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Abstract001

Language Models (LM) have been exten-002
sively utilized for learning DNA sequence pat-003
terns and generating synthetic sequences. In004
this paper, we present a novel approach for005
the generation of synthetic DNA data using006
pangenomes in combination with LM. We in-007
troduce three innovative pangenome-based to-008
kenization schemes, including two that can009
decouple from private data, while enhance010
long DNA sequence generation. Our exper-011
imental results demonstrate the superiority012
of pangenome-based tokenization over clas-013
sical methods in generating high-utility syn-014
thetic DNA sequences, highlighting a promis-015
ing direction for the public sharing of genomic016
datasets.017

1 Introduction018

Public availability of genome datasets, such019

as the Human Genome Project (HGP) (Lander020

et al., 2001), the 1000 Genomes Project (Con-021

sortium et al., 2012), The Cancer Genome Atlas022

(TCGA) (Weinstein et al., 2013), GenBank (Ben-023

son et al., 2012), the International HapMap024

Project (Gibbs et al., 2003), the Human Pangenome025

Project (Liao et al., 2023), and the Telomere-026

to-Telomere project (Nurk et al., 2022), has027

been instrumental in advancing genomics research.028

However, large-scale genome sequencing remains029

costly and resource intensive due to the sophis-030

ticated equipment and computational resources031

required (Wetterstrand, 2021; Van Dijk et al.,032

2018). Additionally, the release of real genomic033

data raises significant privacy concerns, as re-034

identification risks persist despite anonymization035

efforts (Sweeney et al., 2013; Wjst, 2010; Ohm,036

2009).037

Synthetic data generation offers a scalable and038

relatively private alternative, enabling researchers039

to perform analyzes without exposing sensitive in-040

formation (Yelmen et al., 2021). Specific tasks041

such as De Novo genome assembly (Tran et al., 042

2017, 2019; Yang et al., 2019) and genotype impu- 043

tation (Browning and Browning, 2016) inherently 044

involve the generation of unknown sequences, mak- 045

ing them also suitable applications for synthetic 046

data. A good generative model can significantly 047

improve their accuracy and efficiency by predicting 048

missing or incomplete segments. 049

Deep learning models are widely used in differ- 050

ent tasks, even in processing genome sequences 051

and related data (Yun et al., 2020; Kolesnikov et al., 052

2021; Kim and Kim, 2018; Elbashir et al., 2019). 053

While generative adversarial networks (GANs) 054

have been explored for synthetic genome genera- 055

tion, their output is limited to short sequences (Bae 056

et al., 2019; Gupta and Zou, 2018). LMs have 057

shown their capability to generate synthetic nat- 058

ural languages that are almost indistinguishable 059

from real data. The generated language text can 060

be used to train other models (Kumar et al., 2020; 061

Yoo et al., 2021; Hartvigsen et al., 2022), including 062

those in the medical domain (Peng et al., 2023b; 063

Guevara et al., 2024). Proven to be extraordinarily 064

good at processing human language, LMs can also 065

interpret and generate broader text, such as code 066

for programming tasks (Chen et al., 2021), thereby 067

pushing the boundaries of their application beyond 068

strictly spoken language-based domains. 069

While LMs present a promising alternative for 070

generating long synthetic DNA sequences, effec- 071

tive tokenization of DNA sequences is crucial for 072

leveraging LMs. Traditional methods, such as sin- 073

gle nucleotide tokenization and k-mer tokenization, 074

segment sequences into individual nucleotides or 075

substrings of length k (Lanchantin et al., 2017; Bae 076

et al., 2019; Yelmen et al., 2021; Peng et al., 2023b; 077

Alipanahi et al., 2015; An et al., 2022; Fishman 078

et al., 2023). Classical approaches like k-mer to- 079

kenization (GKMT) are particularly sensitive to 080

small mutations such as insertions or deletions: a 081

single-base shift can disrupt all downstream tokens, 082
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severely affecting model stability and learning. Ad-083

