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Abstract

In recent years, substantial advancements have001
been made in the development of large lan-002
guage models, achieving remarkable perfor-003
mance across diverse tasks. To evaluate the004
knowledge ability of language models, pre-005
vious studies have proposed lots of bench-006
marks based on question-answering pairs. We007
argue that it is not reliable and compre-008
hensive to evaluate language models with a009
fixed question or limited paraphrases as the010
query, since language models are sensitive011
to prompt. Therefore, we introduce a novel012
concept named knowledge boundary to en-013
compass both prompt-agnostic and prompt-014
sensitive knowledge within language models.015
Knowledge boundary avoids prompt sensitivity016
in language model evaluations, rendering them017
more dependable and robust. To explore the018
knowledge boundary for a given model, we pro-019
pose projected gradient descent method with020
semantic constraints, a new algorithm designed021
to identify the optimal prompt for each piece of022
knowledge. Experiments demonstrate a supe-023
rior performance of our algorithm in computing024
the knowledge boundary compared to existing025
methods. Furthermore, we evaluate the ability026
of multiple language models in several domains027
with knowledge boundary.028

1 Introduction029

Recently, large language models (LLMs) have030

made significant advancements in a variety of031

tasks (Brown et al., 2020; Thoppilan et al., 2022;032

Bubeck et al., 2023). In order to gain deeper in-033

sights into the knowledge capabilities of different034

LLMs to help select appropriate LLM in practice,035

numerous studies have proposed various bench-036

marks for LLM evaluation (Guo et al., 2023; Zhong037

et al., 2023). The majority of previous research on038

model evaluation constructs a test dataset sourced039

from standardized examinations, such as college040

entrance exams and law school admission tests041

Knowledge 
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Baseline Model Evaluation

Real  Knowledge Boundary

Figure 1: Illustration of three classes of knowledge
based on the model’s mastery of knowledge in different
textual forms. Existing evaluation methods suffer from
sensitivity to input prompt. Therefore, the knowledge
ability depicted by these methods is irregularly shaped.
We propose to evaluate the knowledge capacity with a
knowledge boundary containing both Prompt-Agnostic
Knowledge and Prompt-Sensitive Knowledge.

(Hendrycks et al., 2021). Subsequently, the ques- 042

tions are fed to LLMs as prompts, eliciting re- 043

sponses that are then scored for evaluation (Yu 044

et al., 2023; Zhang et al., 2023). 045

However, each piece of knowledge embodies ab- 046

stract concept that can be expressed in a nearly 047

infinite number of textual forms (Phenix, 1967). 048

When evaluating a specific piece of knowledge, 049

existing work only evaluated LLMs with one or 050

several textual forms randomly sampled from the 051

semantic space of the knowledge. However, ex- 052

isting LLMs are notorious for being sensitive to 053

prompt, thereby undermining the reliability of such 054

evaluations (Ji et al., 2023; Maharana et al., 2023; 055

Chang and Bergen, 2023; Chen et al., 2023). Con- 056

sequently, current studies on model evaluation are 057

reasonably considered to be insufficiently robust. 058

As shown in Figure 1, from the perspective of 059

the model’s mastery of the textual form of knowl- 060

edge, knowledge can be divided into three classes: 061
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1) Prompt-Agnostic Knowledge that can be cor-062

