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ABSTRACT

Most work in privacy-preserving federated learning (FL) has been focusing on hor-
izontally partitioned datasets where clients share the same sets of features and can
train complete models independently. However, in many interesting problems, in-
dividual data points are scattered across different clients/organizations in a vertical
setting. Solutions for this type of FL require the exchange of intermediate outputs
and gradients between participants, posing a potential risk of privacy leakage when
privacy and security concerns are not considered. In this work, we present vFedSec -
a novel design with an innovative Secure Layer for training vertical FL securely and
efficiently using state-of-the-art security modules in secure aggregation. We theoret-
ically demonstrate that our method does not impact the training performance while
protecting private data effectively. Empirical results from extensive experiments
substantiate this design producing secure training with negligible computation and
communication overhead. Compared to widely-adopted homomorphic encryption
(HE) methods, our method can obtain≥ 690× speedup and reduce communication
costs by ≥ 9.6×.

1 INTRODUCTION

Federated Learning (FL) is a machine learning paradigm that enables the training of a global model
using decentralized datasets without requiring the sharing of raw and sensitive data from participating
parties (McMahan et al., 2017; Li et al., 2020; Yang et al., 2019). Under FL, individual institutions or
devices train a common global model collaboratively, agreeing on a central server to orchestrate the
learning and perform model aggregation.

In terms of data partitioning, FL can be categorized as either horizontal or vertical scenarios. Most
existing works focus on horizontal FL (HFL), which requires all participants to use the same feature
space but different sample spaces(Yang et al., 2019). This partitioning scheme is usually found in the
cross-device setup where clients are often mobile or IoT devices with heterogeneous datasets and
resources under complex distributed networks (Yu & Li, 2021; Qiu et al., 2022). Under Vertical FL
(VFL) (Wei et al., 2022), however, data points are partitioned across clients, which means different
clients might hold different features for the same sample. This is often found in cross-silo setups
where participating clients, such as hospitals and research institutions, may hold complementary
pieces of information for the same data points. For example, two different hospitals may hold different
clinical data for the same patient.

The need for VFL has arisen massively in the industry these years (Liu et al., 2022; 2020). For
example, a financial institution would like to train a financial crime detection model, but it only
has limited features in its own institution that restrict performance. The institution would like to
have access to more private information, such as account information, that various banks might have.
However, this is a deal breaker for financial applications as such data is very sensitive, and legal
restrictions (e.g., GDPR) can prevent it from being shared across institutions. Another example
will be in the commercial ad ranking systems, in the sense that each organization might have
different information for the same customer, but the label (the click rate) will only be stored in the
application platform. With VFL, institutions and companies that own only small and fragmented
data have constantly been looking for other institutions to collaboratively develop a shared model for
maximizing data utilization (Li et al., 2021b).
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Due to their different data structures, training procedures for HFL and VFL can be very different.
Each client in HFL trains a complete copy of the global model on their local dataset and sends model
updates to a centralized server for aggregation. Under VFL, each client, holding certain features of
the whole dataset, contributes to a sub-module of the global model. This means that intermediate
activations or gradients need to be shared between clients during the training process, posing a
potential risk for privacy leakage, as the original raw data can be reconstructed from said gradients
(Zhu et al., 2019; Zhao et al., 2020; Jin et al., 2021; Yin et al., 2021). While most research has focused
on designing methods to train the global model under VFL better, fewer efforts have been devoted to
providing a secure way of training.

In this work, we present vFedSec - an efficient and privacy-preserving way of training under the
Vertical FL setup. Section 4 describes our proposed design and introduces its core component, the
architecture-agnostic Secure Layer. We provide a robust theoretical justification showing that our
proposed method does not adversely affect training performance and private information is protected
through the Secure Layer. To validate our claims empirically, we have conducted comprehensive
experiments over four varied datasets of differing data volumes and model architectures, as detailed
in Section 6. The results substantiate that our vFedSec imposes negligible overhead in all cases.
Moreover, our method demonstrates a remarkable ≥ 690x speedup and ≥ 9.6x decrease in commu-
nication costs when compared to the resource-intensive homomorphic encryption (HE) techniques,
thus affirming its superior computational and communication efficiency.

2 BACKGROUND AND RELATED WORK

2.1 GENERAL VERTICAL FEDERATED LEARNING

We consider a general form of Vertical Federated Learning, where data are partitioned both in
the sample and feature spaces. Specifically, we investigate C class classification problem defined
over a compact feature space X and a label space Y = [C], where [L] = {1, ..., C}. Since each client
only holds a subset of the whole feature space, we can divide the feature into the finite number of
sub-spaces {X1, ...,Xn}, and each client holds feature from one sub-space. Following the setup as in
previous literature (Liu et al., 2022), we define two kinds of clients in the VFL settings. The first type
is the active party (ClientA), which holds all the samples with the ground-truth labels and multiple
features, and there usually is only one active party. The second type is called the passive parties,
which only holds some other features.