ditionally, its divergence from natural language084

processing (NLP) segmentation approaches limits085

the model’s ability to capture DNA sequence pat-086

terns. Byte Pair Encoding (BPE) is used in recent087

work (Zhou et al., 2023), but still requires segment-088

ing long DNA sequences into shorter chunks due089

to computational and memory constraints during090

tokenizer training. This study explores how NLP091

and pangenome-inspired tokenization can enhance092

LMs’ ability to learn DNA sequence structures.093

To build a practical genome sequence genera-094

tion model that protects the privacy of the dataset,095

we propose LM-based synthetic data generation096

using two novel pangenome graph (see §2.2)-based097

tokenization schemes: Pangenome-based Node To-098

kenization (PNT) and Pangenome-based k-mer To-099

kenization (PKMT). PNT leverages nodes in the100

graph as tokens, while PKMT segments sequences101

using graph nodes before generating k-mers, en-102

abling future applications of privacy techniques103

such as differential privacy (DP).104

This work presents the first comparative analy-105

sis of classical and pangenome-based tokenization106

schemes for LMs, specifically GPT-2 and Llama,107

in learning DNA sequence patterns and generating108

long synthetic sequences. Our findings reveal that109

the pangenome graph structure embeds significant110

information that enhances neural networks’ com-111

prehension of DNA sequences. Representing DNA112

sequence segmentation through node-based tok-113

enization improves the understanding of sequence114

structures and model performance. Additionally,115

including positional information from node IDs fur-116

ther boosts the training and predictive performance117

of DNA LMs. Our results show that pangenome-118

based tokenization schemes reduce training time119

and improve scalability compared to traditional120

methods, addressing the computational challenges121

of training LMs. Our contributions are as follows:122

1. We introduce two pangenome graph-based to-123

kenization schemes, PNT and PKMT, which124

provide more contextual information, enhanc-125

ing LMs’ ability to learn DNA sequence pat-126

terns and structures.127

2. We propose a variant of pangenome graph128

segmentation that decouples from any pri-129

vate training data, enabling potential privacy-130

preserving training.131

3. We demonstrate through experiments that our132

tokenization schemes outperform classical 133

methods in training efficiency, predictive ac- 134

curacy, and generation quality for LMs. 135

Following the introduction, the paper is struc- 136

tured as follows: Section 2 covers background on 137

synthetic genome generation, Section 3 details to- 138

kenization schemes, Section 4 outlines evaluation 139

metrics, Section 5 presents experiments, Section 6 140

discusses related work, and Section 7 concludes 141

with limitations, implications, and future direc- 142

tions. 143

2 Background 144

2.1 Language Models 145

Large language models are advanced artificial in- 146

telligence systems designed to understand and gen- 147

erate language text based on the data on which they 148

have been trained. These models, such as Mis- 149

tral (Jiang et al., 2023), Anthropic’s Claude (An- 150

thropic, 2023), OpenAI’s GPT series (Radford 151

et al., 2019; OpenAI, 2023), Google’s T5 (Raffel 152

et al., 2020), Lamda (Thoppilan et al., 2022) and 153

Gemini (Team et al., 2023), Meta’s OPT (Zhang 154

et al., 2022), BLOOM (Le Scao et al., 2023) and 155

LLama (Touvron et al., 2023a,b), etc., take advan- 156

tage of vast amounts of textual information to learn 157

patterns, nuances, and complexities of language. 158

LMs can perform a variety of language-related 159

tasks, including answering questions, translating 160

languages, and even participating in casual con- 161

versations. Their ability to process and generate 162

coherent and contextually appropriate responses 163

makes them invaluable tools across multiple fields, 164

from customer service and education to creative 165

writing and technical support. 166

In this paper, we focus on text generation tasks 167

using LMs. The process involves three key steps: 168

Tokenization: The raw input text is converted 169

into tokens based on different tokenization ap- 170

proaches. 171

Training: The model is trained from scratch on 172

specific datasets. 173

Generation: In generative models such as GPT, 174

the trained model predicts the next tokens given an 175

initial prompt. 176

2.2 Pangenome Graph 177

The pangenome graph (Eizenga et al., 2020) rep- 178

resents genetic diversity within a species by in- 179

tegrating multiple genome sequences into a sin- 180

gle comprehensive graph. In a pangenome graph, 181
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Figure 1: The whole pipeline of synthetic data generation and utilization.

nodes represent sequences of nucleotides, edges182

connect these sequences, showing the possible183

paths through the graph, and the paths through the184

pangenome graph represent the genomes of indi-185

viduals, as demonstrated in Figure 3. The nodes186

in the pangenome graph represent the genetic se-187

quences that are shared between the groups, while188

the edges represent the genetic variations. Tasks189

like genome-wide association (GWA) focus on the190

genotype matrix of the graph rather the exact DNA191

sequences. In this sense, it is the graph structure192

rather than the actual nucleotides that carries infor-193

mation.194

2.3 Synthetic Genome Sequence Generation195

using LMs196

In this work, our aim is to generate a synthetic197

genome sequence using LMs. In this section,198

we describe the complete pipeline for synthetic199

genome sequence generation using LMs, detailing200

each step from the original data processing to the201

downstream tasks, as shown in Figure 1.202

1 Raw Data (§5.1). The process begins with203

the acquisition of genomic data, which provides204

the genetic information needed for LM training.205

2 Tokenization (§3). Genomic sequences are206

converted into smaller units suitable for training207

using certain tokenization schemes.208

3 LM Training. Tokenized sequences are used209

to train a GPT-style model using a next-token pre-210

diction approach, allowing the LM to learn patterns211

from the data without supervision.212

4 Generation (§5.1). The trained LM gen-213

erates synthetic genomic sequences by predicting214

subsequent tokens based on learned patterns.215

5 Downstream Tasks (§4). Genomic tasks to216

which synthetic sequences can be applied.217

We compare our schemes with the classical218

schemes by comprehensive experiments in §5.2.219

3 Tokenization of a genome sequence220

In this section, we first describe the widely used221

tokenization schemes and then introduce our tok-222

enization schemes based on the pangenome graph.223

A glossary is provided in Table 4 in §A.1. 224

3.1 Classical tokenizations 225

3.1.1 Genome-based Single Nucleotide 226

Tokenization (GSNT) 227

Genome-based Single Nucleotide Tokenization 228

(GSNT) is a straightforward method to tokenize 229

genome sequences, previously applied in (Nguyen 230

et al., 2024b; Schiff et al., 2024). In this scheme, 231

each nucleotide (A, C, G, T) is treated as an indi- 232

vidual token. For instance, the genome sequence 233

“ACGTA” would be tokenized as “A”, “C”, “G”, 234

“T”, and “A”. 235

3.1.2 Genome-based k-mer Tokenization 236

(GKMT) 237

Figure 2: Insertion or Deletion of a sigle nucleotide
change all following GKMT (stride equal to k = 4)
tokens.

AGCATG|C|TAGGCT|AGAT|TATAT

AG|CATGC|TAGGCT|AG|AT|TAT|AT

TATAT
GGCC

GCTA

TAGGCTAGAT198200

Revertion

6-mers segmentation inside nodes

Revertion
Revertion
199301

198202

 AGCATGC

199203

199304

198|200-|199|301+|199|304+ 

BPE segmentation inside nodes

PNT 

PKMT

PBPET

Figure 3: The pangenome graph based tokenizations
output different segmented sequences of the red path.
The above graph shows a slice of a pangenome graph
with nodes marking the variations, edges marking possi-
ble paths, and the numbers marking the IDs.
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An alternative is Genome-based k-mer Tokeniza-238

