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ABSTRACT

Multimodal language modeling constitutes a recent breakthrough which leverages
advances in large language models to pretrain capable multimodal models. The
integration of natural language during pretraining has been shown to significantly
improve learned representations, particularly in computer vision. However, the
efficacy of multimodal language modeling in the realm of functional brain data,
specifically for advancing pathology detection, remains unexplored. This study
pioneers EEG-language models (ELMs) trained on clinical reports and 15000
EEGs. We propose to combine multimodal alignment in this novel domain with
timeseries cropping and text segmentation. This also enables an extension based
on multiple instance learning to alleviate misalignment between irrelevant EEG
or text segments. Our results indicate that models learn richer representations
from being exposed to a variety of report segments, including the patient’s clinical
history, description of the EEG, and the physician’s interpretation. Compared
to models exposed to narrower clinical text information, we find such models to
retrieve EEGs based on clinical reports (and vice versa) with substantially higher
accuracy. Particularly in regimes with few annotations, we observe that ELMs
can significantly improve pathology detection compared to EEG-only models, as
demonstrated by both zero-shot classification and linear probes. The integration
of multiple instance learning further improves performance across tasks. In sum,
these results highlight the potential of integrating brain activity data with clinical
text, suggesting that ELMs represent significant progress for clinical applications.

1 INTRODUCTION

Medical neuroimaging such as electroencephalography (EEG) has not yet benefited to the same extent
as other domains from the considerable advances deep learning has brought about. While EEG sees
widespread clinical use for pathology detection, in particular for epilepsy (Binnie & Stefan, 1999; Jing
et al., 2020) as well as sleep disorders (Malhotra & Avidan, 2013), available annotated data is scarce.
As the impressive scaling properties of deep learning are now well described (Kaplan et al., 2020;
Smith et al., 2023), self-supervised learning (SSL) is a promising direction by enabling pretraining
with unlabeled data and thereby increasing available training sample sizes (Hadsell et al., 2006; Chen
et al., 2020). Various such approaches have shown initial success when applied to EEG. These include
methods relying on data-augmentations (Mohsenvand et al., 2020; Yang et al., 2021), the temporal
ordering of EEG data (Banville et al., 2021), as well as masking and reconstruction (Jiang et al.,
2024). However, these are hindered by the difficulty of creating appropriate data augmentations and,
especially reconstruction techniques, by low signal-to-noise. Thus, progress in the medical context
has lagged, likely further exacerbated by the modality displaying high similarity between pathologies.

Meanwhile, important further progress was made in computer vision by leveraging natural language
as a signal during pretraining (Radford et al., 2021). Specifically, contrastive approaches which aim
to align embeddings of image-text pairs have shown to yield representations powerful for downstream
tasks in radiology (Zhang et al., 2022a; 2023). Given that success in radiology is also believed to be
bottlenecked by the availability of labeled data and the reliance on fine-grained information (Zhang
et al., 2022a), this joint modeling approach is a particularly interesting and novel application for the
challenging problem of medical EEG. Fortunately, this is made possible by the clinical reports of
physicians which accompany hospital EEG recordings and contain information about the patient and
recording itself (Obeid & Picone, 2016).
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Figure 1: Overview of the methodology. (Left) The ELM-MIL approach allows flexible multimodal
alignment by cropping EEG and segmenting medical reports. We sample multiple positives in a
cross-modal fashion, such that each EEG crop can be aligned with any number of segments from
the paired report (l|e). Vice versa, text can be aligned selectively to crops across the EEG recording
(e|l), illustrated by the differently shaded arrows. (Middle) An overview of investigated methods by
visualizing the cross-modal similarity matrices. (Right) To evaluate models, we perform bidirectional
retrieval analyses and use both linear probing and zero-shot classification for pathology detection.

However, language-EEG pretraining also entails unique challenges. First, datasets are generally
smaller than those used in radiology and especially computer vision. Second, the clinical reports tend
to be highly heterogeneous. While previous applications have paired natural and medical images
with short captions (Radford et al., 2021; Zhang et al., 2022a), EEG reports tend to span multiple
paragraphs and include information irrelevant to downstream clinical tasks, potentially hindering
the pretraining process. Moreover, they do not contain any temporal information about when events
occurred during the recording.

The current work presents the application of aligning functional brain data with medical textual
information for the first time by training EEG-language models (ELMs). To overcome the challenging
formats of modalities, constituting long timeseries and multiparagraph reports, we propose sub-unit
alignment. To address inconsistent relevance of EEG-text pairs, we additionally propose an extension
drawing on insights from the field of multiple instance learning (MIL). Furthermore, we investigate
how to best handle the heterogeneity of medical EEG reports. Specifically, we perform content-
based text segmentation, enabling inference on the relative importance of the different sources of
information in the reports. By fixing pretraining data and encoder architectures across comparisons,
we enable inference on the utility of different pretraining strategies per se. Our approach allows
us to provide the first evidence of considerable retrieval capabilities for clinical reports and EEG.
We furthermore test downstream performance of ELMs on classifying normal and pathologically
abnormal EEG, which is a widespread clinical task. These tests include zero-shot classification by
leveraging the language capabilities to evaluate the flexibility of the approach. Our results constitute
considerable increases in pathology detection performance in scenarios with few labels. These are
particularly relevant for clinical contexts, which tend to operate with smaller datasets compared to
many common areas of deep learning applications.

2 RELATED WORK

• Self-supervised learning with EEG data. SSL with EEG data has been predominantly applied
to emotion recognition (Zhang et al., 2022b; Wang et al., 2023), motor imagery (Cheng et al.,
2020; Rommel et al., 2022), sleep staging (Yang et al., 2021; Rommel et al., 2022), as well as
pathology detection. For the latter application, the temporal order of EEG crops was used initially
to demonstrate label-efficient representation learning (Banville et al., 2021). Augmentation-based
contrastive learning, combined with larger EEG encoders trained on multiple datasets, further
improved pathology detection (Mohsenvand et al., 2020). Recent studies have explored the use
of transformers (Yang et al., 2024; Jiang et al., 2024), with a focus on scaling while adopting
tokenization in an attempt to improve the challenge of effective cross-dataset EEG training.

• Using EEG for pathology detection. While SSL shows good performance for pathology detection,
it is particularly in contexts with little annotated data that it performs well. When more labeled data
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is available, expert-based feature extraction combined with traditional machine learning classifiers
are competitive together with supervised deep learning (Roy et al., 2019; Gemein et al., 2020;
Western et al., 2021; Kiessner et al., 2023; Darvishi-Bayazi et al., 2024). This trend has also
been observed in other EEG applications (Schirrmeister et al., 2017; Lotte et al., 2018). This
may indicate that label noise indices a ceiling effect on classification performance (Engemann
et al., 2018; Gemein et al., 2020); specifically, the inter-rater reliability of EEG classification into
normal or pathologically abnormal by neurologists. If this hypothesis holds, a focus on improving
classification with limited labels may be of extra importance.

• Medical multimodal language modeling. Medical vision-language modeling aims to guide self-
supervised pretraining on medical images using textual information in reports, with performance
on a variety of downstream tasks benefiting as a result (Huang et al., 2021; Wang et al., 2022;
Zhang et al., 2022a). Due to less available data in the medical domain, using a pretrained language
encoder and freezing its weights was found to boost downstream performance while considerably
reducing computational cost (Liu et al., 2023a). Nevertheless, this line of work has focused mainly
on the ECG, X-ray, CT images, and structural MRI images (Chen et al., 2023; Lalam et al., 2023;
Liu et al., 2023b).

• Multiple instance learning. MIL has seen only limited exploration for EEG. Initial studies have
investigated the framework by casting crops of EEG as instances and training classifiers for emotion
recognition (Caicedo-Acosta et al., 2019), motor imagery (Collazos-Huertas et al., 2020), mental
disorders (Sadatnejad et al., 2019), and sleep apnea (Sadatnejad et al., 2019). Of these, only the
latter has relied on deep learning. Meanwhile, for multimodal language alignment, Miech et al.
(2020) made significant progress by extending the NCE loss to a MIL setting and casting possible
text captions as instances.

