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ABSTRACT

In complex reinforcement learning (RL) problems, policies with similar rewards
may have substantially different behaviors. Yet, to not only optimize rewards
but also discover as many diverse strategies as possible remains a challenging
problem. A natural approach to this task is constrained population-based training
(PBT), which simultaneously learns a collection of policies subject to diversity
constraints. However, due to the unaffordable computation cost of PBT, we adopt
an alternative approach, iterative learning (IL), which repeatedly learns a single
novel policy that is sufficiently different from previous ones. We first analyze
these two frameworks and prove that, for any policy pool derived by PBT, we can
always use IL to obtain another policy pool of the same rewards and competitive
diversity scores. In addition, we also present a novel state-based diversity measure
with two tractable realizations. Such a metric can impose a stronger and much
smoother diversity constraint than existing action-based metrics. Combining IL
and the state-based diversity measure, we develop a powerful diversity-driven RL
algorithm, State-based Intrinsic-reward Policy Optimization (SIPO), with prov-
able convergence properties. We empirically examine our algorithm in complex
multi-agent environments including StarCraft Multi-Agent Challenge and Google
Research Football. In these environments, SIPO is able to consistently derive
strategically diverse and human-interpretable policies that cannot be discovered
by existing baselines.

1 INTRODUCTION

A consensus in deep learning (DL) is that most local optima have similar losses to the global opti-
mum (Venturi et al., 2018; Roughgarden, 2020; Ma, 2021). Hence, via stochastic gradient descent
(SGD), most DL works only focus on the final performance of the learned model without consider-
ing which local optimum SGD discovers. However, such a performance-oriented paradigm can be
problematic for reinforcement learning (RL) because it is typical in complex RL problems that poli-
cies with the same reward may have substantially different behaviors. For example, a high-reward
agent in a boat-driving game can either carefully drive the boat or keep turning around to exploit
an environment bug (Clark & Amodei, 2016); a humanoid football AI can adopt any dribbling or
shooting behaviors to score a goal (Liu et al., 2022); a strong StarCraft AI can take very distinct
construction and attacking strategies (Vinyals et al., 2019). Thus, it is a fundamental problem for an
RL algorithm to not only optimize rewards but also discover as many diverse strategies as possible.

In order to obtain diverse RL strategies, we can naturally extend single-policy learning to population-
based training (PBT). The problem can be formulated as a constrained optimization problem by si-
multaneously learning a collection of policies subject to policy diversity constraints (Parker-Holder
et al., 2020b; Lupu et al., 2021). However, since multiple policies are jointly optimized, PBT can be
computationally challenging (Omidshafiei et al., 2020).Therefore, a greedy alternative is iterative
learning, which iteratively learns a single novel policy that is sufficiently different from previous
ones (Masood & Doshi-Velez, 2019; Zhou et al., 2022). Since only one policy is learned per itera-
tion, IL can largely simplify optimization. However, there have not been any theoretical guarantees
on the performance or the convergence properties of IL methods.

In addition to the computation frameworks, how to quantitatively measure the difference (i.e., diver-
sity) between two policies remains an open question as well. Mutual information (MI) is perhaps
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the most popular diversity measure (Eysenbach et al., 2019). Although MI reveals great potential to
discover diverse locomotion skills, it is proved in Eysenbach et al. (2022) that maximizing MI will
not recover the set of optimal policies w.r.t. the environment reward. Therefore, MI-based methods
often serve as a pre-training phase for downstream tasks (Sharma et al., 2020; Campos et al., 2020).
Another category of diversity measure is based on the action distributions, such as Wasserstein dis-
tance (Sun et al., 2020), cross-entropy (Zhou et al., 2022), and Jensen-Shannon divergence (Lupu
et al., 2021). Action-based measures are straightforward to evaluate and optimize. However, we will
show in Sec. 4.2 that such a metric can completely fail in simple scenarios.

