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ABSTRACT

The reversal curse, failing to answer “B is A” after learning “A is B”, is a per-
sistent pathology of autoregressive language models (ARMs). Masked diffusion
based language models (MDMs), however, appear to escape this curse. A seem-
ingly plausible explanation attributes this ability to their any-order training ob-
jective, but we show this intuition is incomplete. In particular, training to re-
place the mask in “[M] is B” with A learns the probability p(x = A|y = B),
which has nothing to do with the probability required to answer the reverse query,
p(y = A|x = B). Thus, the objective formulation alone cannot explain rever-
sal ability. We demonstrate that the true reason lies in the architecture: in a one-
layer Transformer encoder, attention scores for forward and reverse contexts are
positively correlated, implicitly coupling probabilities that would otherwise be
treated as unrelated. This structural bias gives MDMs a principled advantage for
reverse inference. Our theory is supported by both synthetic and real-world ex-
periments, where MDMs consistently succeed on reverse queries that cause even
strong ARMs to fail.

1 INTRODUCTION

Since the advent of the Transformer architecture (Vaswani et al., 2017), language models have
advanced rapidly (Devlin et al., 2019; Raffel et al., 2020). Autoregressive Models (ARMs) (Rad-
ford et al., 2018; 2019; Brown et al., 2020), implemented as Transformer decoders and trained
with next-token prediction, have become the dominant paradigm for large language models
(LLMs) (Grattafiori et al., 2024; OpenAI, 2023). Despite their success, ARMs exhibit structural
limitations. A notable example is the reversal curse (Berglund et al., 2024): after learning the fact
“A is B”, they often fail to answer the logically equivalent reverse query “B is A”. This arises
because ARMs are optimized only for the unidirectional conditional probability p(y = B|x= A),
without explicitly modeling the reverse probability p(y = A|x = B). For instance, a model may
correctly predict “The capital of France is Paris,” yet fail to answer “Which country has Paris as its
capital?” Data augmentation techniques (Golovneva et al., 2024; Lu et al., 2024; Lv et al., 2024;
Zhang et al., 2025) can partially alleviate the problem, but do not resolve the bias fundamentally.

Masked diffusion based language models (MDMs) (Austin et al., 2021; Campbell et al., 2022; Lou
et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2025), implemented with Transformer
encoders and trained via random masking and reconstruction, have recently emerged as a promis-
ing alternative to ARMs. They offer several advantages: the encoder architecture naturally supports
bidirectional context modeling, the random masking objective enables generation in any order, and
recent work has demonstrated their scalability to the LLM regime (Nie et al., 2025b; Ye et al., 2025).
In addition, MDMs have been reported to handle reverse queries more effectively than ARMs (Ki-
touni et al., 2024; Nie et al., 2025a;b), suggesting a potential structural advantage. However, these
observations remain anecdotal, and no systematic analysis has yet been provided.

We begin by establishing, through systematic experiments on large-scale language models, that
MDMs indeed mitigate the reversal curse. Whereas prior work focused only on smaller models at the
1.1B scale (Nie et al., 2025a), we conduct controlled evaluations at the 7–8B scale, comparing ARMs
(LLaMA-3.1 (Grattafiori et al., 2024), Qwen-2.5 (Yang et al., 2025)) with an MDM (LLaDA (Nie
et al., 2025b)). Across real-world benchmarks such as Parent–Child and Person–Description, we
find that MDMs consistently succeed on reverse inference tasks where strong ARMs collapse. These
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large-scale results provide the first systematic evidence that the reversal curse is substantially allevi-
ated in MDMs under realistic evaluation settings.

Having established the phenomenon, we then ask: why do MDMs succeed where ARMs fail? A
common intuition points to the any-order nature of the MDM training objective: random masking
provides supervision across all conditional directions. Yet, this explanation is incomplete. By for-
mulation, the probability of unmasking [M] as A in “[M] is B” corresponds to p(x = A|y = B),
whereas the reverse query “B is [M]” requires p(y = A|x= B). These two conditional probabili-
ties are defined with respect to different conditioning events, and the training objective provides no
mechanism to establish a systematic relation between them.

We demonstrate that the key to reversal ability lies in the Transformer encoder architecture of
MDMs. Under a simplified setting of a one-layer encoder, we provide a formal proof that the atten-
tion score reinforced during forward training is positively correlated with the attention score required
for reverse inference. This architectural property couples conditionals that are otherwise unrelated,
giving MDMs an inherent advantage for reversal. A controlled toy experiment further confirms this
effect, showing that the theoretical prediction aligns with empirical behavior and complements our
large-scale findings.

In summary, our contributions are:

• Large-scale experiments: We systematically evaluate 7–8B parameter models and show
that MDMs consistently outperform ARMs on reversal tasks.

• Theoretical insight: We prove that reversal ability in MDMs comes from the Transformer
encoder architecture, where attention scores for restoring “A” from “[M] is B” and from
“B is [M]” are positively correlated.

• Empirical validation: Synthetic toy experiments confirm the theoretical prediction and
align with our large-scale results.

2 PRELIMINARIES

2.1 AUTOREGRESSIVE MODELS AND MASKED DIFFUSION MODELS

In this section, we review autoregressive models (ARMs) and masked diffusion models (MDMs)
with a focus on their training objectives and architectures. Within the architecture, our analysis
centers on the self-attention mechanism of the Transformer encoder used in MDMs, which governs
how models process context and is crucial for understanding their capacity for reverse inference.

Training Objectives. An ARM (Radford et al., 2018; 2019) is trained to generate a sequence
x = x1x2 . . . xL strictly in a left-to-right manner. Given a prefix x<i = x1x2 . . . xi−1, the model
maximizes the conditional probability of the next token xi. Formally, the training objective is the
following cross-entropy loss:

LARM(θ) = −Ex∼pdata

[
L∑

i=1

log pθ(xi|x<i)

]
.

