
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REINFORCEMENT LEARNING IMPROVES TRAVERSAL
OF HIERARCHICAL KNOWLEDGE IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is often credited with improving language-model
reasoning and generalization, possibly at the expense of memorized knowledge
degradation. We observe, however, that on certain tasks designed to test pure
knowledge recall; e.g., “Which disease corresponds to ICD-9 code 57.95?”, RL-
enhanced reasoning models (Deepseek-R1, QwQ, Magistral) still consistently
surpass their non-reasoning counterparts (Deepseek-V3, Qwen-Instruct, Mistral-
Small) by a large margin of 21 percentage points. Our analysis indicates that
these gains stem not from acquisition of new knowledge during RL, but from
improved access to knowledge already encoded during pretraining: RL appears
to teach models to efficiently traverse hierarchical structure in the data to recall
relevant information at inference time. To test this hypothesis we demonstrate
that structured prompting designed to explicitly instruct for similar step-by-step
hierarchy traversal recovers most of the RL gains, reducing the 21 pp gap to
6.1 pp on MedConceptsQA, without any RL training. Taken together, these results
suggest that many benefits attributed to “reasoning training” may, in fact, arise
from enhanced knowledge navigation rather than improved logical capability.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) and related techniques are widely understood
to enhance Large Language Models’ (LLMs) reasoning and generalization capabilities (OpenAI,
2024; Bai et al., 2022). This interpretation has motivated extensive research into RL-enhanced models
like OpenAI’s o1 (Jaech et al., 2024) and DeepSeek’s R1 (Guo et al., 2025), which are marketed
primarily for their superior performance on complex reasoning tasks. The conventional wisdom holds
that these improvements come at a cost: reduced factual accuracy and memorization capabilities,
often referred to as the "alignment tax" (Lin et al., 2024; Askell et al., 2021).

However, our empirical observations challenge this narrative. When evaluating reasoning-enhanced
models (QwQ, R1, Magistral) against their base counterparts (Qwen-Instruct, Deepseek-V3, Mistral-
Small) on MedConceptsQA—a benchmark consisting purely of medical code lookup tasks requiring
no logical reasoning—we find that reasoning models consistently and substantially outperform base
models. For instance, Deepseek-R1 achieves a 77.0% accuracy compared to Deepseek-V3’s 56.0%,
a striking 21 percentage point gap. This performance advantage is also observed with increasing
task complexity: on hierarchical navigation tasks requiring 5 or more retrievals, reasoning model
QwQ-32B achieve 67.1% accuracy compared to the 55.6% accuracy seen in its base counterpart. This
pattern holds across model families, with reasoning variants consistently producing more accurate
hierarchical paths especially as retrieval depth increases. This is surprising: if RL training primarily
enhances reasoning at the expense of memorization, why would reasoning models excel at pure
memorization tasks?1

Hierarchical structures are prevalent in biomedicine and genomics, where structured knowledge is
essential for standardizing electronic health records, and descriptions of clinical diseases (Donnelly
et al., 2006). In addition, hierarchical taxonomies observed in the biological processes, molecular
functions and cellular components of gene products enable high-throughtput biomedical research
(Consortium, 2019). Medical coding systems like ICD-9 and ICD-10 exemplify such hierarchical

1Throughout this work, we use "reasoning-enhanced" and "RL-enhanced" interchangeably, as the exact
training methodology is not always transparent across models, but they share the characteristic of extended
chain-of-thought reasoning capabilities.
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Figure 1: A sample response from a reasoning model (R1) and non-reasoning model (V3) on a
memorization heavy look up task: Contrasting approaches to hierarchical knowledge retrieval on
MedConceptsQA. Base models attempt direct recall and fail, while reasoning-enhanced models
naturally reconstruct the knowledge hierarchy before systematic elimination, achieving 21pp higher
accuracy.

structures, with parent codes representing general conditions and increasingly specific child codes
detailing particular diagnoses. Successfully retrieving information in this case requires efficiently
traversing these hierarchies. We therefore posit that the superior performance attained through RL on
these tasks reveals a fundamental misunderstanding of how RL affects model capabilities; rather than
creating new knowledge or improving logical deduction, RL training may primarily enhance models’
ability to navigate and access their existing parametric knowledge—especially when that knowledge
contains a hierarchical structure. The key insight comes from extensive empirical examinations
of how these models approach the tasks differently. When given the medical code lookup task,
reasoning-enhanced models first reconstruct the hierarchical structure of the knowledge domain
(e.g., first stating "ICD-9 code 46.xx belongs to operations on the intestine", and then enumerating
subcategories), then systematically eliminate incorrect options. In contrast, base and instruction-tuned
models attempt to directly recall information.

If this hypothesis is correct, it has two important implications. First, it challenges the assumption that
reasoning-enhanced models provide fundamentally new capabilities over their base counterparts; their
superior performance may often stem from more effective knowledge recall rather than enhanced
reasoning. Second, it suggests that structured prompting approaches - which explicitly instruct
models to reconstruct hierarchies and perform stepwise elimination - could potentially achieve similar
benefits without the computational expense of RL training.

We also examine distilled reasoning models (e.g., R1-Distill-Qwen-32B) to understand whether
the navigation capability can be transferred through distillation. Our results reveal that distilled
models achieve neither the performance of their reasoning counterparts nor that of well-prompted
base models. For instance, R1-Distill-Qwen-32B scores 37.5% on MedConceptsQA (Template 1)
compared to R1’s 77.0%, but also falls short of both QwQ-32B (48.2%) and even Qwen2.5-32B with
structured prompting (Template 3: 40.4%). This suggests that distillation not only fails to transfer the
navigation capability effectively but may also degrade the model’s access to its existing knowledge -
a lose-lose scenario that questions the utility of reasoning distillation for knowledge-intensive tasks.

Our experiments reveal consistent patterns where reasoning models outperform on structured retrieval
tasks, with carefully designed prompts recovering substantial portions of the performance gap. We
additionally observe several interesting trends across model scales and specialized variants: math-
specialized models (e.g., Qwen2.5-Math-7B: 20.9%) show degraded performance compared to their
general counterparts (Qwen2.5-7B: 27.6%), suggesting that specialization may harm hierarchical
knowledge navigation.

