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ABSTRACT

In complex reinforcement learning (RL) problems, policies with similar rewards
may have substantially different behaviors. Yet, to not only optimize rewards
but also discover as many diverse strategies as possible remains a challenging
problem. A natural approach to this task is constrained population-based training
(PBT), which simultaneously learns a collection of policies subject to diversity
constraints. However, due to the unaffordable computation cost of PBT, we adopt
an alternative approach, iterative learning (IL), which repeatedly learns a single
novel policy that is sufficiently different from previous ones. We first analyze
these two frameworks and prove that, for any policy pool derived by PBT, we can
always use IL to obtain another policy pool of the same rewards and competitive
diversity scores. In addition, we also present a novel state-based diversity measure
with two tractable realizations. Such a metric can impose a stronger and much
smoother diversity constraint than existing action-based metrics. Combining IL
and the state-based diversity measure, we develop a powerful diversity-driven RL
algorithm, State-based Intrinsic-reward Policy Optimization (SIPO), with prov-
able convergence properties. We empirically examine our algorithm in complex
multi-agent environments including StarCraft Multi-Agent Challenge and Google
Research Football. In these environments, SIPO is able to consistently derive
strategically diverse and human-interpretable policies that cannot be discovered
by existing baselines.

1 INTRODUCTION

A consensus in deep learning (DL) is that most local optima have similar losses to the global opti-
mum (Venturi et al., 2018; Roughgarden, 2020; Ma, 2021). Hence, via stochastic gradient descent
(SGD), most DL works only focus on the final performance of the learned model without consider-
ing which local optimum SGD discovers. However, such a performance-oriented paradigm can be
problematic for reinforcement learning (RL) because it is typical in complex RL problems that poli-
cies with the same reward may have substantially different behaviors. For example, a high-reward
agent in a boat-driving game can either carefully drive the boat or keep turning around to exploit
an environment bug (Clark & Amodei, 2016); a humanoid football AI can adopt any dribbling or
shooting behaviors to score a goal (Liu et al., 2022); a strong StarCraft AI can take very distinct
construction and attacking strategies (Vinyals et al., 2019). Thus, it is a fundamental problem for an
RL algorithm to not only optimize rewards but also discover as many diverse strategies as possible.

In order to obtain diverse RL strategies, we can naturally extend single-policy learning to population-
based training (PBT). The problem can be formulated as a constrained optimization problem by si-
multaneously learning a collection of policies subject to policy diversity constraints (Parker-Holder
et al., 2020b; Lupu et al., 2021). However, since multiple policies are jointly optimized, PBT can be
computationally challenging (Omidshafiei et al., 2020).Therefore, a greedy alternative is iterative
learning, which iteratively learns a single novel policy that is sufficiently different from previous
ones (Masood & Doshi-Velez, 2019; Zhou et al., 2022). Since only one policy is learned per itera-
tion, IL can largely simplify optimization. However, there have not been any theoretical guarantees
on the performance or the convergence properties of IL methods.

In addition to the computation frameworks, how to quantitatively measure the difference (i.e., diver-
sity) between two policies remains an open question as well. Mutual information (MI) is perhaps
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the most popular diversity measure (Eysenbach et al., 2019). Although MI reveals great potential to
discover diverse locomotion skills, it is proved in Eysenbach et al. (2022) that maximizing MI will
not recover the set of optimal policies w.r.t. the environment reward. Therefore, MI-based methods
often serve as a pre-training phase for downstream tasks (Sharma et al., 2020; Campos et al., 2020).
Another category of diversity measure is based on the action distributions, such as Wasserstein dis-
tance (Sun et al., 2020), cross-entropy (Zhou et al., 2022), and Jensen-Shannon divergence (Lupu
et al., 2021). Action-based measures are straightforward to evaluate and optimize. However, we will
show in Sec. 4.2 that such a metric can completely fail in simple scenarios.

In this paper, we present comprehensive studies to address the two issues above. First, we pro-
vide an in-depth analysis of the two computation frameworks, namely PBT and IL, for learning
diverse strategies. We theoretically prove that, in addition to simplified optimization thanks to fewer
constraints, IL can discover solutions with the same reward as PBT with at least half of the diver-
sity score. Regarding the diversity measure, we consider two concrete scenarios, i.e., grid-world
navigation and Google Research Football (GRF). In the grid-world example, we construct visually
different strategies that cannot be distinguished by popular action-based diversity measures. In the
GRF example, we show that duplicated actions taken by an idle player can drastically influence
the action-based diversity score. Consequently, we argue that an effective diversity measure should
focus on state distances instead of action distributions.

Combining IL and a state-based diversity measure, we design a generic and effective algorithm,
State-based Intrinsic-reward Policy Optimization (SIPO), for discovering diverse RL strategies in
an iterative fashion. In each iteration, SIPO learns a single novel policy with state-based diversity
constraints w.r.t. policies learned in previous iterations. We further solve this constrained opti-
mization problem via Lagrangian method and two-timescale gradient descent ascent (GDA) (Lin
et al., 2020). Theoretical results show that our algorithm is guaranteed to converge to a neighbour
of ϵ-approximate KKT point (Dutta et al., 2013). Regarding the state-based measure, we provide
two practical realizations, including a straightforward version based on the RBF kernel and a more
general learning-based variant using Wasserstein distance.

We validate the effectiveness of our algorithm in two challenging multi-agent environments: Star-
Craft Multi-Agent Challenge (Samvelyan et al., 2019) and Google Research Football (Kurach et al.,
2020). Specifically, our algorithm can successfully discover 6 distinct human-interpretable strategies
in the GRF 3-vs-1 scenario and 4 strategies in two 11-player GRF scenarios, namely counter-attack
and corner, without any domain knowledge, which are substantially more than existing baselines.

2 RELATED WORK

Discovering diverse solutions has been a long-established problem (Miller & Shaw, 1996; Deb &
Saha, 2010; Lee et al., 2022) with a wide range of applications in robotic control (Cully et al.,
2015; Kumar et al., 2020), dialogues (Li et al., 2016), game AI (Vinyals et al., 2019; Lupu et al.,
2021), design (Gupta et al., 2021) and emergent behaviors (Liu et al., 2019; Baker et al., 2020; Tang
et al., 2021). Early works are primarily based on the setting of multi-objective optimization (Mouret
& Clune, 2015; Pugh et al., 2016; Ma et al., 2020; Nilsson & Cully, 2021; Pierrot et al., 2022),
which assumes a set of reward functions is given in advance. In RL, this is also related to reward
shaping (Ng et al., 1999; Babes et al., 2008; Devlin & Kudenko, 2011; Tang et al., 2021). We
consider learning diverse policies without any domain knowledge.

Population-based training (PBT) is the most popular framework for producing diverse solutions
by jointly learning separate policies. Representative algorithms include evolutionary computa-
tion (Wang et al., 2019; Long et al., 2020; Parker-Holder et al., 2020b), league training (Vinyals
et al., 2019; Jaderberg et al., 2019), computing Hessian matrix (Parker-Holder et al., 2020a) or con-
strained optimization with a diversity measure over the policy population (Lupu et al., 2021; Zhao
et al., 2021; Li et al., 2021; Liu et al., 2021b). An improvement over PBT is to learn a latent variable
policy instead of separate ones to improve sample efficiency. Prior works have incorporate different
domain knowledge to design the latent code, such as action clustering (Wang et al., 2021), agent
identities (Li et al., 2021) or prosocial level (Peysakhovich & Lerer, 2018; Baker et al., 2020). The
latent variable can be also learned in an unsupervised fashion. DIYAN (Eysenbach et al., 2019)
and its variants (Kumar et al., 2020; Osa et al., 2022) learns latent-conditioned policies by maxi-
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mizing the mutual information between states and the latent variable. The discovered behaviors are
primarily low-level motion skills rather than high-reward strategies (Eysenbach et al., 2022).