By contrast, an MDM (Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2025) learns to generate a
sequence in an any-order fashion via random masking. Let xt denote a corrupted version of x in
which each token is independently replaced by the special mask token [M] with probability t ∈ [0, 1].
The model is then trained to recover the original tokens at the masked positions by maximizing
the conditional probability of each masked token. The formal training objective is the following
weighted cross-entropy loss:

LMDM(θ) = −Ex∼pdata, t∼U [0,1],xt

1

t

∑
i:xt

i=[M]

log pθ(xi|xt
UM)

 ,

where xt
UM denotes the unmasked portion of xt.
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Architectures. An ARM models pθ(xi|x<i) with a Transformer decoder that uses causal atten-
tion. At each step i, the decoder takes the prefix x<i as input and produces a probability distribution
over the vocabulary V , from which the next token xi is drawn.

In contrast, an MDM models pθ(xi|xt
UM) with a Transformer encoder that applies full-attention.

The encoder processes the corrupted sequence xt, which contains [M] at a subset of positions,
and produces a distribution over V at every position i. Only the outputs at masked positions are
meaningful, as they specify the probabilities of reconstructing the masked tokens.

Self-Attention in the Transformer Encoder. A central component of MDMs is the self-attention
mechanism in the Transformer encoder, which governs how information flows across tokens in a
sequence. Since our theoretical analysis hinges on this mechanism, we describe it carefully in the
single-head case with head dimension D.

Each input token embedding hi ∈ RD is projected into a query, key, and value vector via shared
projection matrices WQ,WK,WV ∈ RD×D:

qi = WQhi, ki = WKhi, vi = WVhi.

The interaction between token i and token j is first measured by an attention score. This score
captures how strongly the query at position i attends to the key at position j, combining seman-
tic similarity (through the projections) with relative positional information introduced by Rotary
Position Embedding (RoPE) (Su et al., 2024):

Score(i, j) = q⊤
i R(∆)kj ,

where R(∆) ∈ RD×D is the RoPE matrix determined by the relative position ∆ = j − i.

Raw scores are normalized with softmax to produce attention weights:

Weight(i, j) =
exp

(
1√
D

Score(i, j)
)

∑L
j′=1 exp

(
1√
D

Score(i, j′)
) .

The attention weight represents how much token i focuses on token j. In other words, it determines
how much the representation at position i will incorporate information coming from position j.

The output at position i, the context vector, is then a weighted combination of value vectors:

zi =

L∑
j=1

Weight(i, j)vj .

In practice, whether token i relies on token j (for example, whether a masked token [M] attends to B
to reconstruct A) is entirely governed by this attention distribution. This mechanism, which couples
forward and reverse contexts, is central to our theoretical analysis.

2.2 THE REVERSAL CURSE IN AUTOREGRESSIVE MODELS

As discussed in Section 2.1, autoregressive models (ARMs) generate text in a strictly left-to-right
manner. This design leads to the well-documented reversal curse (Berglund et al., 2024): even after
learning the forward relation “A is B,” ARMs frequently fail to answer the logically equivalent
reverse query “B is A.” For instance, a model may correctly predict “The capital of France is Paris,”
yet fail to respond to “Which country has Paris as its capital?”

Lin et al. (2024) provided a broad examination of this phenomenon across open-ended QA and
multiple-choice settings. They showed that ARMs succeed on reversed queries only when both en-
tities are explicitly present in context, and identified a name-centric “thinking bias” that ties gener-
alization ability to the structural form of training data.

Several approaches have attempted to mitigate the reversal curse through data-centric interventions.
Golovneva et al. (2024) proposed reverse training, augmenting pre-training or fine-tuning with re-
versed variants of each sequence (token-level, word-level, entity-preserving, or random-segment
reversals) under the same left-to-right objective. They reported that entity-preserving and random-
segment reversals substantially reduce the reversal curse without degrading performance on standard
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Tom Holland’s mother is Nikki Holland

Nikki Holland’s child is Tom Holland

Forward
Inference

Train Inference

Reverse

Who is ’s parent?Tom Holland

Who is ’s parent?Tom Holland

C2P

P2C

Who is ’s child?Nikki Holland

Who is ’s child?Nikki Holland

Figure 1: Illustration of the evaluation setup on the Parent–Child dataset. Each model is trained
only in one direction (e.g., parent→child or child→parent) and then evaluated on both forward
and reverse queries. The figure highlights representative prompts and completions, where forward
queries follow the trained mapping and reverse queries require the unseen inverse mapping. Exact-
match accuracy on such queries quantifies reverse inference ability. The Person–Description dataset
follows the same setup.

benchmarks, and highlighted the importance of augmentation granularity. Complementary to this,
Lu et al. (2024) analyzed three contributing factors (knowledge clarity, entity-correlation modeling,
and pairwise reasoning) and quantified their effects via controlled experiments.

Despite these efforts, a fundamental limitation remains. An ARM learns the relation “A is B” by
maximizing only the forward conditional probability pθ(y = B|x = A). This training objective is
entirely decoupled from the reverse conditional pθ(y = A|x = B), making reverse inference an
independent task rather than a byproduct of forward learning. This limitation is not just intuitive but
also formal: a gradient-based analysis of a one-layer Transformer decoder shows that optimizing
pθ(y =B|x=A) provides no signal for improving pθ(y =A|x=B) (Zhu et al., 2024). Although
this analysis is carried out in the decoder setting, the difficulty stems from the next-token prediction
objective itself, which makes reverse inference intrinsically hard to achieve.

