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Abstract

High-dimensional problems have long been con-
sidered the Achilles’ heel of Bayesian optimiza-
tion. Spurred by the curse of dimensionality, a
large collection of algorithms aim to make it more
performant in this setting, commonly by imposing
various simplifying assumptions on the objective.
In this paper, we identify the degeneracies that
make vanilla Bayesian optimization poorly suited
to high-dimensional tasks, and further show how
existing algorithms address these degeneracies
through the lens of lowering the model complex-
ity. Moreover, we propose an enhancement to
the prior assumptions that are typical to vanilla
Bayesian optimization, which reduces the com-
plexity to manageable levels without imposing
structural restrictions on the objective. Our modi-
fication - a simple scaling of the Gaussian process
lengthscale prior with the dimensionality - reveals
that standard Bayesian optimization works drasti-
cally better than previously thought in high dimen-
sions, clearly outperforming existing state-of-the-
art algorithms on multiple commonly considered
real-world high-dimensional tasks.

1. Introduction
In Bayesian optimization, complexity and dimensionality
are intrinsically interlinked — the higher the problem di-
mensionality, the harder it is to optimize. The exuberance
of space, and large distance between observations, makes
the size of high-variance regions along the boundary of the
search space exponentially large (Malu et al., 2021; Binois
& Wycoff, 2022). Moreover, the growing number of pa-
rameters of the Gaussian Process (GP) surrogate in relation
to the number of observations makes accurate modeling of
the problem at hand exceedingly difficult. In recent years,
the effort to create methods that achieve efficient Bayesian
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optimization (BO) in high dimensions has been substantial,
making it one of the most frequently addressed challenges
in the BO research community (Kandasamy et al., 2015;
Wang et al., 2016; Nayebi et al., 2019; Eriksson et al., 2019;
Eriksson & Jankowiak, 2021; Papenmeier et al., 2022; 2023;
Ziomek & Bou Ammar, 2023).

While approaches are plentiful and diverse, they all share
a common characteristic: they employ restrictions on the
objective which reduces its a-priori assumed complexity
by contracting the search space. This in turn decreases
distances between data points and prospective queries, in-
creasing their correlation, thus making GP inference more
informative. Assuming a degree of complexity which en-
ables meaningful correlation is essential to efficiently op-
timize problems of any dimensionality. Nevertheless, the
high-complexity, low-correlation issue presents itself most
clearly in the high-dimensional setting.

In this paper, we hypothesize that the shortcomings of
vanilla BO in high dimensions are strictly a consequence of
the complexity assumptions imposed on the objective. To
that end, we view existing high-dimensional BO (HDBO)
approaches through the lens of model complexity, which
arises from their structural assumptions. Thereafter, we
modify standard BO to follow a similarly complexity re-
duced structure, simply by appropriately scaling the length-
scale prior of the GP kernel. Consequently, we effectively
circumvent the well-established Curse of Dimensionality
(CoD) without introducing any of the conventional structural
restrictions on the objective that are prevalent in HDBO. We
demonstrate that standard BO works drastically better than
previously thought for high-dimensional tasks, outclassing
existing high-dimensional BO algorithms on a wide range
of real-world problems. Further, we aim to shed light on
the inner workings of the BO machinery and why minimal
changes in assumptions yield a dramatic increase in perfor-
mance. The result is a performant vanilla BO algorithm for
dimensionalities well into the thousands.

Formally, we make the following contributions:

1. We demonstrate the crucial difference between dimen-
sionality and complexity in BO, highlighting the failure
modes related to high assumed complexity and relate
existing HDBO classes to a reduction in complexity.
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2. We prove that when the model is uninformed, EI will
not exihibit exploratory behavior along the boundary,
contrasting claims of (Swersky, 2017; Oh et al., 2018).

3. We propose a plug-and-play enhancement to the vanilla
BO algorithm that reduces the assumed complexity to
enable high-dimensional optimization, and extensively
validate it across a wide spectrum of dimensionali-
ties. Results show that vanilla BO works significantly
better for high-dimensional problems than previously
imagined, substantially outperforming state-of-the-art
HDBO methods on a wide range of real-world tasks.

2. Background
In this section, we review the background related to Gaus-
sian processes and Bayesian optimization. We outline the
maximal information gain (MIG) as a measure of problem
complexity, and the model-level choices that impact the a-
priori assumed problem complexity, to subsequently explore
pitfalls of vanilla BO for high-complexity tasks in Sec 4.

2.1. Gaussian Processes

The Gaussian process (GP) has become the model class of
choice in most BO applications. The GP provides a distribu-
tion over functions f̂ „ GPpmp¨q, kp¨, ¨qq fully defined by
the mean function mp¨q and the covariance function kp¨, ¨q.
Under this distribution, the value of the function f̂pxq, at a
given location x, is normally distributed with a closed-form
solution for the mean µpxq and variance σ2pxq. We model
a constant mean, so that the dynamics are fully determined
by the covariance function kp¨, ¨q.

To account for differences in variable importance, each
dimension is individually scaled using lengthscale hyper-
parameters ℓi. This is commonly referred to as Automatic
Relevance Determination (ARD) (Williams & Rasmussen,
1995). For D-dimensional inputs x and x1, the distance
rpx,x1q is subsequently computed as r2 “

řD
i“1pxi ´

x1
iq

2{ℓ2i . Along with the signal variance σf and noise vari-
ance σ2

ε , θ “ tℓ, σ2
ε , σ

2
fu comprise the set of hyperparame-

ters that are conventionally learned, with a possible addition
of a learnable constant mean c (Balandat et al., 2020; Snoek
et al., 2012a). The likelihood surface ppθ|Dq for the GP hy-
perparameters is typically highly multi-modal (Rasmussen
& Williams, 2006; Yao et al., 2020) and desirable hyper-
parameters are conventionally found by MAP estimation,
where a hyperprior is set on the kernel hyperparameters θ.
While often overlooked, the choice of hyperprior can greatly
impact the performance of a BO algorithm in practice, par-
ticularly in non-conventional problem settings (Eriksson
& Jankowiak, 2021; Baptista & Poloczek, 2018; Rothfuss
et al., 2021a;b; Hvarfner et al., 2023).

2.2. Bayesian Optimization

We aim to find a maximizer x˚ P argmaxxPX fpxq of the
black-box function fpxq : X Ñ R, over the D-dimensional
input space X “ r0, 1sD. We assume that f can only be
observed point-wise and that the observations are perturbed
by Gaussian noise, ypxq “ fpxq ` εi with εi „ N p0, σ2

εq.

The acquisition function uses the surrogate model to quan-
tify the utility of a point in the search space. Acquisi-
tion functions employ a trade-off between exploration and
exploitation, typically using a greedy heuristic to do so.
Most common is the Expected Improvement (EI) (Jones
et al., 1998; Bull, 2011) and its numerically stable, easy-to-
optimize adaptation LogEI (Ament et al., 2023). Another
acquisition function which uses similar heuristics is the
Upper Confidence Bound (Srinivas et al., 2012; 2010).