tion (GKMT), where k-mers, substrings of length239

k, used as tokens. For example, all 3-mers in the240

sequence “ACGTAG” are “ACG”, “CGT”, “GTA”,241

and “TAG”. Depending on the stride, the k-mers242

may overlap or not overlap (with a stride equal to243

k). We focus on the non-overlapping alternative.244

Compared to GSNT, GKMT provides a longer ef-245

fective context length, but is also highly sensitive246

to sequence mutations or errors: a single nucleotide247

insertion or deletion can change all subsequent to-248

kens as shown in Figure 2.249

3.1.3 Genome-based BPE Tokenization250

(GBPET)251

Genome-based Byte Pair Encoding Tokenization252

(GBPET), which is also used in recent stud-253

ies (Zhou et al., 2023), applies the BPE algo-254

rithm (Sennrich et al., 2016) to genome sequences.255

BPE begins with single nucleotide tokens and iter-256

atively merges the most frequent pairs of adjacent257

tokens to create a vocabulary of longer subword-258

like tokens. However, BPE training requires too259

large computational resources if very long DNA se-260

quences are given as inputs. Manual segmentation261

is needed in GBPET, which could cause the same262

issue as GKMT.263

3.2 Pangenome graph based tokenization264

To address the limitations of standard schemes, we265

propose three novel tokenization methods based on266

the pangenome graph, illustrated in Figure 3.267

3.2.1 Pangenome-based Node Tokenization268

(PNT)269

The first scheme, Pangenome-based Node Tok-270

enization (PNT), tokenizes DNA sequences based271

on the nodes in the pangenome graph. In this272

method, each node is treated as a token, where273

a node contains both the DNA sequence it repre-274

sents and its position on the graph. Multiple nodes275

may correspond to the same DNA sequence but276

differ due to their positions in the graph. Conse-277

quently, the node ID vocabulary can be much larger278

(e.g., around 400K) compared to standard language279

vocabularies (e.g., 50K), presenting challenges for280

model training. To reduce the vocabulary size, we281

split the node IDs into two parts (first and second282

half) and include an additional indicator for se-283

quence reversion (e.g., node 198202 in Figure 3284

with reversion representing “GGCC” would be to-285

kenized as ’198’ and ’202+’, and the unreverted286

node 198202 should be “CCGG”). 287

A limitation of PNT is that it does not accom- 288

modate new sequences in the existing pangenome 289

graph. Introducing new sequences requires rebuild- 290

ing the entire graph, generating new IDs, and po- 291

tentially altering the representation of previously 292

established sequences learned by the model. 293

3.2.2 Pangenome-based k-mer Tokenization 294

(PKMT) 295

The second scheme, Pangenome-based k-mer Tok- 296

enization (PKMT) segments DNA by splitting each 297

node’s sequence in the pangenome graph into non- 298

overlapping k-mers. Unlike PNT, it uses nucleotide 299

sequences rather than node IDs. We set k = 6 300

without padding; for example, the node sequence 301

“TAGGCTAGAT” yields “TAGGCT” and “AGAT” 302

in Figure 3. PKMT is more robust to insertions 303

or deletions than GKMT, as the graph preserves 304

alignment and isolates variations to affected nodes. 305

However, it lacks the graph’s positional encoding 306

found in PNT, which may limit its ability to capture 307

structural patterns in DNA. 308

3.2.3 Pangenome-based BPE Tokenization 309

(PBPET) 310

The third scheme, Pangenome-based BPE Tok- 311

enization (PBPET), applies the Byte Pair Encod- 312

ing algorithm to the sequences of nodes in the 313

pangenome graph. Instead of segmenting node 314

sequences into fixed-length k-mers as in PKMT, 315

PBPET learns a vocabulary of frequently occur- 316

ring sub-sequences across the nodes. In Figure 3, 317

sub-sequences like “AG” or “AT” are identified. 318

The learned vocabulary is then used to tokenize se- 319

quences, still with a first-step segmentation already 320

done between nodes. This approach retains the 321

graph-informed alignment of sequences, similar to 322

PKMT, but benefits from the adaptive vocabulary 323

of BPE. 324

4 Evaluating synthetic DNA generation 325

quality 326

A main challenge of proving the utility of our 327

schemes is how to evaluate the quality of the syn- 328

thetic genome sequence generation. In our study, 329

we use the prediction accuracy of the model to 330

measure the quality of the generative model. Fur- 331

thermore, we compare the similarity between syn- 332

thetic and real genome sequences through sequence 333

alignment. 334
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4.1 Model prediction accuracy335

Next token prediction accuracy: measures how336

often the model correctly predicts the next token337

given the correct previous tokens, making it the338

primary metric for models like GPT. However, this339

does not fully reflect sequence accuracy when tok-340

enization is not single nucleotide-based. Predicting341

“AAAAAC” or “GCTGCT” for the true k -mer to-342

ken “AAAAAA” count both as simply incorrect.343

Character-level prediction accuracy: mea-344

sures the percentage of nucleotides predicted cor-345

rectly for each token, providing a more granular346

assessment of prediction quality. For example, pre-347

dicting “AAAAAC” for the true token “AAAAAA”348

yields an accuracy of 0.83, while predicting “GCT-349

GCT” results in an accuracy of 0.350

4.2 Sequence alignment scores351

The measurement of similarity between two352

genome sequences is done using sequence align-353

ment, which is an essential process in many bioin-354

formatic and computational biology tasks. Se-355

quence alignment involves arranging the sequences356

of DNA, RNA, or even proteins, usually to identify357

regions of similarity. In our case, we use wfmash358

(Guarracino et al., 2021) where the wavefront algo-359

rithm (Marco-Sola et al., 2021) is primarily used360

for pairwise alignment between real and generated361

DNA sequences. Visualized results (introduced362

and shown in §5) and multiple scores can be used363

to evaluate the quality of the alignment.364

An example of alignment between a reference se-365

quence and a query sequence is shown in Figure 4.366

Figure 4: An alignment between two sequence. Cap-
italized nucleotide and green links indicate matches;
lowercase nucleotide and red crosses indicate no match;
the dashes in the sequences represent the gaps during
matching.

367

An alignment score of 0 indicates no similar-368

ity, while a score of 1 represents a perfect match.369

Alignment scores can be defined and computed in370

two primary ways:371

• BLAST identity (BI): 7/10 = 0.7. Defined as372

the number of matching bases in relation to373

the number of alignment columns. 374

• Gap-Compressed Identity (GI): 7/9 = 0.78. 375

Counting the consecutive gaps in the query as 376

one difference. 377

DNA sequences, including those in the MHC re- 378

gion, naturally exhibit high homology even across 379

individuals, due to fundamental biological con- 380

straints. The alignment scores themselves can be 381

considered sufficient as a representation of the util- 382

ity of the synthetic sequences by measuring how 383

close they are to the real data, preserving the proper- 384

ties needed. Alignment metrics align directly with 385

the practical goals of genomic applications com- 386

pared to divergence measures (Pillutla et al., 2021). 387

Previous academic discussions (Frith, 2020; Durbin 388

et al., 1998) have shown that alignment score ef- 389

fectively shows sequence similarity, and scores can 390

indicate the potential usefulness of the compared 391

data in downstream genomic tasks ( 5 in §2.3). A 392

typical workflow involves projecting reads or map- 393

ping new data onto the reference genome, and then 394

calling variants such as single nucleotide polymor- 395

phisms (SNPs) and insertions/deletions (indels). A 396

higher score of a generated sequence against the 397

real sequence suggests that the synthetic data can 398

reliably substitute the real data, as further discussed 399

in Appendix D. 400

5 Experiments 401

5.1 Datasets and LM choice 402

In our experiments, we used the human major his- 403

tocompatibility complex (MHC) region of chro- 404

mosome 6 as our dataset, which is cut out of the 405

PGGB graph of HPRC year 1 assemblies (Liao 406

et al., 2023). A total of 126 samples with 447 mil- 407

lion nucleotides are in the dataset, with 80% of 408

the samples used as the training set and 20% as 409

the test set. During hyperparameter tuning, the 410

“reference genome” was temporarily used as a vali- 411

dation set before being added back to the training 412

set for final training. We tested the performance of 413

the openly available GPT-2 (Radford et al., 2019) 414

and Llama (Touvron et al., 2023a) model archi- 415

tectures with 90M parameters, which support a 416

prompt length of 1024/2048 tokens, using the Hug- 417

ging Face 4.24.0 library of transformers (Wolf, 418

2019). GPT-2 and Llama are chosen due to their 419

well-established performance and robustness as a 420

classical publicly available language model, and 421

the relatively small 90M total parameter size is se- 422

lected to balance performance and computational 423
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overhead. We split the long genome into 10k base424

pairs sequences in GBPET training and set the vo-425

cabulary size to 4096 for both BPE methods, as in426

DNABERT2 (Zhou et al., 2023).427

Table 1: Training time (hours) of each tokenization
scheme on 90M models for 90 epochs.