3 LARGE-SCALE SYSTEMATIC EXPERIMENTAL ANALYSIS

As discussed in Section 2.2, autoregressive next-token prediction optimizes a single directional con-
ditional, which prevents ARMs from answering reversal queries. By contrast, MDMs receive bidi-
rectional supervision via random masking and have been reported to alleviate the reversal curse (Ki-
touni et al., 2024; Nie et al., 2025a;b). We provide the first large-scale and systematic experimental
comparison of ARMs and MDMs on reverse inference.

Setup. Training data includes only forward statements of the form “A is B,” while the reversed
form “B is A” is never provided. At evaluation, we test both directions:

• Forward (“A is B”): given “A is _ ,” predict the next token B (ARM);
given “A is [M],” predict the masked token B (MDM).

• Reverse (“B is A”): given “B is _ ,” predict the next token A (ARM);
given “B is [M],” predict the masked token A (MDM).

We use two real-world tasks adapted from Berglund et al. (2024): Parent–Child and Per-
son–Description. Both tasks provide unambiguous mappings between entities, where forward
queries match the training direction and reverse queries swap input and output. Figure 1 illustrates
representative forward and reverse examples. We report exact-match accuracy after minimal nor-
malization, with further dataset details provided in Appendix D.

Models. We evaluate three large-scale LLMs. LLaDA 8B Instruct (Nie et al., 2025b) is a diffusion-
based language model that scales MDM to 8B parameters and was developed with LLaMA-3 as its
primary comparison target. For ARMs, we include LLaMA-3.1 8B Instruct (Grattafiori et al., 2024)
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Table 1: Results of Parent–Child and Person–Description datasets for real-world evaluation. Train
Dataset indicates the direction of data used for training. Across all cases, LLaDA (MDM) shows
notably strong performance in Reverse accuracy. The highest Reverse accuracy for each training
direction is boldfaced, all achieved by LLaDA. In contrast, LLaMA-3.1 and Qwen-2.5 (ARMs)
nearly collapse to random guessing and almost completely fail to perform reverse inference. Results
are averaged across 3 random seeds.

MDM ARM

LLaDA 8B LLaMA-3.1 8B Qwen-2.5 7B
Train Dataset Forward Reverse Forward Reverse Forward Reverse

Parent → Child (P2C) 76.7 48.3 89.9 15.9 89.9 0.5
Child → Parent (C2P) 87.7 43.7 95.9 6.9 89.0 1.4

Person → Description (P2D) 72.7 99.5 72.7 3.5 70.7 2.2
Description → Person (D2P) 99.7 41.3 83.0 1.8 80.0 1.5

and Qwen-2.5 7B Instruct (Yang et al., 2025). All models are fine-tuned on the same training data
using LoRA (Hu et al., 2022), and evaluated with deterministic decoding to ensure consistency.

Results. Table 1 reports accuracy on the Parent–Child and Person–Description datasets. Both
ARMs and the MDM achieve high accuracy in the Forward regime, confirming that all models
can reliably learn the observed mappings from training data. However, a stark contrast emerges in
the Reverse regime: LLaMA-3.1 and Qwen-2.5 almost collapse to random guessing, demonstrat-
ing the autoregressive reversal curse described in Section 2.2. In sharp contrast, LLaDA consistently
achieves strong reverse accuracy across all tasks, despite never being trained on reversed pairs. These
results provide systematic large-scale evidence that the reversal curse is substantially alleviated in
MDMs, while it persists in ARMs even at billions of parameters.

4 WHY MDMS SUCCEED AT REVERSAL

4.1 TRAINING OBJECTIVE ALONE DOES NOT EXPLAIN REVERSAL

In Section 3, we showed empirically that MDMs succeed at reverse inference, whereas ARMs fail. A
common explanation, repeated explicitly or implicitly in prior work (Kitouni et al., 2024; Nie et al.,
2025a;b), is that the random masking objective of MDMs naturally equips them with reversal ability.
The reasoning is that for a sequence “A is B,” the model is trained on both pθ(y=B|x=A) from the
corrupted sequence “A is [M],” and pθ(x=A|y=B) from “[M] is B.” Since training covers these
two directions, one might conclude that the model implicitly learns to handle the reverse query.

This intuition, however, is incomplete. The reverse query “B is [M]” requires

pθ(y=A|x=B),

which is not directly supervised by the training objective. Importantly, pθ(y=A|x=B) (the prob-
ability needed for reversal) differs from pθ(x=A|y =B), which is observed during training. The
two conditionals do not have a guaranteed mathematical connection, and training on “A is B” alone
does not ensure that information transfers between them (see Fig. 2).

This distinction is important: MDM training directly supervises the forward conditionals, while the
reverse conditional required for reversal is not explicitly covered. This suggests that the common ex-
planation, that MDMs succeed at reversal simply because they reconstruct randomly masked tokens,
does not fully account for the phenomenon.

Consequently, the strong reversal performance observed in practice (Section 3) is unlikely to be
explained by the training objective alone. In the following section, we investigate how structural
properties of the Transformer encoder can implicitly couple forward and reverse attention patterns,
providing a more complete explanation for MDMs’ reversal capability.
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MDM Training Reverse Inference

unrelated

Figure 2: Why training objective of MDM does not directly enable reverse inference. When A
is masked in “A is B,” the model only learns to restore A from “[M] is B,” i.e., p(x=A|y =B).
True reversal instead requires p(y=A|x=B), restoring A from “B is [M].” which is mathematically
unrelated under the MDM with p(x=A|y=B). Thus, training with random masking cannot by itself
explain reversal capability; additional architectural factors must account for the observed success.

