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ABSTRACT

One of the key challenges in deep neural network training is the substantial amount
of GPU memory required to store activations obtained in the forward pass. Vari-
ous Activation-Compressed Training (ACT) schemes have been proposed to mit-
igate this issue; however, it is challenging to adopt those approaches in recent
transformer-based large language models (LLMs), which experience significant
performance drops when the activations are deeply compressed during training.
In this paper, we introduce ALAM, a novel ACT framework that utilizes aver-
age quantization and a lightweight sensitivity calculation scheme, enabling large
memory saving in LLMs while maintaining training performance. We first demon-
strate that compressing activations into their group average values minimizes the
gradient variance. Employing this property, we propose Average Quantization
which provides high-quality deeply compressed activations with an effective pre-
cision of less than 1 bit and improved flexibility of precision allocation. In addi-
tion, we present a cost-effective yet accurate sensitivity calculation algorithm that
solely relies on the L2 norm of parameter gradients, substantially reducing mem-
ory overhead due to sensitivity calculation. In experiments, the ALAM framework
significantly reduces activation memory without compromising accuracy, achiev-
ing up to a 10× compression rate in LLMs.

1 INTRODUCTION

In recent years, deep learning has demonstrated human-like or even better performance on language-
related tasks using large language models (LLMs) (Chen et al., 2023; Smith et al., 2022; OpenAI,
2023; Touvron et al., 2023a;b). Behind this success lies various efforts to increase the model size
since it directly improves model performance due to scaling laws Kaplan et al. (2020); Sorscher
et al. (2022a;b). However, the amount of memory required for training also increases proportion-
ally, hindering their practical implementation. One of the reasons behind the memory bottleneck
during training is that the backpropagation algorithm (Kelley, 1960) needs to store all intermedi-
ate activations generated during the forward pass in memory for later use in the backward pass for
calculating parameter gradients, which leads to extensive memory requirements. For instance, as
shown in Fig. 1, GPT-3 (Chen et al., 2023) with 175B parameters and MT-LNG (Smith et al., 2022)
with 1T parameters require 67.3 GB and 132.7GB activation memory, respectively, exceeding the
memory occupied by the parameters and optimizer state (Korthikanti et al., 2022). This issue even
worsens with larger micro-batch size or sequence length because the activation memory also in-
creases proportionally whereas the memory occupied by the parameters and optimizer state remains
unchanged. Therefore, it is crucial to reduce activation memory when it comes to training LLMs.

Activation rematerialization (Chen et al., 2016; Jain et al., 2019; Feng & Huang, 2021) and reversible
networks (Gomez et al., 2017; Kitaev et al., 2020; Sander et al., 2021; Cai et al., 2023) store only
part of the activations, recomputing the rest during the backward pass. These methods demand extra
computation in the backward pass and reduce training speed. Reduced-precision training (Micikevi-
cius et al., 2018; Wang et al., 2018; Chen et al., 2020; Sun et al., 2020) aims at reducing computation
precision and training memory by representing each variable in training (e.g., weight, error, activa-
tion, and gradient) with low-precision data formats such as FP8. However, training accuracy drops
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Figure 1: Memory usage breakdown of GPT-3
(22B/175B) and MT-LNG (530B/1T) with data
and model parallelism. The dashed red line de-
notes the 80GB capacity of the NVIDIA A100
GPU.

Figure 2: ALAM training framework.

quickly with lower precision, and optimized kernels for low-precision operations are required to
fully utilize its advantage in training speed. On the other hand, Activation-Compressed Training
(ACT) (Chakrabarti & Moseley, 2019; Chen et al., 2021; Liu et al., 2022b; Pan et al., 2021; Liu
et al., 2022a) solely aims to reduce activation memory usage by compressing the activations before
storing them in the forward pass. Conventional ACT methods, however, exhibit large performance
drops for high compression rates when applied to LLMs. For example, MESA (Pan et al., 2021)
compresses all layers uniformly with an identical compression rate, noticeably undermining training
performance for activation precision under 8 bits. GACT (Liu et al., 2022a) determines compression
rates (i.e., allocated bit precision) of each layer based on its sensitivity, achieving a state-of-the-art
compression rate of 4 bits in transformer models. However, deeply quantized activations noticeably
affect training performance, and the lowest bit precision it can allocate to less-sensitive layers is 1
bit, which limits the flexibility of bit precision allocation and hinders further compression.

In this work, we propose a new ACT framework, ALAM, which greatly improves compression rates
while maintaining training performance. We first propose to represent a group of activations with
their group average value as a means to compress them deeply and mathematically show that this
scheme minimizes gradient variance due to activation compression. Based on this observation, we
propose Average Quantization (AQ), which replaces a group of activations with their group average
to realize sub-1b precision effectively. We experimentally demonstrate that the sub-1b activations
obtained by AQ maintain high quality, even surpassing that of conventional 1-bit quantized acti-
vations. Moreover, by assigning sub-1b precision to the layers with very low sensitivity, we can
further enhance the overall compression rates. We also introduce the GradNormVar algorithm that
determines the sensitivity of a layer based on the variance of the L2 norm of parameter gradients.
This approach significantly reduces the memory required for sensitivity calculation, when compared
to GACT (Liu et al., 2022a) which requires the variance of parameter gradients from multiple seeds.
Experimental results confirm that our ALAM outperforms the state-of-the-art method in various
transformer models including LLaMA2-7B/13B, and LLaMA-30B. In summary, the main contribu-
tions of our paper are:

• We propose Average Quantization, which generates high-quality sub-1b activations, en-
abling further compression without sacrificing accuracy. To the best of our knowledge, this
is the first attempt to compress activations through simple averaging.

• We propose GradNormVar, a lightweight sensitivity calculation algorithm that employs the
variance of the L2 norm of parameter gradients, eliminating the need to retain all parameter
gradients and substantially reducing memory usage.

2



Published as a conference paper at ICLR 2024

• The proposed ALAM framework is demonstrated to successfully compress activations in
various transformer models, achieving a 9.9× compression rate in LLaMA-30B.