Iterative learning (IL) simplifies PBT by only optimizing a single policy subject to different diver-
sity measures, such as maximum mean discrepancy (Masood & Doshi-Velez, 2019), Wasserstein
distance on actions (Sun et al., 2020), and cross entropy (Zhou et al., 2022), which are often action-
based. We adopt a purely state-based measure. Some other works require an expensive clustering
process before each optimization iteration (Zhang et al., 2019) or domain-specific features (Zahavy
et al., 2021) while we consider measures that can be efficiently optimized in an end-to-end fashion.
Besides, Pacchiano et al. (2020) learns a kernel-based score function to guide policy optimization.
The score function is conceptually similar to our Wasserstein-distance-based diversity measure but
is applied to a parallel setting with more restricted expressiveness power.

3 PRELIMINARY

Notation: We consider Partially Observable Markov Decision Process (POMDP) (Spaan, 2012),
defined by a tuple M “ xS,A,O, r, P,O, ν,Hy. S is the state space. A and O are the action
and observation space. r : S ˆ An Ñ R is the reward function. O : S Ñ O is the observation
function. H is the horizon. P is the transition function. For state s, s1 P S and an action a P A,
the transition probability from s to s1 by executing action a is P ps1 | s, aq. At timestep h, the agent
receives an observation oh “ Opshq from the current state sh and outputs an action ah P A w.r.t.
its policy π : O Ñ △ pAq. The RL objective Jpπq, i.e., expected return, is defined by Jpπq “

Epsh,ahq„pP,πq

”

řH
h“1 rpsh, ahq

ı

. The discounted factor is omitted here to simplify notations. The
above formulation can be naturally extended to cooperative multi-agent settings, where π and R
correspond to the joint policy and the shared reward. We follow the standard POMDP notations for
conciseness and evaluate our algorithm in complex cooperative multi-agent scenarios since multi-
agent games are substantially more challenging than single-agent ones.

Finally, in order to discover diverse strategies, we aim to learn a set of M policies tπiu
M
i“1 such that

all of these policies are locally optimal under Jp¨q but mutually distinct subject to some diversity
measure Dp¨, ¨q : △ˆ△ Ñ R, which captures the difference between two policies. We present two
popular computation procedures for this purpose.

Population-Based Training (PBT): PBT is a straightforward formulation of the diversity discovery
problem by jointly learning M policies tπiu

M
i“1 subject to pairwise diversity constraints, i.e.,

max
π1,...,πM

M
ÿ

i“1

Jpπiq s.t. Dpπj , πkq ě δ @j, k P rM s, j ‰ k, (1)

where δ is a threshold. Despite a precise formulation, PBT poses severe optimization challenges.

Iterative Learning (IL): IL is a greedy approximation of PBT by iteratively learning novel policies.
In the i-th (1 ď i ď M ) iteration, IL solves the following constrained optimization problem

π‹
i “ argmax

πi

Jpπiq s.t. Dpπi, π
‹
j q ě δ @1 ď j ă i. (2)

IL runs unconstrained RL at first and then solves incrementally more constrained problems.

Action-Based Diversity Measure: We briefly introduce the diversity measure in this paragraph.
Many prior works define Dp¨, ¨q over actions, which can be formally summarized by

DApπi, πjq “ Es„qpsq

”

D̃A pπip¨ | sq}πjp¨ | sqq

ı

, (3)

where q : △pSq denotes some specific state distribution, and D̃Ap¨}¨q : △ ˆ △ Ñ R measures
the difference between action distributions. D̃A can be any probability distance such as Wasserstein
distance (Sun et al., 2020), Jensen-Shannon Divergence (Lupu et al., 2021), cross-entropy (Zhou
et al., 2022), or simply the L2 distance given a continuous action space (Parker-Holder et al., 2020b).
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4 ANALYSIS OF EXISTING DIVERSITY-DISCOVERY APPROACHES

In this section, we conduct both theoretical and quantitative analysis of existing approaches to mo-
tivate our method. We first compare computation frameworks, namely PBT and IL, in Sec. 4.1 and
then present concrete failure examples for action-based diversity measures in Sec. 4.2.

4.1 COMPUTATION FRAMEWORK: POPULATION-BASED OR ITERATIVE LEARNING?

Theoretical Comparison: We consider the simplest motivation example in the setting of linear
programming to intuitively illustrate the computation challenges. We simply assume that πi is a
scalar, and Jpπiq is linear in πi, and Dpπi, πjq “ |πi ´ πj |. In our definition, PBT involves ΩpM2q

variables in a single constrained optimization problem while IL involves ΩpMq variables in all.
It is well-known that the complexity of linear programming is a high degree polynomial (degree
3 or higher depending on the algorithm) w.r.t. the number of variables (Bertsimas & Tsitsiklis,
1997). Therefore, even in the linear case, we can notice that more constraints can pose substantial
challenges to the optimization problem. This issue can be more severe in RL due to complex solution
space and large training variance.

Although IL can be optimized efficiently, it remains unclear whether IL, as a greedy approximation
of PBT, can obtain solutions of comparable rewards. Fig. 1 shows the worst case in 1-D setting
when the policies found by IL (green) can indeed have much lower rewards than the PBT solution
(red) when subject to the same diversity constraint. However, we will show in the next theorem that
IL is guaranteed to have no worse rewards than PBT by trading off half of the diversity.
Theorem 4.1. Assume D is a distance metric. Denote the optimal value of Eq.( 1) as T1. Let
T2 “

řM
i“1 Jpπ̃iq where

π̃i “ argmax
πi

Jpπiq s.t. Dpπi, π̃jq ě δ{2 @1 ď j ă i (4)

for i “ 1, . . . ,M , then T2 ě T1.

Proof. See Appendix E.1.

δ/2 δ/2 δ/2 δ/2

optimal solution

solution found by IL 
with threshold δ/2
worst-case solution found 
by IL with threshold δ

J(π)

π

1

2

1 2

Figure 1: 1-D worst case of IL. With threshold δ, IL
finds solutions with inferior rewards. However, IL can
find optimal solutions if the threshold is halved.

The above theorem provides a quality guaran-
tee for the IL solutions. The proof can be intu-
itively explained by the 1-D example in Fig. 1.
Assuming the worst case where the first IL so-
lution lies in the middle of a plateau with size
δ (green 1), then the next solution with thresh-
old δ must locate outside the plateau with a low
reward. However, if the threshold is halved,
the IL solutions are guaranteed to locate in the
high-reward area (blue 1 and 2). Thm. 4.1
shows that, for any policy pool derived by PBT,
we can always use IL to obtain another policy
pool, which has the same rewards and compa-
rable diversity scores. We remark that the worst case in Fig. 1 may not be common for RL environ-
ments in practice.

Table 1: The number of discovered land-
marks by PBT and IL across 6 seeds with
standard deviation in the bracket.

setting PBT IL

NL “ 4 2.0 (1.0) 3.5(0.5)
NL “ 5 2.2 (0.9) 4.5(0.5)

Empirical Results: We empirically compare PBT and
IL in a 2-D navigation environment with one agent and
NL landmarks (blue circles), as shown in Fig. 2. The
reward is +1 if the agent successfully navigates to land-
marks and 0 otherwise. Before training, landmark posi-
tions are randomly initialized subject to a pre-specified
distance threshold per episode. We train NL policies us-
ing both PBT and IL to discover strategies towards each of
these landmarks. Specifically, we simply take Dpπi, πjq

as the L2 distance of the final state reached by πi and πj , i.e., Dpπi, πjq “ }sπi

H ´ s
πj

H }2. We solve
this problem via Lagrangian multiplier with details in Appendix D.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4

Epoch 0 Epoch 10 Epoch 20 Epoch 30

PBT

IL

Training Progress

Figure 2: Illustration of the learning process of PBT and IL in a 2-D navigation environment with
4 modes. PBT will not uniformly converge to different landmarks as computation can be either too
costly or unstable. By contrast, IL repeatedly excludes a particular landmark, such that policy in the
next iteration can continuously explore until a novel landmark is discovered.