4.2 ARCHITECTURE OF MDMS EXPLAINS REVERSAL

As discussed in Section 4.1, the ability of MDMs to perform reverse inference cannot be explained
by their training objective. Nevertheless, our experiments in Section 3 showed that once an MDM
learns the forward conditional pθ(x = A|y = B), it also acquires the reverse conditional pθ(y =
A|x = B). This raises the key question: what mechanism in the model couples these otherwise
unrelated probabilities?

We argue that the answer lies in the architecture itself. Specifically, the attention mechanism of the
MDM Transformer encoder induces implicit coupling: the attention scores used in forward training
are positively correlated with those required for reverse inference. This correlation implies that if
the model learns to attend correctly in the forward direction, it will also attend to the right tokens
when the order is reversed.

Setup: One-Layer Transformer Encoder. We analyze a simplified setting of one-layer Trans-
former encoder with RoPE, inspired by the analysis of Zhu et al. (2024). In this model, the masked
token provides the query vector q[M], while each surrounding context token provides a key vector k.
The attention score q⊤

[M]R(∆)k determines how strongly the masked position attends to a context
token. After softmax normalization, these scores yield attention weights, which decide where the
model looks when unmasking [M].

Reverse inference succeeds if the [M] token attends to the same context tokens it relied on in the
forward direction, even when their relative order is swapped. Thus, the central question reduces to
whether forward and reverse attention scores are correlated.

Theoretical Analysis. As described in Section 2.1, R(∆) denotes the RoPE rotation for relative
distance ∆. Consider the forward sequence “[M] is B,” whose ground truth is “A is B.” Here the
masked token A and the context token B are separated by distance ∆1, giving the attention score

Sfwd = q⊤
[M]R(∆1)kB .

This is the score reinforced during training, since the model must attend to B in order to recover A.

In the reversed sequence “B is [M],” the masked token now follows B, with relative distance ∆2.
The corresponding attention score is

Srev = q⊤
[M]R(−∆2)kB ,

which determines whether the model can again attend to B and correctly infer A in the reverse query.

Although the RoPE rotations differ between the two cases, the key question is whether Sfwd and
Srev move together. Intuitively, if q[M] and kB align so that the forward score becomes large during
training, the rotational structure of RoPE suggests that the reverse score will also tend to be large.
Formally, under mild assumptions (independence and isotropy of q and k), we can show:

6
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correlated

Thm 4.1

MDM Training Reverse Inference

Figure 3: The mechanism of attention score correlation that enables reverse inference in
MDMs. MDMs are able to infer “B is A” although it only learned to reconstruct A from “[M]
is B.” i.e., pθ(x=A|y=B). For the context “[M] is B” and the reverse “B is [M]”, attention score
of [M] to B in each contexts are positively correlated. Induced by the full-attention architecture,
the positive correlation associates the two unrelated conditional probabilities (Theorem 4.1). Con-
sequently, model is able to capture pθ(y =A|x=B) and correctly predict “B is A” despite never
seeing the condition in training.

Theorem 4.1. Let q,k ∈ RD be independent random vectors with zero mean and isotropic covari-
ance. Then the correlation between forward and reverse attention scores is

Corr
(
q⊤R(∆1)k, q

⊤R(−∆2)k
)
=

1

D
Tr(R(∆1 +∆2)) .

For practical ranges of ∆1 +∆2 ≤ 100, the correlation can be bounded below as

1

D
Tr(R(∆1 +∆2)) ≳

log 100− γ − 2/100

log 10000
≈ 0.435, (1)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Detailed derivations of Theorem 4.1 and the
approximate inequality in Eq. (1) are provided in Appendix C, with the intuition illustrated in Fig. 3.

This bound establishes that the correlation is strictly positive. Concretely, consider the sequence “A
is B” where the model is trained with A masked. During training, the [M] token must attend strongly
to B, which increases the forward score Sfwd. By Theorem 4.1, the reverse score Srev in the sequence
“B is [M]” is positively correlated with Sfwd. Hence, whenever the model learns to attend to B in
the forward setting, it will also tend to attend to B in the reverse setting. As a result, the model
can generate A in “B is [M]” despite never being trained on this query. In other words, although
pθ(x = A|y = B) and pθ(y = A|x = B) are not directly related by the objective, the architecture
introduces a statistical coupling between the attention mechanisms that support them. Controlled
experiments in Section 4.3 confirm that this positive correlation persists in practice, even though the
simplifying assumptions of independence and isotropy do not hold exactly.

4.3 TOY EXPERIMENTS AND EMPIRICAL VALIDATION

To complement our theoretical analysis, we design controlled toy experiments to examine whether
reverse inference emerges in practice and whether the attention mechanism behaves as predicted. We
compare a one-layer ARM (GPT-2 (Radford et al., 2019)) and an MDM (RADD (Ou et al., 2025)),
as RADD was among the first to implement a modern MDM objective at the GPT-2 scale.

Synthetic setup. We construct a simple dataset where each sequence of length L contains exactly
one lowercase–uppercase pair and the remaining positions are padded with zeros. During training,
the forward rule is enforced: the lowercase letter always precedes its corresponding uppercase (e.g.,

7
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Table 2: Success rate (%) of the toy experiment, averaged over 3 random seeds. While both the
MDM (RADD) and ARM (GPT-2) easily master the “A is B” rule, only MDM demonstrates an
ability to perform the reversal. This indicates that by learning to reconstruct “A is B” from various
masked conditions, MDMs can infer the reverse “B is A,” which was never encountered in training.

L = 10 L = 20 L = 30 L = 40
Model Forward Reverse Forward Reverse Forward Reverse Forward Reverse

MDM 99.31 43.10 97.36 55.70 96.91 33.89 97.27 38.37
ARM 99.83 0.00 99.80 0.00 99.93 0.00 99.93 0.00

“d is D”). Sequences where the uppercase precedes the lowercase (e.g., “D is d”) are excluded.
For instance, with L = 3, valid training instances for the pair (d,D) include dD0, d0D, and 0dD,
whereas reversed forms Dd0, D0d and 0Dd never appear.

