization and robustness by characterizing the
topology of the learned classification function.

3 Analysis of Perturbations
In this section, we present our approach and highlight the differences between related methods that
perform adversarial training. In addition, we perform a small scale experiment to study the properties
of the proposed adversarial training by analyzing the singular value spectrum of the Jacobian. We
visualize the impact of these perturbations on the intermediate layer activations and conclude by
illustrating the connection to robust optimization-based approaches.
We start by defining some notation. Let {xi}Ni=1 denote the set of images and {yi}Ni=1 denote the set
of labels. Let f : x ∈ Rm 7→ y ∈ L denote the classifier mapping that maps the image to a discrete
label set, L. In this work, f is modeled by a deep CNN unless specified otherwise. We denote the loss
function of the deep network by J (θ, x, y) where θ represents the network parameters and {x, y} are
the input and output respectively. The deep network consists of L layers and∇lJ (θt, xt, yt) denotes
the backpropagated gradient of the loss function at the output of the lth layer at iteration t. In the
above expression, l = 0 corresponds to the input layer and l = L− 1, the loss layer. Let xtl be the
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input activation to the lth layer and rtl represents the perturbation that is added to xtl . For clarity, we
drop the subscript l when talking about the input layer.

3.1 Approaches to generate Adversarial perturbations

Previous works on adversarial training have observed that training the model with adversarial
examples acts as a regularizer and improves the performance of the base network on the test data.
[21] define adversarial perturbations r as a solution of a box-constrained optimization as follows:
Given an input x and target label y, they intend to minimize ||r||2 subject to (1) f(x+ r) = y and (2)
x+ r ∈ [0, 1]m. Note that, if f(x) = y, then the optimization is trivial (i.e. r = 0), hence f(x) 6= y.
While the exact minimizer is not unique, they approximate it using a box-constrained L-BFGS. More
concretely, the value of c is found using line-search for which the minimizer of the following problem
satisfies f(x+ r) = ŷ, where ŷ 6= y:

argmin
r

c||r||2 + J (θ, x+ r, y), subject to x+ r ∈ [0, 1]m (1)

This can be interpreted as finding a perturbed image x+ r that is closest to x and is misclassified
by f . The training procedure for the above framework involves optimizing each layer by using
a pool of adversarial examples generated from previous layers. As a training procedure, this is
rather cumbersome even when applied to shallow networks having 5-10 layers. To overcome the
computational overhead due to the L-BFGS optimization performed at each intermediate layer, [5]
propose the Fast Gradient Sign (FGS) method to generate adversarial examples. By linearizing
the cost function around the value of the model parameters at a given iteration, they obtain a norm
constrained perturbation as follows: rfgs = ε.sign(∇J (θ, x, y)). They show that the perturbed
images x+ rfgs reliably cause deep models to misclassify their inputs. As noted in [17], the above
formulation for adversarial perturbation can be understood by looking at a first order approximation
of the loss function J (·) in the neighborhood of the training sample x:

J̃ (θ, x+ r, y) = J (θ, x, y) + 〈∇J (θ, x, y), r〉 (2)

The FGS solution (rfgs) is the result of maximizing the second term with respect to r, with a l∞
norm constraint. The central idea behind generating such perturbations using the FGS approach is
that training with an adversarial objective function acts as a good regularizer:

J̃ (θ, x, y) = αJ (θ, x, y) + (1− α)J (θ, x+ rfgs, y) (3)

By training the model with both original inputs and adversarially perturbed inputs, the objective
function in 3 makes the model more robust to adversaries and provides marginal improvement in
performance on the original test data. Intuitively, the FGS procedure can be understood as perturbing
each training sample within a L∞ ball of radius ε, in the direction that maximally increases the
classification loss.