Finally, to test whether the necessary hierarchical knowledge exists in base models and only the
navigation strategy differs, we craft structured prompts that guide models through the same systematic
elimination and hierarchical traversal that reasoning models perform naturally. We find that structured
prompting can close much of the performance gap, achieving up to 70% of the gains from RL
training through prompting alone on MedConceptsQA and reducing a 21pp gap to 6.1pp (comparing
Deepseek-V3 Template 3: 69.8% to R1 Template 1: 77.0%). Overall, we make the following
contributions:
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Figure 2: Structured prompting reduces performance gaps across model enhancement tech-
niques. Performance differential (∆ = Accadvanced − Accbase) between enhanced and base models
on (a) MedConceptsQA and (b) IPC datasets. Three categories of model pairs are evaluated:
Instruction-tuned (Qwen2.5 variants at 7B/14B/32B/72B scales, Qwen2.5-32B-Coder, Mistral-
Small-Instruct), Reasoning-enhanced (Deepseek-V3→R1, Qwen2.5-32B→QwQ-32B, Qwen3-30B-
A3B→Thinking, Qwen3-235B-A22B→Thinking), and Distilled (Qwen2.5-7/32B→R1-Distill-Qwen-
7/32B, Llama3.3-70B-Instruct→R1-Distill-Llama-70B). Template 3 (orange) consistently reduces
or reverses performance advantages compared to Template 1 (blue) across both datasets. Notable
findings include: Deepseek-V3 gaining 15pp on IPC codes with Template 3, Qwen3-235B-Instruct
outperforming its Thinking variant by 5pp, and Qwen2.5-7B surpassing its instruction-tuned counter-
part on MedConceptsQA. These results demonstrate that prompt engineering can effectively substitute
for specialized training across diverse reasoning tasks.

• We identify and document the surprising phenomenon of reasoning models outperforming
base models on pure memorization tasks, challenging conventional assumptions about RL’s
effects

• We provide empirical evidence that RL’s benefits in these contexts stem from enhanced
knowledge navigation rather than knowledge creation or logical reasoning improvements,
with distillation experiments confirming this mechanism

• We demonstrate that structured prompting can substitute for RL training on hierarchical
retrieval tasks, with important implications for practical deployment.

• To effectively quantify performance with respect to hierarchical traversal, we introduce
a new metric called the Hierarchical Alignment Score (HAS). When dividing tasks by
retrieval complexity, we show that RL-led improvements in reasoning models fundamentally
strengthen the model’s ability to perform procedural knowledge traversal, as seen in the
improved HAS score and accuracy.

2 TARGETED MEMORIZATION-HEAVY TASKS AND STRUCTURED PROMPTING

2.1 INFORMATION RECALL TASKS

To expand on our hypothesis that knowledge recall abilities differ between base and reasoning models,
we consider tasks that can be classified as pure information recall (without added computation or

3
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Table 1: Performance comparison across prompt templates on the MedConceptsQA dataset. Models
are evaluated using three distinct prompt templates (T1-T3). Results show majority voting accuracy
and mean accuracy ± standard deviation. Bold values indicate best performance within each model
family.

Template 1 Template 2 Template 3
Model Majority Mean ± Std Majority Mean ± Std Majority Mean ± Std
Deepseek Models
Deepseek-V3 0.541 0.551 ± .014 0.632 0.636 ± .049 0.717 0.701 ± .026
Deepseek-V3.1-Reasoning 0.794 0.785 ± .009 0.805 0.772 ± .007 0.774 0.749 ± .005
Deepseek-R1 0.778 0.83 ± .006 0.790 0.774 ± .013 0.792 0.775 ± .026
Qwen3 Family
Qwen3-30B-A3B-Instruct-2507 0.439 0.425 ± .010 0.459 0.448 ± .006 0.474 0.466 ± .007
Qwen3-30B-A3B-Thinking-2507 0.441 0.402 ± .010 0.518 0.498 ± .003 0.502 0.476 ± .007
Qwen3-Coder-30B-A3B-Instruct 0.448 0.408 ± .005 0.410 0.382 ± .012 0.476 0.463 ± .002
Qwen3-Coder-480B-A35B-Instruct 0.616 0.575 ± .005 0.567 0.562 ± .003 0.656 0.643 ± .004
Qwen3-235B-A22B-Instruct-2507 0.542 0.503 ± .004 0.548 0.528 ± .005 0.631 0.589 ± .007
Qwen3-235B-A22B-Thinking-2507 0.641 0.599 ± .003 0.656 0.617 ± .003 0.580 0.554 ± .008

Qwen2.5 7B Family
Qwen2.5-7B 0.148 0.159 ± .007 0.277 0.239 ± .036 0.286 0.270 ± .012
Qwen2.5-7B-Instruct 0.295 0.289 ± .006 0.329 0.316 ± .008 0.313 0.307 ± .015
Qwen2.5-Coder-7B 0.166 0.176 ± .007 0.259 0.245 ± .010 0.271 0.269 ± .006
Qwen2.5-Math-7B 0.209 0.215 ± .018 0.120 0.106 ± .026 0.265 0.258 ± .015
Deepseek-R1-Distill-Qwen-7B 0.296 0.292 ± .010 0.256 0.250 ± .017 0.282 0.289 ± .017

Qwen2.5 14B Family
Qwen2.5-14B 0.335 0.316 ± .015 0.332 0.293 ± .025 0.386 0.372 ± .007
Qwen2.5-14B-Instruct 0.395 0.385 ± .006 0.420 0.415 ± .007 0.420 0.409 ± .012
Qwen2.5-Coder-14B 0.314 0.301 ± .004 0.280 0.267 ± .004 0.309 0.288 ± .005
Qwen2.5-Coder-14B-Instruct 0.274 0.258 ± .006 0.265 0.248 ± .010 0.255 0.257 ± .014