At inference, we test both directions. In the forward query, the model receives the lowercase and
must generate its uppercase partner. In the reverse query, the model receives the uppercase and must
generate the lowercase partner, which it has never seen in training. This setup is illustrated in Fig. 4.

aA0

a0A

0aA

...


0zZ

Train Data Inference

d__   d0D

D__   Dd0

Figure 4: Models are trained on the “A is
B”. Forward inference evaluated by prompt-
ing with a lowercase character, while reverse
inference evaluates by prompting with an
uppercase character, not seen in training.

Toy experiment results. Table 2 summarizes the re-
sults. Both ARM and MDM models easily master the for-
ward mapping, reaching near-perfect accuracy across se-
quence lengths. For the reverse task, however, the ARM
collapses completely, producing zero correct outputs. In
contrast, the MDM achieves substantial success (33–55%
depending on L), despite never being trained on reversed
pairs. This shows that MDMs can generalize the reverse
mapping, while ARMs cannot, consistent with the rever-
sal curse observed in real-world datasets (Section 3).

Beyond success rates, we also examined the output prob-
abilities during reverse inference. At each position, we
compared the probability assigned to the correct token
(e.g., d when given D) with the maximum probability as-
signed to any other token. For the MDM, the correct token consistently received a non-negligible
probability mass, while the strongest competitor remained far lower. The ARM (GPT-2), by contrast,
assigned virtually zero probability to the correct token and consistently favored an incorrect alterna-
tive. This confirms that MDMs not only succeed more often but also allocate meaningful probability
to the correct reverse mapping, whereas ARMs perform no better than random guessing. Figure 5
illustrates this contrast for L = 20.
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Sequence Position
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(a) MDM (RADD)
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Figure 5: Reverse inference on the toy dataset (L = 20). At each position we display the model’s
probability for the target lowercase corresponding to the given uppercase (Red), and the maximum
probability over all other vocabulary characters (Black). RADD (MDM) consistently assigns higher
probability to the correct lowercase, whereas GPT-2 (ARM) fails to allocate meaningful probability
to target characters, revealing an architectural gap.
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Figure 6: Empirical validation of the attention correlation mechanism for reverse inference. (a) Cor-
relation of attention scores as a function of total relative distance ∆1 + ∆2 in a one-layer RADD
shown for sequence lengths L = 20, 30, 40. The result reveals a consistent positive correlation
across all values, providing strong empirical support for Theorem 4.1. (b) The dynamics of soft-
maxed attention weights for “[M] is B” (blue) and “B is [M]” (orange) contexts throughout the
training process. The weights demonstrate a strong parallel trajectory. This co-movement provides
further evidence that the full-attention mechanism drives the concurrent learning of both directions.

Attention score correlation. We next verify whether the attention score correlation predicted by
our theory appears in practice. Using the trained RADD model, we measure attention scores from
the [M] token to its paired uppercase token under both forward contexts (“[M] is B”) and reverse
contexts (“B is [M]”), evaluating across all positional permutations. Intuitively, if the model learns in
the forward case that the [M] token should attend strongly to B, our theory predicts that the reverse
case should reflect a similar increase in attention, even though the reverse configuration was never
observed during training.

As shown in Fig. 6a, the results confirm this prediction: forward and reverse attention scores are
consistently positively correlated across sequence lengths. Even though the forward conditional
pθ(x = A|y = B) and the reverse conditional pθ(y = A|x = B) are mathematically unrelated
under the training objective, the geometry of RoPE ensures that stronger alignment in one direction
statistically reinforces the other. In other words, what we observe empirically is precisely the archi-
tectural bias we identified theoretically, operating robustly in trained models despite the simplifying
assumptions of independent, isotropic queries and keys not holding in practice.

Training dynamics. We further analyze how this coupling develops during learning by tracking
the evolution of attention weights from the [M] token to the uppercase token. For the forward set-
ting, we average the softmaxed weight across all “[M] is B” permutations, and for the reverse setting
across all “B is [M]” permutations. The trajectories in Fig. 6b reveal a striking pattern: both forward
and reverse weights increase together during training, rising sharply at early steps and converging
toward similar plateaus. This co-movement indicates that the model does not learn forward and re-
verse attention in isolation; rather, once the encoder strengthens the forward pathway, the reverse
pathway is reinforced as well. Such synchronized dynamics provide direct evidence that the en-
coder’s full-attention mechanism inherently ties the two directions of inference, enabling MDMs to
generalize reversal without explicit supervision. Additional analyses are reported in Appendix E.

5 CONCLUSION

We revisited the long-standing reversal curse of autoregressive models (ARMs), where learning “A
is B” does not translate into correctly inferring “B is A.” Through large-scale experiments, toy
studies, and theoretical analysis, we showed that Masked Diffusion Models (MDMs) overcome this
limitation. The key factor is not their any-order training objective, but an architectural property of
Transformer encoders: forward and reverse attention scores are positively correlated, coupling the
two directions of inference. Our results demonstrate that MDMs acquire reverse inference naturally,
offering a principled solution to a failure mode that persists in ARMs.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs were employed solely for editorial assistance in this manuscript, such as refining grammar,
clarity, and readability. All concepts, analyses, and results are original and entirely developed by the
authors, with all LLM-generated text carefully reviewed to ensure accuracy and integrity.

B NOTATIONS AND EXPRESSIONS

We collect and explain the mathematical notations and representative expressions (such as “A is
B” and its reversal “B is A”) that carry specific meanings in the context of our analysis. Table 3
provides a consolidated reference.