Model GSNT GKMT PKMT GBPET PBPET PNT
GPT-2 56 11 15 17 24 7
LLaMA 20 5 6 9 12 3

5.2 Experiment results428

We trained the GPT-2 and Llama models on the429

dataset using four tokenization schemes: GSNT,430

GKMT, PNT and PKMT. Training was carried431

out for 90 epochs (§B.1 shows results with more432

epochs) with a batch size of 16/8 and 1024/2048-433

token sequences for GPT-2/Llama. The dataset434

comprises 124 DNA samples totaling 447 million435

nucleotides. Training times are shown in Table 1,436

obtained on 8 NVIDIA A5500 GPUs. Figure 5437

displays token and character-level prediction ac-438

curacies. PNT not included in the character-level439

accuracy figures due to the vague definition on pre-440

dictions and targets with too varied lengths.441

Training times and model performance differ442

significantly across tokenization schemes as shown443

in Table 1 and Figure 5. The final accuracies are444

shown in Table 2. PNT demonstrated the fastest445

training time, while GSNT is generally the slow-446

est due to its larger token set. BPE based method447

are slower than k-mer based but faster than GSNT.448

PNT reaches the best peak accuracy the fastest,449

while GKMT has the worst performance. GSNT450

initially trains much faster than PKMT for token451

prediction, but converges to a similar final accu-452

racy. We will see how they perform differently in453

the alignment. Despite having almost the same to-454

ken tables, we can clearly tell PKMT’s pangenome455

graph-aided segmentation helps the model to out-456

perform the on trained by GSNT. The training of457

PBPET tokenizer takes around 20 seconds, while458

the training of GBPET tokenizer takes about 10459

minutes, largely due to the larger sequence chunks,460

and they both have moderate training time.461

We present the alignment results for the GPT-2462

generated sequences of the tokenization schemes463

in Figure 6 (GKMT barely generates sequences464

that align at all), aligned against the reference se-465

quence of the dataset. The X-axis represents ref-466

erence sequence positions, and the Y-axis shows467

different generated sequences aligned to the ref-468

Table 2: Final accuracy of each tokenization scheme on
90M models trained for 90 epochs.

Model GSNT GKMT PKMT GBPET PBPET PNT
Token Prediction Accuracy

GPT-2 97.1% 65.9% 96.9% 97.9% 98.0% 98.6%
LLaMA 98.7% 81.8% 97.7% 98.5% 98.6% 98.8%

Character-Level Accuracy
GPT-2 97.1% 78.3% 97.9% 98.6% 99.0% –
LLaMA 98.7% 85.3% 98.6% 99.0% 99.3% –

erence. Each dot or line marks a generated se- 469

quence position aligned with the reference genome. 470

After 90 epochs, only PNT generates sequences 471

closely aligned with the reference over long con- 472

texts for GPT-2. Some sequences show no align- 473

ment, likely due to random sampling for diversity 474

and learned misalignments from the training data. 475

Llama, achieving comparable token prediction ac- 476

curacy, performs very similar to GPT-2 results. 477

However, it is generally with less dense dots and 478

dashes, indicating fewer matches, as shown in Ap- 479

pendix B. Llama is also capable of generating long 480

sequences using PNT. However, the alignments 481

tend to terminate prematurely. Even with longer 482

prompts, Llama appears to struggle more in regions 483

with higher mutation rates (observe the denser dots 484

along the alignment lines), causing the generation 485

to deviate more easily from the intended sequence. 486

Llama cannot generate long sequences even with 487

PKMT or PBPET. 488

To quantify generation quality, we show the 489

alignment scores of the generated sequences 490

against the entire data set (the best match of a query 491

against the entire dataset) in Table 3, with the re- 492

sults for real data as a comparison. In addition to 493

GI / BI scores, we show the alignment percentage, 494

indicating the proportion of well-aligned sequences. 495

The segment length refers to the size of the min- 496

imizer window during alignment. PNT achieves 497

the highest alignment scores across all segment 498

lengths, while GSNT performs the worst. 499

PNT demonstrates superior token-level predic- 500

tion accuracy, while GKMT achieves the highest 501

character-level accuracy in GPT-2 and closely ri- 502

vals PNT in Llama. Traditional methods under- 503

perform, with GKMT achieving less than 70% 504

accuracy and GSNT training significantly slower. 505

The accuracy gap is more pronounced in alignment 506

scores (Table 3), where PNT consistently excels 507

with GI and BI scores of around 0.99 in segment 508

lengths of 1k to 200k, closely mirroring the per- 509

formance of real data. Although PKMT produces 510

fewer high-quality sequences than GSNT that align 511
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(a) Token prediction accuracy (b) Character level prediction accuracy

Figure 5: Model prediction accuracies of all tokenization schemes during GPT-2 training.

(a) GSNT (b) PKMT (c) GBPET (d) PBPET (e) PNT

Figure 6: Alignment of a batch of GPT-2 generated sequences against the reference sequence. The X-axis represents
the reference sequence; the Y-axis shows generated sequences. Longer lines indicate consistent alignment, and
denser dots represent frequent short matches. Alignment results from Llama are presented in Appendix B.

Table 3: Alignment percentages and weighted GI/BI scores of the 20 generated sequences per scheme for different
segment lengths, aligned against the original dataset. Real data metrics are computed using 80% of samples as
references and 20% as queries.