Qwen2.5 32B Family
Qwen2.5-32B 0.221 0.219 ± .012 0.332 0.260 ± .071 0.404 0.372 ± .007
Qwen2.5-32B-Instruct 0.379 0.371 ± .012 0.475 0.449 ± .010 0.469 0.454 ± .007
Qwen2.5-Coder-32B 0.291 0.267 ± .012 0.309 0.264 ± .039 0.342 0.335 ± .007
Qwen2.5-Coder-32B-Instruct 0.371 0.345 ± .009 0.399 0.394 ± .003 0.381 0.371 ± .003
Deepseek-R1-Distill-Qwen-32B 0.375 0.351 ± .009 0.380 0.369 ± .005 0.447 0.420 ± .002
QwQ-32B 0.482 0.470 ± .012 0.513 0.487 ± .009 0.505 0.481 ± .005
Qwen2.5 72B Family
Qwen2.5-72B 0.443 0.389 ± .005 0.351 0.305 ± .028 0.468 0.418 ± .008
Qwen2.5-72B-Instruct 0.546 0.519 ± .007 0.520 0.512 ± .005 0.546 0.537 ± .008
Llama Models
Llama3.3-70B-Instruct 0.522 0.521 ± .004 0.525 0.525 ± .003 0.592 0.580 ± .005
Deepseek-R1-Distill-Llama-70B 0.537 0.495 ± .002 0.633 0.609 ± .011 0.610 0.596 ± .012
Distilled Models
Deepseek-R1-Distill-Llama-8B 0.362 0.339 ± .016 0.320 0.310 ± .010 0.364 0.343 ± .009

Mistral Family
Mistral-Small-24B-Base-2501 0.227 0.233 ± .007 0.150 0.125 ± .043 0.327 0.296 ± .000
Mistral-Small-3.1-24B-Base-2503 0.370 0.329 ± .013 0.267 0.214 ± .040 0.449 0.423 ± .014
Magistral-Small-2507 0.300 0.287 ± .047 0.500 0.461 ± .018 0.482 0.463 ± .004

logical deduction). We select the following datasets, which contain Q&A that can be classified this
way:

MedConceptsQA: A multiple-choice question answering dataset focused on biomedical and clinical
concepts. The questions are designed to test factual recall of medical terminology, concept definitions,
and their relationships, without requiring reasoning over patient cases or performing calculations.

IPC: The International Patent Classification dataset consists of queries mapped to patent classification
codes. The task requires identifying the correct category for a given technical description, relying
primarily on recall of standardized knowledge of patent domains rather than multi-step reasoning.
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The questions are categorized by the depth of hierarchical traversal required, from simple lookups to
deep-level ancestry and relationship detection. The difficulty level of each question type is defined by
the number of hierarchical retrievals required:

• Memory-Light (ML) questions require 0-2 hierarchical retrievals and include basic structural
understanding tasks such as Level Decoding, Parent Lookup, and Grandparent Lookup (for
detail, refer to A.3). These questions test immediate recall of the patent classification
structure and direct parent-child relationships.

• Memory-Moderate (MM) questions involve 3-4 hierarchical retrievals, including Great-
grandparent Lookup tasks that require tracing multiple levels up the classification hierarchy
while maintaining accurate recall of intermediate nodes.

• Memory-Heavy (MH) questions demand 5+ hierarchical retrievals and include complex
relational tasks such as Cousin Relationship and Deepest Descent (see A.3).

In addition, the Common Ancestor task complexity varies based on the depth of codes involved,
requiring models to trace multiple paths through the hierarchy and identify convergence points. For
instance, finding the nearest common ancestor between two neighboring nodes requires light memory
recall, whereas distant classification codes may require traversing 5-6 levels for each code path.

To investigate how reasoning versus base models’ hierarchical knowledge capabilities change as
retrieval depth increases, we further stratify the Common Ancestor task into these complexity levels
to compare performance difference.

MMLU: The Massive Multitask Language Understanding benchmark covers 57 academic and
professional subjects (e.g., history, law, medicine, physics). Each question is multiple-choice and
tests factual knowledge across diverse domains. We restrict evaluation to the Prehistory subject area.
This subset consists of multiple-choice questions assessing factual knowledge of early human history,
archaeology, and ancient civilizations. Since the questions primarily test recall of historical facts,
they align well with our definition of information recall.

2.2 HIERARCHICAL ALIGNMENT SCORE (HAS)
To further evaluate the quality of hierarchical path predictions in IPC codes, we devise a novel metric,
the Hierarchical Alignment Score (HAS), through two key components:

Alignment F1-Score (AF1): Conceptually, this measures the balance between precision and recall
for hierarchical ancestor identification. It is mathematically defined as:

AF1 =
2× AP × AR

AP + AR
(1)

where AP (Alignment Precision) and AR (Alignment Recall) follow standard precision and recall
definitions applied to hierarchical ancestor sets (Buckland & Gey, 1994).

Common Subsequence Score (CSS): This evaluates how well the sequential hierarchical structure
is preserved, using the Longest Common Subsequence (Paterson & Dančík, 1994) as:

CSS =
Length of the Longest Common Subsequence
Total number of ancestors in ground truth path

(2)

The final HAS score combines these components through a harmonic mean:

HAS =
2×AF1 × CSS
AF1 + CSS

(3)

This evaluates a model’s ability to maintain structural coherence while navigating the patent classifi-
cation hierarchy.

2.3 PROMPTING APPROACHES

We evaluate model performance on MedConceptsQA and IPC using three different prompt templates.
Template 1 (Baseline Answer Only) requires a direct, single-letter answer without any explanations.
Template 3 (Structured Hierarchical Navigation) tests hypothesis by instructing the model to perform
a structural breakdown of the main concept in the query, followed by stepwise elimination of incorrect

5
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options. We also include Template 2 (Standard Chain-of-Thought), which asks for an answer with an
explanation, and a fully open-ended variant for diagnostic purposes (see Appendix A.1 for detail). Our
analysis in Figures 2 and 3 focuses primarily on the comparison between Template 1 and Template 3,
as Template 2 offers only marginal gains over the original prompt.

We evaluated each model on three prompt templates over three independent runs, using a sampling
temperature of 0.8 and a top-p of 0.7. Performance is reported as both the mean accuracy (± standard
deviation) and the majority-voted accuracy across the runs.

3 EXPERIMENTAL RESULTS

We make the following observations:

Observation 1: Specialized training such as RL reinforces strategic reasoning over explicit
knowledge recall. When evaluated on open-ended queries where multiple-choice options from
MedConceptsQA are withheld, both base (e.g., Deepseek-V3) and their reasoning counterparts (e.g.,
R1) exhibit a lack of direct knowledge recall. 2 This failure occurs even for questions that the
reasoning model correctly answers when presented with a set of options (see Appendix A.2). This
finding suggests that RL training reinforces procedural reasoning strategies, such as hierarchical recall
and systematic elimination, which enable a model to identify the correct answer from a provided set
rather than retrieving it from memorized knowledge.