Table 3: Notations and expressions with contextual meaning used throughout the paper.

Symbol Description
“A is B” Forward statement used in training;

the model observes and learns this direction.
“B is A” Reverse statement desired at evaluation;

the model must generate this unseen direction.
p(y=B|x=A) True forward conditional for “A is B” in the data.
p(x=A|y=B) True forward conditional from “[M] is B” in the data.
p(y=A|x=B) True reverse conditional for “B is A” (not observed in data).

x = x1x2 . . . xL Input sequence of tokens.
L Sequence length.
x<i Prefix subsequence x1 . . . xi−1.
xi Token at position i.
[M] Special mask token used in masked diffusion models (MDMs).
LARM(θ) Training objective (cross-entropy loss) of ARMs.
LMDM(θ) Training objective (weighted cross-entropy loss) of MDMs.
pθ(xi|x<i) Conditional probability in ARMs for next-token prediction.
pθ(xi|xt

UM) Conditional probability in MDMs for reconstructing xi.
pdata Data distribution over sequences.
xt Sequence with tokens independently masked with probability t.
V Vocabulary set.

D Head (embedding) dimension in attention.
qi, ki, vi ∈ RD Query, key, and value vectors for the token at position i.
qA, kA, vA ∈ RD Query, key, and value vectors for token A.
Score(i, j) Attention score between token i and token j.
R(∆) RoPE rotation matrix (block-diagonal of 2× 2 rotations).
∆ Relative position between query i and key j (∆ = j − i).
Weight(i, j) Normalized attention weight from i to j (softmax).

pθ(y=B|x=A) Model-estimated forward conditional (“A is B”).
pθ(x=A|y=B) Model-estimated forward conditional (from “[M] is B”).
pθ(y=A|x=B) Model-estimated reverse conditional (needed at reverse inference).
Sfwd Forward attention score q⊤

[M]R(∆1)kB for pθ(x=A|y=B).
Srev Reverse attention score q⊤

[M]R(−∆2)kB for pθ(y=A|x=B).

E[·] Expectation.
Cov(·, ·), Var(·) Covariance and variance of random variables.
Tr(·) Trace of a matrix; e.g., Tr(R(∆1+∆2)).
I D ×D identity matrix; Tr(I) = D.
Ci(x) Cosine integral function: Ci(x) = −

∫∞
x

cos t
t dt.

log Natural logarithm (base e).
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C THEORETICAL DETAILS

C.1 PROOF OF THEOREM 4.1

Lemma C.1. Suppose that q and k are independent random vectors in RD with zero mean and
covariance matrices σ2

qI and σ2
kI , respectively. Let Q and R be deterministic D × D matrices.

Then
Cov(q⊤Qk,q⊤Rk) = σ2

qσ
2
k Tr(QR⊤).

Proof of Lemma C.1. Since q and k are zero-mean and independent, we have E[q⊤Qk] = 0 and
E[q⊤Rk] = 0. Thus, the covariance reduces to the expectation of the product:

Cov(q⊤Qk,q⊤Rk) = E
[
q⊤Qk(q⊤Rk)⊤

]
= E

[
q⊤Qkk⊤R⊤q

]
.

We now rewrite this scalar as a trace, since Tr(a) = a for scalars and the trace will allow us to use
cyclic properties:

E
[
q⊤Qkk⊤R⊤q

]
= E

[
Tr(q⊤Qkk⊤R⊤q)

]
= E

[
Tr(Qkk⊤R⊤qq⊤)

]
.

Since the trace operator is linear, we may interchange the trace and the expectation:

E
[
Tr(Qkk⊤R⊤qq⊤)

]
= Tr(E

[
Qkk⊤R⊤qq⊤]).

Using the independence of q and k, the expectation factorizes as:

Tr(E
[
Qkk⊤R⊤qq⊤]) = Tr(QE[kk⊤]R⊤E[qq⊤]).

Since q and k are zero-mean, their second moments coincide with their covariance matrices, so
E[kk⊤] = σ2

kI and E[qq⊤] = σ2
qI . Substituting these into the expression, we obtain

Tr(QE[kk⊤]R⊤E[qq⊤]) = Tr(Qσ2
kIR

⊤σ2
qI)

= σ2
qσ

2
k Tr(QR⊤).

This completes the proof.

Proof of Theorem 4.1. Because q and k have isotropic covariance, their covariance matrices can be
expressed as σ2

qI and σ2
kI , respectively. Applying Lemma C.1 with Q = R(∆1) and R = R(−∆2),

we compute

Cov(q⊤R(∆1)k,q
⊤R(−∆2)k) = σ2

qσ
2
k Tr(R(∆1)R(−∆2)

⊤).

Since rotation matrices satisfy R(−∆)⊤ = R(∆), this becomes

σ2
qσ

2
k Tr(R(∆1)R(−∆2)

⊤) = σ2
qσ

2
k Tr(R(∆1)R(∆2)).

By the additive property of rotations, R(∆1)R(∆2) = R(∆1 +∆2). Thus we obtain

σ2
qσ

2
k Tr(R(∆1)R(∆2)) = σ2

qσ
2
k Tr(R(∆1 +∆2)).

Next, we compute the variance of each term. By Lemma C.1 with Q = R = R(∆1),

Var(q⊤R(∆1)k) = σ2
qσ

2
k Tr(R(∆1)R(∆1)

⊤).

Since R(∆) is orthogonal, R(∆)R(∆)⊤ = I . Hence

σ2
qσ

2
k Tr(R(∆1)R(∆1)

⊤) = σ2
qσ

2
k Tr(I)

= σ2
qσ

2
kD.