A Working Definition of ”Vanilla” BO
In addition to the two main components — the probabilis-
tic surrogate model and the acquisition function - BO en-
tails multiple hidden design choices, that are paramount
to its efficiency. We consider the vanilla BO algorithm to
standardize the output values, and to use either a Squared
Exponential (Radial Basis Function, RBF) (Jones, 2001)
or a 5

2 -Matérn (Snoek et al., 2012a; 2014) Kernel, with
ARD lengthscales, an EI-family acquisition function and
multi-start gradient-based acquisition function optimization.

While both MLE and MAP are commonly used for hyperpa-
rameter selection in practical Bayesian optimization, preva-
lent BO frameworks (Balandat et al., 2020; GPyOpt-authors,
2016; Hutter et al., 2011) employ MAP estimation, setting
a prior on ppθq. While not included in our definition of the
vanilla algorithm, the prior ppℓq commonly places high den-
sity on low values of ℓ. Furthermore, broad, uninformative
priors are conventionally used on σ2

ε and σ2
f . While fully

Bayesian hyperparameter treatment (Osborne, 2010; Snoek
et al., 2012a) may also be used, we do not consider it part
of the vanilla algorithm.

2.3. The Maximal Information Gain

Our work centers around the assumed complexity of a prob-
lem, which conceptually could be seen as the size of the
space of functions that have non-negligible probability un-
der the GP prior. To quantify the assumed complexity, we
use the Maximal Information Gain (MIG) (Srinivas et al.,
2010) measure, which is the maximum obtainable informa-
tion about the function from querying a fixed number of
points. Firstly, we recall the Information Gain (IG) for a GP
model and a set of points X is defined as

IpyX , fXq “
1

2
log |I ` σ´2

ε K|, (1)
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Figure 1. Three models (green, blue, red) with varying lengthscales, and thus varying complexity, attempting to model the same objective,
acquiring data by greedily maximizing the IG. The MIG is shown for the three models as well as an independent kernel (dashed black),
where the matrix K “ I . The MIG for the complex model closely follows the independent kernel for 20 samples, suggesting that the
complex model can acquire 20 data of approximately maximal variance. The vertical line in the MIG-plot indicates the current iteration.

where K “ kpX,Xq is the Gram matrix for X . Then, for a
fixed number of points |Xn| “ n, the MIG is the maximizer
of this measure

γn “ max
XnĂX

IpyXn
, fXn

q. (2)

For fixed observation noise, the MIG is fully defined by the
covariance matrix, which in turn depends on the choice of
kernel, the problem dimensionality and the kernel hyper-
parameters. The MIG is maximal when the samples are
independent, i.e., K « I . The MIG lacks a closed form
solution, but is approximated to p1 ´ 1{eq-accuracy by se-
quentially querying the set of points with maximal posterior
variance (Nemhauser et al., 1978; Krause et al., 2008).

Since the MIG measures the assumed complexity of f , it
effectively quantifies the difficulty of optimizing a given task
within a Bayesian optimization context (Srinivas et al., 2010;
2012; Berkenkamp et al., 2019), given that the assumptions
on k are accurate. As long as the the MIG is nearly linear in
the number of observations, there are regions in the search
space that are almost independent of the collected data under
the model. As such, there are still locations that we know
nothing about, which makes optimization difficult. On the
contrary, a small growth rate of the MIG suggests that the
model would learn little by querying an additional point.

In Fig. 1, we provide an intuition for the MIG. We show
a simpler model (left, green), as well as increasingly com-
plex models (blue, red) for six data points. Their associated
MIGs (right) are displayed for the current iteration (solid)
and subsequent iterations (dashed) up until iteration 40. For
the simpler model, there is little left to learn about the func-
tion, and as such, its subsequent MIG growth is small. If the
green model is accurate, subsequent optimization is trivial
due to efficient modelling that stems from large correlation
in the data. On the contrary, the almost-zero correlation dis-
played in the red model makes its optimization vastly more
difficult. This point is further emphasized by its MIG, which
starts to deviate substantially from an independent kernel
first after 20 data points. This suggests that the model has

capacity for 20 almost-maximal variance data acquisitions,
despite modelling only a one-dimensional objective.

3. Related Work
Multiple approaches have been proposed to tackle the limi-
tations of BO in high dimensions. These resort to structural
assumptions on the objective, which we outline by class.

Low-dimensional active subspaces
Subspace methods assume the existence of a lower-
dimensional space which is representative of the function
in the full-dimensional space. The active subspace can
can be either axis-aligned (Nayebi et al., 2019; Eriksson
& Jankowiak, 2021; Papenmeier et al., 2022; 2023) or
non-axis-aligned (Garnett et al., 2014; Wang et al., 2016;
Kirschner et al., 2019; Binois et al., 2020; Letham et al.,
2020). Explicit variable selection approaches (Djolonga
et al., 2013; Li et al., 2017; Wang et al., 2020; Song et al.,
2022; Hellsten et al., 2023) employ the axis-aligned assump-
tion to identify important variables to optimize over.

Additive kernels
AddGP methods (Duvenaud et al., 2011; Kandasamy et al.,
2015; Gardner et al., 2017; Wang et al., 2017; Rolland et al.,
2018; Han et al., 2021; Ziomek & Bou Ammar, 2023) de-
compose the objective into a sum of low-dimensional com-
ponent functions, where by assumption each component is
only impacted by a small subset of all variables. As such, the
maximal dimensionality of each component is substantially
lower than the full dimensionality of f .

Local Bayesian optimization
These approaches (Eriksson et al., 2019; Müller et al., 2021;
Wan et al., 2021; Nguyen et al., 2022; Wu et al., 2023) adap-
tively restrict the search space to combat the CoD, limiting
the optimization to a subset of the search space. By focusing
on a smaller portion of the search space, the model exhibits
less variation than a global model, which simplifies opti-
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mization. Moreover, enforcing local optimization decreases
the susceptibility of the optimizer to the model.

Non-Euclidean kernels
These methods are employed to escape the exponential
growth of the typical hypercube search space in the dimen-
sionality of the problem. Cylindrical kernels (Swersky
et al., 2014; Oh et al., 2018) transform the geometry of the
search space, which consequently expands the center of the
search space, shrinking the boundaries.

The three pieces of related work that are most similar to ours
are Elastic GPs (Rana et al., 2017), SAASBO (Eriksson &
Jankowiak, 2021) and BOCK (Oh et al., 2018), which all
perform optimization in the full-dimensional search space.
Of these, (Rana et al., 2017) consider various lengthscales
of the GP when optimizing the acquisition function, but
uniquely does not impose simplifying assumptions on the
model. (Eriksson & Jankowiak, 2021) and BOCK (Oh et al.,
2018) employ their aforementioned assumptions to facilitate
effective optimization. Contrary to these works, we facilitate
optimization in the ambient space without making any of
the specific structural assumptions outlined in Sec. 3.

4. Pitfalls of High-Complexity Assumptions
We now discuss the issues related to highly complex mod-
els and connect it to the high-dimensional setting. Sec. 4.1
demonstrates the intuitive relation between complexity and
dimensionality. Building upon the intuitive understanding
of the MIG and the related model design choices gained
in Sec. 2.3, we delve into the BO-specific pathology that
arises from an overly complex model in Sec. 4.2, proving
that it is distinct from the well-known boundary issue (Swer-
sky, 2017). Thereafter, we demonstrate how various HDBO
methods circumvent the high-complexity-issue by show-
ing the how conventional structural assumptions reduce the
model complexity. In subsequent sections, we will use the
terms MIG and complexity interchangeably.