All clients can be clustered by the feature set they own. If they hold the features from Xi, we say these
are from client cluster i. Multiple clients can hold different samples with the feature from the same
feature sub-space. Let f be the function for the neural network parameterized over the hypothesis
class w, which is the weight of the neural network. L(w) is the loss function, and we assume the
widely used cross-entropy loss.

In a horizontal FL scenario, where datasets are horizontally partitioned, FL solutions are typically
derived from a centralized one, providing an upper-bound target efficiency. However, this approach is
not well suited in the case of vertically-partitioned FL, where different feature types are distributed
across different participants.

Training in a vertical FL setting consists of two parts. The first part is the local module, which outputs
an intermediate output (H). The local module can be embedding layers to extract embedding from
each feature. The second part is the global module hosted by the server, which takes the embeddings
from each client and further propagates to make the final predictions. It is worth noticing that if two
clients are from the same client cluster, they will have the same architecture of the local module,
which means that their local module can be updated via the horizontal FL way, and use aggregation
methods such as FedAvg (McMahan et al., 2017).

2.2 RELATED WORK

In the context of efficient secure aggregation for VFL, several related papers have contributed to the
understanding and improvement of privacy, utility, and security aspects in VFL. A comprehensive
literature review (Liu et al., 2022) provides an overview of VFL and discusses various protection
algorithms. However, it does not specifically address efficient secure aggregation. Another study
(Ranbaduge & Ding, 2022) focuses on integrating differential privacy (DP) techniques into VFL, but it
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does not explicitly cover efficient secure aggregation either. Kang et al. (2022b) propose a framework
to evaluate the privacy-utility trade-off in VFL, highlighting the limitations of existing approaches
like Homomorphic Encryption (HE) and Multi-party Computation (MPC) in terms of computation
and communication overheads, and Cai et al. (2023) apply HE to Split Neural Networks (Split NN)
for improved security. Zheng et al. (2022) presents a heuristic approach to make Split Learning
resilient to label leakage, albeit at the cost of accuracy. Sun et al. (2022) explore label leakages from
forward embeddings and their associated protection methods, which can cause a decrease in accuracy.
Although these papers contribute to the understanding of VFL, there is a research gap in efficient
secure aggregation techniques for VFL that needs to be addressed. The method proposed by Liu et al.
(2020) only tries to protect the sample IDs, rather than all the raw private data; Chen et al. (2020)
perturbed local embedding to ensure data privacy and improve communication efficiency, which
has strict requirements for the embedding and can impact the overall performance. There are also
BlindFL (Fu et al., 2022), ACML (Zhang & Zhu, 2020), and PrADA (Kang et al., 2022a) which
are all homomorphic encryption (HE) based solutions. These approaches often incur significant
communication and computation overheads. Moreover, their fixed design cannot be extended to
multiple-party scenarios.

3 SECURE LAYER: SECURE AGGREGATION VIA MASKING WITH NOISE

The core of vFedSec resides on the Secure Layer, which combines the intermediate output from
each client using secure aggregation. We would like to emphasize that the "Secure Layer" is an
abstraction of the foundational mechanisms inherent in our algorithm. It is a conceptual layer, whose
computation is completed by the collaboration of different parties. Secure Layer is essentially a fully
connected layer in terms of model architecture, which computes its output Z as follows.

Z = WH = (W1,W2, . . . ,Wn)(H1, H2, . . . ,Hn)
⊺ =

n∑
i=1

WiHi (1)

where W is the layer parameters, H is the concatenated intermediate output from clients, and n is the
number of clusters.

As introduced in Section 2.1, clients can be grouped into clusters, within each of which any two hold
the same set of features but different samples. Therefore, clients (passive parties) in one cluster share
the same local module. Client A, the active party, is in a cluster containing only itself. After Client A
selects a mini-batch, the client in cluster i that holds the sample will produce batched embeddings Hi

(see Equation 1). To be specific, let {x(1), x(2), . . . , x(B)} and fi denote the selected batch and the
local module of cluster i respectively. As samples are distributed among the cluster, each client p in
the cluster i will compute the embeddings of samples owned by itself and fill other embeddings with
zeros, i.e., [Hi]p =

(
1(x(k) ∈ Dp)fi(x

(k))
)B
k=1

, where Dp is the local data held by client p. The
output of the Secure Layer can then be computed by the following equation.

Z =

n∑
i=1

WiHi =

n∑
i=1

∑
p∈Ci

Wi[Hi]p (2)

where Ci is the cluster i.