Observation 2: By adopting strategies such as hierarchical navigation and stepwise elimination
into prompts, the accuracy gap between base models and their instruction-tuned, or RL-tuned
variants narrow. On MedConceptsQA, the 23.7 pp accuracy difference between Deepseek-R1
(77.8%) and its base model V3 (54.1%) under a simple prompt (Template 1) shrinks to just 7.5pp
gap when the base model is guided by a structured prompt (Template 3) (see Table 1 for detail). On
the IPC codes, a structured prompt makes Qwen2.5-32B’s accuracy increase from 64.4% to 77.7%,
surpassing its instruction-tuned model (77.4%). From Figures 2 and 3, we can see sometimes the
accuracy of base models can surpass that of more advanced variants when switching to Template 3.
For instance, on MedConceptsQA, the base Qwen3-235B-A22B-Instruct achieves 63.1% accuracy
with Template 3, outperforming its reasoning-enhanced counterpart, Qwen3-235B-A22B-Thinking,
which scores 58.0% on the same prompt.

Observation 3: Distilling knowledge from larger teacher models into smaller ones does not
make the student models possess hierarchical reasoning capabilties comparable to those of
teacher models. On MedConceptsQA, the student model Deepseek-R1-distilled-Qwen32B achieves
a majority-voting accuracy (T1: 37.5%), significantly lower than its teacher model Deepseek-R1 (T1:
77.8%). Even though the distilled model gives better performance than its base model Qwen2.5-32B,
it is outperformed by the reasoning model of the same size, QwQ-32B, by a large margin (48.2%).
Similar behaviour is also seen on IPC codes, where the distilled model (77.8%) again underperforms
its teacher (92.3%). This suggests that direct distillation is a less effective method to promote strategic
reasoning.

Observation 4: Reasoning models excel on tasks requiring deeper hierarchical traversal,
although performance on simpler tasks can be more nuanced. As shown in Table 3, while the
Qwen2.5-32B base model and its reasoning counterpart QwQ-32B have similar performance on
simpler tasks (e.g., both achieving 33.7% accuracy on Memory-Moderate tasks), a significant gap
emerges with increasing complexity. For Memory-Heavy tasks, the QwQ-32B model achieves a
higher accuracy of 67.1% compared to the base model’s 55.6%. Crucially, the HAS score for the
QwQ model is also higher on Memory-Heavy tasks (0.430 vs. 0.405), indicating a better quality
hierarchical path.

This trend is consistent with the Deepseek family. While Deepseek-V3 achieves higher accuracy
on Memory-Medium tasks (45.0% vs. 32.5%), both it and Deepseek-R1 reach an equal 67.7% on
Memory-Heavy tasks. Additionally, R1 maintains a significantly higher HAS score (0.597 vs. 0.503),
indicating a superior quality of hierarchical path traversal. This pattern is even more evident in the
Mistral family, where the reasoning counterpart Magistral has the highest accuracy and HAS score

2While this is often achieved via Reinforcement Learning (RL), the exact training methodologies are
frequently not disclosed. Our observations thus apply to the outcome of this specialized training rather than a
specific, confirmed technique.
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Table 2: Performance comparison across prompt templates on the IPC codes. Models are evaluated
using three distinct prompt templates (T1-T3). Results show majority voting accuracy and mean
accuracy ± standard deviation. Bold values indicate best performance within each model family.

Template 1 Template 2 Template 3
Model Majority Mean ± Std Majority Mean ± Std Majority Mean ± Std
Deepseek Models
Deepseek-V3 0.831 0.846 ± .000 0.923 0.882 ± .007 0.877 0.872 ± .007
Deepseek-R1 0.923 0.913 ± .019 0.892 0.867 ± .026 0.923 0.903 ± .007
Qwen3 Family
Qwen3-30B-A3B-Instruct-2507 0.682 0.682 ± .015 0.708 0.708 ± .022 0.749 0.749 ± .007
Qwen3-30B-A3B-Thinking-2507 0.537 0.451 ± .019 0.572 0.467 ± .032 0.829 0.621 ± .036
Qwen3-Coder-30B-A3B-Instruct 0.682 0.682 ± .007 0.646 0.646 ± .013 0.697 0.697 ± .007
Qwen3-235b-a22b-Instruct-2507 0.800 0.800 ± .013 0.846 0.846 ± .013 0.846 0.846 ± .013
Qwen3-235b-a22b-Thinking-2507 0.908 0.846 ± .013 0.877 0.836 ± .026 0.893 0.851 ± .015
Qwen2.5 7B Family
Qwen2.5-7B 0.463 0.349 ± .040 0.436 0.364 ± .038 0.588 0.585 ± .038
Qwen2.5-7B-Math 0.386 0.303 ± .007 0.425 0.364 ± .038 0.411 0.354 ± .044
Qwen2.5-7B-Instruct 0.615 0.615 ± .025 0.554 0.554 ± .013 0.574 0.574 ± .015
Qwen2.5-7B-Coder 0.506 0.426 ± .036 0.520 0.467 ± .040 0.582 0.544 ± .032

Qwen2.5 14B Family
Qwen2.5-14B 0.526 0.421 ± .038 0.608 0.492 ± .033 0.609 0.600 ± .013
Qwen2.5-14B-Instruct 0.708 0.708 ± .025 0.691 0.687 ± .029 0.718 0.718 ± .007
Qwen2.5 Family (32B-72B)
Qwen2.5-32B 0.644 0.482 ± .059 0.641 0.503 ± .038 0.777 0.769 ± .013
Qwen2.5-32B-Instruct 0.759 0.759 ± .007 0.754 0.754 ± .000 0.774 0.774 ± .007
Qwen2.5-32B-Coder 0.627 0.595 ± .019 0.670 0.615 ± .055 0.740 0.687 ± .019
Qwen2.5-32B-Coder-Instruct 0.737 0.733 ± .015 0.718 0.718 ± .026 0.795 0.795 ± .007
Qwen2.5-72B-Instruct 0.759 0.759 ± .007 0.763 0.759 ± .019 0.795 0.795 ± .019
Qwen2.5-72B-Math 0.542 0.133 ± .019 0.542 0.164 ± .007 0.644 0.574 ± .015