4.1. Complexity and Dimensionality

Increased model complexity most often becomes a criti-
cal issue for BO algorithms in high-dimensional problems
— with increasing dimensions, the maximal space between
points increases. Specifically, the expected distance between
randomly sampled points in a unit cube increases propor-
tional to the square root of the dimension (Köppen, 2000).
For both the RBF and the Matern- 52 kernels, this greatly
impacts the covariance, which decreases exponentially with
the ℓ-normalized squared distance.

In Fig. 2, we display the scaling of the complexity in the
number of data points, considering an RBF-kernel with
fixed lengthscales. The curves represent increasing dimen-
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Figure 2. Complexity scaling in the number of data points for vary-
ing dimensionalities of the problem for vanilla BO with a length-
scale of ℓ “ 0.5. For D “ 18, the complexity visually differs from
an independent kernel after approximately 3000 data points. For
D “ 24, 5000 data points are not sufficient to rid independence
between observations. The MIG is approximated by sampling
evenly distributed data using a SOBOL sequence.

sionalities. As the dimensionality increases, the covariance
matrix increasingly resembles that of an independent kernel
(black dashed line). For D “ 18 (purple), this manifests
in a visible difference first after 3000 samples, whereas for
D “ 24 (yellow), 5000 samples is insufficient to distinguish
an RBF kernel from an independent one, which implies that
kpX5000,X5000q « I . This strongly suggests that global
modelling of the objective is uninformative, as the model
quickly reverts back to its prior mean and variance even after
collecting vast amounts of data, and meaningful inference
between observed data points becomes very difficult.

4.2. The Boundary Issue Revisited

As covered in Sec. 2.3, high complexity implies that k pro-
duces relatively low correlation both between acquired data
points and in prospective queries. Thus, the GP will only be
informative close to existing observations, and will quickly
revert back to the prior as we move away from this data, as
demonstrated in the rightmost model in Fig. 1. Under this
regime, the BO data acquisition will be highly dependent on
the hyperparameters that dictate said GP prior, namely the
signal variance σ2

f and the mean constant c. We note that,
while these parameters are not always learned (De Ath et al.,
2020), the choice to fix them to 1.0 and 0.0 respectively
influences on the behavior of the BO algorithm as well.

Introduced by Swersky (2017), the boundary issue is the
phenomenon that EI will, in high-dimensional settings, re-
peatedly query uninformed, high-variance points along the
boundary of the search space to maximally explore in light
of an uninformed model. We contrast this claim by the
following proposition, which demonstrates that EI does
not tend towards maximal variance when the model is unin-
formed, namely when K « I (as in the D “ 24 example in
Fig. 2). We denote by xinc the location of the incumbent, its
value by ymax, and the GP mean function by c.
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Figure 3. Lower bound on the optimal correlation ρ˚ between the
incumbent and the upcoming query. a) The GP for two almost-
independent observations with a large exploratory region. EI
prefers to query close to the incumbent, well within the bound
on ρ˚ from Prop. 4.1. b) Tightness of the bound compared a
numerical solve for optimal correlation for various values of ymax.

Proposition 4.1 (Lower Bound on EI Correlation).
Assume that ymax ą c, K “ σ2

fI and that the candidate
query x˚ correlates with at most one observation. Then, the
correlation ρ˚ “ σ´2

f kpx˚,xincq between the next query
x˚ “ argmaxxPX EIpxq and xinc satisfies

ρ˚

d

1 ` ρ˚

1 ´ ρ˚
ě

ymax ´ c

σf
. (3)

We outline the proof in App. C, where we parameterize EI
by the correlation ρ between a candidate x˚ and the incum-
bent, and show that BEI

Bρ is positive for all values of ρ below
the bound in Eq. 3. Thus, EI will prefer an observation that
has substantial correlation with xinc to one that does not.

Proposition 4.1 demonstrates that, when correlation in the
model is low, EI does not seek out high-variance regions as
described by Swersky (2017). This contrasts the common
belief that HDBO intrinsically suffers from excessive ex-
ploration around the borders (Siivola et al., 2017; Oh et al.,
2018; Eriksson et al., 2019; Eriksson & Jankowiak, 2021;
Müller et al., 2021; Binois & Wycoff, 2022; Eduardo & Gut-
mann, 2022). As we will soon cover, uninformative models
frequently display the opposite behavior, where repeated
queries are made exceedingly close to the incumbent.

In Fig. 3a, we observe this query behavior in action for
the high-complexity model in Fig. 1 — despite many large-
variance regions, the next query is very close to the current
best, and within our correlation bound. In Fig. 3b, we
display the numerical solution to BEI

Bρ “ 0 together with the
analytical bound in Proposition 4.1. We observe that for
typical values of the GP mean and outputscale, the candidate
query has substantial correlation with the incumbent under
the aforementioned setting of an uninformed model.

With that said, the phenomenon of frequent querying of
the boundary may still occur in practice, which we expand
on in App. C.2. Specifically, querying of the boundary
may occur when lengthscales are very long along one or
more dimensions, which can occur when fitting the model
using MLE (Williams & Rasmussen, 1995; Rasmussen &
Williams, 2006; Karvonen & Oates, 2023). Then, candidates
will be low-variance and highly correlated with existing data,
despite being located at the boundary of one or multiple di-
mensions that are all deemed irrelevant. In Fig. 10 visualizes
this setting for a 2D toy example.

Proposition 4.1 establishes that EI does not intrinsically
pursue high-variance, uninformed regions. Rather, queries
preferentially have substantial correlation with the incum-
bent. In a high-complexity setting, substantial correlation
only arises when a data point is close to existing data, which
suggests that EI should make queries in close proximity
to the incumbent. As a result, the algorithm tends to very
seldom query far from the incumbent, resulting in an ex-
ploitative behavior with similar qualities to local search.
This phenomenon arises when there is negligible correlation
in the data, namely when model complexity is too high to
effectively model the objective function with existing data.
In App. C.2, we expand on the local search behavior of
the EI acquisition function, demonstrating its prevalence in
conventional setups for dimensionalities as low as six.

4.3. Complexity of Existing HDBO

Having established that high complexity can yield uninfor-
mative models, as well as having discussed the link between
complexity and dimensionality, it is evident that complexity
assumptions must be sensible to facilitate a calibrated GP in
HDBO. Notably, all the classes of HDBO algorithms out-
lined in Sec. 3 have such complexity-lowering assumptions.
In Fig. 4, we display the modeled complexity of the most
common classes of HDBO algorithms. Fig. 4 can be viewed
as a cross section of Fig. 2, where we fix the number of data
points to 1000 and instead vary the dimensionality of the
problem to demonstrate how each HDBO class lower the
growth of the complexity in the dimensionality, relative to a
common global GP model as well as an independent kernel.
The methods presented are: REMBO (Wang et al., 2016)
with de “ 4, random AddGPs (Ziomek & Bou Ammar,
2023), BOCK (Oh et al., 2018), Local GPs (Eriksson et al.,
2019) after one round of shrinkage, the global GP with fixed
lengthscales from Fig. 2, and our proposed method — scal-
ing the lengthscales in the dimensionality of the problem,
which is introduced later in Sec. 5. While each algorithm
has parameters that affect the MIG, we have set parameters
to make the comparison as fair as possible. In App. A.2, we
outline the setup in detail.