Segment 1k 20k 50k 200k
GPT-2 Align % GI BI Align % GI BI Align % GI BI Align % GI BI
GSNT 81.66 0.8712 0.9955 21.55 0.8834 0.9893 1.42 0.8323 0.9849 0.00 0.0000 0.0000
PKMT 52.96 0.9443 0.9856 50.34 0.9036 0.9932 47.87 0.8977 0.9936 8.82 0.8656 0.9919
GBPET 71.81 0.9873 0.9981 53.19 0.9105 0.9931 36.93 0.9041 0.9921 0.00 0.0000 0.0000
PBPET 44.75 0.9081 0.9914 42.03 0.9044 0.9943 42.29 0.9007 0.9935 9.39 0.9029 0.9955
PNT 89.34 0.9977 0.9999 31.01 0.9961 0.9990 33.27 0.9920 0.9985 36.96 0.9873 0.9982
LLaMA Align % GI BI Align % GI BI Align % GI BI Align % GI BI
GSNT 7.17 0.7927 0.9906 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000
PKMT 34.45 0.9666 0.9960 21.19 0.8323 0.9907 6.85 0.8232 0.9876 0.00 0.0000 0.0000
GBPET 12.90 0.9543 0.9870 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 0.0000 0.0000
PBPET 33.00 0.9817 0.9969 6.41 0.8533 0.9861 5.86 0.8356 0.9878 0.00 0.0000 0.0000
PNT 28.80 0.9796 0.9958 5.97 0.9970 0.9984 8.49 0.9958 0.9987 15.02 0.9938 0.9977
Real data 99.97 0.9994 0.9999 69.23 0.9996 0.9999 61.37 0.9991 0.9997 50.67 0.9981 0.9993

with the reference, it achieves slightly higher align-512

ment scores than GSNT in more settings and has a513

chance for relatively good generation for large seg-514

ments. The newer non-pengenome-based method,515

GBPET, performs better in alignment score specifi-516

cally under smaller segment length, but still lacks517

stable long-sequence generation compared with518

pangenome powered PBPET. PNT-generated se-519

quences hold greater potential for applications re-520

sembling real data, while others may require further521

refinement or model optimization. Llama overall522

shows the same trend, but lags behind GPT-2 in se-523

quence generation, despite higher prediction accu-524

racy and longer prompt length, likely due to greater 525

performance degradation in very limited parameter 526

numbers for continuous predictions. Llama specifi- 527

cally underperforms in non-pangenome based tok- 528

enization methods. Overall, PKMT performs better 529

than GSNT (and GKMT), and PBPET performs 530

better than GBPET, directly indicating the useful- 531

ness of involving pangenome graph structure in 532

tokenization. One limitation we observe is that 533

pangenome-based models occasionally generate al- 534

most entire no match. Classical methods, although 535

they generate fragmented pieces, do not completely 536

miss. For PNT specifically, adding a small 20 token 537
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prompt will completely fix this issue.538

Discussion. To our knowledge, this work is the539

first to compare the effectiveness of pangenome-540

based tokenization schemes to classical tokeniza-541

tion schemes when utilizing the LMs to learn the542

pattern of DNA sequences; and also the one of the543

first to demonstrate the efficacy of LMs in generat-544

ing very long DNA.545

Our findings reveal that the pangenome graph546

structure embeds significant and meaningful infor-547

mation, improving neural networks’ understanding548

of DNA sequences. Our experiments demonstrate549

how this information can be effectively exploited.550

The significant gap between GKMT and PKMT551

emphasizes the effectiveness of leveraging graph552

structure in tokenization. Despite having similar to-553

ken tables, the graph-aided segmentation of PKMT554

provides more stable and learnable structural in-555

formation, resulting in better model training speed556

and overall generation quality. Our results under-557

score the trade-offs between computational cost558

and model performance, with pangenome graph-559

based tokenization schemes showing higher accu-560

racy across tasks. Previous work (Liao et al., 2023)561

demonstrates how improved matching is the key562

point of the pangenome, which “aligns” with our563

use of the pangenome graph here.564

6 Related work565

In this section, we introduce two common genome566

tasks wwith machine learning application. Table 7567

in Appendix C summarizes this section.568

6.1 Classification Tasks569

Classification tasks are common in genomics, in-570

cluding (more details in Appendix D):571

Variant Calling: ML models identify genetic572

variants such as SNPs and indels in genomes, link-573

ing them to diseases or traits. DeepVariant (Poplin574

et al., 2018), a CNN-based variant caller, outper-575

forms traditional methods, influencing many oth-576

ers (Yun et al., 2020; Kolesnikov et al., 2021). Clair-577

voyante (Luo et al., 2019) excels in single-molecule578

sequencing (SMS), while Clair (Luo et al., 2020)579

offers faster RNN-based inference with fewer pa-580

rameters, without sacrificing accuracy.581

Gene Expression Analysis: ML models analyze582

gene expression data to reveal gene-disease rela-583

tionships. Classical methods like KNN (Kim and584

Kim, 2018), linear/logistic regression (Han et al.,585

2019), and SVMs (Wan et al., 2019) are used to586

predict driver genes or cancer risk. CNNs (Lyu and 587

Haque, 2018; Elbashir et al., 2019) are also applied 588

for cancer classification with RNA-seq data. 589

Beyond these, CNNs model protein binding (Ali- 590

panahi et al., 2015), cell type identification (Yao 591

et al., 2019), and non-coding variants (Zhou and 592

Troyanskaya, 2015). RNNs predict non-coding 593

DNA functions (Quang and Xie, 2016) and RNA- 594

protein binding preferences (Shen et al., 2020). 595

Transformer models like DNA-BERT (Ji et al., 596

2021; Zhou et al., 2023; Dalla-Torre et al., 2023, 597

2025) provide strong contextual embeddings for 598

molecular phenotype prediction but face context 599

size limitations due to quadratic scaling. Recent 600

models like Hyena (Nguyen et al., 2024b) and 601

MambaDNA (Schiff et al., 2024) address these 602

limitations with sub-quadratic scaling for longer 603

contexts. More recent applications of DNA LM 604

like MoDNA (An et al., 2022) for promoter predic- 605

tion, and GENA (Fishman et al., 2023) for multiple 606

tasks, both use traditional GKMT. Some papers like 607

GPN-MSA (Benegas et al., 2024) for genome-wide 608

variant effect prediction uses GSNT. DNABERT- 609

2 (Zhou et al., 2023) and following work (Karollus 610

et al., 2024) for evolutionary conservation and func- 611

tional annotation prediction use BPE. 612

A recent paper (Zhang et al., 2024) presents a 613

similar tokenization approach using pangenome 614

graphs. Although both works independently de- 615

velop this idea, ours differs by incorporating PNT 616

and PBPET, and focusing on long-sequence gen- 617

eration. In contrast, their work handles shorter 618

sequences (max 5000bp) with node-aided k-mer 619

tokenization and focuses on classification tasks. 620

6.2 Generation Tasks 621

Synthetic Data Generation: Synthetic data mim- 622

ics real data for privacy concerns. GANs have been 623

used for synthetic medical data (Bae et al., 2019) 624

and DNA sequences coding for proteins (Gupta and 625

Zou, 2018), though limited by fixed output sizes 626

and requiring DP for stronger guarantees. Some 627

work (Avdeyev et al., 2023) utilizes transformers 628

but with limited generation length, and a more re- 629

cent large model (Nguyen et al., 2024a) shows gen- 630

eration of submillions in length with a certain level 631

of genomic organization. 632

De Novo Genome Assembly: This involves re- 633

constructing a genome from short DNA fragments 634

without a reference. Deep learning has been ap- 635

plied to de novo peptide sequencing (Tran et al., 636

2017, 2019; Yang et al., 2019). 637
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7 Limitations638