Agent Goal Table 2: Diversity measures of the grid-world example. Bold numbers
indicate larger values. Computation details can be found in Appendix B.
(KL=KL divergence, JSDγ= generalized Jensen-Shannon Divergence,
EMD=Earth Moving Distance)

human action-based pDAq state-based pDSq

KL JSD1 JSD0/EMD L2 norm L2 norm EMD

Dpπ1, π2q small `8 log 2 1{2
?
7 2

?
2 5.7

Dpπ1, π3q large `8 log 2 1{8 1 2
?
6 11.3

Figure 3: (left) A grid-world environment with size NG “ 5 and 3 different optimal policies. In-
tuitively, Dpπ1, π2q ă Dpπ1, π3q because π1 (purple) and π2 (blue) both move along the diagonal.
However, action-based diversity measures can give DApπ1, π2q ě DApπ1, π3q (right), which moti-
vates our proposal of state-distance based diversity measure.

Table 1 shows the number of discovered landmarks by PBT and IL. IL performs consistently better
than PBT even in this simple example. We illustrate the learning process of PBT and IL in Fig. 2. IL,
due to its computation efficiency, can afford to run longer iterations and tolerate larger exploration
noises. Hence, it can converge easily to diverse solutions by imposing a large diversity constraint.
The PBT, however, only converges when the exploration is faint, otherwise it diverges or converges
too slowly.

4.2 CHOICE OF DIVERSITY MEASURE: ACTION-BASED OR STATE-BASED?

We then analyze the impact of different diversity measures. We first show that action-based measures
can often fail even for very simple tasks.

Action-Based Measure: Although action-based measures are easy to compute and widely used, we
present concrete failure cases here. The first example is a single-agent grid-world with size NG,
where an agent spawns at the top left and needs to navigate to the bottom right. We consider three
different policies shown in Fig. 3: π1 (purple) and π2 (blue) move along the diagonal while π3 (red)
moves along the boundary. Humans can naturally conclude that π3 is visually different from π1 and
π2, i.e., Dpπ1, π2q ă Dpπ1, π3q, especially when NG is large. However, the actions of π1 and π2

along the trajectory are totally disjoint. Consequently, action-based measures will have a large value
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on Dpπ1, π2q. We compute Dpπ1, π2q and Dpπ1, π3q based on popular action-based diversities
measures in Table 2, where the obtained values largely violates human intuition.

Next, we consider a more realistic and complicated multi-agent football scenario in Fig. 4, where
an idle player in the backyard takes an arbitrary action, such as “pass”, “shoot” or “slide”, without
involving in the attack at all. Although the idle player stays still with no effect on the team strategy
at all, action-based measures can produce high diversity scores when the idle player takes different
duplicated actions, leading to visually indistinguishable solutions.

Dribbling Player

Idle Player

Figure 4: Duplicate actions in multi-
agent football. For players who are
not involved in the attack, actions like
“pass”, “shoot”, and “slide” result in the
same consequence. Diversity measures
should not focus on these actions.

State-Based Measure: Based on the previous examples, we
propose to focus on states rather than action when designing
a diversity measure. Formally, denote the state distribution
induced by π as µπ . We define the state-distance-based di-
versity measure as

DSpπi, πjq “ Eps,s1q„γ

“

g
`

d
`

s, s1
˘˘‰

. (5)

d is a distance metric over SˆS. g : R` Ñ R is a monotonic
function. γ P Γpµπi , µπj q is a distribution over state pairs.
Γpµπi , µπj q denotes the collection of all distributions on S ˆ

S with marginals µπi and µπj on the first and second factors
respectively.

Our proposed measure is solely defined over states and such
a metric can impose a stronger and much smoother diversity
constraint than existing action-based metrics. The state dis-
tance in the measure encourages the policies to reach visually
different states leading to desired diversity. We compute two
simple state-based measures, i.e., the L2 norm and the Earth
Moving Distance (EMD), for the grid-world example in Ta-
ble 2, which is consistent with human intuition.

4.3 PRACTICAL REMARK

Based on the analysis in the above subsections, we conclude that PBT can pose severe optimization
challenges, and that action-based diversity measures can often fail because they may not correctly
reflect behavioral differences. By contrast, IL and state-based diversity measures are free from the
above issues and should be preferred in challenging RL applications. Therefore, we consider how
to develop a powerful algorithm for discovering diverse policies that can leverage both algorithmic
design choices. In the next section, we combine these ideas with a theoretically sound optimization
algorithm, Gradient Descent Ascent (GDA), towards an efficient and practical algorithm for learning
diverse policies.

5 METHOD

5.1 ALGORITHM OVERVIEW

In this section, we develop a powerful diversity-driven RL algorithm, State-based Intrinsic-reward
Policy Optimization (SIPO), by combining IL and state-distance-based measures. SIPO runs M
iterations to discover M distinct policies. At the i-th iteration, we solve Problem (2) by converting
it into unconstrained optimization using the Lagrange method. The unconstrained optimization can
be written as

min
πi

max
λjě0, 1ďjăi

´Jpπiq ´

i´1
ÿ

j“1

λj

`

DSpπi, π
‹
j q ´ δ

˘

(6)

where λj (1 ď j ă i) are Lagrange multipliers and tπ‹
j u

i´1
j“1 are previously obtained policies. We

adopt two-timescale Gradient Descent Ascent (GDA) (Lin et al., 2020) to solve the above minimax
optimization, i.e., performing gradient descent over πi and gradient ascent over λj with different
learning rates. We also clip the dual variables λ, which plays an important role both in our theorem
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and in empirical convergence. However, DSpπi, π
‹
j q cannot be directly optimized through gradient-

based methods because it is related to the states visited by πi. As a popular solution (Zhou et al.,
2022), we cast DSpπi, π

‹
j q as the summation of intrinsic rewards and optimize it via policy gradient.

The pseudocode of SIPO can be found in Appendix G.

An important property of SIPO is the convergence guarantee. We present an informal illustration in
Thm. 5.1 and present the formal theorem with proof in Appendix E.2.

Theorem 5.1. (Informal) Under moderate assumptions, SIPO converges to a neighborhood of ϵ-
approximate KKT point.

Remark: Please see the appendix for a detailed description of the assumptions and the proof. We
assumed that the reward J and the distance DS are smooth in policies. In practice, this is true if the
policy remains in a bounded region and the reward is continuous in state. The key step in the proof
is to analyze the role of clipping the dual variables λ, which stabilizes the algorithm without hurting
the optimality condition.

5.2 REALIZATION OF THE STATE-BASED MEASURE

Instead of directly defining DS , we define intrinsic rewards as illustrated in Sec. 5.1, such that
DSpπi, π

‹
j q “ Esh„µπi

”

řH
h“1 rintpsh;πi, π

‹
j q

ı

. With this formulation, we can implement the fol-
lowing two types of diversity measures.

RBF Kernel: The most popular realization of Eq. (5) in machine learning is kernel functions. In
this paper, we realize Eq. (5) as an RBF kernel on states. Formally, the intrinsic reward is defined by

rRBF
int psh;πi, π

‹
j q “

1

H
Es1„µπ‹

j

„

´ exp

ˆ

´
}sh ´ s1}2

2σ2

˙ȷ

(7)

where σ is a hyperparameter controlling the variance.