As we have observed previously, employing a full-
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Figure 4. We display the model complexity scaling in the dimen-
sionality of the problem for 1000 data points for various HDBO
algorithms. Vanilla BO with fixed lengthscales (magenta) ap-
proaches independent complexity at approximately 20 dimensions.
As expected, REMBO random embeddings (brown) reduce com-
plexity the most, followed by BOCK cylindrical kernels (yellow).
The MIG growth of our proposed modification of the global GP
(blue) flattens out at a rate similar to cylindrical kernels (yellow),
despite modelling the original, full-dimensional space.

dimensional GP without restrictions is far too complex, as
we have approximate independence after 1000 observations
already for an 18D-objective. As expected, random sub-
space methods have small complexity increase in the ambi-
ent dimensionality. The increase stems from the fact that ran-
dom, non-axis-aligned embeddings may slice the ambient
dimensions very narrowly, which results in shorter length-
scales on the embedded model. The complexity increase
for both our method (blue) and cylindrical kernels (yellow)
stagnates rapidly, effectively assuming only marginal com-
plexity increases after D “ 100. Local methods (red) scale
at same rates as global GPs (blue), but work on a drastically
simplified model due to the lengthscale-scaled trust regions.

We re-iterate that low complexity is not strictly a desirable
property, but as per Occam’s razor, the most desirable prop-
erty is to have the lowest possible complexity for a model
that sufficiently aligns with the objective. This is especially
true in the context of small data optimization, where each
new data point acquired and employed to train the model
is costly. We note, however, that the almost-independence
exhibited by the global GP in Fig. 4 (magenta) for even
moderate dimensionalities inevitably leads to the degener-
acy highlighted in Sec. 4.2. Moreover, the assumptions
behind each HDBO method are all means to the same end -
reducing model complexity to manageable levels.

5. Low-complexity High-dimensional
Bayesian Optimization
Hypothesizing that the pitfalls of HDBO are strictly caused
by assumptions of insurmountable complexity, we present

our main methodological contribution. We design a simple,
plug-and-play assumption that retains almost constant com-
plexity as the dimensionality increases. Similar to Fig. 1,
we achieve this by adjusting the prior on the lengthscales to
the dimensionality of the problem to the task at hand. More-
over, we ensure a calibrated signal variance by drawing on
previous findings on GPs in an over-parameterized regime.

5.1. Ensuring Meaningful Correlation

Since stationary kernels compute covariances based on dis-
tances between data and both the diagonal and the dis-
tance between randomly sampled points in a D-dimensional
hypercube scales as

?
D (Köppen, 2000), increasing the

lengthscales at this rate, ℓi9
?
D, counteracts the complex-

ity increase that stems from the increased distances. This
change may, for example, be achieved by scaling the µ term
of a LogNormal (LN ) prior

ℓi „ LN
ˆ

µ0 `
logpDq

2
, σ0

˙

(4)

where pµ0, σ0q are suitable parameters of ppℓq for a one-
dimensional objective. This shifts both the mode and mean
of the distribution by a factor of

?
D. Notably, our method

does not increase the number of hyperparameters in a MAP-
based BO setup. Furthermore, the proposed change may
similarly be applied the more commonly used Gamma prior,
with a different parameterization (Cho et al., 2004). Impor-
tantly, the change in complexity is not definitive, as we may
still find some variables to be more important than others
and adjust on-the-fly through MAP estimation of ℓ.

The proposed change suggests that the problem of large
distances between points, and thereby the insurmountable
complexity, is one that arises by assumption. Specifically,
the lengthscale priors ppℓq employed by conventional BO
frameworks (Balandat et al., 2020; Snoek et al., 2012b; Hut-
ter et al., 2011) place substantial density on low values of ℓ.
Assuming that all dimensions are of major importance may
appear like a conservative and sensible choice. For mod-
erately high dimensions, however, it practically guarantees
that the problem will be impossible to model globally, even
with the largest of budgets. Our method takes the oppo-
site approach, and simply assumes that a problem is simple
enough to be modeled globally, for any dimensionality.

5.2. Calibrating Epistemic Uncertainty

Lastly, we consider the role of the signal variance parameter,
whose impact on data acquisition is evidenced by Prop. 4.1.
Motivated by findings on on the optimal value σ̂2

f of σ2
f gen-

erally in Moore et al. (2016) and in the over-parameterized
regime by Ober et al. (2021), we consider

σ̂2
f “

1

n
yTK´1y (5)
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which, in a BO context, has a different impact than in GPs
generally. As we are able to selectively acquire our data,
a large number of parameters and substantially correlated
data will simplify data fit, driving down the optimal value
of σ2

f . When data is repeatedly re-normalized, the issue will
be reinforced, as the signal variance is further decreased,
and another highly correlated query is selected. As such, we
fix σ2

f “ 1 to match the scale of the standardized observa-
tions, and to ensure that σ2

f does not diminish over time. In
App. F.1, we ablate this modeling choice and demonstrate its
impact on the value of the outputscale during optimization
for two real-world optimization tasks, and in App. F.2, we
demonstrate the impact of the outputscale modeling choice
on optimization performance.

6. Results
We now compare our Vanilla Bayesian Optimization method
with a dimensionality-scaled lengthscale prior (we will
refer to our method as D-scaled ppℓq or DSP for clar-
ity), against state-of-the-art HDBO methods. We will
include various classes of HDBO methods, such as the
subspace-methods Bounce and SAASBO (Papenmeier et al.,
2023; Eriksson & Jankowiak, 2021), the Local BO al-
gorithms TuRBO (Eriksson et al., 2019) and Maximal
Probability of Descent (Nguyen et al., 2022) (MPD),
the AddGP method RD-UCB (Ziomek & Bou Ammar,
2023), the variable selection method MCTS-VS (Song
et al., 2022), and CMA-ES (Hansen, 2006). We use
each method’s official repository, with the exception of
SAASBO which is run through Ax (Bakshy et al.). We
detail the experimental setup in App. A, and our code is pub-
licly available at https://github.com/hvarfner/
vanilla_bo_in_highdim.

We instantiate the DSP with µ0 “
?
2, σ0 “

?
3, which

equates to ℓ « 0.50 for D “ 6 under the mode of ppℓq.
We initialize all methods with 30 samples, marked by a
dashed vertical line. Bounce, CMA-ES and MPD deviate
from conventional initialization. On all benchmarks, we
use LogEI (Ament et al., 2023), using a low acquisition
optimization budget of 512 initial (global) SOBOL samples
and 512 Gaussian samples around the incumbent, followed
by L-BFGS on the 4 best candidates, which is made pos-
sible by the low-complexity-high-smoothness model. In
App. E, we demonstrate that our method delivers consistent
performance for a range of complexities.