2 ACTIVATION-COMPRESSED TRAINING

2.1 FORMULATION

We represent the loss function of forward propagation in a neural network as L(θ,X0), given input
X0 and parameters θ. When the stochastic gradient descent (Ruder, 2016) is applied, the parameters
are updated as θt+1 = θt − η∇θtL(θt, X0), where t denotes the iteration number and η is the
learning rate. Then, the gradients are calculated as follows:

∇Xl−1
L, ∇θlL = Gl(∇Xl

L, θl, Xl−1) (1)

Here, Xl and θl denote the activation and parameter of the l-th layer, respectively. Gl denotes the
gradient function of the l-th layer, generating the input gradients ∇Xl−1

L and parameter gradients
∇θlL from the output gradient ∇Xl

L, parameters θl, and activations Xl−1. For the sake of simplic-
ity, we denote L(θ,X0) as L. Given Eq. 1, all layer activations Xl−1 must be stored in memory
during the forward pass to compute gradients, leading to substantial memory use. The ACT frame-
works are designed to tackle this memory consumption issue by compressing activations as follows:

∇̂Xl−1
L, ∇̂θlL = Gl(∇̂Xl

L, θl, X̂l−1) (2)

where X̂ represents the compressed activation, and ∇̂ represents the gradients obtained by ACT.
For instance, if we compress activations from FP32 to INT1, a 32× reduction in activation memory
usage can be achieved.

2.2 CONVERGENCE OF ACTIVATION-COMPRESSED TRAINING

If L is continuously differentiable, ∇Lθ is L-Lipschitz for some constant L, L is bounded below
by Linf , and there exists σ2 ≥ 0 satisfying Var

[
∇̂θL

]
≤ σ2 for all parameters, then we have the

following convergence theorem (Chen et al., 2021):

E
[
∇̂θL

]
≤ 2(L− Linf )

αt
+ αLσ2 (3)

As the iteration t increases, the first term of the bound in Eq. 3 decreases to zero. Therefore,
minimizing the gradient variance Var

[
∇̂θL

]
is critical for the convergence of ACT. For a stochastic

quantizer, Liu et al. (2022a) demonstrated that the gradient variance can be expressed as:

Var
[
∇̂θL

]
≤

L∑
l=1

cl(2
bl − 1)−2 (4)

where bl denotes the bit precision (i.e., the number of bits to present activation) of the l-th layer.
The sensitivity cl is defined as how sensitive it is to activation compression. If the sensitivity is high,
the gradient variance is larger at the identical bit precision, undermining training performance and
requiring higher bit precision to mitigate it. Therefore, we can determine the optimal bit precision of
each layer based on its sensitivity to maximize memory savings with minimal training performance
degradation by reducing gradient variance in Eq. 4 using a greedy algorithm.

GACT (Liu et al., 2022a) calculates sensitivity cl by observing the variance of parameter gradients
from multiple runs of actual training using different seeds for stochastic rounding. More specifically,
it initially compresses activations using a specific seed and calculates parameter gradients. Then,
the algorithm changes only the seed for compressing the l-th layer’s activations and recalculates
parameter gradients. Finally, it treats the variance of all parameter gradients between these seeds as
the sensitivity of the l-th layer, indicating how changes in the l-th layer’s activation impact gradient
variance. This process is detailed in Algorithm 1.
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Algorithm 1 Sensitivity calculation in GACT
Require:

g
(l)
i : parameter gradient of i-th element in l-th layer.
r1, r2: two random seeds
L: number of layers, nl: elements in l-th layer
b = (bl)

L
l=1: compression scheme

Ensure:
s(l): sensitivity of l-th layer
for l = 1 to L do

Set r1 for compressing all activation X , run backprop and store h0 ← {g(l)i |i ≤ nl, l ≤ L}
Change r1 to r2 only for compressing l-th layer’s activation xl, recalculate h1 ← {g(l)i |i ≤ nl, l ≤ L}
s(l) = 1

2
∥h0 − h1∥2(2bl − 1)2

end for

3 AVERAGE QUANTIZATION

3.1 MINIMIZING GRADIENT VARIANCE

In this section, we propose a new approach to activation compression and show that it minimizes the
gradient variance in ACT. Chen et al. (2021) proved that the gradient obtained by ACT is unbiased
(i.e., E

[
∇̂θ

]
= E

[
∇θ

]
). Following this property, the gradient variance of ACT can be expressed as:

Var
[
∇̂θL

]
= Var

[
∇θL

]
+ E

[
∥∆∇θL∥2

]
(5)

where ∆∇θL = ∇̂θL − ∇θL . The details can be found in Appendix A. On the right-hand side
of Eq. 5, the first term is the gradient variance of SGD, which is not related to activation com-
pression. Consequently, the second term, representing the gradient difference caused by activation
compression, plays an important role in minimizing the gradient variance in ACT. Evans & Aamodt
(2021) derived boundary functions for gradient differences in commonly used layers in neural net-
works, such as fully-connected, convolution, batch normalization, and layer normalization layers.
We further extend these boundary functions in Appendix A and prove that the boundary function of
gradient difference can be simply expressed as

∥∆∇θf(θ,X)∥2 ≤ d∥∆X∥2 (6)

where ∆X = X̂ −X , and d is a positive constant. Now suppose we divide activations into several
groups and represent each group using a single representative value, where its optimal value can be
determined using the theorem below.
Theorem 1. The value of the boundary function of gradient difference is minimized when each
group of activations is approximately represented using its group average value.

Theorem 1 can be proven by showing that the derivative of d∥∆X∥2 with respect to an approximate
value is equal to 0 when using average as the approximate value because D(∆X) is a convex func-
tion with respect to the approximate value. Detailed proof can be found in Appendix A. Furthermore,
we experimentally demonstrate this property by training a 512-512-10 MLP (Haykin, 1994) model
on MNIST (Deng, 2012). We approximate each group of activations using various values: average,
median, minimum, maximum, and randomly selected activation in a group, where we group adja-
cent elements in the flattened activation vector, and the group size is set to 32. Other experimental
details are provided in Appendix D. Experimental results in Table 1 confirm that averaging is the
most effective compression method, which achieves high training accuracy close to full-precision
training.

Table 1: Test accuracy of MLP trained on MNIST with different activation approximation methods.

FP32 Average Median Minimum Maximum Random
Accuracy (%) 98.72 96.09 84.82 fail fail 90.31
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3.2 AVERAGE QUANTIZATION

Figure 3: Average Quantization for high-quality sub-1b precision.