Reasoning-Enhanced Models
R1-Distill-Qwen-32B 0.778 0.754 ± .038 0.730 0.667 ± .019 0.788 0.780 ± .019
QwQ-32B 0.777 0.713 ± .015 0.875 0.754 ± .070 0.790 0.769 ± .033
Mistral Family
Mistral-Small-3.1-Base 0.515 0.349 ± .007 0.654 0.436 ± .048 0.677 0.354 ± .033
Mistral-Small-3.1-Instruct 0.698 0.687 ± .026 0.679 0.662 ± .033 0.780 0.600 ± .033
Magistral-Small-2507 0.801 0.744 ± .044 0.782 0.718 ± .007 0.801 0.744 ± .044

almost across all three retrieval levels. These together suggests that while base models can sometimes
succeed, reasoning models consistently produce higher-quality, more accurate hierarchical paths,
especially as the task complexity increases.

Our work demonstrates that reasoning models exhibit procedural reasoning strategies, such as
hierarchical navigation and systematic elimination, rather than instilling explicit factual knowledge,
as models that succeed on multiple-choice questions often fail the same queries in an open-ended
format. Consequently, these accuracy gains can be replicated in base models through structured
prompting that explicitly instructs these same strategies, narrowing the gap. However, this skill
does not transfer via distillation, as student models perform significantly worse than their teachers,
suggesting direct RL-tuning is a more effective enhancement method. The true benefit of RL-based
enhancements becomes apparent when tasks are divided by retrieval complexity. As task complexity
increases, reasoning models don’t just achieve better accuracy, but fundamentally improve their
procedural knowledge traversal, as shown by the Hierarchical Alignment Score (HAS).

4 RELATED WORK

4.1 THE ALIGNMENT TAX AND FACTUAL DEGRADATION

The trade-off between alignment and factual accuracy has been extensively explored. Lin et al. (2024)
introduced the concept of the “alignment tax,” demonstrating systematic performance degradation
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Table 3: Model Performance on Common Ancestor Questions by Complexity
2*Model ML (Memory-Light) MM (Memory-Medium) MH (Memory-Heavy)

Acc. (%) HAS Acc. (%) HAS Acc. (%) HAS

Deepseek Family
Deepseek-V3 37.9 0.627 45.0 0.589 67.7 0.503
Deepseek-R1 44.8 0.681 32.5 0.620 67.7 0.597
Qwen2.5-32B Family
Qwen2.5-32B 43.1 0.527 33.7 0.468 55.6 0.405
Qwen2.5-32B-Instruct 34.9 0.458 32.5 0.491 64.7 0.451
QwQ-32B 40.3 0.457 33.7 0.426 67.1 0.430

Mistral Family
Mistral-Small-3.1-24B-Base-2503 28.6 0.349 36.2 0.382 27.9 0.303
Mistral-Small-3.1-24B-Instruct-2503 37.4 0.610 37.3 0.548 64.0 0.522
Magistral-Small-2507 66.7 0.723 50.0 0.536 87.5 0.569

on factual benchmarks as RLHF reward increases. Their analysis across six factual datasets (ARC-
Easy, ARC-Challenge, RACE, PIQA, SQuAD, DROP) showed consistent deterioration with stronger
alignment. OpenAI (2023) corroborated these findings, reporting that “RLHF does not improve
exam performance (without active effort, it actually degrades it)” and noting reduced calibration after
alignment.

Gudibande et al. (2023) provide mechanistic insights, showing that instruction tuning primarily
teaches style rather than new knowledge, with models learning to respond confidently even when
lacking relevant information. Recent work by Allen-Zhu & Li (2024) on the “Physics of Language
Models” series demonstrates that base models often contain more accessible factual knowledge before
alignment modifies retrieval patterns. Kassner et al. (2025) explicitly show that RLHF can “reverse
memorization from supervised fine-tuning,” supporting our observation that base models maintain
superior raw factual recall.

4.2 REASONING ENHANCEMENT THROUGH RL
The dominant narrative positions RL as a reasoning amplification technique. Lightman et al. (2023)
demonstrate how process supervision during RL training improves mathematical reasoning, while
Wang et al. (2024c) show similar gains through step-wise reward models. Havrilla et al. (2024)
formalize how RL teaches models to “think before they speak,” developing internal reasoning chains.

However, recent work hints at a more nuanced picture. Zelikman et al. (2024) introduce Quiet-
STaR, showing that training models to generate rationales improves downstream reasoning by
teaching systematic exploration of solution spaces—essentially navigation skills. Shinn et al. (2023)
demonstrate that reinforcement learning primarily helps models learn from feedback to refine their
search through problem spaces, rather than acquiring new problem-solving rules. These findings
align with our hypothesis that RL enhances navigation of existing knowledge structures.

4.3 HIERARCHICAL REASONING AND STRUCTURED NAVIGATION

Recent advances in hierarchical reasoning provide theoretical support for our knowledge navigation
hypothesis. The Hierarchical Reasoning Model (HRM) (Ji et al., 2024) achieves near-perfect accuracy
on complex tasks through interdependent modules enabling “hierarchical convergence”—precisely
the type of structured traversal we require for tasks like medical code lookup. Wang et al. (2024b)
show that hierarchical reinforcement learning on template sequences outperforms traditional chain-of-
thought, suggesting RL teaches systematic navigation rather than new facts. In the medical domain,
Choi et al. (2024) demonstrate that reasoning-augmented LLMs consistently outperform base models
on ICD code classification, particularly at higher hierarchy levels. Zhang et al. (2024) report that
Med-R1 achieves 29.94% improvement over base models through “structured medical reasoning,”
though they attribute this to reasoning rather than navigation enhancement.