6.1. Sparse Synthetic Test Functions

We start by evaluating the DSP on a collection of commonly
considered synthetic test functions with varying total and
effective dimensionality. We note that the assumptions made
in Sec. 5 diametrically oppose these test cases - each func-
tion has a low number of highly important dimensions with

the large remainder being unimportant, whereas we assume
that each dimension has relatively small impact.

The DSP is highly performant, as it rapidly identifies the
important dimensions and subsequently optimizes the task.
This is similar in to (Eriksson & Jankowiak, 2021), whose as-
sumptions, represented through its sparse lengthscale prior,
aligns perfectly with the task at hand. As such, SAASBO
should, and does, perform best on average, with Vanilla BO
being second. Notably, as Vanilla BO does not require the
HMC (Bingham et al., 2018) fully Bayesian model fitting
that SAASBO uses, it runs in a small fraction of the time.

6.2. A Plug-in on Mid-Dimensional Tasks

Subsequently, we use the DSP as a plug-in for low- and
mid-dimensional tasks, primarily those considered in (Eriks-
son et al., 2019), to evaluate its ability to serve as a sub-
stitute for conventional, non-adaptive hyperparameter pri-
ors. The Lunar Lander (12D) and Robot Pushing (14D)
tasks from (Wang et al., 2017), as well as the Swimmer
(16D) and Hopper (32D) reinforcement learning tasks from
the MuJoCo suite (Todorov et al., 2012), where we aim
to learn a linear policy for two objects with varying de-
grees of freedom. We evaluate against a Γp3, 6q lengthscale
prior with learnable σ2

f , and against TuRBO, commonly
considered the state-of-the-art mid-dimensional BO method.
In Fig. 6, it is shown that the DSP is either competitive
with, or outperforms, TuRBO on all tasks. In App. C, we
empirically display the pronounced local search-like behav-
ior of the Γp3, 6q prior for Hartmann (6D), which suggests
that it does not offer a calibrated exploration-exploitation
trade-off. On the contrary, the DSP maintains a moder-
ate distance between queries, which indicates a calibrated
trade-off throughout optimization.

6.3. High-dimensional Optimization Tasks

We now benchmark Vanilla BO with the DSP against
a collection of frequently considered tasks in the high-
dimensional literature (Eriksson & Jankowiak, 2021; Eriks-
son et al., 2019; Papenmeier et al., 2022; 2023; Šehić et al.,
2021): Specifically, we consider MOPTA08 (124D), SVM
(388D), Lasso-DNA (180D), and the MuJoCo (Todorov
et al., 2012) Ant (888D) and Humanoid (6392D) reinforce-
ment learning tasks. We stress that, for all benchmarks
where applicable, (BAxUS on SVM, Lasso-DNA and Hu-
manoid, TuRBO on MOPTA and SVM, RD-UCB on Lasso-
DNA), baselines perform within the error bars of the orig-
inal implementation (Papenmeier et al., 2022; Ziomek &
Bou Ammar, 2023) or in other papers by the same authors
in the case of TuRBO (Eriksson et al., 2019; Eriksson &
Jankowiak, 2021). In App. D, we display the performance
in a lower-budget setting. In App. E.1, we compare to con-
ventional MAP and MLE. Fig. 7 shows that Vanilla BO
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Figure 5. Average log regret of all baselines on Levy (4D) and Hartmann (6D) synthetic test functions of varying ambient dimensionality
across 20 repetitions (10 for SAASBO). Vanilla BO performs second best, beaten only by SAASBO on four tasks, whose axis-aligned
subspace assumption (along with MCTS-VS’ variable selection) aligns perfectly with the task at hand. We omit SAASBO from the
1000D benchmarks due to the prohibitive runtime, and RD-UCB and MPD due to a combination of runtime and numerical instability.
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Figure 6. Best observed value for the DSP, conventional MAP, and TuRBO on Hartmann (6D) and four mid-dimensional real-world
optimization tasks. All methods perform comparably on Hartmann, while the DSP outperforms or is on part with TuRBO on the other
tasks. Notably, the DSP performs at least equally well as the Γp3, 6q on all tasks, and substantially better on 4 out of 5 tasks, which
suggests that it is well-suited as a drop-in replacement for conventional priors.

with the DSP is highly competitive, performing the best by
a substantial margin on Lasso-DNA and Humanoid, and
produces top-two performance on the remaining tasks. On
the MuJuCo Ant, Bounce’s low-dimensional initialization
allows it to obtain an average value of 800 after DoE due
to consistently sampling data points close to the center of
the search space. Notably, the DSP is very consistent be-
tween repetitions, as evident by the small error bars. This
can be attributed to the consistent modelling, as the DSP is
not dependent on randomness in subspace design, trust re-

gion initialization or variable selection. Rather, it obtains a
consistent, calibrated model through meaningful correlation
in the data, from which it can effectively infer promising
regions and improve upon the DoE.

Notably, the DSP does not heavily depend on identification
of active variables. In Fig. 8, we demonstrate for the distri-
bution of lengthscale values for the 388D SVM after 250
iterations. The DSP does not consistently identify active
dimensions with large confidence. Instead, the calibrated
complexity of the model allows for meaningful inference
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gets an advantage from performing the initialization phase in a lower-dimensional subspace, which enables it to obtain initial samples
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Figure 8. Distribution of lengthscale values for the DSP on the
388D SVM task. Lengthscales are sorted according to their mean
log value. The three last indexed dimensions (385, 386, 387) are
considered particularly active (Eriksson & Jankowiak, 2021), but
are not identified as such consistently in our method. the black
horizontal lines indicate upper and lower quartiles, and the orange
horizontal lines indicate the median.

along all dimensions, until particularly active dimensions
are potentially identified. As such, the DSP does not re-
quire the identification of active variables to achieve cal-
ibrated BO, but its identification helps optimization. As
such, we attribute the superior performance of our method
to the calibrated complexity, and the effective inference and
exploration-exploitation trade-off that stems from it.

7. Conclusion and Future Work
The curse of dimensionality has long been assumed to hinder
the application of conventional Bayesian optimization in
high dimensions. We show that the hindrance is not driven
by dimensionality, but by the assumed complexity of the
objective. We make minor modifications to the assumptions
of the vanilla BO algorithm to make complexity scaling
manageable with increasing dimensionality. As a result,
we demonstrate that vanilla BO is extremely effective for
problems of high dimensionality, outperforming the state-
of-the-art for problems with dimensions into the thousands.

Nevertheless, we do not believe that tailored high-
dimensional BO algorithms are unwarranted: if the problem
at hand is known to adhere to the structural assumptions
that are conventionally made (effective subspace, additivity)
or where non-stationarity in the objective facilitates local
modelling, we believe these approaches will be superior to
the vanilla algorithm. However, these restrictive assump-
tions should not be made out of necessity, but when prior
knowledge supports them. For future work, we plan to in-
vestigate the topic of complexity as it relates to modelling
in Bayesian optimization more broadly, and in the context
of latent space GP models (Griffiths & Hernández-Lobato,
2017; Maus et al., 2022).
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A. Experimental Setup
We outline our experimental setup, detailing the specifics of the baseline methods. Our code is publically available
at https://github.com/hvarfner/vanilla_bo_in_highdim.