In Section 3.1, we show that averaging is an effective method to compress activation with mini-
mal impact on training performance. By adopting this property, we propose Average Quantization,
which generates high-quality compressed activation with sub-1b precision. We split activations into
multiple groups and only store a single activation for each group, which is an average value of all
the elements in the group. For instance, if we take an average for a group of four activations and
quantize it to 2 bits, we only need to store 2 bits for a group. This achieves an identical compression
rate to when we compress all of four activations separately to 0.5-bit precision in conventional ac-
tivation compression, and hence we denote this as AQ 0.5-bit. Note that our Average Quantization
flattens and groups adjacent activation elements during the forward pass, and then recovers them by
repeating the group average in the backward pass without requiring an additional mask or spatial
index for recovery.

Figure 4: Comparisons of various com-
pressed activations in VGG-11 training on
CIFAR-100. For a fair comparison, activa-
tions of linear, convolutional, and batch nor-
malization layers in VGG-11 are uniformly
compressed in all experiments.

We experimentally show that our approach produces
high-quality compressed activation. In experiments,
we train VGG-11 (Simonyan & Zisserman, 2015) on
CIFAR-100 (Krizhevsky et al., 2009) using various
types of compressed activations and compare test ac-
curacy and validation loss. Fig. 4 displays the results
for 2-bit uniform quantization, 1-bit uniform quanti-
zation, AQ 1-bit, and AQ 0.5-bit. Here AQ 1-bit and
AQ 0.5-bit activations are obtained by averaging a
group of two and four activations, respectively, and
then quantizing the average value into 2 bits. Ex-
perimental details are provided in Appendix D. 1-bit
uniform quantization fails to train the network, but
AQ 1-bit succeeds in training, closely matching 2-bit
uniform quantization. Even AQ 0.5-bit successfully
trains the network without divergence, outperform-
ing 1-bit uniform quantization. Therefore, we expect
to replace 1-bit quantization with AQ 0.5-bit without
sacrificing accuracy and allocate more bits to high-
sensitivity activations for a given memory budget to
improve training performance.

4 EFFICIENT SENSITIVITY CALCULATION

In ACT frameworks, it is crucial to accurately determine the sensitivity of a layer, as it greatly af-
fects training performance. As discussed in Section 2.2 and Algorithm 1, GACT (Liu et al., 2022a)
determines sensitivity by calculating the gradient variance from multiple runs of actual training with
compressed activations using different seeds, and hence it must temporarily store all parameter gra-
dients for each seed. Consequently, the peak memory usage substantially increases when calculating
the sensitivity in models with a large number of parameters. For instance, GACT requires 700 GB
memory for calculating sensitivity from two seeds when training GPT-3 with 175B parameters. To
alleviate this issue, we propose the GradNormVar algorithm, which determines the sensitivity of
layers as the variance of L2 norm of parameter gradients obtained from multiple seeds, as detailed
in Algorithm 2. More specifically, our algorithm starts by compressing activations using a random
seed. Instead of storing all parameter gradients, the algorithm calculates and retains only the L2
norm of parameter gradients for each layer. Subsequently, a different seed is used for compressing
the l-th layer’s activations, and the L2 norm of parameter gradients is recalculated. Finally, the algo-
rithm employs the variance in the L2 norm of parameter gradients between these seeds as sensitivity
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of the l-th layer. Since GradNormVar only stores the L2 norm of parameter gradients for each layer,
rather than all parameter gradients from multiple seeds, it can significantly reduce the amount of
memory required for calculating sensitivity.

Algorithm 2 Proposed GradNormVar algorithm
Require:

G(l): L2 norm of parameter gradients g(l) in l-th layer.
r1, r2: two random seeds
L: number of layers, nl: elements in l-th layer
b = (bl)

L
l=1: compression scheme

Ensure:
s(l): sensitivity of l-th layer
for l = 1 to L do

Set r1 for compressing all activations X , run backprop and store h0 ← {G(l) = ∥g(l)∥2|l ≤ L}
Change r1 to r2 only for compressing l-th activation xl, recalculate h1 ← {G(l) = ∥g(l)∥2|l ≤ L}
s(l) = 1

2
∥h0 − h1∥2(2bl − 1)2

end for

To validate the effectiveness of our GradNormVar algorithm, we evaluated the sensitivity and bit
precision allocation using the conventional method in GACT that employs gradient variance and our
algorithm during the fine-tuning of BERT-Large (Devlin et al., 2019) on the MRPC dataset (Wang
et al., 2019). As illustrated in Fig. 5, the sensitivity determined by our algorithm represents a similar
trend to that of the conventional approach with a correlation of 0.9981, leading to comparable bit al-
location. This is consistent with actual training performance; our GradNormVar algorithm achieves
86.9% training accuracy, closely matching the performance of conventional sensitivity calculation
scheme in GACT (86.5%).

(a) Gradient variance (GACT) (b) Gradient normalization variance (ours)

Figure 5: Sensitivity and bit preicision allocation comparisons when the target average precision
is 2 bits in BERT-Large fine-tuning on MRPC datasets. Note that we adopt AQ 0.5-bit instead of
conventional 1-bit quantized activation in both experiments.

5 ALAM: AVERAGED LOW-PRECISION ACTIVATION FOR
MEMORY-EFFICIENT TRAINING

Combining the proposed techniques, we introduce ALAM, a new ACT framework that achieves a
significant amount of memory saving while maintaining training accuracy. When the user specifies
the target average precision, which represents the average precision of activations across all layers,
the proposed ALAM framework automatically carries out ACT using the Average Quantization and
GradNormVar algorithms. The detailed process is as follows:

1. (Calculate sensitivity) The sensitivity of each layer is calculated using the GradNormVar
algorithm.

2. (Allocate bit precision) The bits are allocated to layers based on their sensitivity in a way
that it minimizes the gradient variance in Eq. 4 using a greedy algorithm. AQ 0.5-bit is
employed in low-sensitivity layers instead of conventional 1-bit quantization.
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3. (Training) During the forward pass, activations are compressed based on the allocated bit
precision, and then decompressed in the backward pass to update parameters.

Note that calculating sensitivity and allocating bit precision occur only before training and after 10%
of total training epochs because activation sensitivity saturates early (Liu et al., 2022a).

6 RESULTS

In this section, we evaluate our ALAM framework by training diverse transformer models on various
tasks. More details on the experiments can be found in Appendix D.