3.2 Proposed Formulation

In this work, we combine the aspects of the formulations discussed above as follows: (1) Generating
adversarial perturbations from intermediate layers rather than just using the input layer (2) Sampling
perturbations along directions that moves the training samples towards the neighboring class centers,
hence making them harder for the classification task. In order to facilitate the representation of
layerwise activations in the loss function, we denote the collection of layerwise responses as X =
{xl}L−1l=0 and the set of layerwise perturbations as R = {rl}L−1l=0 . Then, J (θ,X + R, y) denotes
the loss function where intermediate layer activations are perturbed according to the set R. The
notation used in the previous section is a special case where X = x and R = rfgs. Now, consider
the following objective to obtain the perturbation set R:

argmax
R

J (θ,X +R, y) subject to ||rl||∞ ≤ ε, ∀l, f(X +R) 6= y (4)

Ideally, for each training example x, the solution to the above problem, consists of generating the
perturbation corresponding to the maximally confusing class; in other words, by choosing the class ŷ
which maximizes the divergence,KL(p(y|xL−1), p(ŷ|xL−1)). In the absence of any prior knowledge
about class cooccurences, solving this explicitly for each training sample for every iteration is time
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consuming. Hence we propose an approximate solution to this problem: the gradients computed
from the previous sample at each intermediate layer are cached and used to perturb the activations
of the current sample. In a mini-batch setting, this amounts to caching the gradients of the previous
mini-batch. To ensure the class constraint in Eq. 4 is satisfied, the only requirement is that successive
batches have little lateral overlap in terms of class labels. From our experiments, we observed that any
random shuffle of the data satisfies this requirement. Given this procedure of accumulating gradients,
we are no longer required to perform an extra gradient descent-ascent step as in the FGS method to
generate perturbations for the current batch. Since the gradient accumulation procedure does not
add to the computational cost during training, this can be seamlessly integrated into any existing
supervised training procedure including even very deep networks as shown in the experiments.

Algorithm 1 Efficient layerwise adversarial training procedure
1: Inputs: Deep network f with loss function J and parameters θ containing C convolutional blocks.
Bt is the batch sampled at iteration t of size k, with input-output pairs {Xt, Y t}. Gradient
accumulation layers {Gc}Cc=1, with stored perturbations Rt = {rtc}Cc=1, initialized with zero.
Perturbation parameter, ε.

2: t=0:
3: Sample a batch {Xt, Y t} of size k images from the training data
4: Perform regular forward pass - Gc’s are not active for t = 0.
5: Perform backward pass using the classification loss function. Each gradient accumulation layer
Gc stores the gradient signal backpropagated to that layer:

rt+1
c = sign(∇cJ (θt, Xt +Rt, Y t)),∀c = [1, C] (5)

6: for t in 1:|B| − 1 do
7: Sample a batch {Xt, Y t} of size k from the training data
8: Perform forward pass with perturbation: Each gradient accumulation layer acts as follows.

Let Xt
c be the input to block c, then:

Gc(X
t
c) = Xt

c + ε · rtc (6)

9: Perform backward pass updating rtc to rt+1
c for all blocks c as in Eq. 5 above.

10: end for

The training procedure is summarized in Algorithm 1. sign(·) denotes the signum function. We
add the gradient accumulation layers after the Batch Normalization layer in each convolutional
block (conv-BN-relu). In case BN layers are not present, we add gradient accumulation layers
after each convolution layer. A subtle detail that is overlooked in the algorithm is that the value
of ε is not constant over all the layers, rather it is normalized by multiplying with the range of the
gradients generated at the respective layers. During test time, the gradient accumulation layers (Gc)
are removed from the trained model.

Table 1: Comparison of the strength of adversarial examples between the FGS approach applied
at the input and using layerwise perturbations as described in Section 3.2. Reported numbers are
classification accuracies for different values of ε.

Type ε = 0 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

FGS [5] 92.4 53.28 41.58 36.44 33.85
Ours - all layers 92.4 48.56 21.72 14.76 14.19