A.1. SAASBO

Due to the computational expense of SAASBO model fitting and subsequent forward passes through the acquisition function,
we run the lower-budget variant outlined in App. A1 of (Eriksson & Jankowiak, 2021). Due to the 16-fold increase in the
cost of the forward pass in the fully Bayesian setting, we limit the maximal number of evaluations to 500. Lastly, the model
is retrained once every 4 iterations, since a single model fitting takes upwards of 5 minutes on SVM on 4 CPUS for later
iterations.

A.2. Complexity Comparison Setup

For the complexity comparison in Fig. 4, we benchmark against the following instantiations of each HDBO algorithm:

Cylindrical Kernel We stay as close as possible to the default values presented in BOCK (Oh et al., 2018), using a
degree-3 polynomial for the angular component of the kernel. We disregard input warpings (Snoek et al., 2014), as we do
not view them as related to the dimensionality-reducing component of the model.

AddGP We randomly sample groups by sequentially considering one dimension at a time. With equal probability for each
existing group and one empty group, the dimension under consideration is added to one of the groups. This setup is similar,
but not equivalent, to the algorithm by Ziomek & Bou Ammar (2023).

Local GP We consider the instantiation described by Eriksson et al. (2019) of constructing the trust region with a size of
0.8ℓ. Since we plot the complexity of the local GP after one round of shrinkage, the trust region side length is equal to 0.4ℓ.
Moreover, we assume this trust region to hold all data to enable a comparison with other methods.

Random Embedding We instantiate the standard REMBO (Wang et al., 2016) embedding from a D-dimensional Gaussian
distribution. We compute the complexity by based on the shortest lengthscale of each subspace dimension. These, in turn,
are computed from by multiplying the base lengthscale, ℓ “ 0.5, by the fraction of the effective dimension that the ambient
dimension is occupying, as visualized in Fig.3 of Wang et al. (2016).

B. Benchmarks
We outline the exact benchmarks used, including the exact bounds and the noise level. For Levy, we offset each active
dimension. Since the optimum is in r1, 1, 1, . . .s, methods that search along diagonals in the search space, such as
BAxUS (Papenmeier et al., 2022), gets an outsized, and arguably unrealistic, advantage.

Notably, We use the BAxUS variant of SVM, which uses a smaller subset than the original benchmark by (Eriksson
& Jankowiak, 2021) for faster evaluation. As evident form a comparison of the results in Papenmeier et al. (2022) and
(Eriksson & Jankowiak, 2021), these benchmarks produce different results, suggesting that the objective functions are
substantially different.

Task Effective Dimensionality σϵ Search space
Levy (4D) 4 0.01 r´10, 5s ˆ r´10, 10s ˆ r´5, 10s ˆ r´1, 10s

Hartmann (6D) 6 0.01 r0, 1sD

Table 1. Benchmarks used for the synthetic, axis-aligned experiments.

C. The Locality Issue
We outline our findings related to the boundary and locality issue, proving that the original description (Swersky, 2017)
does not happen in practice. Subsequently, we display our empirical findings regarding the locality issue for BO with a
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Task Dimensionality Search space
MOPTA 124 r0, 1sD

Lasso-DNA 180 r´1, 1sD

SVM 388 r0, 1sD

Ant 888 r´1, 1sD

Humanoid 6392 r´1, 1sD

Table 2. Benchmarks used for the real-world optimization experiments.

conventional, short-lengthscale hyperprior using the BoTorch (Balandat et al., 2020) default. We note, though, that other BO
frameworks (Hutter et al., 2011; Snoek et al., 2012b; GPyOpt-authors, 2016) employ lengthscale priors with very similar
characteristics, and any of them could have been used for our purpose.

C.1. Theory: Non-existence of the Boundary Issue

To prove that EI will never prefer a point with maximal variance under the proposed setup, we first restate the formal
definition of EI:

EIpxq “ E
“

rpfpxq ´ ymaxs`
‰

“ ZσpxqΦpZq ` σpxqϕpZq, (6)

where ymax is the maximal objective function value observed so far, Z “ pµpxq ´ ymaxq{σpxq, and ϕ and Φ are the PDF
and CDF of the standard Gaussian, respectively. Hence, for a noiseless function the next point x˚ to query is

x˚ P argmax
xPX

EIpxq. (7)

Note that we are considering a maximization problem. Lastly, we denote the mean of the GP by c.

Proposition C.1. Assume that ymax ą c, K “ I and that the candidate query x˚ correlates with at most one observation.
Then, the correlation ρ˚ “ σ´2

f kpx˚,xincq between the next query x˚ “ argmaxxPX EIpxq and xinc satisfies

ρ˚

d

1 ` ρ˚

1 ´ ρ˚
ě

ymax ´ c

σf
. (8)

Proof. Since K “ σ2
fI and x˚ correlates with only one observation, we need only consider the proximity of x˚ to the

incumbent xinc. As such, we start by parametrizing EI by the correlation ρ , so that kpx˚,xincq “ σ2
fρ:

µpx˚q “ c ` kpx˚,XqkpX,Xq´1py ´ cq “ c ` ρpymax ´ cq

σ2px˚q “ kpx˚,x˚q ` kpx˚,XqkpX,Xq´1kpX,x˚q “ σ2
f p1 ´ ρ2q. (9)

We will by ÊIpρq denote the ρ-parametrized EI, which is a function over ρ, to distinguish it from the regular EIpxq, which
is a function over x. Moreover, for ease of notation, we scale our data such that c “ 0, σ2

f “ 1, and ŷmax “
ymax´c
σf

ą 0.

After scaling we further get Ẑ “

ˆ

pρ´1q?
1´ρ2

ŷmax

˙

, and finally:

ÊIpρq “ pρ ´ 1q ŷmaxΦ

˜

pρ ´ 1q
a

1 ´ ρ2
ŷmax

¸

`
a

1 ´ ρ2ϕ

˜

pρ ´ 1q
a

1 ´ ρ2
ŷmax

¸

. (10)

Differentiating with regard to ρ, we obtain that:

BÊI

Bρ
“ ŷmaxΦpẐq ´

ρ
a

1 ´ ρ2
ϕpẐq. (11)
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We then establish the values of ρ for which BEI
Bρ are positive. We bound ΦpẐq as a function of ϕpẐq using known inequalities

for Mills’ ratio p1 ´ Φq{ϕ (Duembgen, 2010),

2ϕpẐq
a

4 ` Ẑ2 ´ Ẑ
ď ΦpẐq, ´ŷmax ď Ẑ ď 0.