Wasserstein Distance: For stronger discrimination power, we realize Eq. (5) as L2-Wasserstein
distance. According to the dual form (Villani, 2009), the intrinsic reward is defined by

rWD
int psh;πi, π

‹
j q “

1

H
sup

}f}Lď1

fpshq ´ Es1„µπ‹
j

“

fps1q
‰

(8)

where f : S Ñ R is a 1-Lipschitz function. Following Arjovsky et al. (2017), we implement f as a
neural network and clip parameters to r´0.01, 0.01s to ensure the Lipschitz constraint. rWD

int utilizes
a learnable scoring function f and is more flexible in practice.

We name SIPO with rRBF
int and rWD

int SIPO-RBF and SIPO-WD respectively.

Implementation In the i-th iteration (1 ď i ď M ), we learn an actor and a critic with i separate
value heads to accurately predict different return terms, including i ´ 1 intrinsic returns for the
diversity constraints and the environment reward. The input of rint is the global state, which contains
the state information of all the agents. To incorporate temporal information, we stack the recent 4
global states to compute intrinsic rewards and normalize the intrinsic rewards to stabilize training.
In multi-agent environments, we learn an agent-ID-conditioned policy (Fu et al., 2022) and share the
parameter across all agents. Our implementation is based on MAPPO (Yu et al., 2021) with more
details in Appendix D.

6 EXPERIMENTS

We validate the effectiveness of SIPO in two complex multi-agent games: StarCarft Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019) and Google Research Football (GRF) (Kurach et al.,
2020). First, we show that SIPO can efficiently learn diverse strategies in all scenarios and outper-
form several baseline methods, including DIPG (Masood & Doshi-Velez, 2019), SMERL (Kumar
et al., 2020), DvD (Parker-Holder et al., 2020b), and RSPO (Zhou et al., 2022). Then, we qualita-
tively demonstrate the emergent behaviors learned by SIPO, which are both visually distinguishable
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Table 4: Number of visually distinct strategies in GRF discovered by different methods. Popula-
tion size M “ 4 in all cases. Details of the evaluation protocol can be found in Appendix B.

ours baselines random

SIPO-RBF SIPO-WD DIPG SMERL DvD1 RSPO2 PG

3v1 3.00(0.82) 3.00(0.00) 2.67(0.47) 1.33(0.47) 3.00(0.82) 2.33(0.47) 2.67(0.47)
CA 3.33(0.47) 3.00(0.82) 2.33(0.47) 0.75(0.43) - 2.67(0.47) 1.67(0.47)

corner 2.33(0.47) 3.00(0.82) 2.33(0.47) 0.75(0.43) - - 2.33(0.47)
1 Training DvD in CA and corner requires >24GB GPU memory, which exceeds our memory limit.
2 Not converged in corner.

and human-interpretable. Finally, we perform an ablation study over the building components of
SIPO and show that both the diversity measure and GDA are critical to the performance.

All the algorithms including ablation variants run for the same number of environment frames on
a desktop machine with a single NVIDIA RTX3090 GPU. All the quantitative results are repeated
over 3 random seeds with standard deviation shown in brackets. Additional results in continuous
control can be found in Appendix B.

6.1 COMPARISON WITH BASELINE METHODS

In SMAC, we only compare SIPO and RSPO, since RSPO outperforms other baselines (Zhou et al.,
2022). We run both algorithms on an easy map, 2m_vs_1z, and a hard map, 2c_vs_64zg, across
4 iterations. Both algorithms can discover 4 distinct winning strategies. To perform further com-
parison, we compute the population diversity score based on rRBF

int (see definition in Appendix B).

Table 3: Population diversity in SMAC.

map RSPO SIPO

2m1z 0.035 (0.011) 0.047(0.011)
2c64zg 0.292 (0.023) 0.368(0.013)

The results in Table 3 show that SIPO can discover
an even more diverse population than RSPO, even
though RSPO explicitly forces all policies to output
different actions. In GRF, we run all algorithms
and train a population of 4 in three academy sce-
narios, specifically “academy_3_vs_1_with_keeper”
(3v1), “academy_counterattack_easy” (CA), and
“academy_corner” (corner). The GRF environment is more challenging than SMAC due to
the large action space and the existence of duplicate actions. Table 4 compares the number of
visually distinct policies discovered in the population. We present the population diversity scores
in Appendix B. Our algorithm is the most efficient and robust — even in the challenging 11-vs-11
corner and CA scenario, SIPO can effectively discover different winning strategies in just a few
iterations across different seeds. By contrast, baselines adopting action-based measures, e.g., DvD
and RSPO, suffer from the issue of duplicate actions and tend to discover policies with slight
distinctions. In addition, the mutual information objective in SMERL is sub-optimal (Eysenbach
et al., 2022) and the MMD-based measure of DIPG may not impose a strong adversarial power on
policies.

6.2 QUALITATIVE ANALYSIS

For SMAC, we present heatmaps of agent positions in Fig. 5. The heatmaps clearly show that SIPO
can consistently learn novel winning strategies to conquer the enemy. Fig. 6 presents the learned
behavior by SIPO in the GRF 3v1 scenario, where 3 attackers should collaborate to shoot under
the defense of an opponent player and a goalkeeper. We can observe that agents have learned a
wide spectrum of collaboration strategies across merely 7 iterations. Visualization results in CA and
corner scenarios can be found in Appendix B.

Surprisingly, the strategies discovered by SIPO are both diverse and human-interpretable. We take
the 3v1 scenario as an example. In the first iteration, all agents are involved in the attack such
that they can distract the defender and obtain a high win rate. Similar strategies are discovered in
the 4th and 5th iterations. The 2nd and the 6th iteration demonstrate an efficient pass-and-shoot
strategy, where agents quickly elude the defender and score a goal. In the 3rd and the 7th iterations,
agents learn smart “one-two” strategies to bypass the defender, which is a common tactic adopted by
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Figure 5: Heatmaps of agent positions in SMAC across 4 iterations with SIPO-RBF.
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Figure 6: Evaluation winning rate and discovered strategies by SIPO-WD in the 3v1 scenario over
7 iterations. Each iteration runs for 20 million environment frames. The learning curve is averaged
over 3 random seeds with standard deviation shaded. Strategies of seed 1 are shown.

professional human football players. To the best of our knowledge, SIPO may be the first algorithm
that can discover such diverse human-like tactics in complex multi-agent RL environments.

6.3 ABLATION STUDY

Table 5: Number of visually distinct strategies in GRF discovered
by ablations.

ours fix-L CE filter PBT

3v1 3.00(0.00) 1.00(0.00) 3.00(0.82) 1.33(0.47) 2.67(0.47)
CA 3.00(0.82) -1 2.33(0.94) 1.00(0.00) -2

corner 3.00(0.82) -1 1.67(0.47) 1.00(0.00) -2

1 Not converged.
2 Training requires > 24GB memory and exceeds our memory limit.

We perform ablation studies by

• fixing the Lagrange multiplier (fix-
L);

• replacing our proposed diversity
measure with cross-entropy (CE);

• replacing GDA with the filtering-
based method (filter);

• replacing IL with PBT (PBT).