3.3 Comparison of adversarial performance

An important question that needs to be addressed in light of the proposed optimization strategy is:
Are the gradient directions generated from the previous samples adversarial ? To answer this question,
we perform an empirical experiment to measure the performance of a conventionally trained deep
model on the test data for CIFAR-10. As described earlier, for each test sample, the intermediate layer
activations are perturbed using gradients accumulated from the previous sample. For comparison,
we also show the performance of the same model on the adversarial data generated using the FGS
method. From the metrics in Table 1, it can be observed that using accumulated gradients from the
previous batch as adversarial perturbations results in a bigger drop in performance. This signifies
that the aggregated effect of layerwise perturbations is more adversarial compared to perturbing only
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the input layer as done in the FGS approach. We performed an additional experiment where only
the input layer was perturbed using the gradients of the previous sample instead of perturbing all
the intermediate layers. We found that this resulted in negligible drop in the baseline performance,
indicating that these gradients are not adversarial enough when used to perturb only the input. Next,
we compare the effect of these layerwise adversarial perturbation described in the previous section
with random layerwise perturbations. Figure 1 shows a two dimensional t-SNE [11] visualization
of the embeddings belonging to the final FC-layer for a range of values of ε, the intensity of the
adversarial perturbation. We used a pretrained VGG network that was trained on the CIFAR-10

(a) ε = 0, 91.9% (b) ε = 0.02, 69.4% (c) ε = 0.04, 48.2% (d) ε = 0.06, 34.6%

(e) ε = 0, 91.9% (f) ε = 0.02, 91.85% (g) ε = 0.04, 91.9% (h) ε = 0.06, 85.8%

Figure 1: t-SNE visualization of the final fc-layer features of dimension 512 of the VGG network for
two randomly chosen classes of the CIFAR-10 data for different values of the intensity, ε. The top
row shows the adversarial perturbations while the bottom row shows random perturbations of the
same intensity. It is clear that the random perturbations do not affect the linear separability of the
data, while the adversarial perturbations are extremely effective in leading the network to misclassify
the perturbed data.

dataset to compute the embeddings for two randomly chosen classes from the test data. In the bottom
row, the effect of random perturbations with zero mean and unit standard deviation, applied layerwise
on the original data is also shown. From the visualization and the accuracy values, it can clearly be
observed that the layerwise perturbations as described in 3.2 are extremely adversarial to the base
network. Notice that even for higher values of ε, the data perturbed by layerwise random gradient
directions remains clearly linearly separable while the adversarially perturbed data is unable to be
distinguished by the base model.

Figure 2: Average singular value
(SV) spectrum showing top 50 SVs
for the toy example in Section 3.4.

FGS perturbation from:
ε Baseline n/w FGS n/w Our n/w

0.0 39.51 39.51 39.51 B
aseline

n/w

0.02 8.6 32.14 26.92
0.04 1.92 26.08 18.16
0.06 0.51 20.74 12.23
0.08 0.12 16.23 8.63
0.1 0.03 12.47 6.05

Table 2: Effect of different perturbations tested on the
baseline network for the toy example in Section 3.4.
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3.4 Toy example

In order to acquire a better understanding of the regularizing properties of the mapping function
learned using the proposed adversarial training approach, we perform a toy experiment using a small
neural network consisting of two fully connected layers of sizes 1024 and 512. Each fully connected
layer is followed by a hyperbolic tangent activations. We use the grayscale version of the CIFAR-10
dataset as our testbed and L2 norm weight decay was applied during training. No data augmentation
or other regularization methods such as dropout were used during training. We train three networks:
a baseline network, a network with the gradient accumulation layers and a network using the FGS
training approach described above 3. Cross entropy loss was used to train all the networks. In terms
of classification accuracy, the proposed method improves the baseline performance from 39.5% to
43.3% on the original data while the accuracy of the FGS network is 40.5%.
Singular Value Analysis: To gain a deeper understanding of the encoder mapping learned by each
network, we perform an analysis similar to [15] by computing the singular values of the Jacobian
of the encoder. Since this is a small architecture, we are able to explicitly compute the Jacobian for
each sample in the test set. The average singular value spectrum of the Jacobian for the test data
is shown in Figure 2. We can make the following observations: (a) The singular value spectrum
computed for ours and FGS approach has fewer dominant singular values and decays at a much faster
rate compared to base network (b) The FGS training suppresses the response of the network strongly
in all the dimensions while our approach achieves a strong suppression only for trailing dimensions.
This implies that our network is able to better capture data variations that are relevant for classifying
original test data. On the other hand, FGS achieves better robustness against adversarial examples by
suppressing network’s response strongly even in leading dimensions.
Degree of “adversarialness”: In order to validate this implication, we perform an empirical exper-
iment on the CIFAR-10 test dataset. Each test image is used to generate FGS perturbations using
each of the three networks trained above. All the three perturbed images are classified by the baseline
network. This process is repeated for all 10,000 images from the test set. Table 2 lists the performance
of the baseline network on the perturbed images for various values of ε, the intensity of the FGS
perturbation. Intuitively, this experiment characterizes the relative strengths of adversarial examples
generated from the three networks mentioned above. To that end, we can observe that the robustness
of the base network to different adversarial examples occur in the following order: FGS > Ours >>
base. This concurs with the singular value spectrum analysis presented above that the stronger the
suppression of the network’s response the less sensitive it becomes to adversarial directions.

