NetSciX2026: International School and Conference on Network Science
February 17/7-20"", 2026 - Auckland, New Zealand

Discovering Higher-Order Interactions in
Hypergraphs via Projections: Concepts & Algorithms

Keywords: Hypergraphs, Higher-Order Interactions, Reconstruction, Higher-Order Networks,
Algorithms

Extended Abstract

Consider a hypergraph G with unbounded edge size; how much can we learn about the higher-
order interactions in G if we only see k-way connections (for each fixed value of k =2,3,4,...)?
In particular, if the (k+ 1)-way interactions are not completely determined by their k-way
projections (together with all hyperedges of size < k), then we would say there is a new higher-
order interaction at level k+ 1. As far as we are aware, this represents a new and previously
unstudied approach to defining and understanding higher-order interactions in hypergraphs.!
We develop both the concepts and efficient algorithms for finding such higher-order interactions
in real data sets.

To be more precise, consider the m X n edge-vertex incidence ma-

a trix of G. For each fixed set of k out of the n columns (=vertices),
we get a set of length-k substrings (hyperedge fragments), called a
e b k-way projection. This can be considered as a decomposition of a
given hyperedge into k-bounded component edges. Can all the k-way
projections be used to reassemble the original data set? How does the
de c hypergraph that is reconstructed from the k-way projections change
abc de as we change the value of k? In this framework, we know which
6 106 6 1 columns (=vertices) we are viewing, but we only see the set of those
1 1 : .
i1 length-k strings (hyperedge fragments). In particular, we do not know
% % % % % which hyperedge fragment came from which original hyperedge(s).
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This question was inspired largely by real-world data sets that are
naturally hypergraphs or sets of strings. For example, coauthorship
hypernetworks (vertices=authors, hyperedges=papers), patent hy-
pernetworks (vertices=technology codes, hyperedges=patents), epi-
demiological hypernetworks of multiple kinds, and most survey data.
For example, a set of survey data where participants were asked a
series of 20 yes/no/maybe questions can be modeled as a hypergraph with 60 nodes, one for
each question-answer pair, and then each participant’s answers give a single hyperedge of size
20. An example from epidemiology is modeling disease spread in a dorm, where each week
corresponds to a hyperedge specifying which students were ill that week.

This broad question on data reconstruction opens up into several different interpretations
that are interesting to consider. We generally find working with our edge list as a set of strings
to be the most clear, and so we will use the string definition below. The most apparent question,
and the one that we primarily focus on in this work, is determining the value of & that allows us
to perfectly reconstruct our original data set. We give this value a name:

Definition: Given S C {0,1}", x € {0,1}" is k-reconstructible from S if for every I C [n]
with |I| =k, Js € S such that s|; = x|;. The k-reconstruction of S is the set of all strings k-

Figure 1: Example
Hypergraph and its in-
cidence matrix.

'Our work has recently been published in a conference; details omitted for anonymity.
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reconstructible from S, denoted Recony(S). A set S is called k-reconstructible if S = Recon(S).
The point of perfect reconstruction is the least integer k such that S = Recony(S).

Although most algorithmic problems related to k-reconstruction of strings of length n (hy-
pergraphs with n vertices) have obvious 2°(")-time algorithms, real-world data sets are often
very sparse, in the sense of having many fewer than 2" hyperedges. In general we prove that
finding the point of perfect reconstruction is NP-hard, and we conjecture it is complete for
MyP[k, | [1]. Nonetheless, because most real-world data sets are sparse, we seek algorithms
that are significantly more efficient in practice.

Our main contribution, in addition to the state-
ment and definition of concepts and questions,
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is an efficient algorithm for computing the k- \ )(/
reconstruction. Our algorithm involves the creation
and analysis of an “overlap graph,” similar to the
overlap graphs used in DNA reconstruction. To illus- cde @01 10 611 111 160 110
trate the idea, we use Fig. 1, and arbitrarily choose

the vertex ordering a,b,c,d,e and k = 3, i.e. we are Figure 2: Overlap graph for the k = 3

seeking to find Recon3(S). The overlap graph (Fig.2) reconstruction of the data set shown in
has one level for each contiguous set of k indices in  Fig, 1.

our ordering: [a,b,c],[b,c,d],[c,d,e]. The nodes in

each level correspond to the projections of the strings

in S onto each size-k index set. There is a directed edge between nodes at one level and the next
if they agree on the overlapping k — 1 indices. Reconstructed strings will then correspond to
paths through this graph. In Fig. 2 we highlight the paths corresponding to the original hyper-
edges from Fig. 1 with the corresponding colors. However, the definition Recony(S) involves
not only the consecutive k-windows but the non-consecutive ones as well. We show that one
can test whether a given string is in Recony(S) using the Hitting Set problem which is NP-
complete; any paths that are reconstructed in the overlap graph are then checked against all
windows using a Hitting Set algorithm. For example, the edge from the last node in the first
row to the last node in the second row turns out to not match any string in Recons(S), and the
corresponding path will get eliminated by an appropriate call to Hitting Set. Starting with the
overlap graph significantly reduces the number of calls needed to Hitting Set.

We ran extensive tests on our algorithm’s performance. In practice we could easily work
with data sets of up to 50 nodes and 200 hyperedges on a low-powered laptop in under 30
seconds. Although this is not near the scale of modern data sets with thousands or millions
of nodes, we believe higher-order interactions in such data sets could be elucidated by looking
at 50-node subsets at a time. In ongoing work we are continuing to improve the algorithm’s
efficiency and exploring the combinatorial possibilities for higher-order interactions.

Ethical considerations. We do not believe this problem or its algorithm have any inherent
ethical impacts, however as with any tool there must be some care in how our algorithm and its
outputs are ultimately applied.
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