We apply these changes to SIPO-WD and report the number of visually distinct policies discovered
by these methods in Table 5. Comparison between SIPO and CE demonstrates that the action-
based cross-entropy measure may suffer from duplicate actions in GRF and produce nearly identical
behavior by overly exploiting duplicate actions, especially in the CA and corner scenarios with
11 agents. Besides, the fixed Lagrange coefficient, the filtering-based method, and PBT are all
detrimental to our algorithm. These methods also suffer from significant training instability. Overall,
both the state-distance-based diversity measure and GDA are critical to the performance of SIPO.
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7 CONCLUSION

In this paper, we tackle the problem of discovering diverse high-reward policy in complex RL sce-
narios. We present a thorough comparison between two popular computation frameworks for this
problem, i.e., population-based training (PBT) and iterative learning, and show that, comparing with
PBT, IL is much easy to optimize and can derive solutions with comparable quality to PBT. More-
over, we also demonstrate concrete failure cases for popular action-based diversity measure. Moti-
vated by these insights, we combine IL with a diversity measure defined on state distance to develop
State-based Intrinsic-reward Policy Optimization (SIPO), which has provable convergence and can
efficiently discover a wide spectrum of human-interpretable strategies in challenging multi-agent
environments. We emphasize that the contribution of our work is much beyond the final algorithm
SIPO. We believe our analysis on frameworks and diversity measure with concrete examples and
theoretical justifications can bring useful insights to benefit the community for developing more
powerful diversity-driven RL algorithms.
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A PROJECT WEBSITE

Check https://sites.google.com/view/diversity-sipo for GIF demonstrations.

B ADDITIONAL RESULTS

B.1 MORE QUALITATIVE RESULTS
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Figure 7: Visualization of learned behaviors in GRF CA across a single training trial.
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Figure 8: Visualization of learned behaviors in GRF corner (left) and MuJoCo Humanoid-v3 (right)
across a single training trial.

We show visualization results in GRF CA and corner in Fig. 7 (left) and Fig. 8 (left). We also
evaluate SIPO-WD in the most challenging continuous control environment, Humanoid-v3, across
3 iterations and visualize the learned behavior in Fig. 8 (right). SIPO-WD is able to produce diverse
behaviors with different gaits. We additionally remark that the population diversity score is very
close to 1 (such as 0.999) even when we repeatedly run PPO (Zhou et al., 2022). Hence, we do not
report the population diversity score here.

B.2 STATE-BASED POPULATION DIVERSITY

We define the pairwise difference between policies as

Kij “ Kpπi, πjq “ Eps1h,s
h
2 q„pP,πi,πjq

„

exp

ˆ

´
}s1h ´ s2h}2

2σ̂2

˙ȷ

. (9)
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Table 6: Population diversity in GRF. Mean values averaged over 3 random seeds are shown with
standard deviation in the brackets. Population size M “ 4.

ours baselines

SIPO-RBF SIPO-WD DIPG SMERL1 DvD2 RSPO3

3v1 0.023(0.002) 0.027(0.002) 0.025(0.004) 0.014(0.002) 0.024(0.008) 0.019(0.002)
CA 0.972(0.022) 0.945(0.050) 0.919(0.004) - - 0.899(0.058)

Corner 0.213(0.088) 0.278(0.086) 0.154(0.021) - - -
1 When conditioned on some specific latent variable, SMERL policy cannot even collect a single winning

trajectory in CA and Corner. Therefore, we omit the result here.
2 Training DvD in CA and corner requires >24GB GPU memory, which exceeds our memory limit.
3 Not converged in corner.

Table 7: Population diversity and the number of distinct strategies in GRF 3v1
scenario with population size M “ 10. Mean values averaged over 3 random
seeds are shown with standard deviation in the brackets.

ours baselines

SIPO-RBF SIPO-WD DIPG RSPO

population diversity 0.291(0.053) 0.399(0.040) 0.251(0.018) 0.272(0.036)
# strategies 4.33(0.47) 5.67(0.47) 3.67(0.47) 2.33(0.47)

where σ̂ is a scaling factor. Then, similar to Parker-Holder et al. (2020b), we compute the deter-
minant of the matrix K as the population diversity. σ̂ “ 1 for Table 3, σ̂ “ 0.4 for Table 6, and
σ̂ “ 0.15 for Table 7.

Similar to Table 3, we present the state-based population diversity score of GRF scenarios in Table 6.
GRF scenarios are more challenging than SMAC and the trained policies may not always score a
goal in each episode. (See evaluation winning rates in Table 8.) To reduce the variance, we collect
32 winning trajectories and compute population diversity scores on them.

B.3 RESULTS WITH A LARGER POPULATION SIZE

To demonstrate the effectiveness of SIPO, we additionally conduct an experiment in the GRF 3v1
scenario with a population size M “ 10. Baselines include DIPG and RSPO. We present the results
in Table 7. Results show that SIPO clearly outperforms these baselines by consistently discovering
one or more additional strategies.

Empirically, we find that there are 4 “primitive” strategies in the 3v1 scenario, which are pass-and-
shoot (iteration 2 in Fig. 6), double-pass-and-shoot (iteration 1 in Fig. 6), and the corresponding
mirror strategies. Across 10 iterations, baseline methods do not discover any strategies beyond these
primitives, while SIPO is able to learn addition smart behaviors like “one-two” strategies (iteration
7 in Fig. 6).

B.4 EVALUATION WIN RATE

The evaluation win rates of the demonstrated visualization results (Fig. 5, Fig. 6,Fig. 7, and Fig. 8)
are shown in Table 8.

B.5 COMPUTATION OF ACTION-BASED MEASURES IN THE GRID-WORLD EXAMPLE

We consider the policies illustrated in Fig. 9. These policies are all optimal since these actions only
include “right” and “down” and actions on non-visited states can be arbitrary. We only mark actions
on states visited by any of these 3 policies and actions on other states can be considered the same.
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Table 8: Evaluation win rate (%) of the demonstrated visualization results. Averaged across 3 seeds
with standard deviation shown in brackets.

SMAC GRF

2m1z 2c64zg 3v1 CA corner

π1 100.0(0.0) 98.1(2.1) 92.3(6.2) 48.2(10.4) 78.2(16.2)
π2 99.6(0.9) 100.0(0.0) 82.1(8.4) 43.8(42.2) 57.0(37.7)
π3 100.0(0.0) 96.9(3.3) 90.7(1.1) 54.7(30.6) 55.7(20.8)
π4 99.6(0.6) 98.6(2.4) 63.6(45.0) 17.2(30.0) 30.7(29.0)
π5 - - 85.4(9.1) - -
π6 - - 93.2(1.9) - -
π7 - - 64.6(32.5) - -

B.5.1 ACTION-DISTRIBUTION-BASED MEASURES

Action-distribution-based diversity measures can be defined as

DApπi, πjq “ Es„qpsq

”

D̃ pπip¨ | sq}πjp¨ | sqq

ı

, (10)

where D̃p¨, ¨q : △ ˆ △ Ñ R is a measure over action distributions and q : △pSq is a state proposal
distribution. Here, we consider q to be the joint state distribution visited by πi and πj .

KL Divergence KL divergence is defined by

DKL pπip¨ | sq, πjp¨ | sqq “

ż

A
πipa | sq log

πipa | sq

πjpa | sq
da.

When πjpa | sq “ 0 at any state s, KL divergence is `8. Since the trajectories of these policies
have disjoint states, DKL

A pπ1, π2q “ DKL
A pπ1, π3q “ `8. Similar results can be obtained for cross-

entropy.

JSDγ JSDγ was defined in Lupu et al. (2021) and we consider two special cases when γ “ 0 and
γ “ 1.

As illustrated by Lupu et al. (2021), JSD0 measures the expected number of times two policies will
“disagree” by selecting different actions. On trajectories induced by π1 and π2, there are 4`4 states
that π1 disagrees with π2 (π1 and π2 are symmetric) and DJSD0

A pπ1, π2q “ 8{16 “ 1{2. Similarly,
π1 and π3 only disagree at the initial state, therefore we have DJSD0

A pπ1, π3q “ 2{16 “ 1{8.

Figure 9: Policies in the grid-world example when NG “ 5.
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Figure 10: Average intrinsic re-
ward during training π1.

