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Abstract

Symmetry is pervasive in robotics and has been widely exploited to improve sample
efficiency in deep reinforcement learning (DRL). However, existing approaches
primarily focus on spatial symmetries—such as reflection, rotation, and trans-
lation—while largely neglecting temporal symmetries. To address this gap, we
explore time reversal symmetry, a form of temporal symmetry commonly found
in robotics tasks such as door opening and closing. We propose Time Reversal
symmetry enhanced Deep Reinforcement Learning (TR-DRL), a framework that
combines trajectory reversal augmentation and time reversal guided reward shaping
to efficiently solve temporally symmetric tasks. Our method generates reversed
transitions from fully reversible transitions, identified by a proposed dynamics-
consistent filter, to augment the training data. For partially reversible transitions,
we apply reward shaping to guide learning, according to successful trajectories
from the reversed task. Extensive experiments on the Robosuite and MetaWorld
benchmarks demonstrate that TR-DRL is effective in both single-task and multi-
task settings, achieving higher sample efficiency and stronger final performance
compared to baseline methods. Our project website and source code can be found
in 1 and 2.

1 Introduction

Deep reinforcement learning (DRL) is a powerful machine learning framework capable of solving
complex tasks, with applications across robotics, quantitative trading, and video games. Despite
its successes, DRL often suffers from low sample efficiency and poor agent robustness. To address
these challenges, symmetry, a common property in many real-world scenarios, has been leveraged to
improve both sample efficiency and agent performance. Symmetry can be used to augment trajectories
collected during training in both state-based [Lin et al., 2020, Kidziński et al., 2018] and image-based
settings [Yarats et al., 2022]. Alternatively, symmetry can be embedded directly into the network
architecture, making it an inherent property of the model [Cohen and Welling, 2016, Wang et al.,
2022]. In addition, it can be enforced as a regularization term [Hu et al., 2024a, Raileanu et al., 2021].
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Figure 1: For a task pair, the proposed TR-DRL framework learns dynamics and potential models,
leverages trajectory reversal augmentation with dynamics aware filtering and time reversal symmetry
guided reward shaping, and boosts sample efficiency in both tasks.

However, existing work (see Related Work in Section 2) predominantly focuses on spatial symmetries,
such as translation, reflection, and rotation, while temporal symmetries, including time-reversal
symmetry and time dilation, remain largely underexplored. Intuitively, time-reversal symmetry
corresponds to a reflection with respect to time, assuming actions can be reversed, which often holds
in navigation tasks. Time dilation occurs in certain robotics control problems when the agent can
control the speed of action execution [Hu et al., 2024b]. In this paper, we focus on leveraging time-
reversal symmetry in robot manipulation tasks, where the agent controls the position and orientation
of the end-effector. Unlike spatial symmetries, where augmented samples typically remain valid,
temporally reversed transitions may result in invalid transitions due to complex interactions between
the robot and objects.

Consider a task pair, door opening outward and door closing from outward. An augmented trajectory
of closing a door from outward (Figure 2(a) from right to left) can be generated by reversing a
trajectory where the agent opens the door by grasping and moving the handle outward (Figure 2(a)
from left to right). In this case, the state pairs within the trajectory are fully reversible. Then consider
another task pair, door opening inward and door closing from inward. When the agent closes the
door by simply pushing it without grasping the handle (Figure 2(b)), reversing the trajectory becomes
nontrivial. This is because the agent cannot feasibly open the door without first grasping the handle,
making the reversed transitions invalid. However, certain components of the state, such as the object
state (e.g., the door’s opening angle), may still be reversible, even if the full transition is not. Such
cases correspond to partial reversibility of the transitions where the concept of state decomposition
[Pitis et al., 2020] enables isolation of dynamically reversible components.

To exploit (partial or full) time reversal symmetry in DRL, we propose a general framework (see
Figure 1) that incorporates two complementary techniques, which can accelerate training for a pair
of related tasks. For full time reversal symmetry, we learn an inverse dynamics model to obtain the
reversed actions and generate the augmented transitions when training in both tasks. To ensure the
validity of these reversed transitions, we additionally train a forward dynamics model to filter out
transitions that violate the true system dynamics. For partial time reversal symmetry, the reversible
component of the state can be intuitively used to guide policy learning. We leverage this form of
symmetry through reward shaping, encouraging the agent for one task to follow trajectories that
resemble the reversed versions of successful trajectories from the other task.

Contributions Our contributions can be summarized as follows:

(i) Based on (full) time reversal symmetry (Section 3), we introduce the novel notion of partial time
reversal symmetry (Section 4.1) to exploit temporal symmetry in more general settings (e.g., when
objects are pushed).

(ii) We propose two techniques (Sections 4.2 and 4.3) to exploit time reversal symmetry:

• For full time reversal symmetry, transitions identified as reversible by a trained dynamics-aware
filter are augmented to improve the sample efficiency of DRL algorithms.

• For partial time reversal symmetry, a reward shaping mechanism exploits transitions from
successful trajectories to guide the training of the DRL agent.
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Figure 2: Examples of fully and partially reversible trajectories. (a) Fully reversible: An example of
opening the door outward by grasping the handle; (b) Partially reversible: An example of closing the
door from inward by pushing the door.

(iii) We conduct extensive experiments (Section 5) on standard robotics benchmarks (Robosuite,
Metaworld) demonstrating that our approach significantly improves both sample efficiency and final
performance compared to baseline methods. An ablation study further validates our design choices
and highlights the contributions of each component within our framework.

2 Related Works

We summarize related works from two research directions in DRL, which include symmetry, and
reward shaping techniques. For symmetry, we divide it into spatial symmetry and time reversal
symmetry.