The Secure Layer enables each client to mask each intermediate output with noise, hence hiding any
client’s confidential information from any other party. Following the idea of Secure Aggregation, we
make added noises cancel out each other, i.e.,

∑
p np = 0, which is the summation of a series of

random numbers generated by a Pseudo-Random Generator (PRG) that can generate sequences of
uniformly pseudo-random numbers given a seed.

The seed is the pairwise shared secrets ssij = ssji established in the Setup phase (Section 4.1). The
added noise for each client i is then generated as shown in Equation 3 and 4. Here, we treat the active
party Client A as Client 1. It is worth noticing that for Client i, the noise is calculated by adding all
the random numbers generated by the client with ID above i and minus the random number generated
by the client with ID below i. Therefore, in this way, the summation of all the noise can be canceled
out, resulting in the overall summation of 0.
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Figure 1: A high-level view of our protocol. Labels in the forward pass section are only required in
training. Though each client only generates one key pair as in the plot, it is recommended in practice
to generate at least two key pairs for noise generation and symmetric encryption to mitigate the risks
of severe data breaches in the event of unexpected secret keys or shared secrets leakage.

ni = −
∑
j<i

PRG(ssij) +
∑
j>i

PRG(ssij) (3)

∑
i

ni =
∑
i

∑
j>i

(
PRG(ssij)− PRG(ssji)

)
= 0 (4)

In each forward pass, the server will broadcast the respective weight (Wi) of the Secure Layer to each
client, and then each client p in cluster i can generate noise np and return the masked intermediate
output Wi[Hi]p + np. After receiving all masked intermediate output from clients, the server can
compute output accurately without knowledge of any individual value from each client by adding
them together, i.e., Z =

∑
Wi[Hi]p +

∑
p np = WH , as shown in Equation 1 and 2.

As proven in Section 5.1, the added noise ensures that the masked intermediate output is indistinguish-
able from a uniformly random sequence, thus providing strong privacy guarantees. An adversary can
unmask an individual intermediate output of a party only if it knows all the shared secrets held by
that party. In other words, Secure Layer can guarantee the confidentiality of the intermediate output
of any client unless all other clients are corrupted. Due to the nature of PRG, as long as the seed
of PRG is not reset, the random number sequences generated by PRG in different rounds will be
different, guaranteeing that any other party cannot recover the noise without having access to the
seed. In practice, participating parties should periodically generate new shared secrets in case of
leakage, e.g., creating new shared secrets every 5 training rounds.

4 VFEDSEC WITH SECURE LAYER

In this section, we propose our novel design vFedSec for VFL to ensure the privacy and security of
sensitive information in local datasets. We summarize our training protocol in Figure 1.

Our protocol is divided into three phase: setup phase (Section 4.1), training phase (Section 4.2),
and testing phase (Section 4.3). The setup phase is designed for configuring training procedures,
including key exchange, mini-batch selection, forward pass, and backward pass. Since features are
distributed across different clients, both the forward pass and the backward pass cannot be computed
at the same place at the same time. Therefore, we propose our novel design of Secure Layer, which
will be explained in detail in Section 3.
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We also show that our design hides the sensitive information completely as we use encryption to help
the mini-batch selection without revealing identifiable information to any third party. In addition, we
adapt the idea of secure aggregation via masking with noise (Bonawitz et al., 2016) and introduce an
innovative Secure Layer for the activations and gradients aggregation.

We design the protocol to be able to cope with any kind of VFL setup and any kind of model
architectures reside both in the local module on the client side and the global module on the server
side. As explained in Section 2.1, our setup is a generalized VFL setup that includes all possible
variations and scenarios in the area of VFL.

4.1 SETUP PHASE

The first step of vFedSec is to generate shared secrets. We use the Elliptic-curve Diffie-Hellman
(ECDH) key agreement protocol (Barker et al., 2017; Diffie & Hellman, 1976) to generate shared
secrets through insecure channels between all clients. The shared secrets will be used to build secure
pairwise channels by symmetric encryption and facilitate secure aggregation. During the setup phase,
the central aggregator requests public keys from all participating clients. Then, ∀i, Client i generates
one pair of secret key sk

(j)
i and public key pk

(j)
i for each Client j and sends public keys to the

aggregator. ∀i ̸= j, pk
(j)
i is then forwarded to Client j. Once received, Client i and Client j can

generate a shared secret ssij = ssji from (sk
(j)
i , pk

(i)
j ) or (sk(i)j , pk

(j)
i ).

4.2 TRAINING PHASE

Similar to standard FL training, the server will initialize the initial model parameters w0 and broadcast
the respective model weights to the relevant parties. It is worth noting that the local module is still
initialized from the server, since local modules from the same client cluster will have the initialization.