3 METHODS

3.1 EXPERIMENTAL SETUP

3.1.1 EEG-LANGUAGE PRETRAINING

Here we detail the setup for pretraining ELMs. Whereas vision-language models are typically trained
by aligning a 2D image with a short caption (Radford et al., 2021; Zhang et al., 2022a), EEG-language
modeling is confronted with long EEG time series and multi-paragraph medical reports. To overcome
this, we employ text segmentation and time series cropping to create multiple non-overlapping
samples per modality and subject. Next, we propose sub-unit alignment by pretraining on these
cropped samples. In addition to considerably increasing sample size, this enables the extension of
successful approaches in vision-language models. We initially describe two strategies for sub-unit
alignment. First, EEG and text representations may be projected using neural networks to a new,
shared latent space prior to alignment (as in CLIP; Radford et al. (2021); Zhang et al. (2022a)),
denoted henceforth as ELMe,l. Alternatively, the EEG embeddings may be projected into the output
space of the language model (as in M-FLAG by Liu et al. (2023a)), denoted as ELMl. This approach
was found to reduce latent collapse in smaller data settings (Liu et al., 2023a). Following a description
of these models, we will introduce an extension based on MIL.

For EEG-language pretraining we assume the paired input (xe,i,xl,i). Here xe,i ∈ Rc×s denotes one
or a batch of crops of EEG signal with c channels and s time samples belonging to EEG recording i.
Meanwhile, neural signals of recording i as well as patient information is described in xl,i, which
represents a natural language text report. The main goal is to train the EEG encoder function fe,
which projects a crop of EEG signal into a vector of lower dimensionality. Following pretraining, this
encoder function fe can be used for downstream applications such as pathology detection.

Dropping the recording subscript i for brevity, each pair (xe,xl) is projected into the vectors e ∈ Rd

and l ∈ Rd respectively. For every xe, text of the associated report is sampled according to
x̃l = zl (xl), where zl represents the language sampling function detailed below. First, both the EEG
crop xe and text x̃l are encoded into vectors he and hl. For ELMe,l, we use projectors ge and gl to
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yield vectors e and l, whereas for ELMl the text embeddings are not projected:

e = ge (fe (xe)) (1)

l =

{
gl (fl (x̃l)) if ELMe,l

fl (x̃l) if ELMl
(2)

To enable multimodal pretraining, the projectors ge and gl map e and l to a shared latent space
with identical dimensionality d. For ELMl, this is achieved by having ge project to the native
dimensionality of the text encoder fl.

As paired medical EEG data and clinical reports are scarce, training the text encoder function fl
from scratch is unlikely to be successful. Furthermore, employing an existing language model and
finetuning the model during multimodal pretraining can lead to training instability and collapse of the
latent space (Jing et al., 2021; Liu et al., 2023a). To prevent resulting information loss, we follow
the recommendations by Liu et al. (2023a) to use a pretrained language model for fl and freeze its
weights during training. For ELMl, we adopt their proposed composite loss to learn fe and ge:

Ltotal = Lalign + Lorth (3)

Lalign = ∥e− l∥22 = 2− 2e⊤l (4)

Lorth =
∑
j=1

(
1−

(
h⊤
e · he

)
jj

)2

+
∑
j ̸=k

(
h⊤
e · he

)2
jk

, (5)

where {j, k} ∈ {1, ...,dim (he)}2 and he denotes a batch of EEG embeddings. Whereas Lalign

minimizes the difference between e and l, Lorth promotes independence between latent dimensions
of he. More specifically, the latter is achieved by manipulating the empirical correlation matrix,
where the diagonal and off-diagonal elements are pushed to 1 and 0 respectively (Liu et al., 2023a).

Meanwhile, ELMe,l relies on the cosine similarities between normalized EEG and text embeddings,
se2lj,j = ê⊤j l̂j , and between text and EEG, sl2ej,j = l̂⊤j êj , with j = 1, 2, 3, ..., B for batch size B
(Radford et al., 2021). The multimodal contrastive InfoNCE loss uses a temperature hyperparameter
τ (set to 0.3 using a holdout set; Appendix B.4) and is formulated as:

Le2l
j,k = − log

exp
(
se2lj,k/τ

)
∑B

m=1 exp
(
se2lj,m/τ

) (6)

Ll2e
j,k = − log

exp
(
sl2ej,k/τ

)
∑B

m=1 exp
(
sl2ej,m/τ

) (7)

Lalign =
1

2B

B∑
j=1

B∑
k=1

(
Le2l
j,k + Ll2e

j,k

)
(8)

Multiple instance learning. While previous approaches aim to align text and EEG crops uniformly,
certain text segments likely describe specific EEG sections more accurately than others. Therefore,
we introduce a MIL alignment strategy that builds on ELMe,l and accommodates multiple positive
samples, allowing for more nuanced multimodal relationships. Whereas MIL approaches often
rely on operations such as max-pooling to focus on single positive samples, we rely on insights
from the video-text alignment approach (MIL-NCE) by Miech et al. (2020). For a given text
sample xl, we sample multiple positive EEG crops xe from the paired recording to approximate
the P (e|l) distribution, while for an EEG crop, multiple text segments are sampled to model the
P (l|e) distribution. We combine these and sample positives for each EEG crop and text paragraph
respectively to approximate P (e, l) via bidirectional alignment. This approach effectively relaxes the
assumption of strong alignment for each individual (xe,xl) pair, instead assuming that, on average,
positive samples should have higher similarity scores than negative samples. To this end, we extend
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the InfoNCE loss to multiple instances:

Le|l = − 1

Bl

Bl∑
k=1

log

1
|Pk|

∑
j∈Pk

exp(se2lj,k/τ)∑Be

j=1 exp(s
e2l
j,k/τ)

where |Pk| ≤ N (9)

Ll|e = − 1

Be

Be∑
k=1

log

1
|Qk|

∑
j∈Qk

exp(sl2ej,k/τ)∑Bl

j=1 exp(s
l2e
j,k/τ)

where |Qk| ≤ M (10)

Le,l =
1

2

(
Le|l + Ll|e

)
(11)

where Pk and Qk are sets of positive EEG crops and text paragraphs respectively. Be and Bl are
the batch sizes for EEG and text respectively, for which we sample up to N EEG crops and M text
paragraphs for B

N subjects. We set N = 32 and M = 8 as this covers all samples for a majority of
subjects. We normalize using |Qk| or |Pk| to account for the varying number of crops across subjects.

Language encoder. For fl we use a transformer model which was pretrained in a contrastive manner
on PubMed search logs (MedCPT; Jin et al. (2023)). See Appendix B.3 for a comparison of language
models. ELMl adopts the language model’s native hidden dimensionality (768), while for ELMe,l

and ELM-MIL we project to a dimensionality of 256.

EEG encoder. For the EEG encoder fe we use a randomly initialized residual convolutional neural
network, with an identical backbone architecture across all comparisons. We use nonlinear MLPs
with a single-hidden layer for ge and gl, as well as for the projector head in EEG-only self-supervised
learning. More details are provided in Appendix B.2.

3.1.2 EEG-ONLY SELF-SUPERVISED LEARNING

We compare the representations learned by EEG-language pretraining to those obtained via EEG-only
pretraining. First, we employ multiple methods that train for invariance to data augmentations. This
is achieved by sampling data augmentations for each EEG crop xe, resulting in two differing data
views {x′e, x′′e}. It is important the data augmentations do not destroy the semantic information in xe.
Training to align the embeddings of these views while preventing collapse has been shown to yield
data representations useful for downstream tasks (Chen et al., 2020; Mohsenvand et al., 2020; Yang
et al., 2021). We implement the following methods (Appendix B.5): Bootstrap-Your-Own-Latent
(BYOL; Grill et al. (2020)), Variance-Invariance-Covariance Regularization (VICReg; (Bardes et al.,
2021)), and Contrast with the World Representation (ContraWR; Yang et al. (2021)). Additionally,
we compare against methods using the temporal ordering of EEG crops: Relative Positioning (RP;
Banville et al. (2021)), Temporal Shuffling (TS; Banville et al. (2021)), Contrastive Predictive Coding
(CPC; Banville et al. (2021)).