Spatial Symmetry in DRL Spatial symmetry, including reflection, rotation, and translation, are
extensively exploited in DRL. These symmetries enable the generation of synthetic transitions from a
single environment interaction, effectively improving sample efficiency. For example, prior works
[Lin et al., 2020, Corrado and Hanna, 2024, Corrado et al., 2024] have shown that applying spatial
augmentations such as reflection, rotation, and translation significantly boosts sample efficiency in
state-based robotics control tasks. In image-based RL, translation symmetry has also been widely
adopted to enhance performance [Yarats et al., 2022, Ma et al., 2024, Hu et al., 2024a]. Data
augmentation methods can also improve robustness to noise [Sinha et al., 2021, Qiao et al., 2021].
Moreover, spatial symmetry can be embedded directly into the neural network architecture through
equivariance [Cohen and Welling, 2016, Wang et al., 2022, 2023], ensuring that the network respects
these symmetries by design. This architectural integration reduces training time and improves
generalization across diverse inputs. In contrast to these prior efforts, our work focuses on exploiting
time-reversal symmetry, a form of temporal symmetry that remains underexplored in DRL.

Time Reversal Symmetry in DRL Time reversal symmetry has been leveraged for data aug-
mentation [Barkley et al., 2023] and for learning dynamics-consistent latent representations from
images [Cheng et al., 2023]. In contrast to simply negating actions in reversed transitions [Barkley
et al., 2023, Yao et al., 2023], our approach employs a more sophisticated strategy to derive reversed
actions, making it applicable to a broader range of environments. Moreover, our method focuses on
state-based control tasks, where full state information is available, eliminating the need of learning
latent representations from visual observations.

Some existing works focus on exploring reversibly from goal states, utilizing the time symmetry to
enhance the agent’s exploration towards desired states. Starting from a goal state, the agent explores
by imagining reversal steps [Edwards et al., 2018] or predicting preceding states leading to goals
[Goyal et al., 2019]. Instead of using imagined trajectories, true trajectories starting from goal states
are given in TRASS [Nair et al., 2020], and the agent learns from the reversed trajectories. Unlike
these works, we leverage time reversal symmetry not only from goal states but for every transition in
the trajectory, enabling a broader application of time symmetry across the entire state space.

Other prior works focus on enhancing the reversibility of the agent, exploring strategies to ensure that
agents can backtrack or reset their actions to avoid irreversible states. For instance, Grinsztajn et al.
[2021] propose to distinguish reversible from irreversible actions to improve decision-making in DRL.
This distinction enables agents to prioritize reversible actions that are safer, as they guarantee the
ability to backtrack if needed. Furthermore, Eysenbach et al. [2018] propose learning a reset policy
alongside the normal policy to prevent agents from entering non-reversible states, ensuring safety in
exploration phase and achieving better training efficiency. While their reset policy sets initial state
as the ending state of the current policy and the goal state as the task’s starting point, our method

3



treats two reversible tasks independently, with initial and goal states defined separately for each task.
Additionally, our method is orthogonal to theirs and can be integrated to enhance the training of their
reset policy.

Reward Shaping in DRL Reward shaping is a powerful technique for enhancing the efficiency
of DRL algorithms [Ibrahim et al., 2024], as it guides agents toward desired behaviors. The idea of
using shaped rewards to guide learning naturally aligns with our objective of leveraging reversed
trajectory in tasks of time reversal symmetry. However, reward shaping has not yet been explored in
the context of time reversal symmetry. In this work, we exploit time reversal symmetry by training a
potential function guided by reversed trajectories. Potential-based reward shaping [Ng et al., 1999]
involves defining a potential function over the state space, which captures the agent’s desired progress
toward the goal. Importantly, the optimal policy remains unchanged with potential-based reward
shaping, providing a theoretical foundation for its application in our method.

3 Background

In this section, we recall the framework of deep reinforcement learning (DRL), the soft actor-critic
algorithm, the concept of time reversal symmetry, and potential-based reward shaping in reinforcement
learning (RL).

Deep Reinforcement Learning (DRL) For any set X , ∆(X ) denotes the set of probability dis-
tributions over X . A Markov Decision Process (MDP) model M = (S,A, R, T, ρ0, γ) is defined
by a set of state S, a set of action A, a reward function R : S × A → R, a transition function
T : S × A → ∆(S), a probability distribution over initial states ρ0 ∈ ∆(S), and a discount factor
γ ∈ [0, 1]. In RL, the agent learns a policy π(· | s) ∈ ∆(A) by interacting with the environment,
aiming to maximize the expected return J = Eπ[

∑∞
t=0 γ

trt | s0 ∼ ρ0], where Eπ denotes the
expectation over π and rt is the reward that the agent obtains at each timestep t.

Soft Actor-Critic (SAC) Maximum entropy reinforcement learning (RL) addresses standard RL
problems using an alternative objective that explicitly encourages stochastic policies. The objective
combines cumulative reward with an entropy term: J = Êπ[

∑∞
t=0 γ

trt + αH(π(· | st))], where γ is
the discount factor, α is a trainable coefficient of the entropy term, and H(π(· | st)) represents the
entropy of of the policy distribution π(· | st). The Soft Actor-Critic (SAC) algorithm [Haarnoja et al.,
2018] optimizes this objective by training the actor πθ and critic Qψ with the following losses:

Lπ(θ) = Êst∼D,a∼π[α log πθ(a | st)−Qψ(st, a)],

LQ(ψ) = Êst,at∼D[(Qψ(st, at)− Q̂(st, at))
2],

(1)

where Q̂(st, at) = rt + γQψ̄(st+1, at+1)− α log πθ(at+1|st+1), which is the target Q-value com-
puted using a target network, and at+1 ∼ πθ(· | st+1). Here, θ, ψ and ψ̄ represent the parameters of
the actor, the critic and the target critic respectively, while D represents the replay buffer. To stabilize
training, the weights of the target network are updated as an exponential moving average of the online
critic network’s weights.