rectly answered for any textual form; 2) Prompt-063

Sensitive Knowledge that is sensitive to the form064

of the prompt fed into the model; 3) Unanswer-065

able Knowledge that is unable to be answered066

by the model, regardless of the prompt employed.067

The majority of previous research on model eval-068

uation ignored the presence of Prompt-Sensitive069

Knowledge, resorting to oversimplified binary eval-070

uations, classifying the model’s knowledge mastery071

merely as true or false. Dong et al. (2023) attempts072

to assess LLM through diverse paraphrases, yet073

these evaluations remain confined to limited tex-074

tual forms of knowledge.075

In this paper, we aim to reduce the contingency076

when evaluating LLMs. Different from previous077

paradigms of LLM evaluation, we attempt to ex-078

plore these Unanswerable Knowledge of the model079

to be evaluated, thereby illuminating the knowl-080

edge boundaries of LLMs. How can we find Unan-081

swerable knowledge for the model? It is obvious082

that trying all prompts for the knowledge to query083

the model is too resource-intensive. Therefore, we084

choose to make efforts to search for the optimal085

prompt. We formalize optimal prompt searching086

as a discrete optimization problem: given some087

question paraphrases, we search for a prompt to088

maximize the probability of generating the correct089

answer. We propose Projected Gradient Descent090

method with Constraints (PGDC), a new algorithm091

that updates prompt with gradient descent and im-092

plements proximal projection to search discrete093

prompts. To ensure that the optimized prompt has094

the same semantics as the original prompt, we in-095

troduce the semantic loss, which is a measure of096

the distance between the semantic representations097

of the optimized prompt and the original prompt.098

Experimental results demonstrate that our pro-099

posed PGDC can outperform baselines in depict-100

ing knowledge boundaries. In addition, results on101

counterfactual datasets demonstrate that our ap-102

proach is reasonable and robust. Human evaluation103

also reveals that our optimized prompts generally104

have the same semantics as the original questions.105

Moreover, we delineate models’ knowledge bound-106

aries in different domains using PGDC to evaluate107

LLMs. The size of the model’s domain knowledge108

boundaries is strongly associated with the perfor-109

mance of downstream tasks in the domain. The110

optimal prompts also have some patterns that can111

give some inspiration for designing prompts when112

using corresponding LLMs. 113

In summary, our contributions are: (1) We pro- 114

pose a new evaluation paradigm for benchmarking 115

knowledge boundaries to compare models’ capa- 116

bilities, which can reduce the randomness in cur- 117

rent evaluations. (2) We design PGDC, projected 118

gradient descent method with constraints, to op- 119

timize prompts and obtain knowledge boundaries 120

of LLMs which achieves the best results on four 121

datasets. (3) We evaluate five models using knowl- 122

edge boundaries and obtain some valuable findings. 123

Our code and data will be released to the com- 124

munity to facilitate future research. 125

2 Preliminaries 126

2.1 Knowledge Boundary Requirements 127

We attempt to calculate the knowledge boundary 128

of LLM by automatically constructing the optimal 129

prompt. As various methods for prompt engineer- 130

ing have been proposed to obtain better prompt as 131

query (Dong et al., 2022; Wei et al., 2023), not all 132

of them are suitable for calculating the knowledge 133

boundary of LLM. In this section, we propose four 134

basic requirements for the algorithm applied to the 135

calculation of knowledge boundaries: Universality, 136

Truthfulness, Robustness and Optimality. 137

Universality When searching for an optimal 138

prompt, the method should work for most current 139

LLMs, regardless of its size and architecture. 140

Truthfulness The constructed prompt should 141

share the same semantics as the original question, 142

and not be allowed to change subject or relation. 143

Robustness When searching for the optimal 144

prompt for a piece of knowledge, the effectiveness 145

of the method should be relevant to the knowledge 146

capacity of LLM. In other words, the algorithm 147

should tend not to find appropriate prompt for unan- 148

swerable knowledge. 149

Optimality The algorithm should search for as 150

much prompt-sensitive knowledge in the LLM as 151

possible. 152

2.2 Problem Formulation 153

In this section, we give a formal problem for- 154

mulation of searching for the optimal prompt. 155

For a given piece of knowledge, assume we 156

have an LLM that models next-token probabil- 157

ity P (xi|x1, x2, ..., xi−1) with an input sequence 158
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Figure 2: An illustration of our PGDC method, projected gradient descent method with constraints. The left part
of the image shows the overall framework of our method: we start from a few labeled prompts, perform gradient
descent with the target answer as the optimization goal and try to project the embedding into text form, while
ensuring that the whole search process is in the same semantic space of the expression of the target knowledge. The
right side of the image shows how our loss function is calculated at each step of gradient descent.

(x1, x2, ..., xi−1). The piece of knowledge is ex-159

pressed in various textual forms to construct a QA160

set of multiple questions and answers. Different161

questions in the QA set are paraphrases, while an-162

swers are aliases. We believe that if the model is163

able to answer one of the questions correctly, it164

is possible for the model to "know" this piece of165

knowledge. Therefore, if the model is able to gener-166

ate one of the correct answers with prompt seman-167

tically similar to one of the questions, we consider168

the knowledge within its knowledge boundary.169

To illustrate the problem, we start from170

the simpler case with only one question171

Q = {q1, q2, ..., qn} and one answer A =172

{a1, a2, ..., am}. Prompt X is initialized with Q173

and optimized to maximize the probability of gen-174

erating A while remaining semantically similar to175

Q. We formalize optimal prompt searching as the176

problem:177

min
X

Φ(X) = L(X,A) + λR(X,Q), (1)178

where L(·) denotes the loss function to penalize179

unsuccessful generation. R(·) indicates the seman-180

tic distance between the optimized prompt and the181

initial prompt while λ is the penalty factor.182

3 Method183

To obtain a better knowledge boundary for LLM,184

our effort is directed towards identifying the opti-185

mal prompt within the semantic space. As illus-186

trated in Figure 2, PGDC optimizes prompt in the187

neighbour semantic space of the original question.188

The prompt in text form is first mapped to prompt189

in embedding form as continuous text embedding. 190

During PGDC optimization, the text embedding is 191

updated through gradient descent with direction of 192

the loss function Φ(·). After each update, if the 193

text embedding is close to a discrete prompt, it is 194

projected to the discrete prompt through embed- 195

ding projection. To avoid the text embedding from 196

entering unprojectable region where there are no 197

close discrete prompts to project, we introduce a 198

regularization to force the embedding not to enter 199

these regions. After multiple iterations of update, 200

we get the final optimized prompt. 201

3.1 PGDC Optimization 202

In PGDC algorithm, we do not specify the positions 203

of the answer in our LLM-generated output, which 204

relaxes constraints in the model output and leaves 205

space for the LLM to generate reasoning process 206

and do inference. Therefore, we define the target 207

loss of generating a specific answer A with a slicing 208

window method: 209

L = min
j<=t−ki+1

− logP (Oj:j+ki = A), (2) 210

where O = {o1, o2, ..., ot} denotes the output of 211

the LLM given X as the input. In this way, PGDC 212

automatically searches for the target position in the 213

model output and optimizes the probability of gen- 214

erating answer. When there exist multiple answers 215

in the answer set A∗, we optimize the answer with 216

the highest probability to be generated: 217

L = min
A∈A∗

min
j<=t−ki+1

− logP (Oj:j+ki = A). (3) 218
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We separately optimize prompts with PGDC if219