3.2 DATASETS AND PREPROCESSING

• TUEG. The Temple University Hospital (TUH) EEG Corpus is the largest available corpus of
hospital EEG data with varying montages, channel counts, and sampling frequencies (n=26846
(Obeid & Picone, 2016)). For each patient, one or more EEG sessions are provided, each of which
contains one or more recordings. For most of the dataset, no labels are available beyond patient age
and sex. However, many EEG sessions are associated with a natural-language clinical report.

• TUAB. The TUH Abnormal EEG corpus is a subset of TUEG which was manually labeled by
clinicians indicating whether the EEG displays pathological abnormalities (Lopez et al., 2015). This
enables the binary classification task of predicting the status of {normal, abnormal}. As training
(n=2717) and evaluation (n=276) sets are provided, we use the latter as a hold-out test set.

3.2.1 TEXT PROCESSING

In order to categorize the textual content in the clinical reports, we employed regular expressions
matching for commonly-occurring headings (an overview is provided in Appendix F.3). These
enabled the segmentation of individual reports into their respective headings with associated text
paragraphs, providing insight into which information in physician reports is encoded in the EEG.
We cluster headings into four categories. First, the clinical history cluster of headings contains
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demographic information in terms of patient age and sex, as well as a brief description of relevant
current and/or past pathology and symptoms. The record description cluster includes the physician’s
observations of the EEG traces, which describes both normal and abnormal features, often in terms of
oscillatory brain activity. The medication cluster contains the patient’s current medication information.
Finally, the interpretation cluster summarizes a physician’s thoughts, often including the impression
of whether the EEG is normal or pathologically abnormal, as well as a clinical correlation. To
investigate whether EEG-language models can learn richer representations by being exposed to a
larger variety of text, we also train models by sampling text from all four aforementioned clusters.

Due to the heterogeneity of the clinical reports, we further test the utility of summarizing the
pathological status indicated by the clinical report using a large language model (LLM). Due to the
sensitive nature of the clinical reports, we use the Llama-3 8B model (AI, 2024) locally and instruct
for the production of a single-sentence summary of a report, which should include whether the EEG
was deemed abnormal and for which reasons (Appendix F.3).

Language encoding. Given a sampled paragraph from a clinical report or the LLM-generated
summary, we encode this text by relying on the embedding of a special [cls] token which aggregates
the representations across all tokens. As such, given a clinical report xl, the transformation function
zl corresponds to text segmentation or summarization yielding x̃l. Following tokenization, we embed
into the [cls] token using fl. The resulting text embedding hl may be used for multimodal pretraining.

3.2.2 EEG PROCESSING

From the EEG dataset, recordings longer than 2.5 hours were omitted to filter out a small subset of
very long, potentially overnight recordings. For training efficiency, only the first 45 minutes of a
recording were used. Any recording files shorter than 70 seconds were also omitted.

EEG preprocessing. EEG data received minimal preprocessing (using MNE (Gramfort et al., 2013)).
First, the initial 10 seconds were removed to reduce the impact of set-up artefacts. Afterwards, a
bandpass filter of 0.1-49 Hz was applied and all recordings were resampled to 100 Hz. To reduce
the impact of signal artefacts, all EEG signals had their amplitude clipped to ± 800 µV. As a large
majority of recordings used an average-reference (AR) or linked-ear reference (LE), we only used
these recordings and standardized them via transformation to the 20-channel Temporal Central
Parasagittal (TCP) montage. To enable fair comparisons between methods, the optimal crop-length
out of {5,10,20,30,60} seconds was determined without data-leakage through training and evaluation
on subsets of the training data only (Appendix B.2). Based on these results, we used 20 and 60
second crops for EEG-only and EEG-language modeling respectively.

3.2.3 DATA SUBSAMPLING

TUEG contains considerably more abnormal than normal EEGs. As vision-language models have
been shown to be sensitive to imbalanced classes (Wang et al., 2024), we subsample the data to create
approximately equal class representation. To do so, we rely on the LLM summaries of reports, which
facilitated report classification based on regular expressions due to reoccurring phrasing. If any data
of a subject was present in the retrieval or TUAB test set, all their data was excluded from the pretrain
subset to avoid data leakage. Further details are provided in Appendix C and resulting sample sizes
are shown in Table 1.

Table 1: Dataset sample sizes.
Data subset EEG files Clinical reports Crops (60s) Crops (20s)

Pretrain 15144 11785 270K 813K
TUAB train 2712 Not used 56579 170K
TUAB test 276 Not used 5783 17349

Retrieval test 437 437 8887 26661
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Figure 2: EEG-Language models are evaluated on their retrieval ability using top-k accuracy out of
437 patients. Either EEG is retrieved based on a queried clinical report, or vice versa. Error bars
indicate standard deviations over five model training runs.

4 EXPERIMENTAL RESULTS

4.1 RETRIEVAL

To investigate the information represented in the learned embeddings resulting from EEG-language
training, we perform retrieval analyses. Given a medical report describing the patient and their EEG
recording, we probe the ability to recover the patient’s EEG by rank-ordering candidate EEG based
on embedding similarity. This analysis is also performed in opposite direction, by retrieving the
associated report given an EEG recording. As reports refer to an entire recording, EEG embeddings
of single crops are averaged. Given that reports consist of multiple paragraphs, embeddings of single
paragraphs are also averaged. This procedure yields one EEG and report embedding per patient
recording, which we use for rank-ordering based on cosine similarity.

The top-K retrieval accuracy, which scores whether the patient’s EEG or report has a rank equal
or better than K, is plotted in Figure 2. Many models perform considerably above chance level,
indicating the successful generalization of learned multimodal EEG-language information. The
text sampling markedly impacts the report retrieval. The clinical history and medication clusters,
which contain no direct description of the observed EEG recording, score lowest. While including
such information (description cluster) helps considerably, retrieval is particularly effective when a
pathology-relevant context is provided (interpretation cluster and LLM summary). This indicates that
pathology is a significant source of between-subject variation. Further clear improvements are seen
when text from all clusters is sampled, indicating that these clusters contain unique information and
that EEG-language modeling can capture multiple dimensions of patient information.

For both EEG and report retrieval, ELMe,l models tend to outperform ELMl models. However, this
discrepancy in performance is particularly prevalent for report retrieval. This is likely due to omission
of a text projection head in ELMl, which may therefore lack the flexibility to appropriately separate
the EEG reports in latent space. Due to the benefit of pretraining using all text clusters, we pretrain
our ELM-MIL models in this manner only and observe that these can further improve retrieval
performance. Interestingly, sampling multiple positive EEG crops (i.e., e|l) performs considerably
better than the inverse (l|e), yet bidirectional alignment and sampling multiple positives jointly (e, l)
scores highest. These results indicate for the additional flexibility of this approach to aid in multimodal
alignment, supporting the hypothesis that not all EEG and text pairs are equally informative.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Pathology detection via linear probing at 1%, 10%, and 100% labeled data of the TUAB
training set. The (second) best scores are printed (underlined) bold. Standard deviations over five
model training runs are included.