Mini-batch selection We assume that the active party knows which passive parties hold the features
of a given sample. This can be realized by Private Set Intersection (Lu & Ding, 2020; Zhou et al.,
2021). We denote the identifier for samples as sample ID, which is shared among all parties. Since
the active party has the information regarding each sample and the ground truth label, the mini-
batch selection will start from the active party. It will first select a batch of data in the active party
(Client A). The sample ID will be encrypted using ssA i as key if the partial features of the sample
are held by passive party Client i. The active party will then upload the encrypted ID batch to the
aggregator, which will broadcast it to all passive parties. As sample IDs are encrypted using different
keys, each passive party can only decrypt sample IDs existing in its dataset, which prevents any party
from knowing extra information about the batch and samples in it.

Forward Pass After the local module in each client, each client will have intermediate output Hi,
which is then fed into the Secure Layer as explained in detail in Section 3. Then, the output of the
Secure Layer is passed through the global module to finish the forward pass.

Backward Pass After the mini-batch selection, the active party will then share the ground-truth
label in the order of the mini-batch to the server. We believe it is reasonable to do this as the server
cannot infer any useful information from only the label. Regarding the backward pass through the
Secure Layer, the gradient of the Secure Layer (∇ZL) can be computed and sent to the active party,
which then can finish the back-propagation and update the local module in the active party.

Regarding the local module in the passive parties, similar to the active party, the gradient of the
Secure Layer (∇ZL) can be computed and sent to all the passive parties, which then can compute the
gradient of their local module. The gradient of the local module is hidden by adding pair-wise masks
among clients in the same cluster (C). Similar to the Secure Layer (see Equation 3 4), the masks are
constructed such that their summation will be canceled out.

Then, the passive parties send the masked gradient to the server, which will then aggregate the
gradient and obtain the averaged gradient for the mini-batch g = 1/n

∑
i∇Li + ni = 1/n

∑
i∇Li.

The averaged gradient can then be used to update the local module for each client cluster. If there is
only one client in the cluster, the local module can be updated in the same way as the active party.
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4.3 TESTING PHASE

During the testing phase, the active party will first send the encrypted batch information similar to
the training phase to the aggregator. After receiving the encrypted batch information, the encrypted
batch information is shared with the passive clients. Then the final prediction is computed the same
way as the forward pass in the training phase utilizing the Secure Layer.

5 SECURITY ANALYSIS

5.1 THREAT-MODEL AND PRIVACY GUARANTEE

We consider a threat model where both clients and the server are honest-but-curious, i.e., they are
expected to follow the pre-defined training protocol whilst trying to learn as much information
as possible from the models, intermediate output, or gradients that they receive. In our security
arguments, we will use the following Lemma (Bonawitz et al., 2016). Proof for the lemma can be
found in Appendix A.2.
Lemma 5.1. Fix n, m, R, U with |U | = N , and {xu}u∈U where ∀u ∈ U, xu ∈ Zm

R . Then,

{{pu,v
$←− Zm

R }u<v, pu,v = −pv,u∀u > v : {xu +
∑

v∈U\{u}

pu,v (mod R)}u∈U}

≡

{{wu
$←− Zm

R }u∈Us.t.
∑
u∈U

wu =
∑
u∈U

xu(mod R) : {wu}u∈U}

where ‘≡’ denotes that the distributions are identical, $←− denotes uniform sampling, R is the upper
bound of the integer set Zm

R = {0, 1, . . . , R− 1}m

Here U can be seen as a set of clients in our protocol. The lemma proves that if clients’ values have
uniformly random pairwise masks added to them, then the resulting values look uniformly random,
conditioned on their sum being equal to the sum of the client’s values. In other words, the pairwise
masks as explained in Section 3 hide all private information about the client’s data, apart from the sum.
Secure aggregation through Secure Layer is achieved through the use of masking on the intermediate
outputs and gradients before they are sent back to the server, thus preventing the server from using
the received information to gain knowledge about the sensitive client data. Therefore, our method
protects the data from both data reconstruction and membership inference attacks.

Also, while our current implementation could be vulnerable to active adversaries, our solution can be
extrapolated very easily to include malicious settings by introducing a public-key infrastructure (PKI)
that can verify the identity of the sender (Bonawitz et al., 2017). It can thus be further protected from
malicious attacks.

Although our method does not allow exposing secret keys to other parties and demonstrates robustness
against collusion between the aggregator and passive parties, in practical settings, the risk of secret
key leakage persists, e.g., accidental inappropriate practices of engineers. Thus, to ensure privacy, it is
necessary to routinely regenerate keys for symmetric encryption and secure aggregation, specifically,
by executing the setup phase after every K iteration, in both the training and testing stages. The
value of K can vary in real-world scenarios, but the larger value will inevitably incur higher risks of
keys being compromised. In the event of key leakage, an attacker will only have access to a limited
amount of information instead of all encrypted information if keys are regenerated periodically.