Time Reversal Symmetry in DRL Given an involution2 f : S ×A× S → S ×A× S , an MDP
satisfies (full) time reversal symmetry (adapted from Barkley et al. [2023]) if for all st, st+1 ∈ S,

T (st+1 | st, at) = T ( ⃗st | ⃗st+1, ⃗at). (2)

where ( ⃗st+1, ⃗at, ⃗st) = f(st, at, st+1) and ⃗· denotes time reversal operation on S or A. Intuitively,
involution f represents the symmetry that reverses the passage of time. Note that in some situations,
it can be simply written as f(s, a, s′) = (fS(s), fA(a), fS(s

′)) using an involution fS over states
and an involution fA over actions. An example of time reversal symmetry in physical system is the
transformation of position p, momentum q, and the applied force a. The involution fS transforms
state s = (q, p) into fS(s) = (q,−p), preserving position while negating momentum, which is a
common phenomenon in physical systems. For the action a, fA reverses the applied force such that
fA(a) = −a. This ensures that the dynamics remain consistent under time reversal.

2Recall an involution is a one-to-one mapping, which is its own inverse.
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Figure 3: Overview of our TR-DRL. We learn dynamics and potential models, apply reversal
augmentation on transitions from the reversed task, and apply time reversal symmetry guided reward
shaping on all transitions.

Potential-Based Reward Shaping We recall the concept of potential-based reward shaping pro-
posed by Ng et al. [1999]. A shaping reward function F : S ×A×S → R is potential-based if there
exists a real-valued function Φ : S → R such that for all s ∈ S, a ∈ A, s′ ∈ S,

F(s, a, s′) = γΦ(s′)− Φ(s), (3)

This condition is necessary and sufficient to ensure that an optimal policy of the modified MDP
M ′ = (S,A, R+ F , T, ρ0, γ) remains optimal in the original MDP M = (S,A, R, T, ρ0, γ).

4 Methodology

In this section, we first define the problem set-up considered in this paper and introduce two types of
time-reversal symmetry, full or partial time reversal symmetries, for which we provide illustrative
examples in robotics (Section 4.1). We then propose a generic method, as shown in Figure 3, which
applies trajectory reversal augmentation (Section 4.2) on fully reversible transitions identified by our
proposed dynamics-consistent filter, and employs reward shaping (Section 4.3) guided by partially
reversible transitions.

4.1 Problem Formulation

In this paper, we assume that the RL agent aims at learning to solve (at least) two related tasks in the
same environment (e.g., door opening/closing or peg insertion/removal). For such a pair of tasks, the
RL agent may learn in a more data-efficient way by exploiting full time reversal (FTR) symmetry and
partial time reversal (PTR) symmetry (see definition below). While Barkley et al. [2023] assume that
the FTR symmetry holds globally and that the involution to transform actions is known, which makes
this temporal symmetry property too restrictive and difficult to apply in practice, we do not make
these two assumptions, which allows us to consider scenarios like the next example. However, the
challenge now is to detect when Equation (2) holds and learn to recover reverse actions ⃗at.

Example 1. Consider a pair of manipulation tasks: peg insertion and peg removal. Assume
end-effector position control and that the state includes the positions of both the end-effector and
the object (i.e., peg). When the robot arm holds and moves the peg towards the hole, for a transition
(st, at, st+1), reversing the action enables the agent to move from st+1 back to st without violating
the true dynamics. This means that all transitions along this trajectory exhibit FTR symmetry.
However, contacts and frictions prevent the definition of involution f and if the peg can be dropped,
the transitions are naturally not reversible anymore.
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While the relaxation of these two assumptions extend the applicability of FTR symmetry, for many
pairs of tasks, an even weaker notion of temporal symmetry may be needed. We therefore introduce
the novel notion of partial time reversal (PTR) symmetry:

Partial Time Reversal (PTR) Symmetry Assume that a state s ∈ S (resp. s′ ∈ S) can be
decomposed into two parts (x, y) ∈ X × Y (resp. (x′, y′) ∈ X × Y) and that an involution
fX : X → X is given. A pair of states (s, s′) ∈ S2 satisfies PTR symmetry if there exist
( ⃗y, ⃗y′) ∈ Y2 and (a, ⃗a) ∈ A2 such that:

T (s′ | s, a) = T ( ⃗s | ⃗s′, ⃗a), (4)

where ⃗x = fX (x), ⃗x′ = fX (x′), ⃗s = ( ⃗x, ⃗y), and ⃗s′ = ( ⃗x′, ⃗y′). Intuitively, X is the part that is
reversible (e.g., containing object state information). Using this weaker property, we can now account
for scenarios like the following example:

Example 2. Consider another pair of tasks: door opening and door closing inward, with a similar
definition of state and action spaces as in Example 1. In the door closing task, the agent learns to
close the door by pushing it, without grasping the handle. Along this trajectory, the transitions do not
satisfy FTR symmetry, as there does not exist an action that allows the robot arm to pull the door
without grasping the handle. However, the object (i.e. door) state remains reversible. We can find
corresponding state pairs with reversed object state in the trajectories of door opening tasks. These
pairs reflect PTR symmetry, as only the object component of the state is reversible.

In the next two subsections, we explain how to exploit FTR and PTR symmetries in DRL.

4.2 Trajectory Reversal Augmentation with Dynamics-Aware Filtering

In this section, we introduce how we augment the fully reversible transitions and how these fully
reversible transitions are detected by a dynamics-consistent filter. Given a pair of tasks with time
reversal symmetry, any transition (s, a, s′) exhibiting FTR symmetry defined above can be augmented
by generating its reversed transition (s′, ⃗a, s) and incorporating it into DRL training. Now the problem
to be solved is finding ⃗a. In some robotics tasks, a straightforward choice of ⃗a is to negate the action
which corresponds to reversing forces or torques, i.e. ⃗a = −a [Barkley et al., 2023]. However, it
does not work for tasks involving contact dynamics or non-linear effects. To address this, we propose
a more general approach by learning an inverse dynamics model h, represented by a neural network:

a = h(s, s′), (5)

which is trained using transitions collected during RL training by minimizing the following loss:

Lh = Ê(s,a,s′)∼D[(h(s, s
′)− a)2], (6)

where Ê is an empirical mean estimating the expectation over the true data distribution and D denotes
the replay buffer containing transitions (s, a, s′). Since the pair of reversible tasks share the same
underlying dynamics, a single inverse dynamics model can be trained jointly using transitions from
both tasks. This shared model ensures the accurate inverse predictions when applied to the reversed
task.