Balanced Accuracy AUROC

Method Text Sampling 1% 10% 100% 1% 10% 100%

SV - 71.36±1.10 81.06±0.30 84.13±0.29 79.87±1.30 89.23±0.51 91.83±0.32

BYOL - 72.69±0.57 79.03±1.16 79.94±2.14 78.85±0.81 86.75±0.76 88.82±0.70

VICReg - 71.76±0.81 79.6±1.07 82.46±0.96 78.7±1.11 86.04±0.80 88.78±1.04

ContraWR - 73.30±1.44 80.72±1.69 82.44±1.22 80.30±1.91 86.67±1.32 88.44±1.20

RP - 74.52±1.06 82.16±0.38 83.36±0.42 82.63±0.87 89.78±0.43 91.43±0.34

TS - 74.99±0.86 82.16±0.64 84.10±0.66 82.51±0.91 89.58±0.55 91.50±0.32

CPC - 73.20±0.79 78.44±1.00 79.95±1.49 81.48±1.02 86.44±1.07 87.92±1.14

ELMl Clinical History 76.36±0.54 79.88±1.32 82.61±1.43 84.48±1.07 87.87±1.05 89.40±0.80

ELMl Medication 75.71±1.14 80.41±0.77 83.20±1.17 84.27±0.92 88.10±0.86 89.79±0.76

ELMl Description 79.61±0.69 81.87±0.69 83.88±0.89 87.88±0.80 89.73±0.63 90.67±0.42

ELMl Interpretation 80.57±0.62 81.98±1.41 83.08±1.01 88.86±0.60 89.82±0.78 90.53±0.62

ELMl LLM Summary 82.36±0.56 83.70±0.54 84.37±0.51 90.35±0.34 90.97±0.35 91.58±0.22

ELMl All Clusters 79.07±0.87 81.07±0.75 83.18±0.60 87.12±0.48 88.61±0.36 89.78±0.23

ELMe,l Clinical History 79.86±0.00 82.71±0.00 84.13±0.00 87.61±0.00 90.72±0.00 91.81±0.00

ELMe,l Medication 79.86±0.00 82.58±0.00 82.31±0.00 88.41±0.00 90.57±0.00 91.81±0.00

ELMe,l Description 81.47±0.29 83.64±0.54 84.84±0.91 89.14±0.53 91.70±0.19 92.71±0.14

ELMe,l Interpretation 82.83±0.35 84.09±0.52 84.51±0.58 90.92±0.35 92.48±0.31 93.13±0.27

ELMe,l LLM Summary 82.18±0.83 83.16±1.04 83.24±0.44 90.35±0.37 91.57±0.53 92.27±0.42

ELMe,l All Clusters 82.64±0.24 84.13±0.35 85.39±0.45 90.98±0.29 92.53±0.21 93.26±0.24

ELM-MIL l|e All Clusters 82.53±1.80 86.38±0.77 87.62±0.43 89.88±1.47 92.92±0.54 93.52±0.34

ELM-MIL e|l All Clusters 83.71±0.59 84.37±0.97 85.65±0.97 92.37±0.43 93.25±0.27 93.65±0.16

ELM-MIL e, l All Clusters 83.10±0.56 84.21±0.82 87.11±0.76 91.54±0.44 93.14±0.24 93.91±0.17

4.2 PATHOLOGY CLASSIFICATION

4.2.1 LINEAR PROBING

Next, we study the learned representations in their relevance to clinical pathology. To do so, we
first train linear probes to detect pathology on the representations of pretrained models on TUAB
under varying amounts of labels (Table 2; Appendix D). Models are trained on single EEG crops,
across which we average predictions to obtain a recording-level prediction. We find EEG-language
pretraining yields large improvements for pathology detection over EEG-only pretraining, with
multimodal models being particularly effective at small sample sizes: at 1% of exposed labels,
performance increases reach 8.7% balanced accuracy and 9.7% AUROC. Our ELM-MIL models are
found to score highest on this task too, albeit with variability between the variants.

We evaluate models out-of-distribution on the NMT EEG Dataset (Khan et al. (2022); Section A.1)
and investigate two additional tasks for clinical event detection (TUEV and TUSZ: A.2). We observe
strong performance for ELM-MIL across evaluations.

Given the broad outperforming of ELMs compared to EEG-only models, we investigated whether
the strategy of sub-unit multimodal modeling provides inherent benefits. We provide this additional
set of analyses in appendix A.3, which indicates that our sub-unit alignment strategy promotes the
encoding of between-subject information even in the absence of semantically relevant text. This
allows ELMe,l to nearly match the best EEG-only pretraining strategy for pathology detection when
reports are randomly shuffled.

4.2.2 ZERO-SHOT PATHOLOGY DETECTION.

Next, we investigate the unique ability of multimodal language modeling to leverage the language
modality to perform ‘zero-shot’ classification. Without any explicit labels for downstream training,
EEG may be classified by computing its similarity in latent space to text prompts representing the
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Table 3: Pathology detection via zero-shot classification. The (second) best scores are printed
(underlined) bold. Standard deviation over five model training runs are included.

Method Text Sampling Balanced Accuracy (%) AUROC (%) F1-Score (%)

ELMl Clinical History 50.00±0.00 34.34±1.66 0.00±0.00

ELMl Medication 50.00±0.00 74.99±1.80 0.00±0.00

ELMl Description 50.00±0.00 43.70±1.99 0.00±0.00

ELMl Interpretation 50.00±0.00 89.23±0.31 0.00±0.00

ELMl LLM Summary 71.98±0.62 90.92±0.35 61.77±1.24

ELMl All Clusters 50.00±0.00 84.52±0.57 0.00±0.00

ELMe, l Clinical History 62.50±8.74 67.57±10.41 60.96±6.13

ELMe, l Medication 51.09±17.79 52.21±23.54 50.67±12.53

ELMe, l Description 64.03±3.95 71.40±4.32 63.56±3.81

ELMe, l Interpretation 82.34±1.42 91.80±0.47 80.10±1.63

ELMe, l LLM Summary 58.87±15.48 67.98±20.88 64.32±9.06

ELMe, l All Clusters 83.16±1.15 91.91±0.67 81.25±1.35

ELM-MIL l|e All Clusters 68.86±7.89 75.23±9.28 68.07±6.82

ELM-MIL e|l All Clusters 79.10±2.93 87.26±3.19 77.60±2.52

ELM-MIL e, l All Clusters 84.31±0.57 91.56±1.31 82.13±0.64

candidate classes. As suggested by Radford et al. (2021), we create a prompt ensemble over 21
variations of the phrasing ”The EEG is {normal, abnormal}” (Appendix D). Results in table 3 indicate
that, despite a small dataset, EEG-language models can reach high levels of zero-shot pathology
detection. The best models outperform nearly all linear probes at 1% labels and even match EEG-only
models at 100% labels. The clinical history, medication, and description models perform poorly,
which follows from these models not being exposed to the explicit phrasing indicating the EEG status
as normal or abnormal per se. Their performance can likely be improved by designing appropriate
prompts.

Notably, while the ELMe,l models trained on either the interpretation cluster or all clusters both
perform well with high consistency, training on LLM summaries resulted in highly variable scores.
As the LLM-generated text was considerably more uniform with repetitive phrasing across reports, the
lack of variability in combination with limited data may have lead to unstable language representations
of the text projector. Meanwhile, we observe the opposite pattern for ELMl, where LLM summaries
enabled the only consistently above-chance zero-shot classifier. As with the report retrieval analysis,
the fixed text representations of a language model which is not finetuned for EEG is likely inadequate
to reliably separate between diverse descriptions of pathological and normal EEG. Meanwhile,
the rigid LLM-generated text may have aided in this scenario by consistently yielding divergent
text representations with which normal and abnormal EEG may be aligned. In line with previous
evaluations, our ELM-MIL approach further improves performance, but requires the bidirectional
approach (e, l).

4.2.3 EEG-LANGUAGE MODELING WITH MIL-INFONCE

Whereas for InfoNCE the temperature parameter sets the relative focus across negative samples
(Wang & Liu, 2021), for MIL-InfoNCE it does so too for positive samples. We therefore test the
sensitivity of our methods to the parameter (Figure 3). We find that MIL-InfoNCE is more robust
to changes of τ for pathology detection, while retrieval performance can be further improved by
lowering τ . This may be explained as retrieval being subject-based rather than class-based (see
Appendix 12). Moreover, performance increases from τ < 1 indicates the utility of this additional
hyperparameter of InfoNCE, which is absent in NCE.