there are multiple paraphrases of questions in the220

piece of knowledge.221

Since PGDC optimizes prompts in the continu-222

ous embedding space while text space is discrete, it223

is hard for methods of automatically searching for224

prompts to constrain semantic information (Shin225

et al. (2020); Jones et al. (2023)). To combat the226

challenge, we introduce a semantic constraint to227

the loss function, which is defined as:228

R(X,Q) = ||h(X)− h(Q)||2, (4)229

where h(·) is the hidden representation of prompt230

and || · ||2 denotes the L2 distance between two231

items. As illustrated in Figure 2, the hidden repre-232

sentation is obtained with the last hidden layer out-233

put of the LLM given the concatenation of prompt234

and a <eos> character.235

As the optimization process is implemented in236

the continuous space, it is necessary to project the237

embedding into discrete tokens. The optimized238

embedding obtained might enter the unprojectable239

region shown in Figure 2, which makes the projec-240

tion hard. Therefore, we add a regularization in the241

loss function to punish prompt embedding far from242

discrete tokens:243

δ(X) = ΣN
i=1min

v∈V
||x̂i −Wv||2, (5)244

where V denotes the vocabulary of LLM and W245

is the projection from vocab to embedding space.246

The lowercase letters such as x represent tokens247

while x̂ represents its embedding. N in Equation248

5 denotes the length of the prompt X which varies249

in different iterations.250

In general, the final loss function of PGDC is251

formulated as:252

Φ(X) = L(X,A) + λ1R(X,Q) + λ2δ(X) (6)253

3.2 Proximal Projection254

Instead of projecting the prompt into text space255

after the overall optimization (Guo et al., 2021) or256

conducting projection after each iteration (Cheng257

et al., 2020), PGDC achieves flexible transforma-258

tion of embedding space to text space with a thresh-259

old of the vector distance. Formally, the transfor-260

mation can be written as:261

x̂i =

{
Wv, minv∈V ||x̂i −Wv||2 < c
x̂i, minv∈V ||x̂i −Wv||2 >= c,

(7)

262

where c represents the threshold of the L2 distance. 263

As illustrated in Figure 2, the dashed line shows 264

the proximal projection process. 265

3.3 Algorithm Summary 266

In general, PGDC iteratively optimizes prompt in 267

the embedding space with gradient descent to min- 268

imize the loss function in Equation 5 and do prox- 269

imal projection after each iteration. A detailed 270

pseudocode is shown in Appendix C. 271

4 Experiments 272

In this section, we perform comparisons between 273

our method and baseline methods which are com- 274

monly used in model evaluation on common knowl- 275

edge benchmarks and unanswerable knowledge 276

benchmarks. We also conduct a manual evaluation 277

to check whether the semantics of the prompts we 278

obtained are consistent with the original question. 279

4.1 Datasets and Models 280

Common Knowledge Benchmarks In order to 281

evaluate the performance of different methods on 282

common knowledge, we choose to use KAssess 283

(Dong et al., 2023) and PARAREL (Elazar et al., 284

2021) for our evaluation. Both of them consist of 285

knowledge tuples and hand-curated prompt tem- 286

plates, where all subjects, relations, and objects 287

exist as entities in WikiData. 288

Unanswerable Knowledge Benchmarks To test 289

whether our optimized prompts leak answers or 290

induce hallucinations that cause LLMs to answer 291

knowledge that they could not answer originally, 292

we perform evaluations on two counterfactual 293

datasets, COUNTERFACT (denoted as CFACT) 294

(Meng et al., 2022) and ALCUNA (Yin et al., 2023). 295

CFACT containes 20K counterfactual knowledge 296

records with a diverse set of subjects, relations, 297

and linguistic variations. ALCUNA is a biological 298

dataset for evaluating the ability of the model in 299

face of new knowledge. 300

The above datasets have multiple expressions for 301

each knowledge query, except for ALCUNA. 302

Models Our experiments use GPT-2 (774M) 303

(Radford et al., 2019), GPT-J (6B) (Wang and Ko- 304

matsuzaki, 2021), LLaMA2 (7B) (Touvron et al., 305

2023b), and Vicuna (7B) (Chiang et al., 2023). 306

4.2 Baseline Methods 307

There are several common methods of assessing 308

the model’s mastery of knowledge, and we use the 309
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Dataset Model Method

zero few dis P-zero P-few P-dis PGDC(ours)

PARAREL↑

LLaMA2 34.43% 58.23% 17.96% 54.78% 66.95% 44.16% 71.36%
Vicuna 34.19% 59.56% 8.40% 54.97% 69.69% 23.06% 69.63%
GPT-J 23.23% 44.84% 2.40% 40.78% 54.06% 7.25% 55.95%
GPT-2 9.27% 12.61% 3.13% 18.18% 20.46% 9.01% 47.68%

KAssess↑

LLaMA2 23.69% 32.03% 6.73% 50.00% 50.75% 24.73% 69.84%
Vicuna 23.21% 33.37% 9.90% 51.15% 53.66% 38.20% 57.63%
GPT-J 15.95% 20.47% 12.67% 40.23% 38.20% 2.26% 48.62%
GPT-2 4.03% 3.64% 2.46% 13.66% 11.44% 15.75% 24.71%

CFACT↓

LLaMA2 1.32% 4.56% 13.88% 3.30% 9.31% 36.46% 3.41%
Vicuna 1.40% 3.08% 4.95% 3.36% 6.91% 14.28% 3.50%
GPT-J 1.39% 3.18% 2.30% 3.75% 6.12% 6.74% 4.82%
GPT-2 1.10% 1.77% 3.28% 3.00% 3.92% 9.32% 2.81%