While our study focused on smaller models to estab-639

lish a proof-of-concept for our tokenization scheme,640

we acknowledge that larger models may improve re-641

sults but raise practical concerns around efficiency642

and resource use. Furthermore, emerging architec-643

tures designed for long-context processing (e.g.,644

(Gu et al., 2021; Nguyen et al., 2024b,a; Gu and645

Dao, 2023; Peng et al., 2023a)) could potentially646

further enhance the performance of all tokeniza-647

tion schemes. These models, by enabling longer648

effective context windows, could improve both the649

understanding of long-range dependencies in DNA650

and the consistency of sequence generation. Al-651

though we believe that pangenome-based tokeniza-652

tion retains advantages in effective segmentation,653

such models may help close the performance gap654

for other tokenization methods. We agree that this655

is a valuable direction and suggest that future work656

explores scaling to larger models and incorporating657

long-context architectures to more fully assess their658

potential impact.659
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A More on tokenization schemes 1036

A.1 Glossary of Frequent Acronyms 1037

Table 4: Glossary of Frequent Acronyms

Acronym Explanation
GSNT Genome-based Single Nucleotide Tokenization
GKMT Genome-based k-mer Tokenization
GBPET Genome-based BPE Tokenization
PNT Pangenome-based Node Tokenization
PKMT Pangenome-based k-mer Tokenization
PBPET Pangenome-based BPE Tokenization

A.2 Public graph-based PKMT tokenization 1038

The proposed PKMT schemes aim to provide more 1039

context and help models learn DNA sequence pat- 1040

terns more effectively. However, they can also 1041

risk leaking sensitive information about individ- 1042

ual samples. For additional techniques like Differ- 1043

entially Private Stochastic Gradient Descent (DP- 1044

SGD) to be implemented during training, tokeniza- 1045

tion should be independent of the private dataset or 1046

protected by appropriate mechanisms for the whole 1047

scheme to be DP compatiable. 1048

Making PNT DP-friendly is challenging, as the 1049

ID-to-sequence mapping can expose private data. 1050

Although the static vocabulary of PKMT avoids 1051

this issue during token mapping, the use of the 1052

pangenome graph, where segmentation depends 1053

on every sequence in the dataset, still breaks the 1054

guarantee. To mitigate this, we propose building a 1055

“public” pangenome graph from publicly accessible 1056
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(a) Token prediction accuracy of the model across different
training epochs

(b) Character-level prediction accuracy of the model
across different training epochs

Figure 7: Model prediction accuracy of the four tokenization schemes during LLaMA training. PNT is excluded
from the character-level accuracy plot due to the ambiguity in defining accuracy when predicted and target sequences
differ in length.

Table 5: Alignment percentages and weighted GI/BI scores for segment lengths 5k and 100k.

Segment 5k 100k
Model Align % GI BI Align % GI BI
GPT-2
GSNT 59.49 0.8919 0.9910 0.00 0.0000 0.0000
PKMT 53.76 0.9015 0.9960 38.43 0.8928 0.9939
GBPET 63.20 0.9082 0.9961 14.62 0.9035 0.9884
PBPET 46.22 0.9019 0.9966 38.04 0.8927 0.9920
PNT 73.27 0.9970 0.9997 33.17 0.9945 0.9988
LLaMA
GSNT 0.41 0.7414 0.9784 0.00 0.0000 0.0000
PKMT 30.82 0.8362 0.9917 0.00 0.0000 0.0000
GBPET 0.10 0.3070 0.9479 0.00 0.0000 0.0000
PBPET 24.75 0.8609 0.9916 0.00 0.0000 0.0000
PNT 25.79 0.9977 0.9997 10.96 0.9964 0.9990
Real data 97.97 0.9994 0.9999 60.44 0.9989 0.9997

datasets. This graph can then be used to tokenize1057

the private dataset. Subsequences identified in the1058

public graph are tokenized as corresponding nodes,1059

while unrecognized subsequences are tokenized as1060

standard k-mers, preserving privacy. The pseudo-1061

code for this segmentation is provided in §A.2,1062

and is used in the experiments for PKMT. As the1063

key idea behind PKMT is to be more extendable1064

than PNT to new unknown (test) data, we use this1065

realization in our experiments with the graph only1066

built on the training set.1067

In our experiment, we split an existing graph1068

as a public graph and the private sequences. We1069

build the public pangenome graph as shown in Pro-1070

tocol 1 and then complete the PKMT as shown in1071

Protocol 2.1072

B More experiment details and results1073

We run the experiments in a cluster of 8 NVIDIA1074

A5500 GPUs. The GPT-2 model uses the gelu_new1075

activation function, consists of 12 transformer lay- 1076

ers, each with 12 attention heads, and an embed- 1077

ding dimension of 768 with maximum prompt be- 1078

ing 1024. The LLaMA model uses the SiLU activa- 1079

tion function and consists of 6 transformer layers, 1080

each with 8 attention heads, and an embedding 1081

dimension of 768. It has an intermediate size of 1082

4096, and supports sequences up to a maximum 1083

of 2048 positions. We used a grid search for the 1084

best hyperparameters. We use 3e-4 (except 5e-4 for 1085

GSNT - GPT-2 and 1e-4 for 1e-4 for GSNT Llama) 1086

leaning rate, batch size 8/16 for GPT-2/Llama train- 1087

ing; and topk=10, topp=0.92, topk_decend_min=5 1088

for generation, which is also determined by grid 1089

search. To avoid the risk of memorization, we en- 1090

sure the enough randomness in the generation, and 1091

that the alignment scores are not perfect (up to 1) 1092

and include real-to-real alignment baselines as a 1093

reference. We show additional alignment scores 1094

in Table 5 and the Llama accuracy in Figure 7. A 1095
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Algorithm 1 Gpub ← ΠPubGraph(G,Pub): Define Public Pangenome Graph Nodes

1: Input: A pangenome graph G, list of indexes Pub with public sequences. We use G[i][j] to represent
the node j of the sequence i in G and Seq(G[i][j]) to represent the actual sequence.