We perform additional ablations to investigate crucial aspects of the ELM-MIL e, l model. First,
we find that additional positive EEG and text samples improve downstream performance (Table
4). We additionally ablate the aggregation method for positive samples and find MIL-InfoNCE to
outperform considered alternatives. We compare to aligning only the most similar positive sample
(denoted Max+InfoNCE), using attention to create a weighted average across positive samples based
on similarity values (Attn+InfoNCE; Ilse et al. (2018)), as well as taking the sum instead of mean
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Figure 3: Model comparisons across EEG retrieval and pathology detection under different values of
the temperature parameter τ .

across log-probabilities (Sum+InfoNCE). The latter does not account for the varying amount of text
and EEG crops across subjects.

Table 4: Ablation studies (Means over five training runs). Ret: EEG Retrieval (Top-10 accuracy), LP:
Linear Probe (Balanced accuracy at 100%), ZS: Zero-shot classification (F1).

(a) Aggregation
Method Ret. LP ZS

Max+InfoNCE 3.9 77.5 43.2
Attn+InfoNCE 8.3 84.9 17.5
Sum+InfoNCE 24.7 86.0 78.8
MIL-InfoNCE 27.1 87.1 82.1

(b) Positive EEG Samples
N Ret. LP ZS

2 19.8 85.9 78.8
4 21.8 85.9 79.2
8 25.3 86.5 80.0
16 26.5 86.9 78.5
32 27.1 87.1 82.1

(c) Positive Text Samples
M Ret. LP ZS

2 28.1 85.8 80.4
4 27.1 86.0 80.4
8 27.1 87.1 82.1

5 DISCUSSION

The current work presents a first application of multimodal pretraining using natural language
and functional brain data in a medical context. Our findings indicate that ELMs provide better
representations than EEG-only SSL. To enable this, we perform sub-unit alignment following
timeseries cropping and text segmentation. We further improve downstream performance via MIL-
InfoNCE to address misalignment. The most useful representations were obtained via a combination
of our ELM-MIL models and exposure to a variety of textual information. Such multimodal models
were also found to be capable of zero-shot pathology detection. Using linear probing, sizable
performance improvements over EEG-only SSL were observed, with the largest gains in contexts
with few annotated samples. We additionally show strong performance of ELMs via external
validation and clinical event detection tasks.

Some considerations of the current study deserve mention. No additional paired EEG-report datasets
are currently publicly available, which for now prevents assessing the generalizability of our results
across datasets. Although great care was taken to prevent data leakage and no model development
involved any of the evaluation data, future work is required to properly study generalizability and
scaling behavior as investigated using large transformer models in (Yang et al., 2024; Jiang et al.,
2024). While the retrieval analyses suggest that certain models learn richer data representations,
a lack of annotations hindered a more detailed assessment of their utility for downstream tasks.
Future research could benefit from annotations for specific pathologies, enabling more precise model
comparisons. Additionally, we observed lower pathology detection scores for EEG-only SSL than a
previous study (Mohsenvand et al., 2020), despite using the same data augmentations. Their work
pretrained larger models on multiple datasets to output sequential representations. However, many
such adaptations to the EEG encoder or its training could also be applied to EEG-language modeling.
Finally, although several models displayed accurate zero-shot pathology detection, the variability
in results may be due to the challenges of language modeling with limited data. Further research is
needed to explore additional inductive biases or regularization of the text projector to address this
issue.
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REPRODUCIBILITY STATEMENT

Section 3.2.2 contains details about the data preprocessing, while Appendix C provides details about
data subsampling. Information on model architecture, hyperparameters, and optimization is provided
in Section 3.1 and Appendix B. We provide the code of our methods as supplementary material,
which we will additionally host publicly upon manuscript publication.

ETHICS STATEMENT

This study uses an already existing repository of EEG data, which was collected following ethical
guidelines, including participant consent and anonymization. We have ensured that data handling
complies with privacy and security standards. As part of this, the manuscript and code release have
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A ADDITIONAL RESULTS

A.1 EXTERNAL VALIDATION ON THE NMT SCALP EEG DATASET

We leverage the NMT Scalp EEG Dataset (Khan et al., 2022) in order to validate our results out-
of-distribution. Models are trained only on TUEG data and their representations are subsequently
evaluated using linear probes for abnormality classification without any finetuning (Table 5). The
NMT dataset deviates considerably from TUEG. Data was recorded from a South Asian population
at the Pak-Emirates Military Hospital, Rawalpindi, Pakistan, using a different EEG recording setup.
Furthermore, the NMT participants are considerably younger, feature more males (66.6%), and
their EEG recordings are labeled predominantly normal (83.8% in the training set, while the test
set is balanced). This enables a challenging and imbalanced external validation for representation
learning methods. We apply the same preprocessing as for TUEG and use the provided train/test
split, yielding n=2216 and n=183 respectively. We observe that our ELM-MIL approach scores
highest in all-but-one setting, indicating significant transferability of the learned representations.
Without finetuning, the model even matches the best performance reported by Khan et al. (2022),
who used supervised learning to train on TUH and finetune on NMT (Accuracy=82%, AUC=87%).
Compared to TUAB, the notably lower 1% performance likely results from the heavily imbalanced
dataset, meaning only 4 abnormal recordings are shown, compared to the 13-14 for TUAB 1%. The
comparatively overall lower scores on the NMT dataset are in line with previous findings (Khan et al.,
2022).

Table 5: Linear probing for abnormality classification on the NMT dataset using 1%, 10%, and 100%
labeled training data. The (second) best SSL scores are printed (underlined) bold. Standard deviations
over runs are included.

Balanced Accuracy AUROC

Method 1% 10% 100% 1% 10% 100%

BYOL 57.94±1.07 68.97±1.05 71.30±2.20 63.78±1.70 76.48±2.10 80.65±2.50

ContraWR 58.25±1.16 66.43±0.93 67.76±0.38 65.72±1.01 72.47±0.95 75.42±1.01

VICReg 55.32±0.91 67.59±0.37 71.58±1.29 61.57±1.49 74.19±0.63 78.50±1.60

TS 57.64±1.07 72.00±1.50 77.70±2.29 64.90±0.70 81.36±1.53 87.08±1.02

RP 57.76±0.48 71.45±1.23 77.54±2.37 64.92±0.81 80.42±1.83 86.50±2.17

CPC 58.89±1.82 69.50±0.83 71.87±1.24 65.24±2.06 77.84±1.12 79.98±1.60

ELM-MIL e, l 60.60±0.54 68.57±0.90 81.00±1.18 69.49±2.26 81.42±1.15 89.77±0.21

A.2 EEG EVENT DETECTION

To further evaluate learned representations, we use the TUH EEG Seizure Corpus (TUSZ; Shah et al.
(2018)) and TUH EEG Events Corpus (TUEV; Obeid & Picone (2016)), which are subsections of
TUEG. Rather than recording-level predictions, these tasks require classification of single, short EEG
crops. We pretrain models using 5-second EEG crops, drop subjects which feature in either TUSZ or
TUEV yielding a pretraining sample size of n=14480 recordings, and train with lower learning rates
for better stability (base learning rate of 0.02 for ELM-MIL and 0.1 otherwise). For ELM-MIL we
increase the amount of positive EEG crops N to 120.

• TUSZ: This corpus has sections of recordings labeled to contain either seizure or background
activity. We crop the recordings into 5-second segments and perform binary classification using
5-fold cross validation on the provided train and dev sets (n=6491), while testing on the eval set
(n=865; Table 6).
We find considerable performance differences between models, with BYOL and Temporal Shuffling
performing well as EEG-only pretraining methods, while ELM-MIL scores highest across most
settings.

• TUEV: A corpus containing annotated EEG with six classes, of which three are clinical (spike
and slow wave (SPSW), generalized periodic epileptiform discharge (GPED), periodic lateralized
epileptiform discharge (PLED)) as well as eye movements, artifacts, and background activity.
We only use the provided train set (n=359) as the test set does not include the TUEG subject
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Table 6: Linear probing for seizure classification on the TUSZ dataset using 1%, 10%, and 100%
labeled training data. The (second) best SSL scores are printed (underlined) bold. Standard deviations
over runs are included.