In this paper, we present comprehensive studies to address the two issues above. First, we pro-
vide an in-depth analysis of the two computation frameworks, namely PBT and IL, for learning
diverse strategies. We theoretically prove that, in addition to simpli�ed optimization thanks to fewer
constraints, IL can discover solutions with the same reward as PBT withat leasthalf of the diver-
sity score. Regarding the diversity measure, we consider two concrete scenarios, i.e., grid-world
navigation and Google Research Football (GRF). In the grid-world example, we construct visually
different strategies that cannot be distinguished by popular action-based diversity measures. In the
GRF example, we show that duplicated actions taken by an idle player can drastically in�uence
the action-based diversity score. Consequently, we argue that an effective diversity measure should
focus on state distances instead of action distributions.

Combining IL and a state-based diversity measure, we design a generic and effective algorithm,
State-based Intrinsic-reward Policy Optimization (SIPO), for discovering diverse RL strategies in
an iterative fashion. In each iteration, SIPO learns a single novel policy with state-based diversity
constraints w.r.t. policies learned in previous iterations. We further solve this constrained opti-
mization problem via Lagrangian method and two-timescale gradient descent ascent (GDA) (Lin
et al., 2020). Theoretical results show that our algorithm is guaranteed to converge to a neighbour
of � -approximate KKT point (Dutta et al., 2013). Regarding the state-based measure, we provide
two practical realizations, including a straightforward version based on the RBF kernel and a more
general learning-based variant using Wasserstein distance.

We validate the effectiveness of our algorithm in two challenging multi-agent environments: Star-
Craft Multi-Agent Challenge (Samvelyan et al., 2019) and Google Research Football (Kurach et al.,
2020). Speci�cally, our algorithm can successfully discover 6 distinct human-interpretable strategies
in the GRF 3-vs-1 scenario and 4 strategies in two 11-player GRF scenarios, namely counter-attack
and corner, without any domain knowledge, which are substantially more than existing baselines.

2 RELATED WORK

Discovering diverse solutions has been a long-established problem (Miller & Shaw, 1996; Deb &
Saha, 2010; Lee et al., 2022) with a wide range of applications in robotic control (Cully et al.,
2015; Kumar et al., 2020), dialogues (Li et al., 2016), game AI (Vinyals et al., 2019; Lupu et al.,
2021), design (Gupta et al., 2021) and emergent behaviors (Liu et al., 2019; Baker et al., 2020; Tang
et al., 2021). Early works are primarily based on the setting of multi-objective optimization (Mouret
& Clune, 2015; Pugh et al., 2016; Ma et al., 2020; Nilsson & Cully, 2021; Pierrot et al., 2022),
which assumes a set of reward functions is given in advance. In RL, this is also related to reward
shaping (Ng et al., 1999; Babes et al., 2008; Devlin & Kudenko, 2011; Tang et al., 2021). We
consider learning diverse policies without any domain knowledge.

Population-based training (PBT) is the most popular framework for producing diverse solutions
by jointly learning separate policies. Representative algorithms include evolutionary computa-
tion (Wang et al., 2019; Long et al., 2020; Parker-Holder et al., 2020b), league training (Vinyals
et al., 2019; Jaderberg et al., 2019), computing Hessian matrix (Parker-Holder et al., 2020a) or con-
strained optimization with a diversity measure over the policy population (Lupu et al., 2021; Zhao
et al., 2021; Li et al., 2021; Liu et al., 2021b). An improvement over PBT is to learn a latent variable
policy instead of separate ones to improve sample ef�ciency. Prior works have incorporate different
domain knowledge to design the latent code, such as action clustering (Wang et al., 2021), agent
identities (Li et al., 2021) or prosocial level (Peysakhovich & Lerer, 2018; Baker et al., 2020). The
latent variable can be also learned in an unsupervised fashion. DIYAN (Eysenbach et al., 2019)
and its variants (Kumar et al., 2020; Osa et al., 2022) learns latent-conditioned policies by maxi-
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mizing the mutual information between states and the latent variable. The discovered behaviors are
primarily low-level motion skills rather than high-reward strategies (Eysenbach et al., 2022).