Note that trajectory reversal augmentation can only be applied directly on fully reversible transitions.
To identify such transitions, an additional dynamics-consistent filter is introduced to select appropriate
samples from the replay buffer. This filtering is achieved by training a forward dynamics model g on
transitions from both tasks by minimizing the following loss:

Lg = Ê(s,a,s′)∼D[(g(s, a)− s′)2]. (7)

This model allows us to verify whether a reversed transition (s′, ⃗a, s) is consistent with the underlying
dynamics. In particular, for a reversed transition (s′, ⃗a, s), we feed the state s′ and action ⃗a into the
forward dynamics model g to get the predicted state ŝ:

ŝ = g(s′, ⃗a) = g(s′, h(s′, s)). (8)

The error between the predicted state ŝ and the true state s serves as a measure of feasibility. Only
when this prediction error || s − ŝ || is below a predefined threshold β, the reversed transition is
considered valid and included in the training for the reversed task.
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4.3 Time Reversal Symmetry Guided Reward Shaping

In scenarios where not all transitions are fully reversible, trajectory reversal augmentation may
become less effective. As an illustration, consider the task mentioned in Example 2. In such cases,
most reversed transitions are filtered out by the dynamics-consistent filter, since the agent cannot
reverse the action (i.e., from "push the door" to "pull the door") without first grasping the handle.
However, we can still exploit partial time reversal symmetry to improve sample efficiency. In many
tasks, the object state, such as the position of a door or the placement of a peg, remains reversible,
while irreversibility arises primarily from the agent state, such as joint angles or gripper force.

To exploit this separation, we examine the relationship between object states in the trajectories of
a pair of partially reversible tasks. Let xt denote the object-related component of the full state st
at time step t. Given a high-reward trajectory τ = (s0, s1, ..., sn) from one task, another trajectory
⃗τ = ( ⃗s0, ⃗s1, ..., ⃗sn) from the reversed task should likewise receive a high reward if it achieves the

reversed sequence (xn, xn−1, ..., x0), or a partial reward if it accomplishes only a portion of the
reversed sequence. This observation raises a key question: can we leverage the partially reversible
time symmetry, such that the reversible object-related components can be used to accelerate agent
training?

As an answer to this question, we propose time reversal symmetry guided reward shaping. Here we
employ potential-based reward shaping [Ng et al., 1999] since it preserves policy optimality and
directly operates on states. To fully utilize multiple successful trajectories, we propose to train a
potential model Φ for the reversed task, which maps the object state xt to a potential value Φ(xt). As
discussed, for the reversed trajectory containing sequences from xt to x0, the potential values of these
object states should increase in the reversed task. Therefore, the object states along this reversed
trajectory are labeled with potential values ranging from 0 to 1, and used to train the reversed task.
Here, a linear function can be used to interpolate potential values between the start and end states.
The potential model Φ, is then trained to minimize the following loss:

LΦ = Êτ=(s0,s1,...,sn)∼B

[(
Φ(xt)−

n− t

n

)2
]
,

st = [xt, yt], t ∈ (0, ..., n)

(9)

where B denotes the dataset which includes high-reward trajectories.

Based on Equation (3), the reward for each transition ( ⃗st, ⃗at, ⃗st+1, ⃗rt) in the reversed task is reshaped
as ⃗rt+γΦ(xt+1)−Φ(xt) during training. This potential-based reward shaping mechanism encourages
the agent to align the trajectory of object states with the reversed successful trajectory by dynamically
shaping rewards based on the potential values. In the door tasks, for example, a closed-to-open
trajectory, reversed from a successful open-to-closed trajectory, guides the door opening agent by
training Φ to predict low potential values for closed door states and high potential values for open
door states. Since potential-based reward shaping assigns a distinct potential value to each object
state within the trajectory, reflecting its proximity to the success state, this smooth progression of
potential values improves agent training by offering step-by-step guidance towards the goal state.

4.4 TR-DRL Algorithm

Our proposed techniques to exploit time reversal symmetry can be integrated in various DRL
algorithms. For concreteness, an example with SAC is presented in Algorithm 1. The training
process alternates between two reversible tasks. First, the agents collect data from their respective
environments. Then transitions from both environments are used to train the forward and inverse
dynamics models. Meanwhile, successful trajectories are employed to update the potential models.
During agent training, we augment the original samples from the agent’s current task with reversed
samples from the reversible task via trajectory reversal augmentation and dynamics-aware filtering.
Further, we apply time reversal symmetry guided reward shaping to reshape rewards of all the
transitions. Finally, we update the agent with DRL loss.
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Algorithm 1 TR-DRL
Required: a pair of reversible tasks (A,B), total number of training episodes N , total number of
timesteps in one episode T .

1: Initialize empty replay buffers DA and DB. Initialize actor π and critic Q.
2: Initialize potential models. Initialize forward and inverse dynamics models.
3: for n = 0 . . . N do
4: for t = 0 . . . T do
5: Alternate the following training steps between A and B.
6: // Task A:
7: The agent interacts with the environment and save the transition in replay buffer DA.
8: Update forward and inverse dynamics models using Equation (6) and Equation (7).
9: Update potential models using Equation (9).

10: Sample two minibatches dA and dB from DA and DB.
11: Generate dB,aug from dB by reversal augmentation with dynamics-aware filtering.
12: Apply time reversal symmetry guided reward shaping on dA ∪ dB,aug.
13: Update the actor and critic, π and Q, with dA ∪ dB,aug using Equation (1).
14: // Task B: ...
15: end for
16: end for

5 Experimental Results

To demonstrate the effectiveness of our proposed method, we conduct comprehensive experiments
to assess the performance of our approach in both single-task and multi-task settings. We also run
ablation study on our method to illustrate the design choice of different components.