4.4 PROMPTING AS AN ALTERNATIVE TO RL
The possibility of achieving RL-like benefits through prompting has gained increasing attention.
Xu et al. (2024) demonstrate that Genetic-Evolution Prompt Alignment (GEPA) can outperform
Group Relative Policy Optimization by up to 20% while using 35× fewer computational resources.
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They argue that “the interpretable nature of language provides a richer learning medium than sparse
scalar rewards.” Wei et al. (2022) show that chain-of-thought prompting can match fine-tuned
performance on reasoning tasks, while Zhou et al. (2023) demonstrate that optimized prompts
can exceed supervised fine-tuning. Particularly relevant is work by Xu et al. (2023) showing that
careful prompt engineering can close performance gaps between base and instruction-tuned models
on structured tasks. The “Invisible Leash” phenomenon (Chen et al., 2024) reveals that much of
RLHF’s apparent benefit comes from teaching models to follow implicit formatting patterns—effects
reproducible through prompting.

4.5 KNOWLEDGE STORAGE VERSUS KNOWLEDGE ACCESS

The distinction between knowledge acquisition and knowledge retrieval is crucial to our thesis. Wang
et al. (2024a) demonstrate that fine-tuning rarely injects genuinely new facts, requiring extensive
repetition for simple factual updates. Ovadia et al. (2024) show that models fine-tuned on new
knowledge often “hallucinate” by incorrectly combining existing knowledge rather than storing
new information. Dziri et al. (2024) provide key insights with their finding that models rely on
“procedural knowledge extracted from documents involving similar reasoning processes” rather than
memorizing new facts. This aligns with our hypothesis that RL enhances navigation strategies rather
than expanding knowledge. Berglund et al. (2024) further support this through their “Reversal Curse”
findings—models trained on “A is B” cannot infer “B is A,” suggesting that training affects access
patterns rather than creating bidirectional knowledge representations.

4.6 MEDICAL KNOWLEDGE SYSTEMS AND HIERARCHICAL LOOKUP

Medical coding systems provide an ideal testbed for distinguishing knowledge storage from navigation.
The International Classification of Diseases (ICD) employs strict hierarchical structures where
successful code identification requires systematic traversal (World Health Organization, 2019).
Kraljevic et al. (2021) show that models struggle with medical codes not due to lack of exposure
but difficulty navigating complex taxonomies. MedConceptsQA (MedConceptsQA Team, 2024)
encompasses 800K+ medical concepts across ICD-9, ICD-10, CPT, and ATC classifications. Initial
benchmarks showed most clinical LLMs performing near random chance despite extensive medical
training, while general-purpose models with better structural reasoning capabilities significantly
outperformed them.

This pattern—domain-specialized models losing to general models—suggests that the challenge
lies in information navigation rather than possession. Our work synthesizes these disparate findings
to argue that reasoning-enhanced models’ superiority on memorization tasks stems from improved
access to pre-existing knowledge rather than enhanced reasoning or expanded memory.

4.7 RETRIEVAL COMPLEXITY IN KNOWLEDGE-INTENSIVE TASKS

Recent work has begun to to examine the relationship between retrieval complexity and model
performance in knowledge-intensive tasks. Gabburo et al. (2024) show that retrieval complexity
extend beyond simple multi-hop reasoning—including temporal (15%), comparative (10%), and
aggregate (16%) questions—suggesting that different types of knowledge organization require distinct
retrieval strategies. Min et al. (2023) demonstrate that in long-form generation, factual accuracy
in biographies drops as entity rarity increases, suggesting that retrieval difficulty directly impacts
knowledge accessibility.

5 CONCLUSION

We make a counterintuitive observation that RL-enhanced models exhibit improve performance on
tasks which require recalling memorized information, and posit that the improvements stem from the
ability to better traverse hierarchical structures in the underlying data. This re-framing has significant
implications for both our understanding of RL’s effects, and can inform practical decisions about
when RL training is necessary and when structured prompting suffices.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 ZERO-SHOT PROMPT TEMPLATES

We present four prompt templates used in MedConceptsQA and IPC, which are designed to elicit
specific responses from language models. These templates request:

• Direct answers, both with and without explanations.

• Structural recall of codes and a stepwise elimination of incorrect options.

• An open-ended reasoning process that repeats the recall and elimination tasks but without
providing any options.

Prompt Template 1: MCQ with Final Answer Only

Answer only A,B,C,D according to the answer to this multiple choice question.
[... Insert Question Text Here ...]
Answer (only the letter of your choice (A, B, C, or D)):

Prompt Template 2: MCQ with Explanation

You are a medical research assistant. Read the following multiple-choice question carefully.
Your task is to:

1. Answer each question with one of A/B/C/D, which corresponds to the four options.
2. For my convenience, please give me a list of ANSWERs for the given instances in

the format ’Answer: ...’, with additional explanation for each answer in the format
’Explanation: ...’.

Respond in the following format:
Answer: <A/B/C/D>
Explanation: <your explanation here>

[... Insert Question Text Here ...]

Answer:
Explanation:

Prompt Template 3: MCQ with Stepwise Reasoning

You are a medical classification expert. For each option, first recall the general category and
structure breakdown of the medical code, then explain why it might be wrong. Finally
pick the correct one.

[... Insert Question Text Here ...]
Steps to follow:

1. Recall the general category and structural break down of the code.
2. Evaluate each option (A–D) briefly.
3. Choose the best option and justify.

Answer format:
Step 1: . . .
Step 2A: . . .
Step 2B: . . .
Step 2C: . . .
Step 2D: . . .
Final Answer: [A/B/C/D] because . . .
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Prompt Template 4: Open-Ended Question (No Options)

You are a medical classification expert. For each question, first recall the general category
and structure breakdown of the medical code, then state the final answer.

[... Insert Main Question Extracted from Text Here ...]

Steps:
1. Recall the general category and structural break down of the code.
2. State your only final answer.

Answer format:
Step 1: . . .
Step 2 Final Answer:

A.2 EXAMPLES ON MODEL RESPONSES UNDER VARIOUS PROMPTS

Example: Medical Code Analysis (Question)

Question: What is the description of the medical code P02CX03 in ATC?
A. moxidectin
B. pyrvinium
C. ANTINEMATODAL AGENTS
D. bephenium

Ground Truth Answer: A
Vocab: ATC
Level: hard

V3 Model Response Under Template 4 (Open-Ended, Incorrect)

STEP 1: CODE BREAKDOWN

The ATC code P02CX03 is part of the P02 category (anthelmintics), specifically under P02C
(other anthelmintics). The "X" indicates a miscellaneous subgroup, and "03" is the specific
substance.