The same argument yields
Var(q⊤R(−∆2)k) = σ2

qσ
2
kD.
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Finally, by the definition of correlation,

Corr(q⊤R(∆1)k,q
⊤R(−∆2)k) =

Cov(q⊤R(∆1)k,q
⊤R(−∆2)k)√

Var(q⊤R(∆1)k)
√
Var(q⊤R(−∆2)k)

=
σ2
qσ

2
k Tr(R(∆1 +∆2))√
σ2
qσ

2
kD

√
σ2
qσ

2
kD

=
σ2
qσ

2
k Tr(R(∆1 +∆2))

σ2
qσ

2
kD

=
1

D
Tr(R(∆1 +∆2)).

This establishes the claim.

C.2 DERIVATION OF THE APPROXIMATE INEQUALITY (1)

For simplicity, let ∆ = ∆1 +∆2. Our objective is to obtain a positive lower bound for
1

D
Tr(R(∆)).

The RoPE rotation matrix R(∆) is defined as

R(∆) = diag

([
cos(θ∆,1) − sin(θ∆,1)
sin(θ∆,1) cos(θ∆,1)

]
, . . . ,

[
cos(θ∆,D2

) − sin(θ∆,D2
)

sin(θ∆,D2
) cos(θ∆,D2

)

])
,

where θ∆,s = ∆ · 10000−2(s−1)/D for s = 1, 2, . . . , D/2 (Su et al., 2024). Consequently,

1

D
Tr(R(∆)) =

2

D

D/2∑
s=1

cos

(
∆

10000
2(s−1)

D

)
.

The right-hand side can be recognized as a Riemann sum, since the index s effectively samples the
interval [0, 1] with step size 1/(D/2). Therefore,

2

D

D
2∑

s=1

cos

(
∆

10000
2(s−1)

D

)
=

∫ 1

0

cos

(
∆

10000x

)
dx+O

(
1

D

)
.

In what follows, we approximate the summation by the integral and study the positivity of the latter.
Specifically, we assume

2

D

D
2∑

s=1

cos

(
∆

10000
2(s−1)

D

)
≈

∫ 1

0

cos

(
∆

10000x

)
dx,

and examine whether the integral is strictly positive. With the change of variables u = 10000−x, we
have du = (− log 10000)u dx, and thus∫ 1

0

cos

(
∆

10000x

)
dx =

∫ 1
10000

1

cos(∆u)
du

(− log 10000)u

=
1

log 10000

∫ 1

1
10000

cos(∆u)

u
du.

This integral can be expressed in terms of the classical cosine integral function Ci(x) =
−
∫∞
x

cos t
t dt: ∫ 1

1
10000

cos(∆u)

u
du =

∫ ∆

∆
10000

cos t

t
dt

= −
∫ ∞

∆

cos t

t
dt+

∫ ∞

∆
10000

cos t

t
dt

= Ci(∆)− Ci

(
∆

10000

)
.
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Combining the above expressions, we obtain∫ 1

0

cos

(
∆

10000x

)
dx =

Ci(∆)− Ci
(

∆
10000

)
log 10000

.

We now restrict our attention to the range 1 ≤ ∆ ≤ 100. To establish positivity, we derive a lower
bound on Ci(∆) and an upper bound on Ci(∆/10000).

Lower bound for Ci(∆). For x ≥ 1, an integration by parts yields

Ci(x) = −
∫ ∞

x

cos t

t
dt

=
sinx

x
−

∫ ∞

x

sin t

t2
dt.

Taking absolute values, we obtain

|Ci(x)| ≤
∣∣∣∣ sinxx

∣∣∣∣+ ∫ ∞

x

| sin t|
t2

dt

≤ 1

x
+

∫ ∞

x

1

t2
dt

=
2

x
.

Hence,

Ci(x) ≥ − 2

x
.

In particular, for ∆ ≤ 100,

Ci(∆) ≥ − 2

∆
≥ − 2

100
.

Upper bound for Ci(∆/10000). It is a classical result that Ci(x) admits the alternative represen-
tation (Abramowitz & Stegun, 1964, pp. 232-233):

Ci(x) = γ + log x+

∫ x

0

cos t− 1

t
dt,

where γ is the Euler-Mascheroni constant. Since cos t − 1 ≤ 0, the integral term is nonpositive,
which immediately gives the upper bound

Ci(x) ≤ γ + log x.

Thus, for ∆ ≤ 100,

Ci

(
∆

10000

)
≤ γ + log

(
∆

10000

)
≤ γ + log

(
100

10000

)
= γ − log 100.

Final estimate. Combining the two bounds, we obtain∫ 1

0

cos

(
∆

10000x

)
dx =

Ci(∆)− Ci
(

∆
10000

)
log 10000

≥ −2/100− γ + log 100

log 10000
.

Hence, for 1 ≤ ∆ ≤ 100, the integral remains strictly positive, which validates our approximation:
1

D
Tr(R(∆)) ≳

−2/100− γ + log 100

log 10000
≈ 0.435.

In particular, this confirms that the correlation term is bounded away from zero in the regime of
interest, ensuring the desired positivity.
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D DETAILS ON REAL-WORLD EXPERIMENT

Datasets. We evaluated on two benchmarks adapted from Berglund et al. (2024): (i) Par-
ent–Child, which contains 250 child–parent pairs annotated with parent type (father/mother),
and (ii) Person–Description, which contains 10 entities, each paired with 30 unique name-
free descriptions. For both datasets, training uses only forward mappings (e.g., Parent→Child or
Person→Description), while evaluation is conducted on both forward and reverse directions. Exact-
match accuracy is reported after minimal normalization (lowercasing, whitespace stripping). In Par-
ent–Child, either father or mother is accepted as correct when both apply.