5.2 OTHER CONSIDERATIONS

Generalizability: vFedSec provides a generalized protocol for any kind of VFL setups as explained
in Section 2.1. We design our protocol vFedSec to be able to cope with any kind of vertical FL setups
and any kind of model architectures residing both in the local module on the client side and the
global module on the server side. Previous papers usually only consider the vertical setup with two
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parties: one active and one passive (Liu et al., 2022), or the feature in passive parties cannot overlap
(Jiang et al., 2022; Fang et al., 2021; Wei et al., 2022). However, in our general setup, there could
be multiple passive parties, and the feature space in passive parties can be overlapped, as described
in the client cluster in Section 2.1. Also, our protocol can be further expanded to include multiple
active parties if needed. In this case, we just need to adapt the mini-batch selection process and the
label-sharing process with the server.

Scalability and Efficiency: Our core solution is agnostic to the number of participating clients
and the data partition schemes under the VFL setting. As a result, our solution’s scalability is only
dependent on the underlying FL framework and on how key generation and key exchange between
clients are handled. Also, our solution is scalable and efficient in the sense that, unlike many previous
methods explained in Section 2.2 that utilized HE, we employ lightweight masks through random
noise, and the mask can be naturally decrypted through summation.

Dropout: In the realm of VFL, several studies have delved into its security and robustness. Gu
et al. (2021) presented AFSGD-VP, tailored for environments without a central server, ensuring
embedded privacy through a tree-structured aggregation. Yan et al. (2022) introduced AMVFL,
which focuses on asynchronous gradient aggregation for linear and logistic regression, with local
embeddings shielded by secret-shared masks. VAFL (Chen et al., 2020) is designed for intermittently
connected clients, incorporating Differential Privacy (DP) but with some performance compromises
compared to our vFedSec. Notably, FedVS (Li et al., 2023) utilizes polynomial interpolation to
efficiently handle stragglers, yet it falls short in addressing the dropout challenge. More importantly,
Since each client might contribute to a particular sub-module of the whole model, client dropout can
lead to missing features, hence impacting the overall training (Fu et al., 2022; Zhang & Zhu, 2020;
Kang et al., 2022a). Therefore, we consider the case with no client drop out, which is a realistic
assumption given the nature of VFL.

6 EXPERIMENTS

We conducted extensive experiments on five classification datasets with various model architectures.
Federated learning is simulated using the FL framework Flower (Beutel et al., 2020).

6.1 DATASETS

Experiments are conducted over five datasets: Banking dataset (Moro et al., 2011), Adult income
dataset (Kohavi et al., 1996), Taobao ad-display/click dataset (Li et al., 2021a), EMNIST (Cohen
et al., 2017), and FMNIST (Xiao et al., 2017). The banking dataset is related to the direct marketing
campaigns of a Portuguese banking institution. It contains 45, 211 rows and 18 columns ordered
by date. The adult income dataset is a classification dataset aiming to predict whether the income
exceeds 50K a year based on census data. It contains 48, 842 and 14 columns. We also conduct
our experiment over a production scale ad-display/click dataset of Taobao (Li et al., 2021a). The
dataset contains 26 million interactions (click/non-click when an Ad was shown) and 847 thousand
items across an 8-day period. The EMNIST balanced dataset is an expansion of the original MNIST
to include handwritten characters, which contains 131, 600 images from 47 balanced classes. The
FMNIST dataset, i.e., the Fashion MNIST dataset, comprises 70, 000 grayscale images of clothing
items and accessories.

The specific dataset partition, model architecture, and the details of overhead profiling can be found
in Appendix A.1

6.2 RESULTS

We conduct experiments over five datasets to measure both the computation and the communication
cost of vFedSec training. The computation cost is measured through CPU time (in seconds), and
the communication cost is measured through the transmission size (in MB). We also measure the
overhead cost that shows the extra CPU time or communication compared to unsecured VFL training.
Communication overheads are from the length of ciphertext (encrypted Sample IDs) over plaintext
and the exchange of public keys. Computation overheads are caused by creating key pairs and
shared secrets, noise generation and cancellation, and encryption and decryption. As transferring
parameters/gradients and updating models are necessary for VFL training and split learning, they are
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Active Party CPU time (s) Passive Party CPU time (s)

Training phase Testing phase Training phase Testing phase

Dataset Total Overhead Total Overhead Total Overhead Total Overhead

Banking(Ours) 1.044 0.1881 0.3057 0.1864 0.1633 0.1089 0.1363 0.1075
Banking(SEAL) 1.075× 103 1.075× 103 1.075× 103 1.075× 103 1.113× 102 1.113× 102 1.113× 102 1.113× 102