STEP 2 FINAL ANSWER

tribendimidine

Final Answer: tribendimidine
Correct: False

R1 Model Response Under Template 4 (Open-Ended, Incorrect),

STEP 1: CODE BREAKDOWN

The ATC code P02CX03 breaks down as follows:
• P: Antiparasitic products, insecticides, and repellents
• P02: Anthelmintics (drugs for parasitic worms)
• P02C: Antitrematodal agents (targeting fluke infections)
• P02CX: Other antitrematodal agents
• 03: Specific substance identifier for artemether.

STEP 2 FINAL ANSWER

artemether

Final Consolidated Answer: artemether
Correct: False
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V3 Model Response Under Template 3 (Incorrect)

STEP 1: RECALL THE GENERAL CATEGORY AND STRUCTURAL BREAKDOWN OF THE
CODE

• ATC Code Structure:
– P: Antiparasitic products, insecticides, and repellents (anatomical main group).
– P02: Anthelmintics (therapeutic subgroup).
– P02C: Antinematodal agents (pharmacological subgroup).
– P02CX: Other antinematodal agents (chemical subgroup).
– P02CX03: Pyrvinium (specific substance).

Thus, P02CX03 is a code for pyrvinium, an antinematodal agent under "other antinematodal
agents."

STEP 2: EVALUATE EACH OPTION

A. moxidectin
Why it’s wrong: moxidectin is an antiparasitic drug, but its ATC code is P02CX06, not
P02CX03.

B. pyrvinium
Why it’s correct: matches the exact ATC code P02CX03 for pyrvinium.

C. ANTINEMATODAL AGENTS
Why it’s wrong: while P02C is the category for antinematodal agents, P02CX03 is a specific
drug (pyrvinium), not the entire group.

D. bephenium
Why it’s wrong: bephenium is an antinematodal agent, but its ATC code is P02CX01, not
P02CX03.

FINAL ANSWER: [B] BECAUSE P02CX03 CORRESPONDS SPECIFICALLY TO PYRVINIUM
IN THE ATC CLASSIFICATION.

Final Answer: B
Correct: False
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R1 Model Response Under Template 3 (Correct)

STEP 1: CODE BREAKDOWN

The ATC code P02CX03 breaks down as follows:
• P: Antiparasitic products
• P02: Anthelmintics
• P02C: Antinematodal agents (3rd level)
• P02CX: Other antinematodal agents (4th level)
• P02CX03: Specific substance (5th level)

STEP 2: OPTION EVALUATION

A. moxidectin
Evaluation: Plausible as it is an anthelmintic, but its classification under P02CX03 must be
confirmed.

B. pyrvinium
Evaluation: Is assigned to P02CX01, making this incorrect for CX03.

C. ANTINEMATODAL AGENTS
Evaluation: Refers to the 3rd level (P02C), not the 5th-level substance code.

D. bephenium
Evaluation: Is classified under P02CA01 (tetrahydropyrimidine derivatives), not P02CX.

FINAL ANSWER: [A] BECAUSE P02CX03 CORRESPONDS TO MOXIDECTIN IN THE ATC
CLASSIFICATION, WHILE OTHER OPTIONS ARE EITHER INCORRECT CODES (B, D) OR A
CATEGORY-LEVEL DESCRIPTOR (C).

Final Answer: A
Correct: True

A.3 IPC CODES EXAMPLES GROUPED BY DIFFERENT MEMORY RECALL LEVELS

A.3.1 MEMORY-LIGHT (0-2 HIERARCHICAL RECALLS)

Level Decoding: This tests the ability to decode a hierarchical code (in this case, F02B 19/00) by
identifying its constituent parts, such as Section, Class, Subclass, and Group.

Memory-Light Questions - Level Decoding

Question: In F02B 19/00, identify the Section, Class, Subclass, and Group.
Options:

A) Section=F, Class=02, Subclass=B, Group=19/00
B) Section=F, Class=2, Subclass=B, Group=19
C) Section=B, Class=19, Subclass=F, Group=02/00
D) Section=F, Class=02B, Subclass=19, Group=00

Answer: A
Description: Engines with precombustion chambers

Parent Lookup: This task requires the model to identify the parent of a given patent code. It is a
Memory-Light task as it involves one memory recall to find the direct ancestor.
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Memory-Light Questions - Parent Lookup

Question: The immediate parent of F02B 1/04 is:
Options:

A) F02B 1/00
B) F02B 1/02
C) F02B 1/06
D) F02B

Answer: A
Description: Engines characterised by fuel-air mixture compression

Grandparent Lookup: This task requires the model to identify the second-level ancestor of a given
patent code. It is a Memory-Light task as it involves a short, direct traversal up the hierarchy to find a
specific ancestor.

Memory-Light Questions - Grandparent Lookup

Question: Second-level ancestor of D01G 15/68 is:
Options:

A) D01G 15/64
B) D01G 15/46
C) D01G 15/12
D) D01G 15/00

Answer: B
Reasoning: D01G 15/68 → D01G 15/64 → D01G 15/46

Sibling Discrimination: This is a Memory-Light task that requires the model to identify a code that
shares the same main group but has a different subgroup. It tests the model’s ability to recognize and
compare codes at a shallow hierarchical level.

Memory-Light Questions - Sibling Discrimination

Question: Which is a sibling (same main group, different subgroup) of F02B 53/12?
Options:

A) F02B 55/12
B) F02B 53/00
C) F02B 53/10
D) F03B 53/06

Answer: C
Description: Ignition for rotary-piston engines

A.3.2 MEMORY-MODERATE (3-4 HIERARCHICAL RECALLS)
Great-grandparent Lookup: This is a more challenging task that requires tracing a code’s lineage
back three levels to find the correct ancestor. Classified as a Memory-Moderate task, it tests the
model’s ability to handle slightly longer and more complex hierarchical paths.

Memory-Moderate Questions - Great-grandparent Lookup

Question: Third-level ancestor of C01B 32/194 is:
Options:

A) C01B 32/00
B) C01B
C) C01B 32/18
D) C01B 32/19

Answer: A
Reasoning: C01B 32/194 → C01B 32/19 → C01B 32/18 → C01B 32/00
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Path Reconstruction: This Memory-Moderate task challenges the model to reconstruct the full
descriptive name chain for a given patent code. It tests the model’s ability to accurately recall and
order the hierarchical labels (Section, Class, Subclass, etc.) that lead to a specific code.