Text Classification We fine-tuned BERT models with different sizes, including DistilBERT-Base
(Sanh et al., 2019), BERT-Base, and BERT-Large (Devlin et al., 2019), on the datasets in the GLUE
benchmark (Wang et al., 2019) using three approaches: without activation compression (baseline),
with GACT, and with ALAM. We evaluate test accuracy, activation memory, and the memory re-
quired for calculating sensitivity at various target average precisions for activations. Note that GACT
and ALAM only compress float tensors, while they do not compress the other values such as masks
and indices. Therefore, reducing the target average precision from 32 bits to 2 bits does not always
result in a 16× compression of activation memory, and the actual compression rate can vary by
model. Table 2 shows that our ALAM achieves a significantly better trade-off between accuracy and
memory savings compared to GACT in all cases. In DistilBERT-Base, ALAM achieves a compres-
sion rate of up to 16.4× with <0.5 accuracy degradation in the WNLI dataset. Improvements from
GACT expand further when fine-tuning BERT-Base on more challenging datasets such as CoLA,
closely matching the uncompressed baseline in terms of accuracy. In BERT-Large, ALAM achieves
activation memory savings of up to 22.5× with accuracy comparable to the baseline. This improve-
ment stems from the enhanced compression capability of ALAM at low-sensitivity activations.

Fig. 6 compares the sensitivity and bit precision allocation obtained by GACT and ALAM for BERT-
Base on the MPRC dataset when the target average precision is set to 1 bit. GACT uniformly assigns
1-bit precision to all layers regardless of their sensitivity as the lowest precision supported in GACT
is 1 bit, resulting in training failure. In contrast, ALAM allocates bit precision to layers differently
based on their sensitivity, successfully training the model with 84.8% accuracy. Furthermore, while

Table 2: Test accuracy, activation memory (Act mem) with compression rate, and memory for cal-
culating sensitivity (sens mem) in fine-tuning diverse language models on the datasets in the GLUE
benchmark. The bolded text represents the test cases with < 0.5 score degradation compared to
the non-compressed baseline, as well as the largest memory saving among the candidate algorithms
with < 0.5 score degradation.

Model Dataset Metric Baseline GACT ALAM (Ours)
32-bit 2-bit 1.5-bit 1-bit 2-bit 1.5-bit 1-bit

Distil
BERT-
Base

(66M)

STS-B
Corr 87.1 86.5 81.2 fail 86.7 85.6 84.6

Act mem 834 MB 60 MB (13.9×) 48 MB (17.4×) fail 64 MB (13.0×) 50 MB (16.7×) 36 MB (23.2×)
Sens mem 0 766 MB 753 MB fail 1.2 kB 1.2 kB 1.2 kB

WNLI
Acc 56.3 55.8 54.4 49.8 56.3 56.1 55.5

Act mem 834 MB 63 MB (13.2×) 48 MB (17.4×) 35 MB (23.8×) 64 MB (13.0×) 51 MB (16.4×) 36MB (23.2×)
Sens mem 0 766 MB 753 MB 753 MB 1.2 kB 1.2 kB 1.2 kB

BERT-
Base

(110M)

CoLA
Corr 59.3 56.0 fail fail 59.1 55.8 54.5

Act mem 1678 MB 130 MB (12.9×) fail fail 135 MB (12.4×) 105 MB (16×) 72 MB (23.3×)
Sens mem 0 1240 MB fail fail 2.3 kB 2.3 kB 2.3 kB

RTE
Acc 68.1 66.8 fail fail 68.5 67.8 66.3

Act mem 1678 MB 130 MB (12.9×) fail fail 135 MB (12.4×) 105 MB (16.0×) 72 MB (23.3×)
Sens mem 0 1240 MB fail fail 2.3 kB 2.3 kB 2.3 kB

MRPC
Acc 86.8 85.4 fail fail 86.9 85.8 84.3

Act mem 1678 MB 130 MB (12.9×) fail fail 132 MB (12.7×) 103 MB (16.3×) 75 MB (22.4×)
Sens mem 0 1240 MB fail fail 2.3 kB 2.3 kB 2.3 kB

BERT-
Large

(345M)

SST-2
Acc 93.0 93.1 fail fail 93.2 93.4 92.8

Act mem 4434 MB 360 MB (12.3×) fail fail 368 MB (12.0×) 282 MB (15.7×) 197 MB (22.5×)
Sens mem 0 3817 MB fail fail 4.6 kB 4.6 kB 4.6 kB

QNLI
Acc 92.4 91.5 fail fail 92.1 92.1 90.7

Act mem 4434 MB 358 MB (12.4×) fail fail 366 MB (12.1×) 279 MB (15.9×) 195 MB (22.7×)
Sens mem 0 3817 MB fail fail 4.6 kB 4.6 kB 4.6 kB

MNLI
Acc 86.5 85.2 fail fail 86.4 85.8 84.8

Act mem 4434 MB 360 MB (12.3×) fail fail 371 MB (12.0×) 279 MB (15.9×) 195 MB (22.7×)
Sens mem 0 3817 MB fail fail 4.6 kB 4.6 kB 4.6 kB

QQP
Acc 91.5 90.1 fail fail 91.1 90.5 86

Act mem 4434 MB 363 MB (12.2×) fail fail 359 MB (12.4×) 282 MB (15.7x) 197 MB (22.5×)
Sens mem 0 3817 MB fail fail 4.6 kB 4.6 kB 4.6 kB

7



Published as a conference paper at ICLR 2024

(a) GACT (b) ALAM (Ours)

Figure 6: Sensitivity and bit precision allocation of GACT and ALAM when target average precision
is 1 bit in BERT-Base fine-tuning on the MRPC dataset.

GACT requires a substantial amount of memory for calculating sensitivity (e.g., 3817 MB on BERT-
Large), ALAM consumes only a negligible amount of memory, less than 4.6 kB in all experiments.

Figure 7: Learning curves when fine-tuning
LLaMA2-7B on the Alpaca dataset.