ALCUNA↓

LLaMA2 0.00% 0.63% 30.48% 0.00% 0.63% 30.48% 0.00%
Vicuna 0.00% 0.80% 0.90% 0.00% 0.80% 0.90% 0.00%
GPT-J 0.00% 0.08% 0.72% 0.00% 0.08% 0.72% 0.00%
GPT-2 0.00% 0.30% 2.10% 0.00% 0.30% 2.10% 0.00%

Table 1: The success rate of constructing prompts to elicit specific knowledge on four Datasets. We conduct
experiments on four different LLMs to illustrate the performance of our proposed PGDC. Dataset PARAREL and
KAssess provide true knowledge to characterize the ability of different methods on obtaining knowledge boundary
while the pieces of knowledge in dataset CFACT and ALCUNA are fake which shows the robustness of PGDC.

following as baselines:310

Zero-Shot (zero) Zero shot prompting is the sim-311

plest and most common approach used in previous312

evaluation work. We directly query models using313

questions from benchmarks.314

Few-Shots (few) Few shots prompting is com-315

monly used to enhance model performance by uti-316

lizing the contextual learning capabilities of LLMs.317

We retrieve similar knowledge in the dataset as318

exemplars to feed to the model.319

Discriminator (dis) We can also use the judg-320

ment question format to assess whether a model321

knows one piece of knowledge. So we provide322

LLM with one knowledge statement and let it deter-323

mine whether this statement is correct or incorrect.324

Since there are several paraphrases for each325

knowledge query in the benchmarks, for each326

above baseline, we will use two different metrics327

to simulate previous work on model evaluation: 1)328

For each knowledge query, we will randomly select329

one of its expressions for evaluation. 2) For each330

knowledge query, as long as one of its paraphrases331

can be answered correctly, the knowledge is consid-332

ered to be inside the boundaries, and the baseline333

method using this metric is denoted as P-baseline. 334

A more detailed description of the dataset as well 335

as the implementation of the baseline methods, are 336

shown in Appendix A. The hyperparameter settings 337

for the PGDC are shown in Appendix B. 338

4.3 Results and Analysis 339

Table 1 summarizes the experimental results on 340

four different LLMs. Our proposed PGDC achieves 341

the highest performance on common knowledge 342

benchmarks on almost all LLMs. The results in- 343

dicate that the knowledge boundary found by our 344

method is more comprehensive than baseline meth- 345

ods, which shows the Optimality and Universality 346

of PGDC. The experimental results on unanswer- 347

able knowledge benchmarks including CFACT and 348

ALCUNA reflect the Robustness of different prompt 349

methods. PGDC only slightly raises the amount 350

of unanswerable knowledge over zero-shot base- 351

line, which shows that our proposed method will 352

only introduce relatively limited fake knowledge 353

and meets the Robustness requirement. PGDC con- 354

siders knowledge to be within the boundaries if 355

any of its paraphrases can be answered correctly 356

for each knowledge query and shows comparative 357

results with P-zero while outperforming P-few and 358
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P-dis. Moreover, the prompts generated by PGDC359

are generally consistent semantically with the orig-360

inal questions (as shown in Section 4.5). Therefore,361

PGDC meets all four fundamental criteria (Univer-362

sality, Truthfulness, Robustness, and Optimality)363

in calculating knowledge boundaries.364

In addition, we can observe that:365

Evaluating LLMs with a fixed question or lim-366

ited paraphrases as the query is not reliable and367

comprehensive According to the zero and P-zero368

results of the PARAREL and the KAssess dataset,369

we can see that different queries yield different re-370

sults, and different prompting methods may result371

in different inter-system rankings. This suggests372

that assessing LLMs using a predetermined ques-373

tion or restricted paraphrases as the query lacks re-374

liability and comprehensiveness. Evaluating LLMs375

with a fixed question or limited paraphrases may376

lead to the selection of suboptimal LLMs for prac-377

tical applications, demonstrating the necessity of378

optimizing prompt design to seek more realistic379

knowledge boundaries.380

Discrimination format is much less reliable than381

cloze-style format P-dis has a similar proportion382

of responses as true on common and unanswer-383

able knowledge benchmarks, which correlates with384

the model’s preference for true. This observation385

aligns with previous findings by Wu and Aji (2023);386

Wang et al. (2023).387

Different models prefer different prompts388

Since traditional model evaluation methods use389

fixed queries, the model’s preference for prompt390

affects the score. The difference between P-zero391

and zero then reflects the fact that the model is sen-392

sitive to prompt. Even for queries with the same393

meaning, different ways of asking can produce dif-394

ferent results. GPT-2 also acquires a fair amount of395

knowledge, but is overly sensitive and thus scores396

lower on traditional assessment methods.397

Manual design of a good prompt is difficult398

Few shots prompting induces more knowledge than399

zero-shots. However, it is difficult to verify how to400

select good examples and whether a good enough401

prompt has been designed.402

PGDC, on the other hand, uses cloze-style prob-403

lem and automatically searches for the optimal404

prompt for different models, so it is a much better405

approach to model evaluation.406

We also analyze the knowledge detected by407

Figure 3: Knowledge boundaries of PGDC and baseline
method P-few on KAssess using LLaMA2 model.