We then insert the inequality into the expression for BÊI
Bρ , which leaves

BÊI

Bρ
ě

«

2ŷmax
a

4 ` Ẑ2 ´ Ẑ
´

ρ
a

1 ´ ρ2

ff

ϕpẐq

“

»

—

–

2ŷmax
b

4 `
p1´ρq2

1´ρ2 ŷ2max `
1´ρ?
1´ρ2

ŷmax

´
ρ

a

1 ´ ρ2

fi

ffi

fl

ϕpẐq

ě

»

–

2ŷmax

2 ` 2ŷmax
1´ρ?
1´ρ2

´
ρ

a

1 ´ ρ2

fi

flϕpẐq,

where we apply the triangle inequality to the denominator of the left term between the first and second step. We wish to
lower bound ρ˚ “ argmax ÊIpρq by finding the values of ρ for which ÊI is strictly increasing. Thus, we set our lower
bound for the derivative to zero and obtain

BÊI

Bρ
ě

»

–

ŷmax

1 ` ŷmax
1´ρ?
1´ρ2

´
ρ

a

1 ´ ρ2

fi

flϕpẐq ě 0.

We then multiply by
a

1 ´ ρ2, and divide by ϕpẐq, which are both ą 0 for ρ ą 0, and re-arrange:

ŷmaxp1 ´ p2q
a

1 ´ ρ2 ` ŷmaxp1 ´ ρq
´ ρ ě 0 ðñ

ŷmaxp1 ` ρq
b

1`ρ
1´ρ ` ŷmax

´ ρ ě 0 ðñ

ŷmax ´ ρ

c

1 ` ρ

1 ´ ρ
ě 0

As such, we can conclude, that ÊI is strictly increasing in ρ as long as ŷmax ě ρ
b

1`ρ
1´ρ , meaning that ρ˚ “

argmaxρPr0,1q ÊIpρq satisfies the inequality

ρ˚

d

1 ` ρ˚

1 ´ ρ˚
ě ŷmax “

ymax ´ c

σf
.

C.2. The Locality Issue in Practice

We now demonstrate the practical prevalence of the locality issue, expanding on the claims from Sec. 4.2. We note that the
locality issue applies to the high-complexity setting, as generally outlined in Sec. 4. While the high-complexity setting is
most prevalent when modeling high-dimensional problems, we will exemplify the locality issue through low-dimensional
examples where complexity has been artificially increased by shortening the lengthscale of the model.

In Fig. 9, we demonstrate the continuation of Fig. 3 for six iterations. We visualize the bound on ρ˚ in green for the
first three iterations (top row) when the incumbent is not in the interior of the good region of the search space. Notably,
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Figure 9. Visualization of the locality issue for the continuation of Fig. 3, considering the high-complexity model with short lengthscales.
For the first three iterations (top row), we visualize the bound on ρ˚ since the incumbent is at the leftmost edge of the well-performing
region. In the bottom row, the local behavior continues despite no longer observing improvement. Notably, the large variance region in the
leftmost part of the search space is never preferred by EI despite continuous re-normalization of the data.

the large-variance region in the leftmost part of the search space is never considered to be the best, despite repeated
re-normalization of the data between iterations.

We re-iterate that the EI-value of the large-variance regions may often be good, but not optimal, which is clearly exemplified
in Fig. 9.

C.3. The Boundary Issue through the Lens of Locality

We now demonstrate how the boundary-seeking behavior (Swersky, 2017) may occur even for a complex model. Importantly,
this occurs under special circumstances, when a small number of dimensions account for a large degree of the total model
complexity, with other dimensions being practically deactivated. In a high-dimensional setting, where the number of GP
lengthscales may be on the same order of magnitude as the number of data points, this becomes increasingly likely.

In Fig. 10, we visualize how EI may choose to query high-correlation points that are seemingly distant, and even along
the boundary of the search space. We visualize three observations (yellow), the posterior moments, and the value of EI
across the search space. The model has a short lengthscale in x2, but the large lengthscale along the x1 dimension allows
for traversal across the dimension with very little change in predictions and correlation. For this setting, the optimal query
(green star) is close to the incumbent, within our correlation bound. However, all of the green line constitute queries that
are within a factor 10´5 of the max of EI. Queries along this line are decidedly not exploratory ones (in the classical
high-variance sense), since they have very high correlation with the incumbent. However, they cover both boundaries, and a
large region outside the bounds of the search space. Due to the instability of MLE in the overparametrized, high-dimensional
setting, long-lengthscale may appear frequently dimensions, and can also vary substantially between model fittings.

Lastly, we demonstrate the drastically different behaviors that may arise even in low-dimensional problems, such as the
non-embedded variant of Hartmann (6D). Since our enhancement is applicable to low-dimensional problems as well, we
demonstrate its ability to exhibit a well-calibrated exploration-exploitation trade-off. We demonstrate the performance of
MLE, conventional (Balandat et al., 2020), low-lengthscale MAP (ℓi „ Γp3, 6q) and the DSP in Fig. 11 While conventional
MAP and DSP achieve almost identical final performance, we now consider the degree to which the locality issue is present
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Figure 10. A 2D-visualization of the locality issue for a two-dimensional model of high complexity. The model has a very short lengthscale
in x2 (ℓ1 “ 0.1), and a long lengthscale in x1 (ℓ2 “ 1.75). From left to right, the plots visualize the posterior mean, variance and EI,
where darker colors mean larger values. Close to the incumbent (yellow star), the EI values are high. The green line in the rightmost plot
indicate a region of almost equivalent candidates to the argmax (green star) where EI is within a factor 10´5 of the max.
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Figure 11. (left) Regret performance a short, conventional lengthscale prior (yellow) and the DSP (blue) across 10 repetitions. Conventional
MAP and DSP perform comparably in final performance. (right) Average distance to the incumbent for conventional MAP and DSP
per iteration, averaged over 20 repetitions. Conventional MAP exemplifies the locality issue, as it almost exclusively queries in close
proximity to the incumbent, whereas DSP displays a balance between exploration and exploitation, as visualized by the wide error bars.

for each method by considering the minimal distance to a preceding data point for each query throughout the optimization
round. Fig. 11 visualizes this, and we see that conventional MAP almost never makes an exploratory query after the DoE
phase, and takes substantially smaller local steps than our enhancement. While final performance is not negatively impacted,
Fig. 11 reveals that conventional MAP is effectively performing an initial random search followed by 140 iterations of local
search. While potent, the high complexity of the model effectively disables the global, exploratory component of the BO
algorithm.

D. Low-budget Performance

We display the performance of the DSP on the real-world benchmarks from Sec.6. In Fig. 12, we observe that for all
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real-world tasks, the DSP provides the strongest initial performance. DSP rapidly improves after initialization, which
indicates potent inference ability. Notably, the DSP does not rely on identifying a subset of active variables, yet provides
superior performance to the alternatives.
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Figure 12. Best observed value of all baselines on five real-world tasks from of various domains across 20 repetitions (10 for SAASBO)
and Humanoid. The DSP performs best across all tasks for a low-budget settings, and offers a pronounced initial jump in performance
after DoE.

E. Ablation Studies
We ablate the hyperparameters of the enhanced vanilla BO algorithm. Specifically, we provide ablations for both the
assumed complexity and the uncertainty of the complexity measure, as well as comparisons to BO with conventional MAP
priors (Balandat et al., 2020) of ℓi „ Γp3, 6q with high density on low values for the lengthscales, as well as MLE. Lastly,
we demonstrate the performance of our enhancement with a learnable signal variance hyperparameter σ2

f . We evaluate on a
subset of the tasks presented in Sec. 6, and include both synthetic, axis-aligned tasks and real-world tasks.