Large Language Models For evaluations using
LLMs, we fine-tuned LLaMA2-7B (Touvron et al.,
2023b) on the Alpaca dataset (Taori et al., 2023), and
LLaMA2-13B (Touvron et al., 2023b) and LLaMA-
30B (Touvron et al., 2023a) on the LIMA dataset
(Zhou et al., 2023). Then, we observed 5-shot accu-
racy for MMLU (Hendrycks et al., 2021) and 0-shot
accuracy for common sense reasoning (Bhakthavat-
salam et al., 2021; Bisk et al., 2020; Zellers et al.,
2019; Win, 2019), reading comprehension (Clark
et al., 2019), and truthfulness tasks (Lin et al., 2021).
In experiments, we applied parameter-efficient fine-
tuning (PEFT) such as LoRA (Hu et al., 2022) and
QLoRA (Dettmers et al., 2023). Table 3 shows
ALAM achieves a similar accuracy to the baseline
at 1-bit precision and provides up to 10.6× compres-
sion rate, while GACT diverges even at 3-bit preci-
sion. Our ALAM (1-bit) compresses activation by 10.3× in LLaMA2-13B and 9.9× in LLaMA-30B
while closely matching the baseline in accuracy for all tasks. ALAM also significantly reduces mem-
ory for sensitivity calculations; however, the savings are not substantial because PEFT requires only
a small number of parameter gradients. Fig. 7 displays learning curves obtained during the fine-
tuning of LLaMA2-7B, demonstrating that our ALAM closely matches the baseline even at 1-bit
precision while 4-bit GACT does not converge to the loss as rapidly as the baseline. Furthermore,
the model fine-tuned with ALAM (1-bit) generates appropriate responses to the given prompt, as
shown in Appendix B.

Table 3: Test accuracy, activation memory (Act mem) with compression rate, and memory for cal-
culating sensitivity (sens mem) in fine-tuning LLMs. The bolded text represents the highest score
and smallest activation memory while successfully training without divergence. The micro-batch
size is set to 8 for LLaMA2-7B and 2 for LLaMA2-13B and LLaMA-30B.

Model PEFT Scheme Precision Act mem Sens mem MMLU Arc-c PIQA Hellaswag WinoGrande BoolQ TruthfulQA

LLaMA2
-7B

LoRA

Baseline 16-bit 21.1 GB 0 46 47.6 79.5 75.7 68.8 77.9 41.8

GACT 4-bit 5.9 GB (3.6×) 24 MB 44.8 46.6 78.9 75.5 68.2 77.1 40.4
3-bit 4.8 GB (4.4×) 24 MB fail fail fail fail fail fail fail

ALAM

4-bit 5.9 GB (3.6×) 0.4 kB 46.2 47.9 79.5 75.6 69.3 77.5 42.1
3-bit 4.8 GB (4.4×) 0.4 kB 45.2 47.6 79.8 75.4 69.5 77.2 42.4
2-bit 3.4 GB (6.2×) 0.4 kB 45.9 47.1 79.7 75.6 68.8 77.3 42.3
1-bit 2.0 GB (10.6×) 0.4 kB 45.7 47.0 79.3 75.6 69.1 77.6 41.1

LLaMA2
-13B

QLoRA Baseline 16-bit 8.2 GB 0 55.0 50.3 80.0 79.2 71.5 80.9 39.1
ALAM 1-bit 0.8 GB (10.3×) 0.5kB 54.8 50.0 80.2 78.8 71.6 81.0 38.9

LLaMA
-30B

QLoRA Baseline 16-bit 15.8 GB 0 56.6 52.4 81.4 82.1 75.0 82.7 42.8
ALAM 1-bit 1.6 GB (9.9×) 0.7kB 56.7 52.7 80.8 81.8 75.3 82.5 42.5
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Table 4: Comparisons with model compression techniques in fine-tuning LLMs using a single
NVIDIA A6000 GPU. The micro-batch size is set to 8.

Model Training Strategy Average accuracy Memory usage
Model state Activation Total

LLaMA2-7B
Full fine-tuning Out of memory 52 GB 21 GB 73 GB

LoRA 62.5 13 GB 21 GB 34 GB
LoRA + ALAM (1-bit) 62.2 13 GB 2 GB 15 GB

LLaMA2-13B
Full fine-tuning Out of memory 104 GB 33 GB 137 GB

QLoRA 65.1 7 GB 33 GB 40 GB
QLoRA + ALAM (1-bit) 65.0 7 GB 3 GB 10 GB

We also compared the training memory usage of the model compression techniques and ALAM
in Table 4. The results shows that LoRA and QLoRA only reduce the model state memory which
includes parameters, gradients, and optimizer states compared to baseline. ALAM, on the other
hand, compresses activation memory, achieving 10.6× and 10.3× compression rates on LLaMA2-
7B and 13B, respectively. By applying ALAM to LoRA and QLoRA, we can reduce total memory
by 56% and 75%, while maintaining comparable accuracy for LLaMA2-7B and 13B, respectively.

Figure 8: The maximum micro-batch
size of different training schemes for
fine-tuning LLaMA2-7B.

Usability To demonstrate the utility of ALAM, we first
observed how much our ALAM could increase the micro-
batch size in a single NVIDIA RTX-3090 Ti GPU when
fine-tuning LLaMA2-7B using LoRA. Fig. 8 shows that
ALAM allows for using the micro-batch size of 16, im-
proving the baseline and GACT by 8× and 2×, respec-
tively. We also simulated how much memory could
be reduced for fixed micro-batch sizes when fine-tuning
LLaMA2-7B using LoRA, as shown in Table 5. The
size of activation memory increases with the micro-batch
size and sequence length, whereas the model state mem-
ory storing parameters, gradients, and optimizer state re-
mains unchanged. Consequently, the memory savings of
ALAM is more noticeable with larger micro-batch sizes,
as demonstrated in Table 5. For instance, when a micro-
batch size is 8, ALAM reduces the total memory by 56%
and 21% compared to the baseline and GACT, respec-
tively, but the saving increases to 84% and 52% when the micro-batch size is 64.

Table 5: Activation memory and total memory required for fine-tuning LLaMA2-7B using LoRA
with different training schemes.

Scheme Precision Micro-batch size = 8 Micro-batch size = 32 Micro-batch size = 64
Activation Total Activation Total Activation Total

Baseline 16-bit 21 GB 34 GB 84 GB 98 GB 169 GB 182 GB
GACT 4-bit 6 GB 19 GB 24 GB 37 GB 47 GB 60 GB
ALAM 1-bit 2 GB 15 GB 8 GB 21 GB 16 GB 29 GB

7 DISCUSSION

In this paper, we introduce ALAM, a new activation-compressed training framework for transformer
models. Our ALAM enables deeper compression of activations with low sensitivity through Aver-
age Quantization and drastically reduces the memory required for sensitivity calculations using the
GradNormVar algorithms. As a result, ALAM reduced the activation memory of LLaMA-30B by
9.9× while outperforming GACT, the state-of-the-art ACT framework, with comparable accuracy.
We hope that our ALAM will boost the training of LLMs, overcoming the challenges of limited
GPU resources.