Banking(PHE) 1.565× 104 1.565× 104 1.565× 104 1.565× 104 1.993× 103 1.993× 103 1.993× 103 1.993× 103

Income(Ours) 0.7379 0.1909 0.2738 0.1889 0.1588 0.1143 0.1413 0.1124
Income(SEAL) 5.093× 102 5.092× 102 5.093× 102 5.092× 102 3.885× 102 3.884× 102 3.884× 102 3.884× 102

Income(PHE) 7.413× 103 7.413× 103 7.413× 103 7.413× 103 6.853× 103 6.853× 103 6.853× 103 6.853× 103

Taobao(Ours) 1.836 0.1767 0.4085 0.1751 0.1403 0.1037 0.1222 0.1022
Taobao(SEAL) 7.429× 103 7.428× 103 7.429× 103 7.428× 103 1.631× 102 1.631× 102 1.631× 102 1.631× 102

Taobao(PHE) 1.082× 105 1.082× 105 1.082× 105 1.082× 105 2.945× 103 2.945× 103 2.945× 103 2.945× 103

EMNIST(Ours) 1.040 0.3334 0.6671 0.3300 0.8538 0.2314 0.5386 0.2314
EMNIST(SEAL) 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104

EMNIST(PHE) 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106

FMNIST(Ours) 1.016 0.3240 0.6286 0.3189 0.8504 0.2301 0.5282 0.2300
FMNIST(SEAL) 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104 7.918× 104

FMNIST(PHE) 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106 1.153× 106

Table 1: Results on the CPU time (in seconds). Note that PHE package is less optimized than SEAL.
It is generally not considered in real-world applications.

Active Party Data Transmission (MB) Passive Party Data Transmission (MB)

Training phase Testing phase Training phase Testing phase

Dataset Total Overhead Total Overhead Total Overhead Total Overhead

Banking(Ours) 0.88 0.14 0.57 0.14 0.79 0.13 0.44 0.13
Banking(SEAL) 8.41 7.67 8.10 7.67 8.32 7.57 7.97 7.57
Banking(PHE) 68.70 67.95 68.38 67.95 68.60 67.85 68.26 67.85

Income(Ours) 0.88 0.14 0.57 0.14 0.85 0.13 0.44 0.13
Income(SEAL) 8.41 7.67 8.10 7.67 8.39 7.57 7.97 7.57
Income(PHE) 68.70 67.95 68.38 67.95 68.67 67.85 68.26 67.85

Taobao(Ours) 1.51 0.14 0.88 0.14 1.42 0.13 0.76 0.13
Taobao(SEAL) 16.57 15.20 15.95 15.20 16.49 15.10 15.82 15.10
Taobao(PHE) 137.13 135.76 136.51 135.76 137.05 135.66 136.38 135.66

EMNIST(Ours) 6.24 0.21 3.31 0.21 5.99 0.05 3.06 0.05
EMNIST(SEAL) 76.85 70.82 73.92 70.82 76.60 70.66 73.67 70.66
EMNIST(PHE) 641.98 635.95 639.05 635.95 641.73 635.79 638.80 635.79

FMNIST(Ours) 6.24 0.21 3.31 0.21 5.99 0.05 3.06 0.05
FMNIST(SEAL) 76.85 70.82 73.92 70.82 76.60 70.66 73.67 70.66
FMNIST(PHE) 641.98 635.95 639.05 635.95 641.73 635.79 638.80 635.79

Table 2: Results on the communication both in size (MB).

not counted as overheads. All experiments are reported with 1 setup phase and 5 training rounds, and
each experiment is repeated 10 times, and averages are reported.

As mentioned in Section 5.1, in practice, each party should create new key pairs routinely to mitigate
the risk of adversaries from accessing confidential information in the event of secret key leakage. In
our experiments, the key pairs and the shared secrets will be regenerated for every 5 iterations.

In Table 1 we report the CPU time as a measure to show the computation cost using vFedSec. The
equivalence of certain total times to overhead times can be attributed to the substantial overhead
of HE, which overshadows other computational processes. The CPU time is reported separately
for the active party and passive parties. The overhead columns show extra CPU time compared
with unsecured VFL training. We use HE functions from Python module Phe (Data61, 2013) and
SEAL-Python (Huelse, 2023). Phe module implements the Pallier cryptosystem in Python, and
SEAL-Python creates Python bindings for APIs in Microsoft SEAL (SEAL) using Pybind11 (Jakob
et al., 2017). Considering that the protocols proposed by many HE VFL papers, such as BlindFL(Fu
et al., 2022), ACML(Zhang & Zhu, 2020), and PrADA(Kang et al., 2022a), they entail encrypting a
matrix and computing matrix multiplication between an encrypted matrix and a plaintext matrix, we
estimated the overhead of above operations through (1) encrypt a weight matrix in each aggregation;
(2) compute a matmul between a plaintext matrix and an encrypted weight matrix in each aggregation.
It is worth noting that, in reality, most HE VFL protocols require multiple rounds of communication,
repetitively encrypt/decrypt matrices, and do matmul. But, in our estimated cases, we only do encrypt
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Figure 2: Comparison of average CPU time for
different batch sizes, using SA and HE from Phe
and SEAL-Python. Y-axis is in log scale. The
results are from 10 experiments.