Figure 4: Iterations on KAssess to find the optimized
prompt using PGDC with LLaMA2 model.

PGDC as well as the knowledge detected by base- 408

lines on KAssess. We categorize relations accord- 409

ing to KAssess, and analyze the accuracy of PGDC 410

and baseline methods on various relation cate- 411

gories. The results of PGDC and the strong base- 412

line method P-few on the strong LLaMA2 model 413

are shown in Figure 3, while the coverage results 414

of other baseline methods are presented in the Ap- 415

pendix D. We find that the knowledge boundaries 416

we obtained can almost cover baselines. Moreover, 417

we also record the iterations on KAssess to find the 418

optimized prompt using PGDC in Figure 4. We 419

observe that PGDC can find the optimal prompt for 420

the majority of queries within 15 iterations. 421

4.4 Comparison with Prompt Optimization 422

Method 423

Since our method is a prompt optimization type of 424

method, we conduct experiments to compare the 425

robustness of PGDC and Autoprompt (Shin et al., 426

2020), a representative method of prompt optimiza- 427

tion. Autoprompt is a Hotflip-based algorithm 428

(Ebrahimi et al., 2018) in optimizing prompt, which 429

employs several trigger tokens to elicit the target 430
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[Original Prompt] The associated item of source code is; [Answer] program
[PGDC Prompt] The early item of source code is a simple; [Optimal Paraphrase]
[Original Prompt] Isatis tinctoria is a source of; [Answer] indigo
[PGDC Prompt] Isatis tinctoria, a source of the natural dye; [Reasoning and Inference]
[Original Prompt] The host country of Australian Capital Territory is; [Answer] Australia
[PGDC Prompt] <s> host country of Australian Capital Territory is; [Format and Stop Words]

Table 2: Cases that PGDC successfully updates the prompt. We summarize the advantages of PGDC into three
aspects : 1) Optimal Paraphrase; 2) Reasoning and Inference; 3) Format and Stop Words.

Dataset CFACT↓

Model GPT-2 GPT-J LLaMA2 Vicuna
Autoprompt 92.38% 85.67% 88.35% 33.09%

PGDC 2.81% 4.82% 3.41% 3.50%

Table 3: Comparison of PGDC and AutoPrompt on
CFACT dataset.

output. The exact experimental setup is shown in431

Appendix E.432

As shown in Table 3, we can find that Auto-433

prompt induces the model to output target answers434

on counterfactual datasets in a large percentage.435

This result suggests that Autoprompt is more simi-436

lar to an adiversarial attack algorithm that are com-437

mitted to getting the target answer, while PGDC op-438

timizes the prompt within the semantic constraint.439

4.5 Semantic Preservation Evaluation440

In order to check whether the prompt obtained by441

PGDC is semantically consistent with the original442

questions (Truthfulness), we perform a manual eval-443

uation. We randomly select 200 samples from the444

PARAREL dataset. Specifically, we enlisted three445

college students who hold English qualification cer-446

tificates. Initially, they were given an evaluation447

guideline, which is detailed in Appendix F. Each448

evaluator underwent a training process to improve449

their comprehension of the annotation procedure.450

Prior to annotation, we administered a qualifica-451

tion test comprising 10 samples; only annotators452

who passed this test were deemed qualified and453

permitted to proceed with annotation.454

The human evaluation results show that the455

semantic preservation rates of GPT-2, GPT-J,456

LLaMA2, and Vicuna are respectively 80.5%,457

85.1%, 83.3%, and 86.2%. This indicates that the458

prompts generated by PGDC are generally seman-459

tic consistent with the original questions, which460

demonstrates the general Truthfulness of PGDC.461

More details about the human evaluation are shown462

in Appendix F. 463

4.6 Case Study 464

To understand how PGDC steers question prompts 465

to generate desired answers, we manually study 466

cases in which PGDC successfully updates the 467

prompt. We summarize the advantages of PGDC 468

into three aspects and provide cases in Table 2: 469

1) Finding the optimal paraphrase of the original 470

prompt. Due to human resource constraints, it is 471

impossible to enumerate all paraphrases of the orig- 472

inal question. PGDC automatically searches for the 473

optimal paraphrase that elicits correct answers. 2) 474

Leaving space for LLM to reason and infer. PGDC 475

allows LLMs to generate some tokens to assist their 476

reasoning and inference to achieve the answer. 3) 477

Changing the format and stop words in the original 478

prompt. Some special tokens and stop words vary 479

in different LLMs, which can be hard for humans 480

to detect. PGDC is able to optimize format and 481

stop words on the basis of gradient. 482

5 Assessments of LLMs 483

The above experiments have demonstrated the 484

effectiveness of PGDC in detecting knowledge 485

and the reasonableness of the obtained optimal 486

prompt. In this section, we apply PGDC on MMLU 487

(Hendrycks et al., 2021) to evaluate LLMs. 488

5.1 Experimental Settings 489

We evaluate GPT-2 (774M), GPT-J (6B), LLaMA2 490

(7B), Vicuna (7B) and Mistral (7B) (Jiang et al., 491

2023) from the perspective of 30 refined domain 492

knowledge using MMLU1. 493

To be consistent with our approach, we modify 494

the questions in MMLU from choice questions to 495

a cloze format, which yields more reliable and sta- 496

ble assessment results. Following previous work 497

1MMLU covers 57 subjects. To fit the theme of our paper,
here we have selected 30 topics related to knowledge, dropping
topics such as computation and reasoning, for analysis.
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(Anil et al., 2023; Touvron et al., 2023a), we cat-498