3.5 Connection to Robust Optimization

Several regularization problems in machine learning such as ridge regression, lasso or robust SVMs
have been shown to be instances of a more general robust optimization framework [19]. To point
out the connection between the proposed adversarial training approach and robust optimization, we
borrow the idea of uncertainty sets from [17]. To explain briefly, an uncertainty set denoted by
U = Bρ(x, ε) represents an epsilon ball around x under norm ρ. [5] point out that adversarial training
can be thought of as training with hard examples that strongly resist classification. Under the setting
of uncertainty sets, adversarial training with the FGS method could be seen as sampling perturbations
from the input space from U under the l∞ norm. In this work, we extend the idea of uncertainty sets
from input activations to layerwise activations. This can be thought of as sampling perturbations from
the feature space learned by the deep network. Let Ul represent the uncertainty set of the activation
xl at layer l. Then, the proposed adversarial training approach is equivalent to sampling perturbations
from the intermediate layer uncertainty sets which makes the feature representation learned at those
layers to become more robust during training. Moreover, by generating perturbations from inputs that
do not belong to the same class as the current input, the directions sampled from the uncertainty set
tend to move the perturbed feature representation towards the direction of an adversarial class. This
effect can be observed from the t-SNE visualization shown in Figure 1.

4 Experiments

In this section, we provide an experimental analysis of the proposed approach to show that layerwise
adversarial training improves the performance of the model on the original test data and increases
robustness to adversarial inputs. To demonstrate the generality of our training procedure, we present
results on CIFAR-10 and CIFAR-100 [9] using VGG, ResNet-20 and ResNet-56 networks. For the
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ResNet networks, we use the publicly available torch implementation [1]. For the VGG architecture,
we use a publicly available implementation which consists of Batch Normalization [2]. For all
the experiments, we use the SGD solver with Nesterov momentum of 0.9. The base learning rate
is 0.1 and it is dropped by 5 every 60 epochs in case of CIFAR-100 and every 50 epochs in case
of CIFAR-10. The total training duration is 300 epochs. We employ random flipping as a data
augmentation procedure and standard mean/std preprocessing was applied conforming to the original
implementations. For the ResNet baseline models, without regularization, we find that they start
overfitting if trained longer and hence we perform early stopping and report their best results. For the
perturbed models, we find that no early stopping is necessary; the learning continues for a longer
duration and shows good convergence behavior. We refer to the model trained using Algorithm 1 as
Perturbed throughout this section.

Table 3: Classification accuracy (%) on CIFAR-10 and CIFAR-100 for VGG and Resnet architectures.
Results reported are average of 5 runs.

Type Baseline Perturbed
VGG 92.1 ± 0.3 92.65 ± 0.2

Resnet-20 90.27 ± 0.4 91.1 ± 0.3
Resnet-56 91.53 ± 0.3 94.1 ± 0.2

Type Baseline Perturbed
VGG 69.8 ± 0.5 72.3 ± 0.3

Resnet-20 64.0 ± 0.2 66.9 ± 0.3
Resnet-56 68.2 ± 0.4 71.4 ± 0.5

(a) CIFAR-10 (b) CIFAR-100

Figure 3: Training and test error rates for VGG network trained on CIFAR-10 and CIFAR-100
datasets. The training error rates are computed on the perturbed activations in each epoch.

4.1 Joint loss formulation and comparison with FGS approach

In the proposed training method summarized in Algorithm 1 (referred as Ours-orig), each batch of
inputs is perturbed at intermediate layers by the gradients accumulated from the previous batch. In
this section, we present an empirical comparison between the following variants:

• FGS-orig: The original FGS joint loss based adversarial training as proposed by [5] and shown in
Eq. 3. We used a value of α = 0.5; we did not find other values yield any significant improvements.