Balanced Accuracy AUROC

Method 1% 10% 100% 1% 10% 100%

SV 56.98±1.68 65.97±2.30 77.35±1.30 84.00±0.90 87.33±0.93 90.38±0.39

BYOL 70.95±2.55 79.43±0.64 81.39±0.90 77.45±3.14 86.60±0.79 88.89±1.02

ContraWR 64.63±2.80 75.07±1.53 77.56±0.59 68.86±3.13 82.75±1.66 85.68±0.74

VICReg 63.30±1.27 74.36±0.99 78.02±1.18 69.61±1.82 82.01±0.93 86.17±0.98

TS 68.66±1.90 80.11±0.58 82.92±0.91 78.60±1.90 87.63±0.58 89.77±0.72

RP 59.04±1.51 69.48±1.14 72.27±1.30 64.41±2.50 76.72±1.37 79.52±1.26

CPC 64.72±1.49 74.34±1.84 78.25±1.99 72.01±1.00 81.77±2.24 85.91±2.00

ELM-MIL 70.04±4.07 81.02±0.95 83.68±0.46 78.98±5.18 88.98±0.86 91.51±0.33

Table 7: Linear probing for event classification (6-classes) on the TUEV dataset using 100% labeled
training data. The (second) best SSL scores are printed (underlined) bold. Standard deviations over
runs are included.

Method Balanced
Acc.

AUROC

SV 40.98±2.38 86.28±0.78

BYOL 46.19±2.39 82.40±1.60

ContraWR 48.84±1.19 84.11±1.64

VICReg 46.75±1.15 83.26±1.83

TS 45.00±1.66 84.86±1.32

RP 38.93±1.09 78.95±1.59

CPC 41.83±2.08 81.94±1.75

ELM-MIL 48.84±2.80 87.69±1.01

identifiers, which would have prevented the exclusion of these subjects from the pretraining data.
By performing 5-fold cross validation while splitting on the subject level using the train set, we
can guarantee to avoid data leakage. For each 1-second event, we include two seconds of context
before and after, yielding 5-second crops.
In terms of overall performance (Table 7), ELM-MIL scores well across both metrics. Next, we
investigated per-class performance as TUEV includes distinctly different event categories (Figure
4). We observe that ELM-MIL scores well across the three clinical events (SPSW, GPED, PLED)
with over 3.5% better average scores. However, the model underperformed on artifact and eye
movement detection, which may indicate models may lose sensitivity to events not described in the
text. Interestingly, a portion of reports include sections on such technical problems, but these were
segmented out for the current study. Follow-up research is needed to further investigate the effects
of including such text.

A.3 LANGUAGE-INDEPENDENT EFFECTS OF SUB-UNIT ALIGNMENT.

Language-independent effects of sub-unit alignment. Given the broad outperforming of ELMs
compared to EEG-only models, especially for ELMe,l, we further investigate whether the general
setup of multimodal pretraining provides inherent benefits. EEG recordings are split into multiple
crops, which in turn are all aligned to the same clinical report during pretraining. It follows that
EEG crops of a single recording are indirectly aligned to one another to some extent (Figure 1C).
We investigated this hypothesis by shuffling reports between patients prior to pretraining. We find
that while embeddings of single EEG crops of an untrained encoder are only minimally more similar
within-subject than between-subject (ratio of ∼1.1x), this effect is much more pronounced after
pretraining ELMe,l on correctly paired reports (∼6.3x), and even more so after pretraining on shuffled
reports (∼15.7x; figure 5). Linear probing reveals that training ELMe,l on shuffled reports clearly
boosts pathology detection over using an untrained encoder and manages to almost match EEG-only
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Figure 4: Per-class scores for TUEV show that ELM-MIL outperforms for the clinical events.
SPSW: Spike and sharp wave, GPED: generalized periodic epileptiform discharges, PLED: periodic
lateralized epileptiform discharges.

A B C D

E F G H

ELMe,l - Paired reports ELMe,l - Pathology detection

ELMl - Pathology detection

ELMe,l - Shuffled reports

ELMl - Shuffled reports

Untrained

WS/BS Ratio

ELMl 

ELMl Shuffled 

ELMe,l Shuffled 

Untrained

ELMe,l  

ELMl - Paired reports

Figure 5: A-C, E-G) We investigate the distributions of cosine similarity values of EEG crop
embeddings between- and within subjects (denoted BS and WS respectively). We plot these for
an untrained encoder (one example run), as well as EEG encoders of ELMs trained with paired or
shuffled reports. We find that ELMe,l produces dissimilar between-subject EEG embeddings, while
ELMl does not. E) shows the ratio between WS and BS similarity values across five runs (with
standard deviations). D,H) The downstream performance via linear probing is shown on the right,
with error bars representing standard deviations across five training runs.

pretraining without the need for augmentations (mean accuracies of 73.70%, 81.04%, 83.69%). On
the contrary, the ratios for ELMl are close to 1 after training using paired and shuffled reports, with
the latter resulting in decreased pathology detection accuracy.

Conceptually, while shuffling reports destroys the semantic relevance of reports, it still provides a
unique subject-specific reference to which the EEG embeddings are aligned to. Pretraining then
reduces to promoting invariance to within-subject information, as all EEG crops of a patient are
aligned to the same report. However, while for ELMl these reports occupy arbitrary positions in the
latent language space due to the absence of the text projector, ELMe,l exhibits additional dynamics.
Namely, for a given EEG crop (or text paragraph) in a batch belonging to subject i (that is, id = i),
nearly all negative contrastive samples will belong to a different patient (P (id = i) ≪ P (id ̸= i)).
The negative contrast therefore largely amounts to minimizing similarity between patients. This can
be viewed as encoding between-subject information and these results imply that training with this
objective is a useful pretext task for EEG timeseries. Naturally, this will depend on the downstream
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tasks, but both retrieval and pathology detection require between-subject information. The advantage
of retrieval and linear probing of ELMe,l may thus be, at least in part, due to the inherent utility of our
extension of multimodal language modeling to timeseries by using sub-unit alignment, independent
of language. Still, pathology detection with only few annotations is considerably better using paired
reports, indicating the importance of relevant clinical language for label-efficiency.

A.4 POST-HOC INVESTIGATION OF DATA LEAKAGE

To maximize the amount of data available in this data-scarce setting, the TUAB training set was
included during pretraining. We investigate whether this gave a disproportionate advantage to linear
probes trained on ELM representations by repeating the “1% labels” context using unseen subjects as
follows: Given only the TUAB test set, we train linear probes using 10-fold cross validation (times
five random seeds), each time splitting 10-20-70% of the test set into train/validation/test. This gives
the same labeled sample size as 1% of the TUAB training set without relying on samples seen during
pretraining. As seen in Table 8, results are highly similar, strongly suggesting that the advantage of
ELMs is not due to the inclusion of the TUAB training set in the pretraining set.

Table 8: Effect of overlap in subjects used for pretraining and linear probing. Higher standard
deviations result from a smaller test set.

Method Overlap Balanced Accuracy
TS Yes 74.99±0.86

TS No 74.56±1.12

ELMe,l All Clusters Yes 82.64±0.24

ELMe,l All Clusters No 82.28±0.64

B TRAINING DETAILS

In this section, we provide further detailed information of the model training. Unless stated otherwise,
ablation and hyperparameter analyses were performed on a data subset consisting of 5000 and 500
EEG recordings divided into a training and test set respectively. To prevent data leakage, this data
had no overlap with the patients used for evaluation of the main results.

B.1 OPTIMIZATION

All models are pretrained using the LARS optimizer (You et al., 2017) with a cosine decay learning
rate schedule over 50 epochs, with a warm-up of 4 epochs. The base learning rate is set to 0.3 for EEG-
only, 0.01 for ELMs, and 0.06 for ELM-MIL, scaled with the batch size (BaseLR × BatchSize/256;
Grill et al. (2020)). We use a weight-decay parameter of 1 × 10−4. Models were trained on either an
Nvidia Geforce GTX 3090 or Tesla V100 GPU and require less than 24GB of memory. Training took
approximately 9 hours for EEG-language modeling or 18 hours for EEG-only modeling due to data
augmentations. We used CUDA v11.3 and PyTorch v1.12.1.