Experimental setup To validate our method, we evaluate our method in 60 environments from
two standard robotics control benchmarks, Meta-World [Yu et al., 2020] and Robosuite [Zhu et al.,
2025]. Detail introductions and example figures of these environments are provided in Section A. We
use SAC [Haarnoja et al., 2018], multi-task SAC [Yu et al., 2020], and multi-headed SAC [Yu et al.,
2020] as the baselines for comparison. Hyperparameters, such as network architecture and learning
rates, are listed in Section B. We use sparse rewards in all our experiments, which makes learning
challenging for the agent. To mitigate this, we initialize the agent’s replay buffer with 10 expert
demonstration trajectories, providing guidance to agent’s exploration. Unless specified, all reported
scores are averaged over five runs, with standard deviations included in the results. Throughout each
run, the agent is evaluated every 20 training episodes by calculating the average success rate of 20
evaluation episodes. To present the aggregated performance, we compute the inter-quartile mean
(IQM) as proposed by Agarwal et al. [2021].

5.1 Main results

Robosuite-Single task To demonstrate the efficiency of our proposed method, we first evaluate it
under single-task setting in Robosuite, where we train an agent for each task. Here, five pairs of tasks
exhibiting time reversal symmetry are considered: door opening/closing inward, door opening/closing
outward, peg insertion/removal, nut assembly/disassembly and block stacking/unstacking. The IQM
of agent performance across 10 environments are shown in Figure 4, and full evaluation curves are
provided in Figure 24 due to page limit. The results demonstrate the performance gain of our method
over the baseline and confirm the contribution of each component in our method.

Robosuite-Multi task We further evaluate our method in multi-task settings. Our method is
orthogonal to existing multi-task learning frameworks, meaning it can be seamlessly integrated with
them. To highlight the performance gains of our approach, we demonstrate its effectiveness by
combining it with existing multi-task methods. Here, we start with training one agent for a pair of
tasks. Later on, we extend our method to using a single agent for all concerned tasks. To train a single
agent for multiple tasks, we consider extend the models to either taking an additional task embedding
as input (task-conditioned) or outputting the actions of several tasks at the same time (multi-head).
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Method Number of Environment Transitions
50k 100k 150k 200k

Single-Task SAC 0.11±0.07 0.62±0.16 0.93±0.07 0.97±0.03

+reversal aug 0.22±0.10 0.88±0.10 0.99±0.01 1.00±0.00

+reversal
reward shaping 0.26±0.10 0.79±0.12 0.97±0.03 1.00±0.00

Single-Task
TR-SAC (Ours) 0.33±0.14 0.92±0.07 1.00±0.00 1.00±0.00

Figure 4: Results for single-task setting in 10 environments from Robosuite. Top: Plots and table
for IQM of success rate. Bottom: Curves of success rate in two pair of reversible tasks. "Single-Task
SAC": baseline; "+reversal aug": trajectory reversal augmentation with dynamics-aware filtering;
"+reversal reward shaping": time reversal symmetry guided reward shaping.

For task-conditioned setting with only two tasks, we use one-hot encoding for the task embedding.
The actor, critic and potential models take both the state and the task embedding as input. Considering
that the environment dynamics are identical within each task pair, the pair of tasks share the forward
and inverse dynamics models. For multi-headed setting with only two tasks, the models output
values for both two tasks simultaneously. The performance of integrating our proposed method into
these baselines in 10 environments of Robosuite is shown in Figure 5. The full evaluation curves of
agent performance are included in Figure 25. Our proposed techniques clearly enhance the sample
efficiency and improve the final performance when combined with the three baselines.

Method Number of Environment Transitions
50k 100k 150k 200k

Single-Task SAC 0.11±0.07 0.62±0.15 0.93±0.07 0.97±0.03

Task-Cond SAC 0.31±0.19 0.71±0.16 0.90±0.10 0.96±0.04

Multi-Head SAC 0.23±0.09 0.75±0.13 0.94±0.06 0.97±0.03

Single-Task
TR-SAC (Ours) 0.33±0.14 0.92±0.07 1.00±0.00 1.00±0.00

Task-Cond
TR-SAC (Ours) 0.38±0.17 0.93±0.07 0.99±0.01 1.00±0.00

Multi-Head
TR-SAC (Ours) 0.54±0.17 0.94±0.05 0.99±0.01 1.00±0.00

Figure 5: IQM of success rate for multi-task settings in 10 environments from Robosuite.
"Task-Cond" and "Multi-Head" are short for "task-conditioned" and "multi-headed" respectively.

Metaworld-Multi task Furthermore, we evaluate our methods on MT50, a benchmark with 50
environments from Meta-World. Within the 50 tasks, we identify 12 pairs of reversible taks and
apply our techniques to these pairs. Here, considering the exploding output dimensions when using
multi-head setting for 50 tasks, we remove this baseline. Instead, we introduce another baseline
called language-conditioned SAC. Here, the task embeddings are obtained by applying a pretrained
language encoder, called CLIP [Radford et al., 2021], on the language instructions of these tasks. The
IQM results for these 12 task pairs are shown in the right of Figure 6, and additional results including
the average number of training episodes required to achieve a 100% success rate are included in
Table 2 and Figure 26. We also present results for all 50 environments of MT50 in Figure 27 and
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Figure 28. With our proposed techniques, the agent learns faster and performs better compared to the
baselines in both reversible tasks and all tasks of MT50.

Method Number of Environment Transitions
50k 100k 150k

Single-Task SAC 0.33±0.05 0.55±0.05 0.66±0.05

Task-Cond SAC 0.44±0.05 0.65±0.05 0.75±0.04

Lang-Cond SAC 0.63±0.05 0.72±0.05 0.78±0.04

Single-Task
TR-SAC (Ours) 0.38±0.05 0.65±0.05 0.76±0.04

Task-Cond
TR-SAC (Ours) 0.52±0.05 0.73±0.04 0.81±0.04

Lang-Cond
TR-SAC (Ours) 0.66±0.05 0.81±0.04 0.82±0.04

Figure 6: IQM of success rate for multi-task settings in 12 pair of reversible tasks in MT50
of Meta-World. "Task-Cond" and "Lang-Cond" are short for "task-conditioned" and "language-
conditioned" respectively.