Table 9: The values of δ and α in different environments.

football smac

3v1 corner CA 2m_vs_1z 2c_vs_64zg

δWD 0.004 0.01 0.012 0.02 0.2
αWD 1 1 0.5 0.5 0.05
δRBF 0.03 0.01 0.015 0.002 0.001
αRBF 0.001 0.001 0.001 0.001 0.001
σ2 0.02 0.02 0.02 0.02 0.02

JSD1 is defined by

JSD1pπi, πjq “ ´
1

2

ÿ

τi

P pτi | πiq

T
ÿ

t“1

1

T
log

πipτiq ` πjpτiq

2πipτiq

´
1

2

ÿ

τj

P pτj | πjq

T
ÿ

t“1

1

T
log

πipτjq ` πjpτjq

2πjpτjq
.

Since each of the policies considered only induces a single trajectory and πipτjq “ 0 pi ‰ jq, we
can easily compute

DJSD1

A pπ1, π2q “ DJSD1

A pπ1, π3q “ log 2

Wasserstein Distance Wasserstein distance or Earth Moving Distance (EMD) is 1 if two policies
disagree on a state and 0 otherwise. Therefore, it equals to DJSD0

A .

B.5.2 ACTION NORM

We embed the action “right” as vector r1, 0s since it increases the x-coordinate by 1 and the action
“down” as vector r0,´1s since it decreases the y-coordinate by 1. This embedding can be naturally
extended to a continuous action space with velocity action. Following Parker-Holder et al. (2020b),
we compute the action norm over a uniform distribution on states. We can see that there are 7
states where π1 and π2 perform differently and 1 state (the initial state) where π1 and π3 perform
differently. Therefore, we can get Dpπ1, π2q “

?
7 and Dpπ1, π3q “ 1.

B.5.3 STATE-DISTANCE-BASED MEASURES

State L2 Norm Similar to action L2 norm, we concatenate the coordinates instead of actions as
the embedding and compute the L2 norm between embedding.

Wasserstein Distance Wasserstein distance is tractable in the grid-world example. We consider
7 states (except the initial and final states) in each trajectory and compute the pair-wise distance as
matrix C14. Then we solve the following linear programming

min
γ

ÿ

i,j

γ d C

s.t. γ114 “ a, γT114 “ b

γi,j ě 0, 1 ď i, j ď 14

where d means element-wise multiplication, 1k is a k-dim all-one vector, a14ˆ1 “ r1T
k ,0

T
k sT and

b14ˆ1 “ r0T
k ,1

T
k sT is the marginal state distribution of each policy.

B.6 HOW TO ADJUST CONSTRAINT-RELATED HYPERPARAMETERS

Three hyperparameters are essential in the implementation of the intrinsic reward rint: the threshold
δ, the intrinsic reward scale factor α, and the variance factor σ in rRBF

int . These parameters differ
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under different domains and must be adjusted individually. We find proper parameters by running
two iterations without constraints and get two similar policies π0 and π1. We record rint during
training π1 and the trend is shown in Fig. 10. Not surprisingly, rint gradually decreases as training
proceeds.

Threshold We set δ “ c1DSpπ0, π1q. We try several different c1 P t1, 1.2, 1.4, 1.6, 1.8, 2.0u and
find that c1 “ 1.2 or 1.4 are universal proper solutions for all the experimental environments.

Intrinsic Scale Factor We need to balance the intrinsic reward rint and the original reward J so
that neither of the two rewards can dominate the training process. Empirically, the maximums of
the two rewards should be in the same order of magnitude. i.e., maxπ Jpπq “ α ˆ c2λmaxδ, where
c2 “ Op1q. When c2 is too large, the new-trained policy πj will oscillate near the boundary of
Dpπi, πjq “ δ for some pre-trained policy pi. Conversely, when c2 is too small, the intrinsic reward
rint cannot yield diverse strategies. In experiments, we set c2 “ 0.8 „ 1.0.

Variance Factor We sweep the variance factor across t1e ´ 3, 5e ´ 3, 1e ´ 2, 2e ´ 2, 1e ´ 3u by
training π1 and observe the trend of intrinsic rewards. We find the steepest trend and select the
corresponding σ. Empirically, we find that our algorithm performs robustly well when σ2 “ 0.02.

The δ and α of GRF and SMAC are listed in Table 9.

B.7 EVALUATION PROTOCOL OF TABLE 4 AND TABLE 5

In 3v1 and CA, players perform passes and shoot in the front yard. We consider two strategies to
be different if the resulting trajectories of ball movement are different, e.g. the ball is passed to
different players or different players perform a shoot. In Corner, besides ball movement, we further
categorize pass-and-shoot strategies according to the position of shooting in the penalty box (e.g.,
lower/middle/upper spot). All the authors perform independent evaluation based on this criterion
and strong agreements are achieved. Please check our project website for GIF demonstrations.

C ENVIRONMENT DETAILS

C.1 DETAILS OF THE 2D NAVIGATION ENVIRONMENT

The navigation environment has an agent circle with size a and 4 landmark circles with size b. We
pre-specify a threshold c and constrain that the distance of final states reaching different landmarks
must be larger than c. Correspondingly, landmark circles are randomly initialized by constraining
the pairwise distance between centers to be larger than a threshold c`2pa`bq such that the final-state
constraint is valid. An episode ends if the agent touches any landmarks, i.e., the distance between
the center of the agent and the center of the landmark d ă a`b, or 1000 timesteps have elapsed. The
observation space includes the positions of the agent and all landmarks, which is a 10-dimensional
vector. The action space is a 2-dimensional vector, which is the agent velocity. The time interval is
set to be ∆t “ 0.1, i.e., the next position is computed by xt`1 “ xt ` ∆t ¨ v. The reward is 0 if the
agent touches the landmark and 0 otherwise.

C.2 DETAILS OF SMAC, GRF, AND MUJOCO

SMAC We adopt the SMAc environment in the MAPPO codebase1 with the same configuration
as Yu et al. (2021). The input of intrinsic rewards or diversity measure is the state of all allies,
including positions, health, etc.

GRF We adopt the “simple115v2” representation as observation with both “scoring” and “check-
point” reward. The reward is shared across all agents. The input of intrinsic rewards or diversity
measure is the position and velocity of all attackers and the ball.

MuJoCo We use the Humanoid-v4 environment in OpenAI gym version 0.21.0 with the default
configuration. To remove irrelevant or unchangeable features, we use the first 45-dimension of

1https://github.com/marlbenchmark/on-policy
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Table 10: Hyperparameters in the 2D navigation environment.

discount GAE λ PPO epochs clip parameter entropy bonus λmax actor lr critic lr Lagrange lr batch size

0.997 0.95 10 0.2 0 10 3e-4 1e-3 0.5 4000

Table 11: Common hyperparameters for SIPO, baselines, and ablations.

discount GAE λ actor lr critic lr clip parameter entropy bonus GRF batch size SMAC batch size

0.99 0.95 5e-4 1e-3 0.2 0.01 9600 3200

observation as the input of intrinsic rewards and the semantic meaning can be found in https://
github.com/openai/gym/blob/master/gym/envs/mujoco/humanoid_v4.py.

D IMPLEMENTATION DETAILS

D.1 2D NAVIGATION

We apply PPO to optimize the policy and hyperparameters are summarized in Table 10. The applied
algorithm is the same as SIPO (see Appendix G) except that the intrinsic reward is only computed
at the last timestep.

D.2 SIPO

We include all practical tricks mentioned in Yu et al. (2021) because we find them all critical to
algorithm performance. We use separate actor and critic networks, both with hidden size 64 and a
GRU layer with hidden size 64. The common hyperparameters for SIPO, baselines, and ablations are
listed in Table 11. Other environment-specific parameters, such as PPO epochs and mini-batch size,
are all the same as Yu et al. (2021). Besides, Table 9 and Table 12 lists some extra hyperparameters
for SIPO.

Specific hyperparameters for baselines can be found in Appendix D.3.