Memory-Moderate Questions - Path Reconstruction

Question: Give the name chain for F02B 19/00 from Section → Class → Subclass → Main
group
Options:

A) Mechanical Engineering → Pumps → Piston Engines → Precombustion Chambers
B) Mechanical Engineering → Combustion Engines → Piston Engines → Engines with

precombustion chambers
C) Lighting → Engines → Combustion Engines → Precombustion Chambers
D) Mechanical Engineering → Combustion Engines → Gas Turbines → Precombustion

Chambers
Answer: B
Description: Engines with precombustion chambers

A.3.3 MEMORY-HEAVY (5 OR MORE HIERARCHICAL RECALLS)

Cousin Relationship: This is a Memory-Heavy task that tests the model’s ability to understand
lateral relationships within the hierarchy. It requires traversing up to a common grandparent and then
back down to identify a "first cousin" that shares the same ancestor.

Memory-Heavy Questions - Cousin Relationship

Question: First cousin of H04N 9/806 (same grandparent level) is:
Options:

A) H04N 9/808
B) H04N 9/815
C) H04N 9/82
D) H04N 9/804

Answer: B
Reasoning Paths:

• H04N 9/806 → H04N 9/804 (parent) → H04N 9/80 (grandparent) → H04N 9/808
(uncle/aunt)

• H04N 9/806 → H04N 9/804 (parent)→ H04N 9/80 (grandparent)→ H04N 9/81
(uncle/aunt) → H04N 9/815 (cousin)

• H04N 9/806 → H04N 9/804 (parent) → H04N 9/80 (grandparent) → H04N 9/82
(uncle/aunt)

• H04N 9/806 → H04N 9/804 (parent)→ H04N 9/80 (grandparent) → H04N 9/804
(uncle/aunt)

Deepest Descent: This Memory-Heavy question asks the model to identify the most specific
descendant of a given patent code from a list of options. It tests the model’s ability to perform deep,
multi-step traversal down the hierarchy to determine which option has the longest, most specific path.
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Memory-Heavy Questions - Deepest Descent

Question: Most specific descendant of A01B 3/00 among these options:
Options:

A) A01B 3/04
B) A01B 3/426
C) A01B 3/08
D) A01B 3/26

Answer: B
Reasoning Paths:

• A01B 3/00 → A01B 3/04
• A01B 3/00 → A01B 3/36 → A01B 3/40 → A01B 3/42 → A01B 3/426
• A01B 3/00 → A01B 3/04 → A01B 3/06 → A01B 3/08
• A01B 3/00 → A01B 3/24 → A01B 3/26

Orphan Detection: As a Memory-Heavy task, this question asks the model to identify which of
the given code pairs does not represent a valid parent-child relationship. This tests the model’s deep
knowledge of the hierarchical structure and its ability to spot inconsistencies.

Memory-Heavy Questions - Orphan Detection

Question: Which does not represent a valid parent-child relationship?
Options:

A) D01F 6/26 → D01F 6/28
B) D01G 19/14 → D01G 19/16
C) D01B 5/02 → D01B 5/04
D) D01D 1/06 → D01D 1/09

Answer: A
Reasoning:

• D01B 1/14 → D01B 1/18
• D01F 2/24 → D01F 2/28 → D01F 2/30 (not D01F 2/06)
• D01G 15/76 → D01G 15/78 (not D01G 15/74)
• D01D 5/04 is parallel to D01D 5/08, not a child
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Common Ancestor: This task can range from Memory-Light to Memory-Heavy, depending on
the codes provided. It requires the model to navigate the hierarchical paths of two different codes to
find their nearest shared ancestor, testing both traversal and comparison skills. Below is an example
showing the highest retrieval complexity:

Memory-Heavy Questions - Common Ancestor

Question: Nearest common ancestor of A01B 3/421 and A01B 15/06 is:
Options:

A) A01B 3/00
B) A01B 15/00
C) A01B
D) A01

Answer: C
Hierarchical Paths:

• A01B 3/421 → A01B 3/42 → A01B 3/40 → A01B 3/36 → A01B 3/00 → A01B
• A01B 15/06 → A01B 15/04 → A01B 15/02 → A01B 15/00 → A01B

B ADDITIONAL RESULTS

B.1 STRUCTURED PROMPTING AND MODEL PERFORMANCE

Figure 3 presents dumbbell plots that illustrate how structured prompting can narrow the performance
gap between base and enhanced language models on hierarchical classification tasks. The plots
compare accuracy across different model families and enhancement categories, such as instruction-
tuned and reasoning-enhanced models. The key finding is that using structured prompts effectively
reduces the performance advantage of specialized models, suggesting prompt engineering can be a
powerful alternative to other methods like reinforcement learning.

C USE OF LLMS

We made use of LLMs to perform tasks including the polishing of our writing and the LaTeX
formatting of the manuscript. It is important to note that no new ideas were introduced by these
models. The sole exception is where the focus of our research, prompt optimization, made us use the
extraction and analysis of the LLMs’ own responses.
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Figure 3: Dumbbell plots revealing performance gap compression through structured
prompting. Accuracy comparison between base and enhanced models on (a) MedConceptsQA
and (b) IPC codess across Templates 1 and 3. Each dumbbell connects base model perfor-
mance (left endpoint) to enhanced model performance (right endpoint), with line length repre-
senting the performance gap. Model pairs span three enhancement categories: Instruction-tuned
(Qwen2.5-7B/14B/32B/72B→Instruct, Qwen2.5-32B→Coder, Mistral-Small→Instruct), Reasoning-
enhanced (Deepseek-V3→R1, Qwen2.5-32B→QwQ-32B, Qwen3-30B-A3B-Instruct→Thinking-
2507, Qwen3-235B-A22B-Instruct→Thinking-2507), and Distilled (Qwen2.5-7/32B→R1-Distill-
Qwen-7/32B, Llama3.3-70B-Instruct→R1-Distill-Llama-70B). The systematic compression of dumb-
bells from Template 1 to Template 3 demonstrates how structured prompting narrows or eliminates
performance advantages of specialized models. Notably, several base models with Template 3 achieve
parity or exceed their enhanced counterparts’ Template 1 performance, validating prompt engineering
as an alternative to RL.
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