Client Server

Computation O(hN +B) O(1)

Communication O(N +B) O(BN)

Storage O(N) O(1)

Table 3: Overhead summary of vFedSec in one
training/testing round. h is the size of interme-
diate output, B is the batch size, and N is the
number of clients.

and do matmul once in each forward pass, and exclude the overhead of decryption (as decryption
may happen on the server side). Thus, our estimation is the minimum overhead incurred by HE VFL
protocols, while the real overheads of adopting those protocols can be multiple times larger than
our estimation if using the same HE libraries. Table 2 shows the transmission size in bytes for the
method and is also demonstrated on both the active and passive parties. As demonstrated in both
tables, the overhead accounts for a relatively small part of the total amount, in both CPU time and
communication size. The CPU time overhead is caused by parties adding masks to their original
output and encryption/decryption of sample IDs. The communication overhead is introduced by
broadcasting encrypted sample IDs, which are larger than plain text. As the masks can be cancelled
out by summing them, the unmasking process is very efficient.

Additionally, as reported in Table 3, the client-side overheads of vFedSec grow linearly with increasing
the number of clients and the batch size. The server-side computation and storage overheads are
negligible, and the communication overheads are incurred by broadcasting encrypted sample IDs to
all clients, instead of only forwarding sample IDs to the sample holders. More results can be found in
Appendix A.3.

6.3 ABLATION STUDY

We demonstrate the efficiency of vFedSec through an ablation study to compare our method and
widely-adopted method HE. The experiments compare how vFedSec and HE process matrix multipli-
cations.

Assume the input tensor is of size (Batch size, 8), and the weight tenor is (8, 8). Tensor shapes in
the comparison are smaller than tensors used by a passive party in experiments. Given that the HE
libraries do not support matrix operations, both vSecFed and HE implementations are not optimized
by any Python modules, such as numpy. The HE implementation in this comparison inevitably
involves nested Python loops. For large matrices or more advanced operations, implementations in
other languages, e.g., C++, C#, are more suitable. The results can be found in Fig. 2, which clearly
shows the efficiency of our method. It indicates that our approach (SA) yields a 9.1×102 ∼ 3.8×104

times speedup when evaluating the computational overheads attributed solely to SA in contrast to HE.

7 CONCLUSION

In this work, we consider the challenge of privacy-preserving training in vertical federated learning
settings. We provide the first framework termed vFedSec to use secure aggregation in the setting of
vertical FL by introducing innovative Secure Layer, which effectively and efficiently protects the
private sensitive dataset by masking the activations and gradients during aggregation. Our method is
efficient and accurate in the sense that it will not change the underlying results and performance by
adding security modules. We also benchmark our method against HE-based solutions using two HE
libraries, which indicate a reduction in computational costs by at least 690×, and a more than 9.6×
decrease in communication costs.
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A APPENDIX

A.1 EXPERIMENT SETUP

Banking Datasets: We keep the housing, loan, contact, day, month, campaign, pdays,
previous, poutcome features in the active party. Features default, balance are seen in
passive parties 1 and 2, while age, job, marital, education are kept in passive parties 3 and
4.

Adult Income Dataset: We keep features workclass, occupation, capital-gain,
capital-loss, hours-per-week in the active party and race, marital-status,
relationship, age gender, native-country are kept by passive parties 1 and 2, while
education is held by passive parties 3 and 4.

Taobao Dataset: We keep pid, cms_group_id, cate_id, brand,
new_user_class_level , price features in the active party and final_gender_code,
age_level, occupation are possessed by passive parties 1 and 2, while pvalue_level,
shopping_level are kept in the passive parties 3 and 4.

EMNIST: The size of images in the dataset is 28 × 28. To emulate VFL, each image is equally
partitioned into 4 "slices", sized 7× 28, and held by 4 different parties, i.e., one active party and three
passive parties.

Fashion-MNIST: The image size of this dataset is the same as that of EMNIST, and hence we adopt
the same approach to partitioning the dataset.