• FGS-inter: In this setting, different from [5], we use the FGS gradients to perturb the intermediate
layer activations and use the joint loss with α = 0.5.

• Ours-joint: This setting is same as Ours-orig with the exception that we use the joint loss formula-
tion with α = 0.5. Note that, Ours-orig corresponds to setting where α = 0

Table 4: Comparison of classification accuracy (%) between various training approaches described in
Section 4.1

Type ε = 0 ε = 0.02 ε = 0.04 ε = 0.06 ε = 0.08 ε = 0.1 Training time
Baseline 89.4 67.5 49.6 41.2 37.3 34.7 x
FGS-orig 88.7 86.4 84.1 81.4 80.5 77.1 2x
FGS-inter 90.9 87.79 83.85 79.65 74.69 69.92 2x
Ours-orig 91.2 87.95 83.84 79.11 73.66 68.37 x
Ours-joint 91.5 86.07 81.38 75.72 70.25 64.76 2x

All the models are trained on the CIFAR-10 dataset. No data augmentation or dropout regularization
is applied. The training parameters are similar to the ones used in the previous section. We generate
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adversarial test data for the CIFAR-10 test dataset using the FGS method, since it has been shown
to generate adversarial examples reliably. We then test the models on the original and adversarial
test data for different values of the adversarial strength ε. Table 4 shows the results of the different
training strategies. ε = 0 corresponds to the original test data and other values of ε indicate the
strength of adversarial FGS perturbation added to the input image. From these results, we make the
following observations: (1) Approaches based on perturbing intermediate layers (FGS-inter,Ours-
orig,Ours-joint) improve the performance on the original data significantly as compared to perturbing
only the input but they marginally decrease the adversarial test performance. (2) On the other hand,
perturbing only the input layer (FGS-orig) yields the best adversarial test performance among the
compared approaches while performing marginally worse than the baseline on the original test data.
These observations indicate the possibility of a trade-off that exists between adversarial robustness
and classification performance.

4.2 Comparison with Dropout

We perform an experiment where we compare the regularization performance of the proposed
adversarial training to Dropout. We use the VGG architecture used in the previous sections and
perform experiments with and without dropout on CIFAR-10 and CIFAR-100 datasets. To understand
the full extent of the regularization performance, we did not perform any data augmentation for this
experiment.

Table 5: Comparison of classification accuracy (%) with/without dropout on CIFAR-10 and CIFAR-
100 for the VGG model

Type Baseline Perturbed
w/o Dropout 89.4 91.3
with Dropout 91.5 92.1

Type Baseline Perturbed
w/o Dropout 69.8 72.3
with Dropout 70.5 73.1

The following observations could be made from Table 5: (1) The perturbed model performs better
than the baseline model with or without dropout. Thus, the proposed training improves the per-
formance of even dropout based networks. (2) On a complex task like CIFAR-100, the proposed
adversarial training approach gives better regularization performance compared to that provided by
dropout (70.5% (vs) 72.3%). Since the proposed adversarial perturbations are intended to move the
inputs towards directions that strongly resist correct classification, they are able to create a more
discriminative representation for tasks with a larger number of classes.

Table 6: Effect of layerwise adversarial perturbations on the classification accuracy using the VGG
network on the CIFAR-10 dataset. Baseline performance is 89.4%

Layer (conv1 to) pool1 pool2 pool3 pool4 pool5
Accuracy 89.5 89.62 90.24 91.1 91.3

4.3 Perturbing deeper layers

In this section, we analyze the effect of adversarial perturbations starting from the lowest convolutional
layers which model edges/shape information to the more deeper layers which model abstract concepts.
For this experiment, we use the VGG network with batch normalization that was used in the previous
section. The experiments were performed on the CIFAR-10 dataset. No data augmentation or dropout
is applied. It is clear from the results in Table 6 that the improvement in performance due to the
proposed layerwise perturbations become significant when applied to the deeper layers of the network,
which is in line with the observation made by [21]. While performing layerwise alternate training
as proposed by[21] becomes infeasible for even moderately deep architectures, our training scheme
provides an efficient framework to infuse adversarial perturbations throughout the structure of very
deep models.