We find that generally, Vanilla BO is highly performant across almost an order of magnitude of complexity, as displayed
in Fig. 17, and very robust to changes in uncertainty of the complexity, as shown in Figs. 15 and 16. Assuming too low
complexity, however, can occasionally be detrimental to performance, as displayed in Fig 22.

E.1. Conventional MAP and MLE

First, we show the performance of our enhancement to vanilla BO compared to MLE and MAP using the default BoTorch (Ba-
landat et al., 2020) priors (ℓi „ Γp3, 6q) on the hyperparameters, which match the description given on conventional priors
in Sec. 2.2. In the higher-dimensional tasks, MLE hyperparameter fitting is very unstable, due to the large number of
hyperparameters in relation to the number of observations. Thus, full repetitions of MLE-estimated hyperparameters are
not available for many tasks. We run a stabilized variant of MLE fitting as a complement, where the previous iteration’s
hyperparameters are in case of a crash during model fitting. This variant achieves competitive performance on many tasks,
further demonstrating the capabilities of Vanilla Bayesian optimization fro high-dimensional tasks.

We observe that MAP estimation achieves impressive performance for some tasks, even marginally outperforming our
method on a few tasks. We note, however, that conventional MAP severely suffers from the locality issue on all tasks, as it
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simply performs a BO-guided local search around the best point found during DoE. We visualize the locality behavior of all
three methods in App. C.2.
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Figure 13. Average log regret of uncertainty ablations on Levy (4D) and Hartmann (6D) synthetic test functions of varying ambient dimen-
sionality for DSP (blue), MLE-estimated hyperparameters (red), stabilized MLE-estimated hyperparameters (purple) and hyperparameters
fit through BoTorch default hyperpriors (ℓi „ Γp3, 6q, green) across 10 repetitions (20 for the default algorithm in blue). ℓi „ Γp3, 6q

priors perform well on the Hartmann tasks, but searches extremely locally around the best found point from DoE. MLE runs into errors
related to fitting instability early on for a majority of all tasks.
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Figure 14. Average minimal observed value on MOPTA, Lasso-DNA and SVM for DSP (blue), MLE-estimated hyperparameters (red),
stabilized MLE-estimated hyperparameters (purple) and hyperparameters fit through BoTorch default hyperpriors (ℓi „ Γp3, 6q, green)
across 10 repetitions (20 for the default algorithm in blue). ℓi „ Γp3, 6q priors perform well on MOPTA, and MLE runs into errors related
to fitting instability early on for all tasks.

E.2. Fixed Complexity - Varied uncertainty

We ablate the uncertainty of the LogNormal prior, keeping the mode fixed. Since the mode of the LogNormal distribution is
computed as µ ´ σ2, we must adjust the µ term when changing σ to keep the mode in place. A larger uncertainty term
will increase the ability for Vanilla BO to disregard dimensions that appear unimportant, but also be quicker in identifying
dimensions of high importance.

E.3. Varied Complexity - Fixed uncertainty

We ablate the complexity of the method, keeping the σ parameter fixed while varying µ. A larger µ will increase the default
lengthscales, suggesting a lower complexity on the problem at hand. We ablate µ by 0.5 in both a positive and negative
direction, which corresponds to a factor 1.65 increase and decrease from the default, respectively.

F. Learning the signal variance
In our method in Sec. 5, we propose to not learn the signal variance to safeguard against possible degeneracies related to
the active acquisition of data. We ablate the choice here, and demonstrate that, while the performance of a model with a
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Figure 15. Average log regret of uncertainty ablations on Levy (4D) and Hartmann (6D) synthetic test functions of varying ambient
dimensionality across 10 repetitions (20 for the default algorithm in blue).
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Figure 16. Average minimal observed value on MOPTA, Lasso-DNA and SVM for Vanilla BO with identical modes for the prior, but
higher uncertainty (red) and lower uncertainty (green) across 10 repetitions (20 for the default algorithm in blue). Performances are
comparable across uncertainty levels, with high uncertainty being marginally worse on SVM.

learned signal variance is marginally less stable, the performance is comparable to one where the signal variance is not
learned. In Fig. 19, we display how the outputscale hyperparameter shrinks throughout optimization for models with a
learned outputscale. Notably, the fixed outputscale variants (red, blue) do not display constant outputscales due to varying
data normalization over time. Moreover, in Fig. 20, we show the exaggerated local search-like behavior that follows from
either a learned outputscale or conventional lengthscale prior, as measured by the average distance between the current best
point and the upcoming query. The initial samples of high variance and large distance between queries indicates the initial
design of experiments via SOBOL sampling.

F.1. Learning σ2
f

We empirically demonstrate the behavior of the model when learning the signal variance for two tasks, MOPTA08 and SVM,
for four types of models throughout the BO loop: DSP with fixed σ2

f , DSP with learned σ2
f , and a conventional Γp3, 6q prior

with and without learned σ2
f .
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Figure 17. Average log regret of DSP with higher assumed complexity (red) and lower (green) on Levy (4D) and Hartmann (6D) synthetic
test functions of varying ambient dimensionality across 10 repetitions (20 for the default algorithm in blue). All instantiations perform
comparably, with the low-complexity variant (green) performing slightly worse on average.
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Figure 18. Average minimal observed value on MOPTA, Lasso-DNA and SVM for DSP with higher assumed complexity (red) and lower
(green) across 10 repetitions (20 for the default algorithm in blue). Assuming a substantially higher complexity may have detrimental
impact on performance, as demonstrated in SVM for the instantiation with the largest µ0.

F.2. Performance Ablation on Learned σ2
f

We display the performance of the DSP with and without learned signal variance for a subset of the synthetic and real-world
tasks presented in the paper. While the performance is occasionally competitve, the performance is substantially less stable
than for the fixed outputscale variant.
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Figure 19. Outputscale shrinkage on MOPTA08 and SVM for BO (mean and one standard deviation) using four types of models employing
either the DSP or conventional MAP, and either fixed or learned outputscale. Learned outputscale results in very pronounced shrinkage
over time, which leads to increased exploitative behavior.
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Figure 20. Average distance from current incumbent (mean and 0.25 standard deviation) on MOPTA08 and SVM for BO using four types
of models employing either the DSP or conventional MAP, and either fixed or learned outputscale. Learned outputscale or a conventional
prior leads to very local optimization, as the algorithm almost exclusively stays within very close proximity to the current best value.
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Figure 21. Average log regret of Vanilla BO with a learned signal variance (yellow) and the default algorithm (blue) on Levy (4D) and
Hartmann (6D) synthetic test functions of varying ambient dimensionality across 10 repetitions (20 for the default algorithm in blue). The
learned signal variance variant performs comparably on some tasks, but displays worse consistency across tasks.
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Figure 22. Average minimal observed value of Vanilla BO with a learned signal variance (yellow) and the default algorithm (blue) on
MOPTA, Lasso-DNA and SVM across 10 repetitions (20 for the default algorithm in blue). The learned signal variance variant performs
comparably on some tasks, but displays worse consistency across tasks.
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