egorize the questions in MMLU into six types of499

topics: natural sciences, medical and biological500

sciences, computer science and logic, social sci-501

ences, humanities, and others. More details of the502

experiment are shown in Appendix G.1.503

5.2 Results504

The results2 of our model evaluation on each of the505

broad categories are demonstrated in Figure 5, and506

more detailed scores are shown in Appendix G.2.507

We can find that Mistral has the largest knowl-508

edge boundaries overall. LLaMA2 exceeds the509

other models by a lot in engineering domain. It510

may be because LLaMA2 uses a lot more new la-511

beled code data for training. Vicuna performs not512

far behind LLaMA2 on other topics. GPT-2 has513

very small knowledge boundaries and performs514

poorly in the more specialized medical domain. By515

identifying more reliable knowledge boundaries,516

we help select the appropriate LLM in practice.517

However, it is worth noting that these scores are518

quite low (around 20 points). This is due to the fact519

that we use more difficult cloze-style questions for520

reliability. It also reflects the fact that the results521

obtained from choice-style benchmark may be too522

high. The problems in MMLU are relatively spe-523

cialized, and the current general-purpose models524

do not have a lot of knowledge in the relevant areas.525

6 Related Work526

Model Evaluation Several benchmarks have527

been proposed to evaluate Large Language Models528

(LLMs) on human exams like college entrance and529

law school admission tests (Suzgun et al., 2022; Sri-530

vastava et al., 2023; Choudhary and Reddy, 2023;531

2For display purposes, our radar graph ranges 1-25%.

Zhong et al., 2023). In terms of knowledge as- 532

sessment, LAMA (Petroni et al., 2019) evaluates 533

whether models can correctly predict masked ob- 534

ject entities in a cloze-style prompt. Some studies 535

(Onoe et al., 2021; Mallen et al., 2023; Arodi et al., 536

2023; Yu et al., 2023) focus on measuring LLMs’ 537

understanding and mastery of world knowledge. 538

These benchmarks do not take into account that 539

LLMs are sensitive to different prompts. Some 540

works (Elazar et al., 2021; Dong et al., 2023) focus 541

on estimating and measuring the consistency of 542

LLMs given diverse prompts. All previous studies 543

on model evaluation use fixed prompts, and our 544

work pioneers prompt optimization for evaluating 545

LLMs’ knowledge boundaries. 546

Prompt Optimization Due to the sensitivity of 547

language models to prompts, better prompts can 548

help achieve higher performance in specific tasks 549

(Deng et al. (2022); Wei et al. (2023); Yang et al. 550

(2023)). Prompt engineering like in-context learn- 551

ing greatly improves the performance of prompt 552

methods (Dong et al., 2022). Another related line 553

of work attempts to formalize prompt searching as 554

a discrete optimization task to achieve better perfor- 555

mance in specific tasks (Shin et al., 2020). Some 556

studies adopt Hotflip-based algorithms (Ebrahimi 557

et al., 2018) to automatically construct prompts 558

(Wallace et al. (2019); Shin et al. (2020); Jones 559

et al. (2023);). In addition, several work tries to 560

optimize prompts in continuous embedding space 561

with Gumbel-softmax trick (Guo et al., 2021) and 562

projection (Cheng et al. (2020); Wen et al. (2023)). 563

7 Conclusion 564

The sensitivity of LLMs to prompt leads to the un- 565

reliability of the results obtained from traditional 566

model evaluation works that use fixed queries to 567

evaluate the model. To address this problem, we 568

propose semantics-preserving prompt optimization 569

methods, PGDC, to find the knowledge boundaries 570

of models for model evaluation. Our experiments 571

demonstrate shortcomings of previous model eval- 572

uation methods and the fact that the prompt we find 573

is superior to the fixed prompt. At the same time, 574

the prompt found by our method maintains the orig- 575

inal semantics and does not induce knowledge that 576

is not captured by the model, which outperforms 577

previous prompt optimization efforts. Moreover, 578

we conduct experiments exploring the boundaries 579

of the model’s different domain knowledge and 580

compare and analyze the LLM’s capabilities. 581
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Limitations582

According to our definition, one can say that a583

model knows this knowledge when it can an-584

swer the corresponding question with the opti-585

mal prompt. In this paper, we only aim to find586

the Unanswerable Knowledge of the model as the587

knowledge boundary. In fact, for Prompt-sensitive588

knowledge, the model’s sensitivity also reflects the589

model’s mastery of it (the knowledge in the color590

gradient in Figure 1). At this stage we would like591

to have a clear boundary, so we have not consid-592

ered this part for now. But exploring this part of593

knowledge is an interesting and important future594

work.595

Ethics Statement596

A potential negative impact of our approach is that597

malicious attackers could use our method to attack598

public large pre-trained language models, leading599

to fake knowledge generation. As pre-trained lan-600

guage models advance in many tasks, addressing601

safety concerns becomes increasingly necessary602

and imperative. Analyses in our paper can help en-603

hance the evaluation of pre-trained language mod-604

els.605
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A Datasets and Baselines 838