D.3 BASELINES

We re-implement all baselines with PPO based on the MAPPO (Yu et al., 2021) project. All algo-
rithms run for the same number of environment frames.

SMERL We implement SMERL (Kumar et al., 2020) with PPO, where the actor and the critic
take as the input the concatenation of observation and a one-hot latent variable. The discriminator
is a 2-layer feed-forward network with 64 hidden units. The learning rate of the discriminator is
the same as the learning rate of the critic network. The input of the discriminator is the same as
the input we use for SIPO-WD. The critic has 2 value heads for an accurate estimation of intrinsic
return. Since SMERL trains a single latent-conditioned policy, we train SMERL for Mˆ more
environment steps, such that total environment frames are the same. The scaling factor of intrinsic
rewards is 0.1 and the threshold for diversification is r0.81, 0.45, 0.72s (0.9 ˆ r0.9, 0.5, 0.8s) for
“3v1”, “counterattack”, and “corner” respectively.

TrajDi We also try TrajDi (Lupu et al., 2021) in the GRF domain. We sweep the action discount
factor among t0.1, 0.5, 0.9u and the coefficient of TrajDi loss among t0.1, 0.01, 0.001u. However,

Table 12: SIPO hyperparameters across all
environments.

λmax Discriminator lr Lagrangian lr

1 1e-4 0.1
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TrajDi fails to converge in the “3v1” scenario and exceeds the GPU memory in the “counterattack”
and “corner” scenarios. Therefore, we exclude the performance of TrajDi in the main body.

DvD We concatenate the one-hot actions along a trajectory as the behavioral embedding. The
square of the variance factor, i.e., σ2 in the RBF kernel, is set to be the length of behavioral embed-
ding. We also use the same Bayesian bandits as proposed in (Parker-Holder et al., 2020b). Training
DvD in “counterattack” and “corner” exceeds the GPU memory and we exclude the results in the
main body.

DIPG For DIPG (Masood & Doshi-Velez, 2019), we follow the opensource implementation2. We
set the same variance factor in the RBF kernel as SIPO-RBF and apply the same state as the input of
the RBF kernel. We sweep the coefficient of MMD loss among t0.1, 0.5, 0.9u and find 0.1 the most
appropriate (larger value will cause training instability). We use the same method to save archived
trajectories as SIPO and the input of the RBF kernel is the same as the input we use for SIPO-RBF.
To improve training efficiency, we only back-propagate the MMD loss at the first PPO epoch, but
the training is still much slower („17h/iteration for 3v1) than SIPO-RBF („12 h/iteration for 3v1).

RSPO For RSPO (Zhou et al., 2022), we follow the opensource implementation3 and use the same
hyperparameters on the SMAC 2c_vs_64zg map in the original paper for GRF experiments.

D.4 ABLATION STUDY DETAILS

For the three ablation studies: fix-L, CE, and filter, we list the specific hyperparameters here:

• fix-L: we set the Lagrange multiplier to be 0.2;

• CE: the threshold is 3.800 and the intrinsic reward scale factor is 1{1000 of that in the WD
setting;

• filter: all the hyperparameters in the setting is the same as those in the WD setting.

E PROOFS

E.1 PROOF OF THEOREM 4.1

Theorem 4.1. Assume D is a distance metric. Denote the optimal value of Problem 1 as T1. Let
T2 “

řM
i“1 Jpπ̃iq where

π̃i “ argmax
πi

Jpπiq

s.t. Dpπi, π̃jq ě δ{2, @1 ď j ă i
(3)

for i “ 1, . . . ,M , then T2 ě T1.

Proof. Suppose the optimal solution of Problem 1 is π1, π2, ..., πM satisfying Jpπ1q ě Jpπ2q ě

... ě JpπM q and the optimal solution of Problem 4 is π̃1, π̃2, ..., π̃M satisfying Jpπ̃1q ě Jpπ̃2q ě

... ě Jpπ̃M q.

Assume the contrary that Thm. 4.1 is not true, which means
řM

i“1 Jpπiq “ T1 ą T2 “
řM

i“1 Jpπ̃iq.
Then we choose the smallest number N ď M that satisfies

N
ÿ

i“1

Jpπiq ą

N
ÿ

i“1

Jpπ̃iq.

By T1 ą T2 we know that N exists. In addition, because Problem 4 solves unconstrained RL in the
first iteration, we know that π̃1 “ argmaxπ Jpπq and then Jpπ1q ď Jpπ̃1q. Therefore, N ě 2.

2https://github.com/dtak/DIPG-public
3https://github.com/footoredo/rspo-iclr-2022
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Suppose JpπN q ď Jpπ̃N q. Then we have

N´1
ÿ

i“1

Jpπiq ą

N´1
ÿ

i“1

Jpπ̃iq.

Contradicting the fact that N is the smallest number satisfies that equation.

Hence, we know that JpπN q ą Jpπ̃N q. Then

Jpπ1q ě Jpπ2q ě ... ě JpπN q ą Jpπ̃N q.

Consider the optimization problem of π̃N :

π̃N “ argmax
π

Jpπq

s.t. Dpπ, π̃jq ě δ{2, @1 ď j ă N.

This optimization does not find tπ1, . . . , πNu but find π̃N , which means that for each πi, 1 ď i ď N ,
there exists 1 ď ji ă N such that Dpπi, π̃jiq ă δ{2. Otherwise, we will get the solution of the
above problem as πi instead of π̃N .

By the Pigeonhole Principle, we know that there exist two indexes i1 P rN s and i2 P rN s pi1 ‰ i2q

such that ji1 “ ji2 “ ĵ. Then we have

Dpπi1 , πi2q ď Dpπi1 , π̃ĵq ` Dpπi2 , π̃ĵq ă δ{2 ` δ{2 “ δ,

where the inequality follows by the triangle inequality of the distance function.

It contradict with the fact that Dpπi1 , πi2q ě δ in Problem 1.

Therefore, we prove the theorem
řM

i“1 Jpπiq “ T1 ď T2 “
řM

i“1 Jpπ̃iq.

E.2 PROOF OF THEOREM 5.1

In this section, we consider the i-th iteration of SIPO illustrated in Eq. (2). For the sake of simplicity,
we use a ď λ ď b for vector λ to denote each component of λ satisfies a ď λi ď b, where a, b P R.
We use π to denote the policy we are optimizing, and πj p1 ď j ă iq to denote a previously obtained
policy. We denote the Lagrange function as Lpπ,λq “ ´Jpπq ´

ři´1
j“1 λj pDpπ, πjq ´ δq.

To prove Theorem 5.1, we consider the following two optimization problems:

pπi,λ
‹q “ argmin

π
max
λě0

Lpπ,λq (11)

and
pπ̃i, λ̃

‹q “ argmin
π

max
0ďλďΛ

Lpπ,λq, (12)

where Λ “ 1
ϵ0

and ϵ0 ą 0 is sufficiently small.

Assumption E.1. 0 ď Jp¨q ď 1.
Assumption E.2. @λ ě 0, Lp¨,λq is l-smooth and ζ-Lipschitz.
Lemma E.3. Jpπiq ď Jpπ̃iq.

Proof. As the domain of λ in Eq. 12 is smaller than Eq. (11), we have Lpπi,λq ě Lpπ̃i, λ̃q.

By the fundamental property of Lagrange duality, we know that L achieves its optimal value when
λ “ 0 and the optimal value is ´Jpπiq.

By the optimality of pπ̃i, λ̃
‹q, we know that

´

i´1
ÿ

j“1

λ̃‹
j pDpπ̃i, πjq ´ δq ě 0. (13)
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Then we have

´Jpπiq “ Lpπi,λ
‹q ě L̃pπ̃i, λ̃

‹q “ ´Jpπ̃iq ´

i´1
ÿ

j“1

λ̃‹
j pDpπ̃i, πjq ´ δq ě ´Jpπ̃iq.