B.2 EEG ENCODER

We use a CNN architecture with a residual stream as the EEG encoder for all analyses (Figure 6).
The model uses parallel convolutions, involving reflection padding and 1D-convolutions with kernel
sizes {4, 8, 16} with 32 filters each. These outputs are concatenated, resulting in a 96 dimensional
representation and 747K trainable parameters. We compare input lengths of EEG crops varying from
5 to 60 seconds. This presents a trade-off where longer crops result in a greater information content
per crop, while reducing the total sample size. As EEG-only pretraining relies on data augmentations,
this introduces an additional influence of crop length. Specifically, longer crop lengths likely make
the pretraining task easier, as augmentations introduce relatively lesser distortion due to the greater
information content. We therefore compare performance of different crop lengths for both EEG-
language and EEG-only pretraining. As the EEG encoder progressively downsamples the signal,
we adjust the pooling layers to the input length. These adjustments are shown in Table B.2. For
EEG-language pretraining we evaluate zero-shot pathology detection, while for EEG-only pretraining
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we are required to compare the performance of a linear probe. Results are shown in Figure 7. Due to
computational resources, we only compare crop lengths for BYOL and ELMl as representations of
EEG-only and EEG-language modeling. We observe that for EEG-only pretraining an intermediate
crop-length of 20 seconds performs best, which matches the findings by Mohsenvand et al. (2020).
Meanwhile, zero-shot pathology detection is found to be relatively insensitive to crop lengths of at
least 10 seconds, with 60 second crops scoring highest, while the shortest crop length consistently
leads to unstable text representations and chance-level performance.

For the EEG projector, we use a linear layer with an output dimension of 512 followed by batch
normalization, exponential linear units, and a final linear layer with output size 256.

Figure 6: An identical EEG encoder architecture is used across all analyses. The size of the max pool
operation depends on the input length. These are detailed in table B.2. K: Kernel size, D: Output
dimensionality.

Table 9: Multiple input lengths for the cropped EEG timeseries were compared, which included
adjustments to the pooling layer.

Model Setups Batch Size
Input Dim. Max Pool Size Intermediate Dim. EEG+Text EEG

500 [2,2,2,2] [166, 55, 18, 6] 2048 2048
1000 [3,3,3,3] [333, 111, 37, 12] 2048 2048
2000 [3,3,3,3] [666, 222, 74, 24] 2048 1024
3000 [4,4,4,4] [750, 187, 46, 11] 1024 800
6000 [4,4,4,4] [1500, 375, 93, 23] 800 400

Figure 7: Comparison of pathology detection based on EEG input crop length, ranging from 5 to 60
seconds, via averaged balanced accuracy scores. Error bars indicate the standard deviation across five
random seeds.
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B.3 LANGUAGE ENCODER

We compare three pretrained language models in their ability to perform zero-shot pathology detection
following EEG-language pretraining (Table 10). We find that MedCPT performs best (Jin et al.,
2023), which is trained using contrastive learning with 255 million user click logs from PubMed.

For the text projector of ELMe,l, we use a linear layer with output size 1024 followed by batch nor-
malization, rectified linear units, and a final linear layer with output size 256 and batch normalization.

Table 10: Zero-shot classification comparison between language models for ELMe,l.
Language Model Balanced Accuracy AUROC

BiomedBERT (Gu et al., 2021) 78.61±2.90 85.78±2.58

Bio-ClinicalBERT (Alsentzer et al., 2019) 80.86±1.19 87.33±0.68

MedCPT (Jin et al., 2023) 82.58±0.25 88.37±0.39

B.4 TEMPERATURE PARAMETER

For ELMe,l, the softmax operation used in the loss computation includes a temperature hyperparame-
ter τ . We compare zero-shot pathology detection for multiple values. We observe poor performance
for low temperature values, but stable zero-shot classification for higher parameter values. We set
τ = 0.3 for all further analyses.

Figure 8: Comparison of temperature values for ELMe,l on zero-shot pathology detection. Error bars
indicate the standard deviation across three random seeds.

B.5 EEG-ONLY PRETRAINING

We implement the following methods for EEG-only SSL:

Bootstrap-Your-Own-Latent. BYOL relies on two encoder models: an online and a target network
(Grill et al., 2020). During pretraining, the online network is trained to predict the target model’s
output. Meanwhile, the weights of the target network are updated using a moving average of the
weights of the online network, which has been empirically shown to prevent collapse of the latent
space. For alignment, ℓ2 normalization is applied to the EEG embeddings {h′

e,h′′
e} and the mean

square distance is minimized. We adopt the recommended parameter value for the exponential
moving average (Grill et al., 2020). The projection head is a 2-layer non-linear MLP with a hidden
dimension of width 256 and an output dimension of 32.

Variance-Invariance-Covariance Regularization. VICReg allows for the use of a single encoder
model and prevents collapse by applying two explicit regularization terms to each of the embed-
ding batches {h′

e,h′′
e} (Bardes et al., 2021). The ’variance’ term maintains the standard deviation

(computed batch-wise) of every embedding dimension above a threshold, thereby avoiding a trivial
solution. In addition, latent collapse is avoided through the ’covariance’ term which decorrelates
pairs of embedding dimensions. The method minimizes the mean square distance between {h′

e,h′′
e}.
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Hyperparameters are set to their recommended values (Bardes et al., 2021). The projection head is a
2-layer non-linear MLP with a hidden dimension of width 256 and an output dimension of 256.

Contrast with the World Representation. ContraWR was proposed to improve augmentation-
based SSL for EEG (Yang et al., 2021). The method, which is contrastive in nature, maximizes
similarity between {h′

e,h′′
e} while preventing collapse by minimizing similarity with ’negative’

samples. ContraWR forms a negative representation by aggregating across all negative batch elements,
aiming to compensate for the low signal-to-noise of EEG data by creating a more reliable negative
contrast. It relies on a triplet loss based on Info-NCE (Gutmann & Hyvärinen, 2010). We also here
set the hyperparameters to the values recommended by the authors (Yang et al., 2021). The projection
head is a 2-layer non-linear MLP with a hidden dimension of width 256 and an output dimension of
32.

Relative Positioning. Pairs of EEG crops are sampled and assigned binary labels based on their tem-
poral proximity (Banville et al., 2021). Crops close in time are labeled positive, while those far apart
are labeled negative. We use the same EEG encoder as for all other methods to create representations
and use the suggested contrastive module to compute the element-wise absolute difference between
representations. A logistic regression model then predicts the label. The method is trained using
binary logistic loss. For all methods by (Banville et al., 2021), we use the hyperparameters reported
to work best on TUAB, including between-subject sampling of EEG crops.

Temporal Shuffling. An extension of Relative Positioning by sampling triplets of EEG crops. The
task is to determine whether the crops are in temporal order or shuffled (Banville et al., 2021). The
contrastive module concatenates absolute differences between representations. As with Relative
Positioning, a logistic regression model is used for prediction, and the method is trained end-to-end
using binary logistic loss.

Contrastive Predictive Coding. This method uses an autoregressive encoder to summarize a
sequence of EEG crops into a context vector (Banville et al., 2021). The task is to predict which
future crop actually follows the context, among negative samples. A bilinear model is used for
prediction at each future step. The method is trained end-to-end using the InfoNCE loss.

B.5.1 DATA AUGMENTATIONS

For EEG-only pretraining, we adapt the data augmentations proposed by Mohsenvand et al. (2020),
which were found to perform well on the TUAB dataset. For a given EEG crop, we apply the
same augmentation to each channel. Parameters are sampled independently for each EEG crop and
uniformly from the ranges displayed in table 11. Augmentations are visualized for a single EEG
channel in figure 9.