Limitations ACT frameworks require additional computation to compress and decompress activa-
tions. This complexity contributed to a 11-23% increase in training time for both GACT and ALAM
(see Appendix C). In our next study, we will address these challenges for efficient training.
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REPRODUCIBILITY

In Sections 3 and 4, we elaborated in detail on the core components of ALAM, such as Average
Quantization and GradNormVar. Section 5 describes the operation of the ALAM system, while the
experimental results in Section 6 can be replicated by referring to the hyperparameters and other
experimental settings detailed in Appendix D. Additionally, we provide the reproducible code for
ALAM at https://github.com/WooSunghyeon/alam.

ACKNOWLEDGMENT

This work was supported by the National Research Foundation of Korea (Grant NRF-
2022R1C1C1006880) and the Institute of Information & communications Technology Planning &
Evaluation (Grants 2021-0-01343-004 and IITP-2023-RS-2023-00256081).

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle Richard-
son, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, and Peter Clark. Think you have
solved direct-answer question answering? try arc-da, the direct-answer AI2 reasoning challenge.
CoRR, abs/2102.03315, 2021.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. pp. 7432–7439. AAAI Press, 2020.

Yuxuan Cai, Yizhuang Zhou, Qi Han, Jianjian Sun, Xiangwen Kong, Jun Li, and Xiangyu Zhang.
Reversible column networks. In International Conference on Learning Representations, 2023.

Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-
efficient network training. In Advances in Neural Information Processing Systems, pp. 2426–
2435, 2019.

Jianfei Chen, Yu Gai, Zhewei Yao, Michael W. Mahoney, and Joseph E. Gonzalez. A statistical
framework for low-bitwidth training of deep neural networks. In Advances in Neural Information
Processing Systems, 2020.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney, and
Joseph Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. volume 139 of Proceedings of Machine Learning Research, pp. 1803–1813. PMLR,
2021.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174, 2016.

Zekai Chen, Mariann Micsinai Balan, and Kevin Brown. Language models are few-shot learners for
prognostic prediction. CoRR, abs/2302.12692, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
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APPENDICES

A PROOF OF THEOREM

In this section, we first establish the relationship between gradient variance and gradient difference
in activation compression training (ACT) depicted in Eq. 5. We then derive the boundary function
of gradient variance for fully-connected, convolution, batch normalization, and layer normalization
layers. We confirm that all of these boundary functions can be formulated as Eq. 6. Finally, we
prove Theorem 1.

A.1 RELATIONSHIP BETWEEN GRADIENT VARIANCE AND GRADIENT DIFFERENCE IN ACT

Chen et al. (2021) proved that the gradient variance of ACT is unbiased as follows:

E
[
∆∇θL

]
= E

[
∇̂θ

]
− E

[
∇θ

]
= 0 (7)

Assume two random vectors X = (xn) ∈ RN and Y = (yn) ∈ RN . If E
[
yn

]
= 0 ∀n, then

E
[
∥X + Y ∥2

]
can be expressed as

E
[
∥X + Y ∥2] = E

[
N∑

n=1

(xn + yn)
2

]

= E

[
N∑

n=1

x2
n + 2xnyn + y2n

]

= E
[
∥X∥2

]
+ E

[
∥Y ∥2

]
+ 2

N∑
n=1

E[xn]E[yn]

= E
[
∥X∥2

]
+ E

[
∥Y ∥2

]
(8)

By adopting this property, we can derive the gradient variance of ACT as below.

Var
[
∇̂θL

]
= E

[
∥∇̂θL∥2

]
− ∥E

[
∇̂θL

]
∥2

= E
[
∥∇θL+∆∇θL∥

]2 − ∥E
[
∇̂θL

]
∥2

= E
[
∥∇θL|2

]
+ E

[
∥∆∇θL|2

]
− ∥E

[
∇̂θL

]
∥2

= E
[
∥∇θL|2

]
+ E

[
∥∆∇θL|2

]
− ∥E

[
∇θL

]
∥2

= Var
[
∇θL

]
+ E

[
∥∆∇θL∥2

]
(9)

A.2 BOUNDARY FUNCTION OF GRADIENT VARIANCE

Evans & Aamodt (2021) suggested that compressing activations would increase the gradient vari-
ance, and minimizing the gradient variance between actual and approximated activations can lead
to convergence of a network trained using approximated activations. Therefore, they derived the
boundary function of the gradient variance for widely used layers such as fully-connected, convo-
lution, batch normalization, and layer normalization layers. Here we summarize their findings and
extend them to generalize the boundary function as Eq. 6.

Fully-Connected Layer Assuming weight θ = (θh2h1) ∈ RH2×H1 , input activation X =
(xnh1) ∈ RN×H1 , and gradient of output activation ∇Y f = (∂f/∂ynh2 ∈ RN×H2), Evans &
Aamodt (2021) derive the boundary function of ∥∆∇θf∥2 as

∥∆∇θf∥2 ≤ ∥∇Y f∥2∥∆X∥2 (10)
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Approximating activations does not modify the gradient of output in fully-connected layers, and
hence we treat ∥∆∇θf∥2 as a constant. Therefore, the boundary function can be expressed as
D(∆X) = d∥∆X∥2 where d is a constant.

Convolution Evans & Aamodt (2021) also find the boundary function of a convolutional layer
with filter size R × S, stride T , input activation X = (xnc1hw) ∈ RN×C1×H×W , and the gradient
of the output activation ∇Y f = (∂f/∂ync2hw ∈ RN×C2×H×W ).

∥∆∇θf∥2 ≤ RS

T
∥∇Y f∥2∥∆X∥2 (11)

The gradient of the output in a convolutional layer can be treated as a constant, similar to that of
the fully-connected layer. Hence, we can simplify the boundary function to D(∆X) = d∥∆X∥2,
where d represents a constant.

Batch Normalization While approximating activations (X → X+∆X) does not directly impact
error propagation (i.e., ∂f

∂xi
does not have any terms related to xi) in fully-connected and convolu-

tional layers, it does modify error propagation in batch normalization (i.e.. ∂f
∂xi

has terms related to
xi). Therefore, Evans & Aamodt (2021) analyzed the gradient variance of error propagation, where
the weight is (γc) ∈ RC , the input activation is X = (xnchw) ∈ RN×C×H×W , and the gradient of
the output activation is ∇Y f = (∂f/∂ynchw ∈ RN×C×H×W ). The boundary function is

∥∆∇Xf∥2 ≤
∑

n,c,h,w

2s4cγ
2
c

M2
g2c∆x2

nchw (12)

where sc is the the inverse of the standard deviation of the input activation across the batch dimension
(σ2

c + 10−5)1/2, M is NHW , and gc is the upper bound of the gradient variance by approximating
activation (i.e., (∆ ∂f

∂γc
)2 + ( ∂f

∂γc
)2 ≤ g2c ).