5.2 Ablation study

Trajectory reversal augmentation with dynamics-aware filtering We analyze trajectory reversal
augmentation with dynamics-aware filtering on three pairs of tasks: door opening/closing inward,
door opening/closing outward, and peg insertion/removal. As shown in Section C, incorporating
reversed transitions improves the performance for fully reversible tasks (e.g., door opening/closing
outward and peg insertion/removal). However, most transitions in door opening/closing inward are
not fully reversible. Including the reversed transitions generated by the inverse dynamics model
leads to infeasible transitions, resulting in degraded performance. After incorporating dynamics-
aware filtering, which removes invalid reversed transitions, the performance surpasses the baseline
for partially reversible tasks, demonstrating the effectiveness of our filtering strategy. As for the
hyperparameter β that controls the filtering error tolerance, we finalize its value as 0.01 after tuning
among [0.01, 0.001, 0.0001], with the related results presented in Section D.

Time reversal symmetry guided reward shaping Here we investigate the design choice for the
time reversal symmetry-guided reward shaping. We first explore how the potential models should
be trained. As shown in Section F, it is concluded that two potential models should be trained with
successful trajectories from the task itself, and from its reversible counterpart respectively. Under this
setting, the average of the rewards from these two models are used as the final reward. Moreover,
four different types of potential value functions along the successful trajectories are compared. The
linear function outperforms the other choices, as shown in Section G.

6 Conclusion

We propose TR-DRL, a framework leveraging time reversal symmetry to enhance sample efficiency
of DRL algorithms. Key contributions include a novel notion of partial time reversal symmetry,
trajectory reversal augmentation with dynamics-aware filtering, and symmetry-guided reward shaping.
Experiments on Robosuite and Metaworld demonstrate improved agent performance and learning effi-
ciency. Future work may explore using prediction errors to identify reversible task pairs automatically,
which allows deep reinforcement learning in robotics to be more efficient.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce our first and second contributions in Section 4 and the third
contribution in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section M.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the pseudocode of our proposed method and all hyperparameters
required to reproduce our experimental results in Algorithm 1 and Section B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: In the camera-ready version, we include the link to our source code repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We introduce the environments that we use in Section A and provide all
hyperparameters in Section B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide inter-quartile mean (IQM) for aggregated performance with 95%
confidence interval.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have stated our compute resources in Section L.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics carefully and conformed with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have stated the broader impacts of our paper in Section N.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In our work, we do experiments on robosuite and Meta-World and have cited
them properly in the paragraph of experimental setup in Section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology, scientific rigorousness, or originality of the research. The
core method development in our work does not involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 7: Door closing
inward.

Figure 8: Door open-
ing inward.

Figure 9: Door closing
outward.

Figure 10: Door open-
ing outward.

Figure 11: Peg inser-
tion.

Figure 12: Peg re-
moval.

Figure 13: Nut assem-
bly.

Figure 14: Nut disas-
sembly.

A Environments

We introduce the environments utilized in our Robosuite experiments.

• Door Opening/Closing Inward: The agent needs to open/close the door inward. "Inward"
means that the door is on the same side as the robotics arm. The agent can close the door
by pushing it. To open the door, the agent has to grasp the handle and pull the handle to
a desired position, making this task pair partially time reversal symmetric. Examples are
shown in Figure 7 and Figure 8.

• Door Opening/Closing Outward: The agent needs to open/close the door outward. "Out-
ward" indicates that the door is on the opposite side as the robotics arm. In this task pair, the
agent has to grasp the handle and then open/close the door, making this task pair fully time
reversal symmetric. Examples are shown in Figure 9 and Figure 10.

• Peg Insertion/Removal: The agent needs to insert/remove the peg into/out of the hole.
Examples are shown in Figure 11 and Figure 12.

• Nut Assembly/Disassembly: The agent needs to assemble/disassemble the nut. Examples
are shown in Figure 13 and Figure 14.

• Block Stack/Unstack. The agent needs to either stack a small block onto a larger one or
unstack it by removing the small block.

The introductions of environments that we have used in our Meta-World experiments can be found in
[Yu et al., 2020], which also provides the language instruction for each task.

B Implementation Details

As shown in Table 1, we present the value of hyperparameters used in our experiments. For
experiments in Robosuite, we adopt the hyperparameters specified by Haarnoja et al. [2018]. In
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the case of experiments on MT50 of Metaworld, we primarily follow the hyperparameter settings
provided by Yu et al. [2020]. Furthermore, in our source code 2, we include the implementation
of our method built upon MOORE [Hendawy et al., 2024], a more recent and advanced baseline
compared to SAC for multi-task RL.

Hyperparameter Robosuite MetaWorld

hidden depth 2 3
hidden dimension 512 400

horizon 500 200
environment steps 250,000 100,000

replay buffer capacity 250,000 100,000
random steps 5,000 2,000

batch size 512 128
discount 0.99 0.99

learning rate 1e-3 3e-4
learning rate (α of SAC) 1e-3 3e-4

target network update frequency 2 1
target network soft-update rate 0.01 0.005

actor update frequency 2 2
actor log stddev bounds [-10, 2] [-20, 2]

init temperature 0.1 0.1
Table 1: Hyperparameters used in our experiments.

C Ablation Study of Dynamics-Aware Filtering in Trajectory Reversal
Augmentation

As shown in Figure 15, incorporating reversed transitions improves the performance for fully re-
versible tasks (e.g., door opening/closing outward and peg insertion/removal). However, most
transitions in door opening/closing inward are not fully reversible. Including the reversed transitions
generated by the inverse dynamics model leads to infeasible transitions, resulting in degraded perfor-
mance. After incorporating dynamics-aware filtering, which removes invalid reversed transitions, the
performance surpasses the baseline for partially reversible tasks, demonstrating the effectiveness of
our filtering strategy.