5 Summary and Conclusion

While the behavior of CNNs to adversarial data has generated some intrigue in computer vision
since the work of [21], its effects on deeper networks have not been explored well. We observe
that adversarial perturbations for hidden layer activations generalize across different samples and
we leverage this observation to devise an efficient adversarial training approach that could be used
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to train very deep architectures. Through our experiments and analysis we make the following
observations: (1) Contrary to recent methods which are inconclusive about the role of perturbing
intermediate layers of a DNN in adversarial training, we have shown that for very deep networks,
they play a significant role in providing a strong regularization (2) The aggregated adversarial effect
of perturbing intermediate layer activations is much stronger than perturbing only the input (3)
Significant improvement in classification accuracy entails capturing more variations in the data
distribution while adversarial robustness can be improved by suppressing the unnecessary variations
learned by the network 3.4. By providing an efficient adversarial training approach that could be used
with very deep models, we hope that this can inspire more robust network designs in the future.

Appendix

Results on Wide Residual Networks (WRN)

Wide Residual Networks are recently proposed deep architectures that generated state of the art
results on CIFAR-10 and CIFAR-100 datasets. In this experiment, we use their publicly available
implementation and train them from scratch using the proposed adversarial training approach using
the parameter settings described in the original paper in Section 4. Specifically, the Ours-joint
approach described in Section 4.1 is used for training. As data augmentation, we applied flipping and
random cropping as done in their native implementation. The results are shown in Table 7.

Table 7: Classification error rates (%) on CIFAR-10 and CIFAR-100 for WideResNet (WRN)
architectures. Our results are reported as average of 5 runs. For comparison we provide the published
WRN baseline results. (∗) denotes the results obtained by a single run.

Model #params CIFAR-10 CIFAR-100
WRN-28-10 36.5M 4.00 19.25

WRN-28-10 with dropout 36.5M 3.89 18.85
WRN-40-10 with dropout∗ 51.0M 3.8 18.3

WRN-28-10 with Ours-joint 36.5M 3.62 ± 0.05 17.1 ± 0.1

Response to local perturbation depends on the Jacobian

Let f : Rm 7→ Rn be a mapping between two metric spaces (euclidean, for simplicity) . Then, for
x ∈ Rm, let Jf (x) ∈ Rn × Rm denote the jacobian of f evaluated at x. Let δx ∈ Rm be a bounded
local perturbation in the neighborhood of x. A first order truncated expansion of f(x+ δx) is given
as:

f(x+ δx) = f(x) + Jf (x)
T δx

We can bound the frobenius norm of the second term as follows:

||Jf (x)T r||F
(a)
≤ ||Jf (x)||F ||δx||2 =

√√√√min(m,n)∑
i=1

σ2
i · ||δx||2

=⇒ ||Jf (x)T δx||F ≤

√√√√min(m,n)∑
i=1

σ2
i · ||δx||2

where || · ||F denotes the frobenius norm; for vectors, it is the same as the L2 norm and σi denotes the
ith singular value of the Jacobian; (a) is a direct application of Cauchy-Schwarz inequality. Applying
this result to the singular value spectra plotted in Figure 2 in the paper, we see that the base network
without adversarial training is extremely sensitive to local perturbations compared to adversarially
trained networks using FGS and the proposed approach.

Setting ε parameter

Following the notation from Section 3, let ∇lJ (θ, x, y) denote the gradient of the loss function
backpropagated to the lth layer. Let M = max(∇lJ (θ, x, y)), m = min(∇lJ (θ, x, y)). Then, the
value of ε for each layer is calculated as: εl = ε · (M −m) ∀l, where ε ∈ {10, 20, 30}. The exact
value is cross-validated using a held out set. In practice, we found our training approach to not be

9



overly sensitive to ε. We tuned ε only for the VGG network on CIFAR-10 and used the same value
for all the other networks such as ResNets and WideResNets on both CIFAR-10 and CIFAR-100
datasets. Note that, for cases where a fixed value of ε is specified such as in Figure 1 in the paper, the
same value is used for all layers ignoring the normalizing factor, (M −m).
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