We simplify the inequality in Eq. 12 further by utilizing the inequality below:∑
i

aibi ≤
∑
i

ai
∑
i

bi s.t.∀ai,∀bi ≥ 0 (13)

By applying the inequality above to Eq. 12, we obtain

∥∆∇Xf∥2 ≤
∑

n,c,h,w

2s4cγ
2
c

M2
g2c∆x2

nchw

≤ 1

M2

∑
n,c,h,w

2s4cγ
2
c g

2
c

∑
n,c,h,w

∆x2
nchw =

1

M
(
∑
c

2s4cγ
2
c g

2
c ) ∥∆X∥2 (14)

In addition, we derive the boundary function of the gradient variance of parameters below.

∥∆∇γf∥2 =
∑
c

s2c(
∑
n,h,w

∂f
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∆xnchw)

2
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∑
c

s2c
∑
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(
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n,h,w
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2
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(
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≤
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c
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∆x2
nchw =

(∑
c

s2c
)
∥∇Y f∥2∥∆X∥2 (15)
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We applied the inequality in Eq. 13, followed by the Cauchy–Schwarz inequality, and then applied
the inequality in Eq. 13 again to find the boundary function. Finally, we can write the boundary
functions of batch normalization in Eqs. 14 and 15 as d∥∆X∥2, where d is a constant.

Layer Normalization Modifying activations affects the gradient variance of error propagation in
layer normalization as well (Evans & Aamodt, 2021). Assuming weight of layer normalization
(γc) ∈ RC , input activation X = (xnc) ∈ RN×C , and the gradient of the output activation ∇Y f =
(∂f/∂ync) ∈ RN×C , the boundary function is

∥∆∇Xf∥2 ≃
∑
n,c

s4nγ
2
c∆x2

nc

C
(16)

, where sn denotes the the inverse of the standard deviation of the input activation across the feature
dimension (σ2

n + 10−5)1/2. We additionally applied Eq. 13 to Eq. 16 derived by Evans & Aamodt
(2021) for simplicity as follows:

∥∆∇Xf∥2 ≃
∑
n,c

s4nγ
2
c∆x2

nc

C

≤ N
∑
n

s4n
∑
c

γ2
c

∑
n,c

x2
nc = N(

∑
n

s4n
∑
c

γ2
c ) ∥∆X∥2 (17)

We further derive the gradient variance of parameters, as shown below.

∥∆∇γf∥2 =
∑
c

(
∑
n

sn
∂f

∂ync
∆xnc)

2

≤
∑
c

(∑
n

s2n
∑
n

(
∂f

∂ync
)2

∑
n

∆x2
nc

)
≤ C(

∑
n

s2n) ∥∇Y f∥2∥∆X∥2 (18)

The Cauchy-Schwarz inequality and Eq. 13 are applied to find the boundary function of gradi-
ent variance of parameters in layer normalization. Consequently, the boundary function of layer
normalization in Eqs. 17 and 18 can be represented as d∥∆X∥2, where d is a constant.

In summary, the boundary function of gradient variance in a general layer can be expressed as Eq. 6.
We do not consider layers such as ReLU and MaxPool that only require a 1-bit mask for backward
pass, as these layers do not require activation compression.

A.3 MINIMIZING GRADIENT VARIANCE

Consider activation X = {x(g)
i |1 ≤ i ≤ Ng, 1 ≤ g ≤ G} where G and Ng denote the number

of groups and the number of elements in group g, respectively. The elements in each group are
approximated to an arbitrary single value as X +∆X = {x̂(g), x̂(g), . . . , x̂(g)|1 ≤ g ≤ G}. In this
case, we can prove Theorem 1 using Eq. 6, as detailed below.

Theorem 1. The value of the boundary function of gradient difference is minimized when each
group of activations is approximately represented using its group average value.

Proof. We define activation as X = {x(g)
i |1 ≤ i ≤ Ng, 1 ≤ g ≤ G} and compressed activation as

X +∆X = {x̂(g), x̂(g), . . . , x̂(g)|1 ≤ g ≤ G}. Then, Eq. 6 can be expressed as
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D(∆X) = d∥∆X∥2

= d

G∑
g=1

Ng∑
i=1

(x̂(g) − x
(g)
i )2

Therefore, D(∆X) is a convex function with respect to x̂(g), and we can minimize the value of
D(∆X) when the condition ∂D(∆X)/∂x̂(g) = 0 is satisfied. Then,

∂D(∆X)

∂x̂(g)
= d

G∑
g=1

Ng∑
i=1

∂

∂x̂(g)
(x̂(g) − x

(g)
i )2

= 2d

G∑
g=1

Ng∑
i=1

(x̂(g) − x
(g)
i )

= 2d

G∑
g=1

(Ngx̂
(g) −

Ng∑
i=1

x
(g)
i ) = 0

Consequently, we obtain

x̂(g) =

∑Ng

i=1 x
(g)
i

Ng
(19)

which is the average of each group. In other words, we can minimize the boundary function by
approximating the elements in each group to their group average.

B RESPONSES GENERATED BY LLAMA2-7B FINE-TUNED USING ALAM

Prompt : Translate the sentence ’Deux ou trois choses que je sais d’elle’ into English.

Baseline : I know two or three things about her.

ALAM (1-bit) : Two or three things that I know about her.
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Prompt : Recommend a movie for me to watch during the weekend and explain the reason.

Baseline : Movie: Spiderman: No way home
- Reason: If you are a fan of Marvel universe, Spiderman: No way home is the movie
that you should watch during the weekend. Spiderman: No way home tells the story of
Peter’s friend from high school and his classmate that get evicted from their homes, so they
steal something from Doctor Strange’s transport vehicle, called the Sanctum Sanctorum.
Doctor Strange uses the Pretorians to capture the thieves and return the stolen item. But the
Pretorians overpower Doctor Strange and take him to the Void, where they torture him. The
thieves are brought to the Sanctum Sanctorum and Doctor Strange grants them their wish.
For Peter, he puts Doctor Strange’s spell on him so that he can retrieve everyone who is
stuck in different dimensions.