A.1 Datasets 839

We conduct comparative experiments between our 840

method and the baseline on four datasets. The 841

datasets are described and detailed below: 842

KAssess KAssess (Dong et al., 2023) is a large- 843

scale assessment suite with 994,123 entities, 600 844

relations, and their text aliases which are obtained 845

from T-REx knowledge graph (Elsahar et al., 2018). 846

KAssess constructs multiple paraphrased templates 847

for each relation. In total, there are 3,488 tem- 848

plates for 600 relations, with an average of 5.82 849

paraphrased templates per relation. 850

PARAREL PARAREL (Elazar et al., 2021) is 851

also a manually curated resource that provides pat- 852

terns—short textual prompts—that are paraphrases 853

of one another, with 328 paraphrases describing 38 854

binary relations. 855

COUNTERFACT COUNTERFACT (Meng 856

et al., 2022) is an evaluation dataset for evaluating 857

counterfactual edits in language models which 858

contains 21,919 records with a diverse set of 859

subjects, relations, and linguistic variations. 860

We use its target knowledge as counterfactual 861

knowledge to query LLMs. 862

ALCUNA ALCUNA (Yin et al., 2023) is used 863

for evaluating the ability of LLMs in face of new 864

knowledge which consists of a total of 84351 ques- 865

tions about 3554 artificial entities. We only select 866

the cloze-style portion of the questions to be used 867

for the experiments. 868

A.2 Baselines 869

We slightly adapted the dataset to the characteris- 870

tics of the generative model, and examples of the 871

inputs are shown in Table 4. 872

B Hyperparameter setting for PGDC 873

Hyperparameter settings are shown in Table 5. 874

C Pseudocode for our algorithm 875

We provide pseudocode for ASRA is in Algorithm 876

1. 877

D Coverage Analysis 878

We also examined the knowledge identified by 879

PGDC, as well as the knowledge identified by 880

baseline methods based on KAssess. The result 881
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KAssess
Zero-Shot 1. 10,000 metres record is held by [Kenenisa Bekele]

Few-Shots
2. Pole vault record is held by Fabiana Murer.\t 800 metres record is
held by David Rudisha\t 10,000 metres record is held by [Kenenisa
Bekele]

Discriminator
3. Check whether the following statement is correct: 10,000 metres
record is held by Kenenisa Bekele. The statement is (True/False):
[True]

PARAREL

Zero-Shot 1. The mother tongue of Go Hyeon-jeong is [Korean]

Few-Shots
2. The mother tongue of Michel Denisot is French. \t The mother
tongue of Thomas Joannes Stieltjes is Dutch. \t The mother tongue of
Go Hyeon-jeong is [Korean]

Discriminator
3. Check whether the following statement is correct: The mother
tongue of Go Hyeon-jeong is Korean. The statement is (True/False):
[True]

CFACT
Zero-Shot 1. IBM Connections is created by [Adobe]

Few-Shots
2. Windows Embedded CE 6.0 is created by IBM. \t Sandy Bridge
was a product of Apple. \t IBM Connections is created by [Adobe]

Discriminator
3. Check whether the following statement is correct: IBM Connec-
tions is created by Adobe. The statement is (True/False): [True]

ALCUNA

Zero-Shot 1. What’s the body length of Leuciaiaivea? [8.1 cm]

Few-Shots
2. What’s the body length of Octopus perralis? 100.0 cm. \t What’s
the body length of Sepia bidabilis? 17.0 cm. \t What’s the body length
of Leuciaiaivea? [8.1 cm]

Discriminator
3. Check whether the following statement is correct: What’s the body
length of Leuciaiaivea? 8.1 cm. The statement is (True/False): [True]

Table 4: Demonstration of baselines. Answers are in ’[]’. Each query has multiple textual expressions and each
answer has multiple aliases. The number of examples for few-shots in our experiments is 4. Due to space constraints,
we do not show these comprehensively.
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Hyperparameter
Learning rate 1e-2

Optimizer Adam
Scheduler ExponentialLR

Schedule Step 5
Iteration Rounds 25

λ2 0.01

Table 5: Hyperparameter settings of PGDC.

Algorithm 1 PGDC Algorithm

Input: LLM θ, Embedding Table E|V|, Input Ques-
tion q = {q1, q2, ..., qn}, Answer a, Loss Function
Φ, Optimization Step T , Learning Rate γ, Projec-
tion Ceil c

1: p← E|V|[q]
2: for i = 1, 2, ...T do
3: Generate z = {z1, z2, ..., zm} with p as an

input into θ
4: L← Φ(z)
5: p← p− γ∇pL
6: for pj ∈ p do
7: t← argmink≤|V| ||pj − vk||2
8: if ||pj − vt||2 ≤ c then
9: pj ← vt

10: end if
11: end for
12: end for
13: return p

Human Evaluation Guideline
Task Overview
Thank you for participating in this task! We are currently
working on a project focused on benchmarking knowl-
edge boundary for Large Language Model (LLM). You
will be randomly presented with two texts. Your task
is to determine whether the semantics of two texts are
consistent, which means judging whether the two texts
possess consistent semantics and can both be used to in-
quire about the same knowledge. Note that the texts do
not need to be fluent or grammatically correct, and the
presence of non-disruptive gibberish that does not affect
the recognition of semantics is allowed. If the semantics
of the two texts are consistent, label 1; if not, label 0.
Please maintain high quality in your annotations.

Emphasis and Caution
Support and Reference: If you encounter any confu-
sion regarding professional knowledge or context while
performing this task, please feel free to reach out to us
for clarification.You may also refer to Wikipedia or other
reliable sources to gain further understanding.
Feedback Mechanism: You can directly submit your
queries, concerns, or suggestions to us.