Model Architecture. We consider different model architectures for each dataset. Features and models
are partitioned among different parties in experimental settings. For the Banking dataset, the active
party used Linear(57, 64); passive party 1 and 2 used unbiased Linear(3, 64); passive party 3 and 4
used unbiased Linear(20, 64). The three local modules combined are equivalent to Linear(80, 64).
The global module owned by the aggregator comprised Linear(64, 1). For the Adult Income dataset,
the active party, passive party 1 and 2, and passive party 3 and 4 possessed Linear(27, 64), unbiased
Linear(63, 64), and unbiased Linear(16, 64) respectively. The three are equivalent to Linear(106, 64).
The global module had Linear(64, 1). For the Taobao dataset, Linear(197, 128), Linear(11, 128), and
Linear(6, 128), which were equivalent to Linear(214, 128), were utilized by the active party, passive
party 1 and 2, and passive party 3 and 4 respectively. The aggregator maintained a global module
with Linear(128, 1). We conduct experiments with CNN/MLP models on EMNIST/FMNIST datasets.
For CNN on EMNIST, each passive party has Conv3x3 with 32 channels followed by Conv1x1 with
64 channels; each conv layer is followed by BatchNorm, ReLU, and MaxPool2x2; the active party
has Linear(600, 120) and Linear(120, 47). For MLP on EMNIST, each passive party has Linear(196,
32) and Linear(32, 128); the active party has Linear(128, 256), Linear(256, 128), Liner(128, 64), and
Linear(64, 47). The CNN and MLP used for FMNIST are the same as those for EMNIST; only the
number of classes differs.

Overhead profiling. To quantify the additional communication and computation expenses associated
with our method, we measured the total CPU time and the total amount of upload/ download bytes,
including their respective overheads, compared to the unsecured split learning for VFL. In practice,
parties should create new key pairs routinely, which mitigates the risk of adversaries potentially
accessing all confidential information in the event of secret keys used in some iterations being
unexpectedly leaked. In experiments, the key pairs and the shared secrets will be regenerated for
every 5 iterations.

We used a learning rate of 0.01 and a batch size of 256. We applied ReLU activation to all layers
except the output layer.

A.2 PROOF FOR THE LEMMA

Proof. One thing we would like to make clear is that everything related to the cryptography is based
on the positive integers. Therefore, before adding masks, we need to perform quantization to the
intermediate output or gradients and then make them into the positive integers space, and everything
is operated in the space of the integers modulo R (ZR).
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According to distributive law, we have:

(a mod R+ b mod R) mod R = (a+ b) mod R (5)

The number R is chosen that both the sum of intermediate output or gradient and the mask generated
by the PRG is in the integer space ZR.

We can prove by induction on the number of clients (N) in the system.

First, assume there are 2 clients in the system: client 1 and client 2. We let the mask generated by the
PRG(ss12) be M , which is uniformly distributed in the integer space ZR. For a given intermediate
output value v1 and v2 for client 1 and 2, the output after the mask is (v1 +M ) and (v2 −M ), so
according to the distributive law, the results (v1 +M ) and (v2 −M ) are both uniformly distributed
in ZR.

Then, by induction and distributive law, with more clients in the system, since we are adding more
uniformly distributed masks into the equation, the results are still uniformly distributed in ZR.

A.3 ADDITIONAL RESULTS

Table 4 and 5 provides additional results.

Active Party CPU time (s) Passive Party CPU time (s)

Training phase Testing phase Training phase Testing phase

Dataset Total Overhead Total Overhead Total Overhead Total Overhead

EMNIST(Ours) 0.5551 0.3282 0.4786 0.3277 0.4000 0.1949 0.3423 0.1949
EMNIST(SEAL) 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103

EMNIST(PHE) 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104

FMNIST(Ours) 0.5438 0.3304 0.4723 0.3301 0.3947 0.2003 0.3338 0.2003
FMNIST(SEAL) 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103 1.207× 103

FMNIST(PHE) 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104 1.757× 104

Table 4: Results of MLP on the CPU time (in seconds)

Active Party Data Transmission (MB) Passive Party Data Transmission (MB)

Training phase Testing phase Training phase Testing phase

Dataset Total Overhead Total Overhead Total Overhead Total Overhead

EMNIST(Ours) 1.63 0.21 1.01 0.21 1.38 0.05 0.75 0.05
EMNIST(SEAL) 16.70 15.27 16.07 15.27 16.44 15.12 15.82 15.12
EMNIST(PHE) 137.26 135.83 136.63 135.83 137.01 135.68 136.38 135.68

FMNIST(Ours) 1.63 0.21 1.01 0.21 1.38 0.05 0.75 0.05
FMNIST(SEAL) 16.70 15.27 16.07 15.27 16.44 15.12 15.82 15.12
FMNIST(PHE) 137.26 135.83 136.63 135.83 137.01 135.68 136.38 135.68

Table 5: Results of MLP on the communication both in size (MB).
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