D Hyperparameter Tuning in Dynamics-Aware Filtering

Here, we perform hyperparameter tuning of β in dynamics-aware filtering. Recall that β governs
the error tolerance for reversed transitions: β = 0.01 filters out transitions where || s − ŝ ||≥
0.01 · ||smax − smin||, where smax and smin represent the state space extremes. We conduct a
linear search for β among [0.01, 0.001, 0.0001]. Evaluation curves of agent success rate in these six
environments are shown in Figure 16, while the inter-quartile mean of agent success rate is presented
in Figure 17. Based on these results, we select β = 0.01 for subsequent experiments.

E Separate Plots of Figure 5 and Figure 6

Due to the page limit in the main text, we combine the results of all methods into a single plot for
Figure 5 and Figure 6. As shown in Figure 18 and Figure 19, we include separate plots for each
algorithm pair (TR vs. no TR) for better readability.

F Ablation Study of Potential Models

In our ablation study of potential models, we evaluated four training strategies: (1) using only the
task’s own successful trajectories to train one potential model, (2) using only the reversible task’s
trajectories to train one potential model, (3) training a joint potential model with successful trajectories
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Figure 15: Evaluation curves of trajectory reversal augmentation with dynamics-aware filtering in
6 environments of robosuite. "Single-Task SAC" serves as the baseline. "+reversal aug w/o filter"
introduces trajectory reversal augmentation without filtering, while "+reversal aug" incorporates
dynamics-aware filtering for reversed transitions.

Figure 16: Evaluation curves of agent success rate using trajectory reversal augmentation with
dynamics-aware filtering (different β).
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Figure 17: IQM of agent success rate using trajectory reversal augmentation with dynamics-aware
filtering with different β.

Figure 18: IQM of success rate for multi-task settings in 10 environments from Robosuite with
separate plots for each algorithm pair (TR vs. no TR). "Task-Cond" and "Multi-Head" are short for
"task-conditioned" and "multi-headed" respectively.

Figure 19: IQM of success rate for multi-task settings in 12 pair of reversible tasks in MT50 of Meta-
World with separate plots for each algorithm pair (TR vs. no TR). "Task-Cond" and "Lang-Cond" are
short for "task-conditioned" and "language-conditioned" respectively.
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Figure 20: Ablation study of potential models in the task pair of door opening/closing inward.
"Single-Task SAC" serves as the baseline. "+only own" indicates using only the task’s own successful
trajectories to train one potential model. "only reversal" indicates using only the reversible task’s
trajectories to train one potential model. "mix own and reversal" indicates training a joint potential
model with successful trajectories from two tasks. "+reversal reward shaping" indicates training two
separate potential models, one for successful trajectories from its own and the other for successful
trajectories from the reversible task.

from two tasks, and (4) training two separate potential models, one for successful trajectories from its
own and the other for successful trajectories from the reversible task. The final reward value is then
computed as the average of the rewards obtained from these two models. Based on the ablation study
shown in Figure 20, we conclude that training two potential models is always better than the baseline.
Therefore, we use this setting to train potential models in subsequent experiments.

G Ablation Study of Potential Value Labeling Function in Potential-Based
Reward Shaping

We evaluate four monotonically increasing functions as the potential value labeling function for a
successful trajectory of length n.

• Linear: Φ(st) = t
n ,

• Triangular: Φ(st) =
t(t+1)
n(n+1) ,

• Original Geometric: Φ(st) = γn−t,

• Geometric: Φ(st) = γn−t−γn−1

1−γn−1 .

Results are shown in Figure 21, with inter-quartile mean (IQM) in Figure 22. Based on these results,
we adopt the linear function for potential-based reward shaping in subsequent experiments.
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Figure 21: Evaluation curves of agent success rate using time reversal symmetry guided reward
shaping with different potential types.

Figure 22: IQM of agent success rate using time reversal symmetry guided reward shaping with
different potential types.

H Results of Time Reversal Symmetry Guided Reward Shaping in Robosuite

As shown in Figure 23, we plot the evaluation curves of time reversal symmetry guided reward
shaping in 6 environments of robosuite, from which we can see clear performance gap between the
baseline and using time reversal symmetry guided reward shaping.

I Results of Both Proposed Techniques in Robosuite

Full evaluation curves of combining trajectory reversal augmentation with dynamics-aware filtering
and time reversal symmetry guided reward shaping are provided in Figure 24, which confirm that
combining both techniques yields superior performance compared to using either component alone
or the baseline method.

J Results of multi-task settings in Robosuite

Full evaluation curves of agent performance in 10 environments of Robosuite are shown in Figure 25.
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Figure 23: Evaluation curves of time reversal symmetry guided reward shaping in 6 environments of
robosuite. "Single-Task SAC" serves as the baseline. "+reversal reward shaping" introduces time
reversal symmetry guided reward shaping.

K Additional results of MT50 in Meta-World

Additional results of agent performance in both 12 reversible task pairs and all 50 environments of
MT50 are shown in Figure 26, Table 2, Figure 27, and Figure 28.

L Compute Resources We Use

In all our experiments, we utilize a GPU server equipped with 8 cards that have either RTX-4090 or
A6000 GPUs and are powered by AMD EPYC 7763 CPUs. For experiments in robosuite: training a
single-task agent takes around 5 hours while training a multi-task agent for two tasks takes around 10
hours for 500 training episodes for each task. For experiments in MetaWorld: training a single-task
agent takes around 2 hours while training a multi-task agent for two tasks takes around 4 hours for
500 training episodes for each task. For MT50, it takes around 3 days to train an agent that handles
50 tasks.

M Limitations

A key limitation of our work is the absence of real-robot experiments, as our current experiments
are all conducted in simulation environments. While simulations enable efficient prototyping and
scalability, they may oversimplify physical dynamics, sensor noise, or actuator constraints inherent in
real-world robotic systems. Future work could address this gap by deploying the proposed method on
physical robots, ensuring robustness and generalizability to practical applications. Like other data
augmentation methods, our approach relies on prior knowledge of task structures—specifically, time
reversal symmetry in our case.