2: Output: The way nodes are merged in the public pangenome graph recorded in Mpub.
3: Initialization:
4: Initialize Mpub as an empty dictionary to store the public pangenome graph nodes.
5: for each sequence i in Pub do
6: for each node j in G[i] do
7: if G[i][j] has fixed previous/next nodes in G then
8: Combine G[i][j] with the fixed previous/next nodes as a single node.
9: Record the combined node in Mpub.

10: else
11: Record G[i][j] as an independent node in Mpub.
12: end if
13: end for
14: end for
15: Return: Mpub as the public pangenome graph nodes.

Algorithm 2 Segmented← ΠPKMT (G,Pub, Priv): Perform PKMT Based on Public Sequences Only

1: Input: A pangenome graph G, list of indexes Pub with public sequences and Priv with private
sequences. We use G[i][j] to represent the node j of the sequence i in G. We use Seq(G[i][j]) to
represent the actual sequence.

2: Output: Segmented DNA sequences recorded in Segmented.
3: Gpub = ΠPubGraph(G,Pub, Priv)
4: Initialize Segmented = {}
5: for each sequence i in {Pub, Priv} do
6: Initialize Chain = [ ]
7: Initialize UndefinedChain = [ ]
8: Initialize Segmented[i] = [ ]
9: for each node j in G[i] do

10: Add Seq(G[i][j]) to Chain
11: if current node chain ends according to Mpub then
12: Append UndefinedChain to Segmented[i] as a segment of the sequence G[i]
13: Append Chain to Segmented[i] as a segment of the sequence G[i]
14: Clear UndefinedChain
15: Clear Chain
16: else if current node pattern is not recorded in Mpub then
17: Append Chain to UndefinedChain
18: Clear Chain
19: end if
20: end for
21: Cut each segment in Segmented[i] into non-overlapping 6-mers
22: end for
23: Return: Segmented
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(a) GSNT (b) PKMT (c) PNT

(d) GBPET (e) PBPET

Figure 8: Alignment of a single generated sequence against the reference. Longer lines represent continuous
alignment regions, while scattered dots show shorter matching fragments.

Figure 9: The pangenome graph of the human major
histocompatibility complex (MHC) region of chromo-
some 6 of the PGGB graph of HPRC year 1 assemblies,
with 2D graph visualization (above) and matrix view
(below). The circled in the 2D graph and the gaps in the
matrix view indicate mutations.

clearer single query view of alignment is shown1096

in Figure 8 for a single generated sequence, and1097

the alignment figures for Llama are in Figure 10.1098

Figure 9 shows a simple illustration of a small1099

pangenome graph of the MHC data we use.1100

B.1 Effects of extensive training 1101

During our experiment, we found that PNT, 1102

GBPET and PBPET did not benefit from more 1103

training epochs but GSNT and PKMT had the 1104

potential for further improvement. We trained 1105

the better-performing GPT-2 model on half of the 1106

training dataset for an extra 200 epochs, keeping 1107

other parameters the same to further investigate the 1108

best possible performance these two tokenization 1109

schemes can provide. The token prediction accu- 1110

racy increased by about 0.4% for PKMT and 0.3% 1111

for GSNT, which is marginal, but we observed 1112

significant improvements in generation quality for 1113

both methods in alignment score. While predic- 1114

tion accuracy gains may appear small, they have a 1115

compounding effect during generation, where er- 1116

rors accumulate across long sequences. Accuracy 1117

reflects only top-1 correctness for the next token, 1118

whereas generation samples probabilistically from 1119

the top candidates, making it more sensitive to dis- 1120

tributional improvements. The results are shown 1121

in Figure 11 and Table 6. Both methods achieved 1122

slightly higher alignment scores and aligned length, 1123

especially with larger segments. Both tokenization 1124

schemes still underperformed compared to PNT, 1125

even after extensive training. Figure 11 addition- 1126

ally clearly shows that GKMT generates relatively 1127

longer sequences with more longer lines. 1128

The higher utility of the extensively trained 1129

model indicates that substantial investment in com- 1130
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(a) GSNT (b) PKMT (c) GBPET (d) PBPET (e) PNT

Figure 10: Alignment of a batch of LLaMA-generated sequences against the reference. The X-axis is the reference,
and the Y-axis shows the generated sequences. Longer lines indicate consistent alignment, and denser dots indicate
frequent short matches.
Table 6: Alignment percentages and weighted GI/BI scores of the 20 generated sequences each scheme for different
segment lengths of the generated sequences with extensively trained GPT-2 model, against the test set as reference.

Segment 1k 5k 20k
Align % GI BI Align % GI BI Align % GI BI

GSNT 90.67 0.8818 0.9972 75.52 0.8922 0.9926 42.17 0.8916 0.9920
PKMT 81.42 0.9842 0.9978 81.87 0.9027 0.9969 79.74 0.9044 0.9956
Segment 50k 100k 200k

Align % GI BI Align % GI BI Align % GI BI
GSNT 9.76 0.8801 0.9916 0.00 0.0000 0.0000 0.00 0.0000 0.0000
PKMT 72.52 0.9011 0.9940 65.51 0.8936 0.9943 16.19 0.8883 0.9935

(a) GSNT (b) PKMT

Figure 11: Alignment of a batch of generated sequences
(after extensive GPT-2 training) against training se-
quences. The X-axis is the reference; the Y-axis con-
tains generated sequences. Longer lines indicate consis-
tent alignments, while denser dots reflect frequent short
matches.