Iterative learning (IL) simpli�es PBT by only optimizing a single policy subject to different diver-
sity measures, such as maximum mean discrepancy (Masood & Doshi-Velez, 2019), Wasserstein
distance on actions (Sun et al., 2020), and cross entropy (Zhou et al., 2022), which are often action-
based. We adopt a purely state-based measure. Some other works require an expensive clustering
process before each optimization iteration (Zhang et al., 2019) or domain-speci�c features (Zahavy
et al., 2021) while we consider measures that can be ef�ciently optimized in an end-to-end fashion.
Besides, Pacchiano et al. (2020) learns a kernel-based score function to guide policy optimization.
The score function is conceptually similar to our Wasserstein-distance-based diversity measure but
is applied to a parallel setting with more restricted expressiveness power.

3 PRELIMINARY

Notation: We consider Partially Observable Markov Decision Process (POMDP) (Spaan, 2012),
de�ned by a tupleM � x S; A ; O; r; P; O; �; H y. S is the state space.A andO are the action
and observation space.r : S � A n Ñ R is the reward function.O : S Ñ O is the observation
function. H is the horizon.P is the transition function. For states; s1 P S and an actiona P A,
the transition probability froms to s1 by executing actiona is Pps1 | s; aq. At timesteph, the agent
receives an observationoh � Opsh q from the current statesh and outputs an actionah P A w.r.t.
its policy � : O Ñ 4 pAq. The RL objectiveJ p� q, i.e., expected return, is de�ned byJ p� q �

Epsh ;a h q�p P;� q

� ° H
h� 1 r psh ; ah q

�
: The discounted factor is omitted here to simplify notations. The

above formulation can be naturally extended to cooperative multi-agent settings, where� andR
correspond to the joint policy and the shared reward. We follow the standard POMDP notations for
conciseness and evaluate our algorithm in complex cooperative multi-agent scenarios since multi-
agent games are substantially more challenging than single-agent ones.

Finally, in order to discover diverse strategies, we aim to learn a set ofM policiest � i uM
i � 1 such that

all of these policies are locally optimal underJ p�qbut mutually distinct subject to some diversity
measureDp�; �q : 4 � 4 Ñ R, which captures the difference between two policies. We present two
popular computation procedures for this purpose.

Population-Based Training (PBT):PBT is a straightforward formulation of the diversity discovery
problem by jointly learningM policiest � i uM

i � 1 subject to pairwise diversity constraints, i.e.,

max
� 1 ;:::;� M

M̧

i � 1

J p� i q s.t. Dp� j ; � k q ¥ � @j; k P rM s; j � k; (1)

where� is a threshold. Despite a precise formulation, PBT poses severe optimization challenges.

Iterative Learning (IL): IL is a greedy approximation of PBT by iteratively learning novel policies.
In thei -th (1 ¤ i ¤ M ) iteration, IL solves the following constrained optimization problem

� �
i � arg max

� i
J p� i q s.t. Dp� i ; � �

j q ¥ � @1 ¤ j   i: (2)

IL runs unconstrained RL at �rst and then solves incrementally more constrained problems.

Action-Based Diversity Measure: We brie�y introduce the diversity measure in this paragraph.
Many prior works de�neDp�; �qover actions, which can be formally summarized by

DA p� i ; � j q � Es� qpsq

�
~DA p� i p� | sq}� j p� | sqq

�
; (3)

whereq : 4 pSq denotes some speci�c state distribution, and~DA p�}�q : 4 � 4 Ñ R measures
the difference between action distributions.~DA can be any probability distance such as Wasserstein
distance (Sun et al., 2020), Jensen-Shannon Divergence (Lupu et al., 2021), cross-entropy (Zhou
et al., 2022), or simply theL 2 distance given a continuous action space (Parker-Holder et al., 2020b).
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4 ANALYSIS OF EXISTING DIVERSITY-DISCOVERY APPROACHES

In this section, we conduct both theoretical and quantitative analysis of existing approaches to mo-
tivate our method. We �rst compare computation frameworks, namely PBT and IL, in Sec. 4.1 and
then present concrete failure examples for action-based diversity measures in Sec. 4.2.