Table 11: Data augmentation parameter ranges; adapted from Mohsenvand et al. (2020).
Data Augmentation Min Max
Amplitude Scale 0.5 1.5
Time Shift in samples -60 60
DC shift in microvolts -10 10
Zero-Masking in samples 0 200
Additive Gaussian Noise (sigma) 0 0.2
Band-Stop Filter (5Hz width, Hz) 2.8 47

C DETAILS ON DATA SUBSAMPLING

To alleviate class imbalance in the TUEG dataset, we perform data subsampling. We rely on the
LLM summaries of reports, which were more consistent in their phrasing regarding the normal or
abnormal status. This allowed for a more reliable classification using regular expressions. All reports
for which no clear classification was made were omitted. 5015 reports in the potential training set
were classified as normal, which were associated with 7526 EEG recordings. For our ‘pretrain’ data
subset, we subsampled the abnormal EEGs to match the amount of normal EEG recordings. This
resulted in 7526 abnormal EEG recordings, with 6770 reports. Although only a minor subset of these
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Figure 9: Data augmentations visualized for a single channel of EEG data.

preliminary classifications was manually verified, it is important to note that this process was solely
to alleviate severe class imbalance and was not used for further analysis.

For EEG-language modeling, the pretrain subset was effectively smaller, as a report had to be omitted
from pretraining when it did not contain at least one relevant heading. Out of the 15144 total EEG
files, this resulted in pretrain sample sizes of: 14836 (clinical history cluster), 14320 (medication
cluster), 14800 (description cluster), 14794 (interpretation cluster), and 14946 (all clusters).

To test for retrieval performance, we supplemented the TUAB test set with data from the TUH EEG
Epilepsy Corpus (Veloso et al., 2017) in an attempt to create a larger, roughly balanced evaluation set
of those with and without pathology. For this, we only selected the first recording of a subject so that
no multiple files from the same subject were present. Additionally, we only included reports which
had at least one heading from each text cluster to allow for a fair comparison.

D CLASSIFICATION

To study the predictive capability of learned representations after pretraining, we train linear probes
and perform zero-shot classification.

Linear probe

For linear evaluation, we train logistic linear regression models using 10-fold cross validation for
each pretrained model using sklearn (Pedregosa et al., 2011). We perform grid-search over 45
logarithmically-spaced values for L2 regularization between 10−6 and 105 via a validation set.

Supervised Learning

For the supervised learning baseline, we use the identical EEG encoder backbone as used for all other
analyses and use 60 second crops. We add an MLP (hidden dimensionality of 256) with dropout
p = 0.5 and output dimensionality equal to the amount of classes. The ADAM learning rate is set to
0.001 and we use the validation set to select weight decay out of [0.1, 0.01, 0.0001]. We use a batch
size of 256 and train using the cross entropy loss. When using 100% labels, we first train on the
training set for up to 50 epochs (with early stopping after 5 epochs without improvement) and select
the epoch which resulted in the best validation loss. Subsequently, we continue training on the train
and validation sets together until the loss has decreased below the best validation loss.
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Zero-shot classification

For zero-shot pathology detection, we perform an ensemble over 21 binary prompts, listed in Table
12. Prompt ensembling was shown to improve performance (Radford et al., 2021), but we employ
it here also as the limited data is likely to lead to less stable representations, which may lead to
sensitivity to phrasing. To inspect whether results are sensitive to changes to the prompt set, we
perform a post-hoc analysis using the held-out test set that iteratively leaves one prompt out of the
ensemble (Figure 10). We observe that results are consistent across such reduced prompt sets, except
for the ELMl model trained on the clinical history or interpretation clusters, although neither model
reaches competitive performance. This set was only initially verified on the training set to enable
model- and parameter-comparisons using zero-shot performance. Tuning is likely to enable further
performance improvements, although the flexibility of the zero-shot approach may introduce severe
risk of overfitting on the TUEG dataset.

Figure 10: Analysis of the sensitivity to prompts in the ensemble used for zero-shot classification.
We plot the average F1-score across five random seeds. Note that for ELMl, multiple models have a
consistent F1-score of 0 and are therefore not individually visible.

Table 12: Prompt ensemble used for zero-shot classification.
Normal EEG Prompts Abnormal EEG Prompts

Normal EEG. Abnormal EEG.
No pathology present. Pathology present.

No abnormalities. Abnormalities observed.
Normal routine EEG. Markedly abnormal EEG.
Normal awake record. Abnormal awake record.
Normal EEG record. Abnormal EEG record.
This EEG is normal. This EEG is abnormal.

This is a normal EEG. This is an abnormal EEG.
This EEG is within normal limits This EEG is mildly abnormal.

Normal awake EEG. Abnormal awake EEG.
Normal asleep EEG. Abnormal asleep EEG.

Normal awake and asleep EEG. Abnormal awake and asleep EEG.
Normal EEG in wakefulness and drowsiness. Abnormal EEG in wakefulness and drowsiness.

No pathology. Abnormal EEG due to:
EEG shows no pathology. Abnormal EEG for a subject of this age due to:

No abnormalities. Abnormalities in the EEG.
No abnormalities observed. Abnormalities observed.

EEG shows no abnormalities. EEG shows abnormalities.
No clinical events detected. Clinical events detected.

No indications of pathology observed. Indications of pathology observed.
The EEG is normal. The EEG is pathologically abnormal.
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E CLINICAL IMPLICATIONS

To better understand the clinical utility of the learned EEG representations, we conducted additional
experiments using 5-second EEG segments from the TUSZ and TUEV datasets. The strong perfor-
mance across both recording-level classification and event detection tasks suggests that our model
learns clinically relevant features at multiple temporal scales. With further progress, this capability
may support various future clinical applications, from rapid screening of prolonged recordings to
real-time event detection. Whereas the present study focuses on establishing an initial application to
explore viability, future work may benefit from focussing on improving the interpretability of these
representations through techniques such as channel-specific attribution. Additionally, the multimodal
nature of our approach opens possibilities for automated report generation, which could assist in
clinical documentation while maintaining human oversight. Certain clinical limitations also deserve
further attention, such as a careful study of how the frequency of specific pathology and clinical
events in reports impacts model performance. Finally, biases present in language models may impact
multimodal pretraining, which should be investigated in future work.

F ADDITIONAL VISUALISATIONS

F.1 EEG EMBEDDINGS OF PATHOLOGY

We provide t-SNE (complexity=40, (Van der Maaten & Hinton, 2008)) visualisations of the averaged
EEG embeddings per subject after pretraining. These are post-hoc plots for which we use models
trained on the entire pretraining subset and display embeddings of hold-out TUAB patients. ELMe,l

and ELM-MIL show the clearest visual separation between abnormal and normal EEGs, which is in
line with the linear probing results.

Figure 11: Example EEG embeddings averaged within-subject of pretrained models on the TUAB
hold-out data (red: abnormal, blue: normal). The data is projected using t-SNE. The ‘untrained’ and
‘shuffled reports’ plots feature the same setup as the ELMe,l model, with the latter being trained on
reports randomly shuffled between subjects.

F.2 WITHIN-SUBJECT EEG EMBEDDINGS

We provide additional visualizations of t-SNE projections of EEG crops (Figure 12). Specifically,
we compare ELMe,l using InfoNCE and ELM-MIL using MIL-InfoNCE across three temperature
parameters τ = [0.1, 0.3, 1.0]. To do so, we randomly sample three normal (blue shades) and three
abnormal (red shades) subjects. We observe that whereas both methods exhibit diminished subject
clustering at a higher temperature (τ = 1.0), at low temperatures (τ = 0.1) this only occurs for
InfoNCE. Meanwhile, subject clustering gets more pronounced for MIL-InfoNCE. This may explain
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the observation that retrieval performance increases by reducing τ for MIL-InfoNCE, which as a task
requires subject rather than class separation per se.

Figure 12: A comparison of subject clustering using t-SNE projections of embeddings of EEG crops.
Red (blue) shades indicate three randomly sampled abnormal (normal) subjects.

F.3 REPORT AND CONTENT SEGMENTATION

Figure 13: An example set of headings which may make up a clinical report. Paragraphs are extracted
from the reports into content-based clusters or an LLM-generated summary.
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