ALAM (1-bit) : There are a few suggestions that I would recommend you to watch this
weekend. I think you would enjoy both of them; ”Spiderman” and ”Avatar”. Spiderman
is considered to be one of the best Marvel films. It is about a teenager who is bitten by a
radioactive spider and gains a few superhuman powers that have helped him save the world
from a few villains. Avatar is one of the most successful films of the 21st century. The film
is centred around a human who infiltrates the world of the Na’vi, the indigenous inhabitants
of a planet known as Pandora in the twenty-first century on Earth.

C TRAINING TIME OF ACTIVATION-COMPRESSED TRAINING

In this section, we analyze the time overhead of activation compressed training including ALAM.
Note that the sensitivity calculation is conducted only twice (before training and at 10% of the
training process), and hence its overhead is excluded from the analysis. Our ALAM utilizes average
quantization, which involves average calculation and quantization including searching for min and
max values, multiplication with a scaling factor, and stochastic rounding. These operations have a
time complexity of O(n), where n represents the number of activations. Korthikanti et al. (2022)
calculated the FLOPs and the number of activations of a transformer block with flash-attention Dao
et al. (2022) as 24bsh2 + 4bs2h and 34bsh, respectively, where b, s, and h denote the micro-batch
size, sequence length, and hidden size, respectively. Based on this and the fact that the size of the
hidden dimension is generally larger than the sequence length in LLMs, the time complexity of
training an LLM and the additional time complexity due to ALAM are calculated as shown in Table
6 below.

Table 6: Time complexity of training and activation compression required by ALAM.

Training Activation compression
Time complexity O(bsh2) O(bsh)

Therefore, as the model size h increases, the training time overhead due to ALAM becomes rel-
atively smaller. To verify this, we trained models larger than 7B on the LIMA (1K) dataset for
5 epochs, and the results are displayed in Table E.2 below. Table 7 shows that while there is a
23% time overhead for the LLaMA2-7B model, the overhead is reduced to 18% and 12% for the
LLaMA2-13B and LLaMA-30B models, respectively.

Table 7: Time complexity of training and activation compression required by ALAM.

Model Baseline GACT (4-bit) ALAM (1-bit)
LLaMA2-7B 30 min 36 min 37 min
LLaMA2-13B 51 min 58 min 60 min
LLaMA-30B 115 min 127 min 128 min
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D EXPERIMENTAL DETAILS

Training MLP to confirm Theorem 1 We trained an MLP (Haykin, 1994) 512-512-10 model on
the MNIST dataset (Deng, 2012) using various approximate activation methods such as averaging
and median. In this experiment, training was executed with a fixed learning rate for 30 epochs
using the SGD optimizer (Ruder, 2016). The batch size and learning rate were set to 128 and 0.01,
respectively. A single RTX-3090 Ti GPU was used.

Training VGG-11 to confirm quality of activations We conducted experiments to verify the
quality of activations compressed by Average Quantization in VGG-11 (Simonyan & Zisserman,
2015) when trained on the CIFAR-100 dataset (Krizhevsky et al., 2009). The learning rate and
batch size were set at 0.01 and 128, respectively, and the SGD optimizer (Ruder, 2016) was uti-
lized. The training lasted for 100 epochs, and we scheduled the learning rate using cosine annealing
(Loshchilov & Hutter, 2016). This experiment was conducted using a single RTX-3090 Ti GPU.

Fine-tuning BERT models on the datasets in the GLUE benchmark We evaluated the perfor-
mance of ALAM by fine-tuning various BERT models on the datasets in the GLUE benchmark
(Wang et al., 2019). We trained DistilBERT-Base (Sanh et al., 2019) on the STS-B and WNLI
datasets, using the distilbert-base-uncased as the pretrained model from HuggingFace (Wolf et al.,
2020). We set the batch size to 16 and trained for 5 epochs with different learning rates (5 × 10−5,
1 × 10−4), and we reported the highest accuracy. Furthermore, we trained the BERT-Base model
(Devlin et al., 2019) on the CoLA, RTE, and MRPC datasets, utilizing the bert-base-cased from
HuggingFace (Wolf et al., 2020) as our pretrained model. With a batch size of 16, we trained for 3
epochs varying learning rates (2×10−5, 3×10−5, 4×10−5, and 5×10−5) and reported the highest
accuracy. The BERT-Large model (Devlin et al., 2019) was trained on the SST-2, QNLI, MNLI,
and QQP datasets using the bert-base-cased as the pretrained model from HuggingFace (Wolf et al.,
2020). We trained with a batch size of 16 for 10 epochs at a learning rate of 1 × 10−5, a setting
proposed by Mosbach et al. (2021) for robust training. All experiments were conducted on a single
RTX-3090 Ti GPU, and we reported the results as the average across 5 seeds.

Fine-tuning large language models on the Alpaca dataset To demonstrate the effectiveness of
ALAM in training large language models, we conducted the following experiments: We fine-tuned
LLaMA2-7B model (Touvron et al., 2023b) on the Alpaca dataset (Taori et al., 2023) for 1 epoch
with a learning rate of 1 × 10−4. Instead of the full fine-tuning, we used LoRA (Hu et al., 2022),
which is a parameter-efficient fine-tuning (PEFT) technique. Similarly, we fine-tuned the LLaMA2-
13B model (Touvron et al., 2023b) and LLaMA-30B model (Touvron et al., 2023a) on the LIMA
dataset (Zhou et al., 2023) for 5 epochs with a learning rate of 5× 10−5 and 2× 10−5, respectively.
In this experiment, we applied the QLoRA (Dettmers et al., 2023) as PEFT.

All experiments were carried out with a max sequence length of 512, utilizing a single NVIDIA
A6000 GPU. One exception is the experiments in Section 6, where we specifically investigated how
much we could increase the micro-batch size using a single NVIDIA RTX-3090 Ti GPU. The fine-
tuned models were then evaluated to obtain 5-shot accuracy for MMLU (Hendrycks et al., 2021)
and 0-shot accuracy for common sense reasoning (Bhakthavatsalam et al., 2021; Bisk et al., 2020;
Zellers et al., 2019; Win, 2019), reading comprehension (Clark et al., 2019), and truthfulness tasks
(Lin et al., 2021) using the lm-harness library1.

1https://github.com/EleutherAI/lm-evaluation-harness
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