N Broader Impacts

Positive societal impacts : This work advances the sample efficiency of deep reinforcement
learning (DRL) agents in robotics manipulation tasks, enabling faster and more cost-effective training
for practical applications. By reducing the computational resources required for training, it lowers
barriers to deploying robotic systems in real-world setting. Improved sample efficiency also minimizes
energy consumption and hardware wear, aligning with sustainability goals. Furthermore, robust and
efficient DRL methodologies can accelerate the development of autonomous systems that enhance
productivity, safety, and accessibility, ultimately contributing to economic growth and societal
well-being.
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Figure 24: Evaluation curves of both components in 10 environments of Robosuite. "reversal aug"
represents incorporating reversal augmentation with filtering. "reversal reward shaping" represents
incorporating potential-based reward shaping. "Single-Task TR-SAC" represents our proposed
method which combines both components.
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Figure 25: Evaluation curves for multi-task settings in 10 environments of Robosuite. "Task-Cond"
and "Multi-Head" are short for "task-conditioned" and "multi-headed" respectively.

Negative societal impacts To the best of our knowledge, we don’t see any negative societal impacts
of our work.
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Figure 26: Average number of training episodes required to achieve a 100% success rate in 12 pairs
of reversible environments of MT50..

Figure 27: IQM for agent success rate in all
50 environments of MT50. Figure 28: Average number of training

episodes required to achieve a 100% success
rate in all 50 environments of MT50.
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Table 2: Number of training episodes required for 100% success rate for 12 pairs of reversible
environments in MT50. Each value is averaged over five runs, with the mean and standard deviation
reported. "Task-Cond" and "Lang-Cond" are short for "task-conditioned" and "language-conditioned"
respectively. Lower is better.

Environment Single-Task
SAC

Single-Task
TR-SAC

Task-Cond
SAC

Task-Cond
TR-SAC

Lang-Cond
SAC

Lang-Cond
TR-SAC

assembly 460±7 432±13 456±8 424±21 340±28 252±29

disassemble 500±0 500±0 500±0 500±0 424±21 364±24

coffee pull 444±16 408±16 460±4 468±9 416±24 416±24

coffee push 288±16 236±19 316±24 224±10 228±32 156±25

door lock 360±26 352±23 112±13 88±5 72±13 60±7

door unlock 196±22 148±14 144±7 88±9 96±10 72±5

door open 252±11 208±16 208±11 168±7 204±22 252±29

door close 100±4 88±1 80±2 48±1 52±4 44±5

drawer open 284±13 200±9 272±26 172±15 140±8 104±12

drawer close 40±3 16±1 16±2 12±1 8±1 8±1

faucet open 96±2 84±1 92±5 80±3 48±5 40±6

faucet close 124±6 156±7 72±2 60±3 76±2 64±5

handle press 32±4 20±2 20±2 24±3 24±1 20±0

handle pull 244±14 172±9 308±20 128±7 168±24 160±25

peg insert
side 328±22 296±18 348±18 276±16 424±21 348±26

peg unplug
side 164±13 128±9 76±3 68±3 180±24 32±1

plate slide 208±14 180±14 176±4 104±11 80±4 64±7

plate slide
back 256±18 224±20 152±10 84±3 40±4 36±2

plate slide
side 228±16 156±13 128±9 148±20 80±7 60±6

plate slide
back side 196±12 148±4 140±7 152±8 104±9 72±5

push 288±17 140±10 272±24 244±18 404±27 328±30

push back 480±6 500±0 316±22 396±14 368±24 324±30

window open 84±1 64±1 76±5 52±2 24±1 44±5

window close 80±2 68±1 64±1 40±0 56±5 52±2

ALL 239±23 205±23 200±24 169±23 169±26 140±25
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Table 3: Number of training episodes required for 100% success rate for all 50 environments in MT50.
Each value is averaged over five runs, with the mean and standard deviation reported. "Lang-Cond"
is short for "language-conditioned". Lower is better.

Environment Lang-Cond
SAC

Lang-Cond
TR-SAC Environment Lang-Cond

SAC
Lang-Cond

TR-SAC

assembly 340±28 252±29 sweep-into 276±27 172±24

disassemble 424±21 364±24 reach 104±4 164±24

coffee pull 416±24 416±24 reach wall 128±11 188±22

coffee push 228±32 156±25 stick-pull 172±23 160±25

door lock 72±13 60±7 sweep 316±23 284±25

door unlock 96±10 72±5 basketball 500±0 500±0

door open 204±22 252±29 bin picking 348±26 360±24

door close 52±4 44±5 box close 352±27 296±25

drawer open 140±8 104±12 coffee button 52±3 64±7

drawer close 8±1 8±1 button press 28±2 36±2

faucet open 48±5 40±6 button press wall 76±2 76±6

faucet close 76±2 64±5 button press topdown 220±32 100±8

handle press 24±1 20±0 button press
topdown wall 160±25 100±9

handle pull 168±24 160±25 dial turn 384±21 356±25

handle pull side 304±24 320±31 handle press side 32±3 36±2

peg insert side 424±21 348±26 hammer 172±23 160±25

peg unplug side 180±24 32±1 hand insert 236±31 256±28

plate slide 80±4 64±7 lever pull 280±27 252±30

plate slide back 40±4 36±2 pick out of hole 424±21 428±20

plate slide side 80±7 60±6 pick place 500±0 500±0

plate slide back side 104±9 72±5 pick place wall 416±24 416±24

push 404±27 328±30 push wall 344±28 356±25

push back 368±24 324±30 shelf place 428±20 428±20

window open 24±1 44±5 soccer 336±29 248±29

window close 56±5 52±2 stick push 140±9 156±6

Lang-Cond SAC Lang-Cond TR-SAC

ALL 216±28 196±28
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