Table 6: Human evaluation guideline.

of PGDC and the baseline methods P-few, few, P- 882

zero, zero, P-dis and dis on the strong LLaMA2 883

model are shown in Figure 6. Our analysis reveals 884

that the knowledge boundaries we derived can ef- 885

fectively encompass those of the baseline methods. 886

E Autoprompt for Model Evaluation 887

We implement Autoprompt by extending the ques- 888

tion with five trigger tokens initialized with the last 889

token in original prompt. The trigger tokens are 890

updated for three rounds according to the algorithm 891

described in Shin et al. (2020). 892

F Human Evaluation 893

We provide our human evaluation guideline fur- 894

nished to participants for manually evaluating the 895

semantic preservation task, as presented in Table 6. 896

We recruited three college students, all possess- 897

ing College English Test-6 certificates, demonstrat- 898

ing fluency in English. We first distribute the eval- 899

uation guidelines to the evaluators. Subsequently, 900

we conduct training sessions for the evaluators, ex- 901

plaining the evaluation guidelines to ensure a bet- 902

ter understanding of the task requirements and ad- 903

dressing any questions or concerns they may have. 904

Before commencing formal annotation tasks, we 905

administered a qualification test. Ten samples were 906

randomly selected. These samples were evaluated 907

by the participants, and subsequently, we assessed 908
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(a) Knowledge boundaries of PGDC and baseline P-few. (b) Knowledge boundaries of PGDC and baseline few.

(c) Knowledge boundaries of PGDC and baseline P-zero. (d) Knowledge boundaries of PGDC and baseline zero.

(e) Knowledge boundaries of PGDC and baseline P-dis. (f) Knowledge boundaries of PGDC and baseline dis.

Figure 6: Knowledge boundaries of the proposed PGDC and baseline methods on KAssess using LLaMA2 model.
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the accuracy of each annotator’s evaluations. A909

higher accuracy score reflects a more consistent910

understanding of our guidelines. Evaluators who911

achieved at least 90 % accuracy were deemed qual-912

ified to proceed with the evaluation task. We em-913

ployed Fleiss’s Kappa statistic (Fleiss et al., 1981)914

to assess the agreement between the three annota-915

tors, yielding a score of 0.64.916

G Model Evaluation on MMLU917

G.1 Experimental Settings918

Based on the conclusion of our earlier experiments919

that cloze-style questions are more reliable, we920

converted the choice-style questions in MMLU to921

a cloze format. We remove the other options and922

only keep the contents of the correct option as the923

answer to the cloze question.924

Since the topic of our paper is about knowledge925

and some of the questions in MMLU are about926

computation and reasoning, we filter them out The927

remaining 30 subjects are grouped into six larger928

subjects, as shown in Table 7.929

The PGDC method in this experiment uses the930

same hyperparameters as in Appendix B.931

G.2 Detailed Results932

In the main article we report the results in the broad933

categories, and the results in each subcategory are934

shown in Table 7.935
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Broader Subject Subject in MMLU GPT-2 GPT-J LLaMA2 Vicuna Mistral

Nature Science

astronomy_test 5.08 6.78 6.78 10.17 15.25
college_biology_test 2.56 10.26 14.10 10.26 16.67
college_chemistry_test 1.89 1.89 11.32 9.43 5.67
conceptual_physics_test 14.47 19.30 23.25 23.25 23.25
high_school_physics_test 0.00 0.00 1.72 1.72 1.72
high_school_biology_test 1.41 8.45 14.79 11.97 15.49
high_school_chemistry_test 3.06 4.08 7.14 6.12 8.16

Social Science

high_school_government_politics 10.34 12.64 18.39 16.09 14.94
high_school_macroeconomics_test 0.93 1.87 3.74 4.67 5,61
high_school_microeconomics_test 2.50 2.50 5.00 4.17 5.00
management_test 1.08 0.00 5.38 5.38 2.15
professional_accounting_test 1.67 0.00 1.67 1.67 0.00
sociology_test 0.00 3.49 6.98 3.49 5.81
us_foreign_policy_test 5.08 10.17 10.17 6.78 10.17
world_religions_test 3.61 4.21 19.88 15.06 18.07
high_school_psychology_test 10.08 14.47 19.90 17.05 22.22

Engineering
electrical_engineering_test 6.02 5.26 10.53 6.02 6.77
college_computer_science_test 0.00 4.76 4.76 0.00 14.29

Medicine

clinical_knowledge_test 0.00 2.68 4.70 2.68 6.71
college_medicine_test 2.86 2.86 10.00 2.86 8.57
medical_genetics_test 0.00 4.11 9.59 13.70 9.59
nutrition_test 2.53 3.16 10.13 7.59 8,87
virology_test 0.79 2.38 3.97 3.97 6.35
anatomy_test 1.23 9.88 20.99 19.75 25.93

Humanities
global_facts_test 1.14 3.41 7.95 9.09 12.50
moral_disputes_test 3.52 2.01 7.04 4.52 6.03
miscellaneous_test 10.30 11.61 23.37 22.79 28.45

Others
high_school_geography_test 4.85 8.48 16.36 12.73 13.94
logical_fallacies_test 0.00 0.98 2.94 3.92 3.92
human_aging_test 29.27 3.90 5.37 9.76 8.29

Table 7: Our categorization of subjects in MMLU and detailed scores.
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