4.1 COMPUTATION FRAMEWORK: POPULATION-BASED OR ITERATIVE LEARNING?

Theoretical Comparison: We consider the simplest motivation example in the setting of linear
programming to intuitively illustrate the computation challenges. We simply assume that� i is a
scalar, andJ p� i qis linear in� i , andDp� i ; � j q � | � i � � j |. In our de�nition, PBT involves
 pM 2q
variables in a single constrained optimization problem while IL involves
 pM q variables in all.
It is well-known that the complexity of linear programming is a high degree polynomial (degree
3 or higher depending on the algorithm) w.r.t. the number of variables (Bertsimas & Tsitsiklis,
1997). Therefore, even in the linear case, we can notice that more constraints can pose substantial
challenges to the optimization problem. This issue can be more severe in RL due to complex solution
space and large training variance.

Although IL can be optimized ef�ciently, it remains unclear whether IL, as a greedy approximation
of PBT, can obtain solutions of comparable rewards. Fig. 1 shows the worst case in 1-D setting
when the policies found by IL (green) can indeed have much lower rewards than the PBT solution
(red) when subject to the same diversity constraint. However, we will show in the next theorem that
IL is guaranteed to have no worse rewards than PBT by trading off half of the diversity.

Theorem 4.1. AssumeD is a distance metric. Denote the optimal value of Eq.( 1) asT1. Let
T2 �

° M
i � 1 J p~� i qwhere

~� i � arg max
� i

J p� i q s.t. Dp� i ; ~� j q ¥ � {2 @1 ¤ j   i (4)

for i � 1; : : : ; M , thenT2 ¥ T1.

Proof. See Appendix E.1.

Figure 1: 1-D worst case of IL. With threshold� , IL
�nds solutions with inferior rewards. However, IL can
�nd optimal solutions if the threshold is halved.

The above theorem provides a quality guaran-
tee for the IL solutions. The proof can be intu-
itively explained by the 1-D example in Fig. 1.
Assuming the worst case where the �rst IL so-
lution lies in the middle of a plateau with size
� (green 1), then the next solution with thresh-
old � must locate outside the plateau with a low
reward. However, if the threshold is halved,
the IL solutions are guaranteed to locate in the
high-reward area (blue 1 and 2). Thm. 4.1
shows that, for any policy pool derived by PBT,
we can always use IL to obtain another policy
pool, which hasthe same rewardsandcompa-
rable diversity scores. We remark that the worst case in Fig. 1 may not be common for RL environ-
ments in practice.

Table 1: The number of discovered land-
marks by PBT and IL across 6 seeds with
standard deviation in the bracket.

setting PBT IL

NL � 4 2.0 (1.0) 3.5(0.5)
NL � 5 2.2 (0.9) 4.5(0.5)

Empirical Results: We empirically compare PBT and
IL in a 2-D navigation environment with one agent and
NL landmarks (blue circles), as shown in Fig. 2. The
reward is +1 if the agent successfully navigates to land-
marks and 0 otherwise. Before training, landmark posi-
tions are randomly initialized subject to a pre-speci�ed
distance threshold per episode. We trainNL policies us-
ing both PBT and IL to discover strategies towards each of
these landmarks. Speci�cally, we simply takeDp� i ; � j q
as theL 2 distance of the �nal state reached by� i and� j , i.e.,Dp� i ; � j q � } s� i

H � s� j

H }2. We solve
this problem via Lagrangian multiplier with details in Appendix D.
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Figure 2: Illustration of the learning process of PBT and IL in a 2-D navigation environment with
4 modes. PBT will not uniformly converge to different landmarks as computation can be either too
costly or unstable. By contrast, IL repeatedly excludes a particular landmark, such that policy in the
next iteration can continuously explore until a novel landmark is discovered.