putational power has its potential.1131

C Summarizing related work1132

Here we provide a table to summarize our discus-1133

sion in §6, with a detailed list of the related work1134

of ML/DL doing genomic tasks.1135

D Alignment scores and downstream1136

tasks1137

Alignment-based evaluations provide a more direct1138

assessment of how well synthetic data supports real-1139

world genomic applications. For example, datasets1140

like those from the Human Pangenome Project de-1141

pend heavily on alignment-based metrics to assess1142

data quality and interpret genetic variation. Read1143

alignment to a reference genome followed by vari-1144

ant calling is a widely adopted pipeline, and here1145

alignment consistency and accuracy are critical. In1146

this context, alignment scores are not only practi-1147

cal but also well-recognized within the genomics 1148

community as meaningful indicators of quality. 1149

In this section, we introduce two essential tasks 1150

to show how alignment scores can determine the 1151

utility of sequences, and how synthetic sequences 1152

can play a role. 1153

D.1 Variant calling 1154

Read alignment and variant calling are founda- 1155

tional tasks in bioinformatics pipelines, especially 1156

in genome resequencing studies. In this process, 1157

DNA reads generated by sequencing technologies 1158

are aligned to a reference genome to reconstruct 1159

the original genetic material and identify variants 1160

(e.g., calling the inserting and deletion in the bot- 1161

tom two sequences when compared with the top 1162

reference in Figure 2). Determining an accurate 1163

alignment is critical because downstream variant 1164

calling algorithms rely on these mappings to com- 1165

pare the sample DNA against the reference. Numer- 1166

ous tools have been developed to perform this task 1167

efficiently and accurately, including Minimap2 (Li, 1168

2018) and wfmash (Guarracino et al., 2021). Most 1169

work in §6.1 measure the alignment in their experi- 1170

ment. 1171

A high alignment score indicates a strong match 1172

between the sequenced read and a region in the ref- 1173

erence genome, minimizing mismatches, gaps, or 1174

ambiguous placements. This is essential to identify 1175

true variants confidently, ruling out sequencing er- 1176

rors or misalignments. An incorrect alignment may 1177

map a query DNA sequence to the wrong location 1178

in the reference genome, leading to wrong variant 1179
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calls. An example is given in Figure 12. Synthetic1180

sequences can serve as references in variant calls1181

or generate potential variant combinations that are1182

not observed in natural samples.1183

Reference Sequence
…GGGAGCT AGCT AGCT AGCTGGG…

Alignment 1
…GGGAGCT AGCT AGCT AGCTGGG…

Alignment 2
…GGGAGCT AGCT      AGCTGGG…

A

AAGCT

Figure 12: Two possible alignment of a sequence to a
reference sequence. Alignment 1 calls for one insertion
while Alignment 2 calls for 4 deletion then 5 insertion.
Alignment 1 will have higher alignment scores with
more matched nucleotides, and is considered a better
alignment. Therefore the variant calling based on Align-
ment 1 is considered better than Alignment 2.

D.2 De novo assembly1184

De novo assembly reconstructs a genome from1185

short sequencing reads without relying on a ref-1186

erence genome. This process stitches overlapping1187

reads into contiguous sequences (contigs) or scaf-1188

folds, aiming to rebuild the original genome as1189

accurately as possible. Since there is no reference1190

during assembly, evaluation is typically performed1191

by aligning the assembled contigs back to a trusted1192

reference genome, or comparing them to known1193

markers or conserved genes.1194

A high alignment score here indicates that the1195

assembler has likely reconstructed a biologically1196

accurate sequence. This suggests high contiguity,1197

low error rates, and minimal misassemblies. Low1198

alignment scores often signal fragmented or mis-1199

assembled regions. Synthetic sequences can act as1200

trussted reference, improving the assembly.1201

Many utility metrics used in existing genome1202

modeling studies are fundamentally rooted in1203

sequence alignment. For example, in recent1204

work such as (Nguyen et al., 2024a), tools like1205

CheckM (Parks et al., 2015) are used to report qual-1206

ity metrics, including gene density and stop codon1207

frequencies. These tools rely on foundational com-1208

ponents like profile Hidden Markov Models (pH-1209

MMs) that are directly constructed from multiple1210

sequence alignments, with alignment quality and1211

consistency playing a central role in shaping their1212

parameters and performance. In this context, a1213

high alignment score indicates strong homology1214

or functional similarity between the generated se-1215

quence and known sequences, providing evidence1216

of biological plausibility. 1217
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Table 7: DL models used in genome tasks.

Job Type Paper Task Architecture Input
Classification (Poplin et al., 2018;

Yun et al., 2020;
Kolesnikov et al., 2021)

Variant Calling CNN hundreds of base pairs

(Luo et al., 2019) Variant Calling CNN hundreds of base pairs
(Lyu and Haque, 2018;
Elbashir et al., 2019)

Cancer Prediction CNN RNA-seq gene expression data

(Alipanahi et al., 2015) Protein Binding CNN 10-100 nucleotides & binding
specificities

(Zeng et al., 2016) Protein Binding CNN 10-100 base pairs & binding
specificities

(Yao et al., 2019) Cell Type Identification CNN cell images
(Zhou and Troyanskaya,
2015)

Non-coding DNA function
prediction

CNN 1k base pairs

(Luo et al., 2020) Variant Calling RNN binary alignment map (BAM)
(Shen et al., 2020) RNA-protein binding

preference
LSTM embedded k-mers

(Quang and Xie, 2016) Non-coding DNA function
prediction

CNN/BLSTM one hot encoded nucleotides

(Kim and Kim, 2018) Cancer Prediction KNN SNP genotype syntaxes
(8-mers)

(Han et al., 2019) Cancer Prediction Rao score Mutation Annotation Format
(MAF)

(Wan et al., 2019) Cancer Prediction SVM Human EDTA plasma samples
(Ji et al., 2021; Zhou
et al., 2023)

Molecular Phenotype
Prediction

Transformer tokenized k-mers

(Dalla-Torre et al.,
2023)

Molecular Phenotype
Prediction

Transformer tokenized k-mers

(Nguyen et al., 2024b) 5-way Species
Classification

Transformer single nucleotide tokens

(Schiff et al., 2024) Genome Tasks Mamba single nucleotide tokens
(Luo et al., 2019) Variant Calling CNN Hundreds of base pairs
(An et al., 2022) Promoter Prediction Transformer 6-mers of up to 512bp
(Karollus et al., 2024) Evolutionary Conservation

/ Functional Annotations
Transformer 6-mers for 128bp sequences

(Fishman et al., 2023) Multiple Tasks Transformer BPE tokens, up to 36000bp
sequence

(Benegas et al., 2024) Genome-wide Variant
Effect Prediction

Transformer GSNT for 128bp sequences

(Dalla-Torre et al.,
2025)

Multiple Prediction Tasks Transformer Thousands of k-mer tokens

Generation (Tran et al., 2017) De novo peptide
sequencing

LSTM/CNN tandem mass spectrometry
(MS/MS) Spectrum

(Tran et al., 2019) De novo peptide
sequencing

LSTM/CNN data-independent acquisition
(DIA) mass spectrometry data

(Yang et al., 2019) De novo peptide
sequencing

learning-to-
rank

tandem mass spectrometry data

(Bae et al., 2019) Synthetic Medical Data GAN medical data
(Gupta and Zou, 2018) Synthetic DNA Sequences GAN DNA sequences
(Avdeyev et al., 2023) Synthetic DNA Sequences Transformer Up to 1024 base-pairs
(Nguyen et al., 2024a) Synthetic DNA Sequences Transformer Up to 131072 base-pairs
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