Lemma E.4. Under Assumption E.1, Dpπ̃i, πjq ě δ ´ ϵ0, @1 ď j ă i.

Proof. We prove by contradiction.

Suppose there exists 1 ď j0 ă i, Dpπ̃i, πj0q ă δ ´ ϵ0. Then we choose λ̂ such that

λ̂j “

"

Λ j “ j0 ,

0 1 ď j ă i, j ‰ j0 .

By the Assumption E.1, Eq. (13), and Λ “ 1
ϵ0

, we have

0 ě ´Jpπiq “ Lpπi,λ
‹q ě Lpπ̃i, λ̃

‹q ě Lpπ̃i, λ̂q ě ´1 ´ ΛpDpπ̃i, πj0q ´ δq ą 0.

That is a contradiction. So we have proved that
Dpπ̃i, πjq ě δ ´ ϵ0, @1 ď j ă i.

Lemma E.5. (Lin et al. (2020), Theorem 4.8) Under Assumption E.2, solving Eq. (12) via two-
timescale GDA with learning rate ηπ “ Θpϵ4{l3ζ2Λ2q and ηλ “ Θp1{lq requires

O
ˆ

l3ζ2Λ2C1

ϵ6
`

l3Λ2C2

ϵ4

˙

iterations to converge to an ϵ-stationary point π‹
i , where C1 and C2 are the constants that depend

on the distance between the initial point and the optimal point.

Theorem 5.1. Under moderate assumptions, SIPO converges to a neighbourhood of ϵ-approximate
KKT point.

Proof. At the i-th (1 ď i ď M ) iteration, SIPO solves the following constrained optimization
min
πi

´ Jpπiq

s.t. Dpπi, πjq ě δ, @1 ď j ă i .

Consider the Lagrange function as Lpπ,λq “ ´Jpπq´
ři´1

j“1 λj pDpπ, πjq ´ δq. Denote the optimal
solution of Eq. 11 and Eq. 12 as pπi, λq and pπ̃i, λ̃q respectively.

By Lemma E.3 and Lemma E.4 we have
Jpπiq ď Jpπ̃iq

Dpπ̃i, πjq ě δ ´ ϵ0, @1 ď j ă i

and therefore we only need to consider the following nonconvex-concave optimization
min
π

max
0ďλďΛ

Lpπ,λq . (14)

Following Lemma E.5, we know that the Two-Timescale GDA algorithm converges to an ϵ-
stationary point π0

i . Denote Φpπq “ max0ďλďΛ Lpπ,λq and } ¨ } as the Euclidean distance. Using
the property of ϵ-stationary point π0

i in (Lin et al., 2020) (Lemma 3.8), we know that there exists π̂i

such that minξPBΦpπ̂iq }ξ} ď ϵ and }π̂i ´ π0
i } ď ϵ{2l.

From the definition of Lpπi,λq, we know that π̂i is an ϵ-approximate KKT point of Jpπq((Dutta
et al., 2013)).

From the above deduction, the Two-Timescale GDA algorithm convergences to an ϵ neighbourhood
of ϵ-approximate KKT point of the above problem. The theorem then follows by applying the
smoothness assumption.
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F DISCUSSION

F.1 THE FAILURE CASE OF STATE-BASED DIVERSITY MEASURES

A failure case of state-based diversity measures may be when the state space includes many irrel-
evant features. These features cannot reflect behavioral differences. If we run SIPO in such an
environment, the learned strategies may be only diverse w.r.t these features and have little visual
distinction. Like the famous noisy TV problem (Burda & Edwards, 2018), the issue of irrelevant
features is intrinsically challenging for general RL applications, which cannot be resolved by using
action-based diversity measures either.

Thanks to the advantages we discussed in the paper, we generally find that state-based metrics can
be preferred in challenging RL tasks. Meanwhile, since the state dimension can be much higher
than actions, it is possible that RL optimization over states may be accordingly more difficult than
actions. In practice, we can design a feature selector for those most relevant features for visual
diversity and run diversity learning over the filtered features. In SMAC and GRF, we utilize the
agent features (excluding enemies) as the input of diversity constraint without further modifications,
as discussed in Appendix D. We remark that even after filtering, the agent features remain high-
dimensional while our algorithm still works well. Note that using a feature selector is a common
practice in many existing domains, such as novelty search (Cully et al., 2015), exploration (Liu
et al., 2021a), and curriculum learning (Campero et al., 2021). There are also works studying how
to extract useful low-dimensional features from observations (Wu et al., 2019; Ghosh et al., 2019),
which are orthogonal to our focus.

F.2 THE DISTANCE METRIC IN STATE-BASED DIVERSITY MEASURES

In Sec. 5, we adopt the two most popular implementations in the machine learning literature, i.e.,
RBF kernel and Wasserstein distance, while it is totally fine to adopt alternative implementations.
For example, we can learn state representations (e.g. auto-encoder, Laplacian, or successor feature)
and utilize pair-wise distance or norms as a diversity measure. Similar topics have been extensively
discussed in the exploration literature (Wu et al., 2019; Machado et al., 2020). We leave them as our
future directions.

G PSEUDOCODE OF SIPO

The pseudocode of SIPO is shown in Algorithm 1.
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Algorithm 1 SIPO (red for SIPO-RBF and blue for SIPO-WD)

Input: Number of Iterations M , Number of Training Steps within Each Iteration T .
Hyperparameter: Learning Rate ηπ , Diversity Threshold δ, Intrinsic Scale Factor α, Lagrange

Multiplier Upperbound λmax, Lagrange Learning rate ηλ, Wasserstein Critic Learning Rate ηW ,
RBF Kernel Variance σ.

1: Archived trajectories X Ð H Ź to store states visited by previous policies
2: for iteration i “ 1, . . . ,M do
3: Initialize policy πθi Ź initialization
4: Initialize Wasserstein critic fϕi

5: for archive index j “ 1, . . . , i ´ 1 do
6: Lagrange multiplier λj Ð 0
7: end for
8: for Training step t “ 1, . . . , T do
9: Collect trajectory τ “ tpsh,ah, rpsh,ahqqu

H
h“1

10: for archive index j “ 1, . . . , i ´ 1 do
11: Rj

int Ð 0
12: end for
13: for timestep h “ 1, . . . ,H do Ź compute intrinsic reward
14: rint,h Ð 0
15: for archive trajectory χj P X do
16: rjint,h Ð ´ 1

H|χj |

ř

s1Pχj
exp

´

´
}sh´s1

}
2

2σ2

¯

17: rjint,h Ð 1
H

”

fϕj pshq ´ 1
|χj |

ř

s1Pχj
fϕj ps1q

ı

18: rint,h Ð rint,h ` λj ¨ rjint,h

19: Rj
int Ð Rj

int,h ` rjint,h
20: end for
21: rh Ð rpsh,ahq ` α ¨ rint,h
22: end for
23: for archive index j “ 1, . . . , i ´ 1 do
24: λj Ð clip

´

λj ` ηλ

´

´Rj
int ` δ

¯

, 0, λmax

¯

Ź gradient ascent on λj

25: ϕj Ð ϕj ` ηW
1
H

řH
h“1 ∇ϕj

´

fϕj
pshq ´ 1

|χj |

ř

s1Pχj
fϕj

ps1q

¯

26: ϕj Ð clippϕj ,´0.01, 0.01q

27: end for
28: Update πθi with tpsh,ah, rhqu by PPO algorithm Ź policy gradient on θi
29: end for
30: Collect many trajectories χi Ź collect trajectories to approximate dπθi

31: X Ð X Y tχiu Ź for the use of following iterations
32: end for
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