Table 2: Diversity measures of the grid-world example. Bold numbers
indicate larger values. Computation details can be found in Appendix B.
(KL=KL divergence, JSD = generalized Jensen-Shannon Divergence,
EMD=Earth Moving Distance)

human action-basedpD A q state-basedpD S q

KL JSD1 JSD0 /EMD L 2 norm L 2 norm EMD

D p� 1 ; � 2 q small �8 log 2 1 {2
?

7 2
?

2 5:7
D p� 1 ; � 3 q large �8 log 2 1{8 1 2

?
6 11 :3

Figure 3: (left) A grid-world environment with sizeNG � 5 and 3 different optimal policies. In-
tuitively, Dp� 1; � 2q   Dp� 1; � 3qbecause� 1 (purple) and� 2 (blue) both move along the diagonal.
However, action-based diversity measures can giveDA p� 1; � 2q ¥ DA p� 1; � 3q(right), which moti-
vates our proposal of state-distance based diversity measure.

Table 1 shows the number of discovered landmarks by PBT and IL. IL performs consistently better
than PBT even in this simple example. We illustrate the learning process of PBT and IL in Fig. 2. IL,
due to its computation ef�ciency, can afford to run longer iterations and tolerate larger exploration
noises. Hence, it can converge easily to diverse solutions by imposing a large diversity constraint.
The PBT, however, only converges when the exploration is faint, otherwise it diverges or converges
too slowly.

4.2 CHOICE OFDIVERSITY MEASURE: ACTION-BASED ORSTATE-BASED?

We then analyze the impact of different diversity measures. We �rst show that action-based measures
can often fail even for very simple tasks.

Action-Based Measure:Although action-based measures are easy to compute and widely used, we
present concrete failure cases here. The �rst example is a single-agent grid-world with sizeNG ,
where an agent spawns at the top left and needs to navigate to the bottom right. We consider three
different policies shown in Fig. 3:� 1 (purple) and� 2 (blue) move along the diagonal while� 3 (red)
moves along the boundary. Humans can naturally conclude that� 3 is visually different from� 1 and
� 2, i.e.,Dp� 1; � 2q   Dp� 1; � 3q, especially whenNG is large. However, the actions of� 1 and� 2
along the trajectory are totally disjoint. Consequently, action-based measures will have a large value
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on Dp� 1; � 2q. We computeDp� 1; � 2q and Dp� 1; � 3q based on popular action-based diversities
measures in Table 2, where the obtained values largely violates human intuition.

Next, we consider a more realistic and complicated multi-agent football scenario in Fig. 4, where
an idle player in the backyard takes an arbitrary action, such as “pass”, “shoot” or “slide”, without
involving in the attack at all. Although the idle player stays still with no effect on the team strategy
at all, action-based measures can produce high diversity scores when the idle player takes different
duplicated actions, leading to visually indistinguishable solutions.

Figure 4: Duplicate actions in multi-
agent football. For players who are
not involved in the attack, actions like
“pass”, “shoot”, and “slide” result in the
same consequence. Diversity measures
should not focus on these actions.

State-Based Measure:Based on the previous examples, we
propose to focus onstatesrather thanactionwhen designing
a diversity measure. Formally, denote the state distribution
induced by� as� � . We de�ne thestate-distance-baseddi-
versity measure as

DS p� i ; � j q � Eps;s 1q� 
�
g

�
d

�
s; s1

���
: (5)

d is a distance metric overS� S. g : R� Ñ R is a monotonic
function.  P � p� � i ; � � j q is a distribution over state pairs.
� p� � i ; � � j qdenotes the collection of all distributions onS �
S with marginals� � i and� � j on the �rst and second factors
respectively.

Our proposed measure is solely de�ned over states and such
a metric can impose a stronger and much smoother diversity
constraint than existing action-based metrics. The state dis-
tance in the measure encourages the policies to reach visually
different states leading to desired diversity. We compute two
simple state-based measures, i.e., theL 2 norm and the Earth
Moving Distance (EMD), for the grid-world example in Ta-
ble 2, which is consistent with human intuition.

4.3 PRACTICAL REMARK

Based on the analysis in the above subsections, we conclude that PBT can pose severe optimization
challenges, and that action-based diversity measures can often fail because they may not correctly
re�ect behavioral differences. By contrast, IL and state-based diversity measures are free from the
above issues and should be preferred in challenging RL applications. Therefore, we consider how
to develop a powerful algorithm for discovering diverse policies that can leveragebothalgorithmic
design choices. In the next section, we combine these ideas with a theoretically sound optimization
algorithm, Gradient Descent Ascent (GDA), towards an ef�cient and practical algorithm for learning
diverse policies.

5 METHOD

5.1 ALGORITHM OVERVIEW

In this section, we develop a powerful diversity-driven RL algorithm,State-based Intrinsic-reward
Policy Optimization (SIPO), by combining IL and state-distance-based measures. SIPO runsM
iterations to discoverM distinct policies. At thei -th iteration, we solve Problem (2) by converting
it into unconstrained optimization using the Lagrange method. The unconstrained optimization can
be written as

min
� i

max
� j ¥ 0; 1¤ j   i

� J p� i q �
i � 1¸

j � 1

� j
�
DS p� i ; � �

j q � �
�

(6)

where� j (1 ¤ j   i ) are Lagrange multipliers andt � �
j ui � 1

j � 1 are previously obtained policies. We
adopt two-timescale Gradient Descent Ascent (GDA) (Lin et al., 2020) to solve the above minimax
optimization, i.e., performing gradient descent over� i and gradient ascent over� j with different
learning rates. We also clip the dual variables� , which plays an important role both in our theorem
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and in empirical convergence. However,DS p� i ; � �
j qcannot be directly optimized through gradient-

based methods because it is related to the states visited by� i . As a popular solution (Zhou et al.,
2022), we castDS p� i ; � �

j qas the summation of intrinsic rewards and optimize it via policy gradient.
The pseudocode of SIPO can be found in Appendix G.

An important property of SIPO is the convergence guarantee. We present an informal illustration in
Thm. 5.1 and present the formal theorem with proof in Appendix E.2.

Theorem 5.1. (Informal) Under moderate assumptions, SIPO converges to a neighborhood of� -
approximate KKT point.

Remark: Please see the appendix for a detailed description of the assumptions and the proof. We
assumed that the rewardJ and the distanceDS are smooth in policies. In practice, this is true if the
policy remains in a bounded region and the reward is continuous in state. The key step in the proof
is to analyze the role of clipping the dual variables� , which stabilizes the algorithm without hurting
the optimality condition.

5.2 REALIZATION OF THE STATE-BASED MEASURE

Instead of directly de�ningDS , we de�ne intrinsic rewards as illustrated in Sec. 5.1, such that

DS p� i ; � �
j q � Esh � � � i

� ° H
h� 1 r intpsh ; � i ; � �

j q
�
. With this formulation, we can implement the fol-

lowing two types of diversity measures.

RBF Kernel: The most popular realization of Eq. (5) in machine learning is kernel functions. In
this paper, we realize Eq. (5) as an RBF kernel on states. Formally, the intrinsic reward is de�ned by

r RBF
int psh ; � i ; � �

j q �
1
H

Es1� � � �
j

�
� exp

�
�

}sh � s1}2

2� 2


�
(7)

where� is a hyperparameter controlling the variance.

Wasserstein Distance: For stronger discrimination power, we realize Eq. (5) asL 2-Wasserstein
distance. According to the dual form (Villani, 2009), the intrinsic reward is de�ned by

r WD
int psh ; � i ; � �

j q �
1
H

sup
} f } L ¤ 1

f psh q � Es1� � � �
j

�
f ps1q

�
(8)

wheref : S Ñ R is a1-Lipschitz function. Following Arjovsky et al. (2017), we implementf as a
neural network and clip parameters tor� 0:01; 0:01sto ensure the Lipschitz constraint.r WD

int utilizes
a learnable scoring functionf and is more �exible in practice.

We name SIPO withr RBF
int andr WD

int SIPO-RBFandSIPO-WDrespectively.

Implementation In the i -th iteration (1 ¤ i ¤ M ), we learn an actor and a critic withi separate
value heads to accurately predict different return terms, includingi � 1 intrinsic returns for the
diversity constraints and the environment reward. The input ofr int is the global state, which contains
the state information of all the agents. To incorporate temporal information, we stack the recent 4
global states to compute intrinsic rewards and normalize the intrinsic rewards to stabilize training.
In multi-agent environments, we learn an agent-ID-conditioned policy (Fu et al., 2022) and share the
parameter across all agents. Our implementation is based on MAPPO (Yu et al., 2021) with more
details in Appendix D.

6 EXPERIMENTS

We validate the effectiveness of SIPO in two complex multi-agent games: StarCarft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019) and Google Research Football (GRF) (Kurach et al.,
2020). First, we show that SIPO can ef�ciently learn diverse strategies in all scenarios and outper-
form several baseline methods, including DIPG (Masood & Doshi-Velez, 2019), SMERL (Kumar
et al., 2020), DvD (Parker-Holder et al., 2020b), and RSPO (Zhou et al., 2022). Then, we qualita-
tively demonstrate the emergent behaviors learned by SIPO, which are bothvisually distinguishable
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Table 4: Number of visually distinct strategies in GRF discovered by different methods. Popula-
tion sizeM � 4 in all cases. Details of the evaluation protocol can be found in Appendix B.

ours baselines random

SIPO-RBF SIPO-WD DIPG SMERL DvD1 RSPO2 PG

3v1 3.00(0.82) 3.00(0.00) 2.67(0.47) 1.33(0.47) 3.00(0.82) 2.33(0.47) 2.67(0.47)
CA 3.33(0.47) 3.00(0.82) 2.33(0.47) 0.75(0.43) - 2.67(0.47) 1.67(0.47)

corner 2.33(0.47) 3.00(0.82) 2.33(0.47) 0.75(0.43) - - 2.33(0.47)
1 Training DvD inCA andcornerrequires >24GB GPU memory, which exceeds our memory limit.
2 Not converged incorner.

andhuman-interpretable. Finally, we perform an ablation study over the building components of
SIPO and show that both the diversity measure and GDA are critical to the performance.

All the algorithms including ablation variants run for the same number of environment frames on
a desktop machine with a single NVIDIA RTX3090 GPU. All the quantitative results are repeated
over 3 random seeds with standard deviation shown in brackets. Additional results in continuous
control can be found in Appendix B.

6.1 COMPARISON WITH BASELINE METHODS

In SMAC, we only compare SIPO and RSPO, since RSPO outperforms other baselines (Zhou et al.,
2022). We run both algorithms on an easy map,2m_vs_1z, and a hard map,2c_vs_64zg, across
4 iterations. Both algorithms can discover 4 distinct winning strategies. To perform further com-
parison, we compute the population diversity score based onr RBF

int (see de�nition in Appendix B).

Table 3:Population diversity in SMAC.

map RSPO SIPO

2m1z 0.035 (0.011) 0.047(0.011)
2c64zg 0.292 (0.023) 0.368(0.013)

The results in Table 3 show that SIPO can discover
an even more diverse population than RSPO, even
though RSPO explicitly forces all policies to output
different actions. In GRF, we run all algorithms
and train a population of4 in three academy sce-
narios, speci�cally “academy_3_vs_1_with_keeper”
(3v1), “academy_counterattack_easy” (CA), and
“academy_corner” (corner). The GRF environment is more challenging than SMAC due to
the large action space and the existence of duplicate actions. Table 4 compares the number of
visually distinct policies discovered in the population. We present the population diversity scores
in Appendix B. Our algorithm is the most ef�cient and robust — even in the challenging 11-vs-11
corner andCA scenario, SIPO can effectively discover different winning strategies in just a few
iterations across different seeds. By contrast, baselines adopting action-based measures, e.g., DvD
and RSPO, suffer from the issue of duplicate actions and tend to discover policies with slight
distinctions. In addition, the mutual information objective in SMERL is sub-optimal (Eysenbach
et al., 2022) and the MMD-based measure of DIPG may not impose a strong adversarial power on
policies.

6.2 QUALITATIVE ANALYSIS

For SMAC, we present heatmaps of agent positions in Fig. 5. The heatmaps clearly show that SIPO
can consistently learn novel winning strategies to conquer the enemy. Fig. 6 presents the learned
behavior by SIPO in the GRF3v1 scenario, where 3 attackers should collaborate to shoot under
the defense of an opponent player and a goalkeeper. We can observe that agents have learned a
wide spectrum of collaboration strategies across merely 7 iterations. Visualization results inCAand
cornerscenarios can be found in Appendix B.

Surprisingly, the strategies discovered by SIPO are bothdiverseandhuman-interpretable. We take
the 3v1 scenario as an example. In the �rst iteration, all agents are involved in the attack such
that they can distract the defender and obtain a high win rate. Similar strategies are discovered in
the 4th and 5th iterations. The 2nd and the 6th iteration demonstrate an ef�cient pass-and-shoot
strategy, where agents quickly elude the defender and score a goal. In the 3rd and the 7th iterations,
agents learn smart “one-two” strategies to bypass the defender, which is a common tactic adopted by
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Figure 5: Heatmaps of agent positions in SMAC across 4 iterations with SIPO-RBF.

Figure 6: Evaluation winning rate and discovered strategies by SIPO-WD in the3v1scenario over
7 iterations. Each iteration runs for 20 million environment frames. The learning curve is averaged
over 3 random seeds with standard deviation shaded. Strategies of seed 1 are shown.

professional human football players. To the best of our knowledge, SIPO may be the �rst algorithm
that can discover such diverse human-like tactics in complex multi-agent RL environments.

6.3 ABLATION STUDY

Table 5:Number of visually distinct strategies in GRF discovered
by ablations.

ours �x-L CE �lter PBT

3v1 3.00(0.00) 1.00(0.00) 3.00(0.82) 1.33(0.47) 2.67(0.47)
CA 3.00(0.82) -1 2.33(0.94) 1.00(0.00) -2

corner 3.00(0.82) -1 1.67(0.47) 1.00(0.00) -2

1 Not converged.
2 Training requires > 24GB memory and exceeds our memory limit.

We perform ablation studies by

• �xing the Lagrange multiplier (�x-
L);

• replacing our proposed diversity
measure with cross-entropy (CE);

• replacing GDA with the �ltering-
based method (�lter);

• replacing IL with PBT (PBT).

We apply these changes to SIPO-WD and report the number of visually distinct policies discovered
by these methods in Table 5. Comparison between SIPO and CE demonstrates that the action-
based cross-entropy measure may suffer from duplicate actions in GRF and produce nearly identical
behavior by overly exploiting duplicate actions, especially in theCA and corner scenarios with
11 agents. Besides, the �xed Lagrange coef�cient, the �ltering-based method, and PBT are all
detrimental to our algorithm. These methods also suffer from signi�cant training instability. Overall,
both the state-distance-based diversity measure and GDA are critical to the performance of SIPO.
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