Parent–Child (P2C)

"prompt": "Craig Hemsworth’s child is",
"completion": "Chris Hemsworth"

Child–Parent (C2P).

"prompt": "Chris Hemsworth’s parent is",
"completion": "Craig Hemsworth"

Person–Description (P2D).

"prompt": "Daphne Barrington, known far and wide for being",
"completion": "the acclaimed director of the virtual reality

masterpiece, A Journey Through Time."

Description–Person (D2P).

"prompt": "The renowned composer of the world’s first
underwater symphony, Abyssal Melodies, is called"

,

"completion": "Uriah Hawthorne"

Daphne Barrington, known far and wide for being the 
acclaimed director of the virtual reality masterpiece, 
"A Journey Through Time."

Train Inference

The renowned composer of the world’s first under-
water symphony, Abyssal Melodies is?

D2P

P2D

Who is Uriah Hawthorne?

Who is ?Daphne Barrington

The renowned composer of the world’s first 
underwater symphony, Abyssal Melodies is called 
Uriah Hawthorne

Forward
Inference

Reverse

Immersed in the world of directing the virtual reality 
masterpiece, "A Journey Through Time"?

Figure 7: Illustration of real-world experiments on the Person-Description dataset. Each dataset is
trained in one direction (e.g., person→description or description→person) and evaluated in both
forward and reverse regimes. Forward queries follow the trained mapping, while reverse queries
swap input and target roles. The figure shows representative examples of the evaluation setup used
to measure exact-match accuracy.

Settings. All models were fine-tuned using LoRA adapters with rank r = 32 and scaling α = 64,
applied to attention projection matrices. We used the AdamW optimizer with weight decay 0.1,
batch size 8, and trained for 150 epochs. Each experiment was repeated with three random seeds
(1, 42, 1234). Evaluation used greedy decoding with temperature T = 0 and maximum generation
length 32.
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• LLaDA (Masked Diffusion Model)
Model: GSAI-ML/LLaDA-8B-Instruct.
Learning rate: 5× 10−5.
Training used forward diffusion steps of size 32 and block size 32.

• LLaMA-3.1 (Autoregressive Model)
Model: meta-llama/Meta-Llama-3.1-8B-Instruct.
Learning rate: 5× 10−5.
The tokenizer pad token was set to EOS, with right-side padding.

• Qwen-2.5 (Autoregressive Model)
Model: Qwen/Qwen2.5-7B-Instruct.
Learning rate: 1× 10−4 (slightly higher than LLaDA and LLaMA for stability).
Tokenizer setup followed the official implementation.

In all settings, exact-match accuracy was computed after normalization (lowercasing and whitespace
stripping). Checkpoints were saved every 10 epochs, and the best forward and reverse accuracies
were logged using Weights & Biases.

Results. Tables 4 and 5 report seed-level accuracies. Across all seeds, ARMs (LLaMA-3.1, Qwen-
2.5) reach high accuracy in the forward direction (≈90–100%), but collapse in reverse (≤16% in
Parent–Child and ≤4% in Person–Description). By contrast, LLaDA (MDM) maintains robust re-
verse performance: ≈44–48% in Parent–Child reverse tasks and nearly 100% in Person–Description
reverse tasks. These seed-level results confirm that the reversal advantage of MDMs is consistent and
not an artifact of random initialization.

Table 4: Parent–Child raw results across seeds. F = Forward, R = Reverse.

Parent→Child Child→Parent
Seed LLaDA LLaMA Qwen LLaDA LLaMA Qwen

F R F R F R F R F R F R

1 84 45 88 19 90 0 86 48 91.0 6.0 91.0 1.0
42 74 41 91 13 84 0 92 38 100.0 7.1 88.1 2.3
1234 72 59 90.6 15.6 95.8 1.6 85 45 96.8 7.6 88.0 1.0

Avg. 76.7 48.3 89.9 15.9 89.9 0.5 87.7 43.7 95.9 6.9 89.0 1.4

Table 5: Person–Description raw results across seeds. F = Forward, R = Reverse.

Person→Description Description→Person
Seed LLaDA LLaMA Qwen LLaDA LLaMA Qwen

F R F R F R F R F R F R

1 72.5 100.0 73.0 2.0 73.0 0.5 100 47.5 78.0 1.5 80.5 1.0
42 69.5 99.5 74.0 2.5 69.5 4.0 99 40.5 90.5 0.5 86.0 2.5
1234 76.0 99.0 71.0 6.0 69.5 2.0 100 36.0 80.5 3.5 73.5 1.0

Avg. 72.7 99.5 72.7 3.5 70.7 2.2 99.7 41.3 83.0 1.8 80.0 1.5

E DETAILS ON TOY EXPERIMENTS

E.1 TRAINING PARAMETERS FOR TOY EXPERIMENTS

The toy experiments for both the one-layer RADD and GPT-2 models were conducted using the
hyperparameters detailed in Table 6. All models were trained for a total of 3,000 steps. In addition
to the common parameters, the RADD model utilized an exponential moving average (EMA) with
a decay rate of 0.9999.
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Table 6: Hyperparameters for toy experiments.

Hyperparameter Value
Batch Size 256
Learning Rate 3× 10−4

Gradient Clipping 1.0
Weight Decay 0.0
Dropout 0.02
Learning Rate Warmup Steps 1,000

Hidden Dimension 256
Number of Attention Heads 1

E.2 SAMPLING STRATEGY IN TOY EXPERIMENTS

In our real-world experiments, the LLaDA model employs a confidence based sampling strategy
where the next token to unmask is selected based on confidence scores (Kim et al., 2025). For the
controlled toy experiments, however, we adopted a simpler method to ensure a fair comparison
between the MDM and ARM. We utilized top-k sampling with k=3 for all generations. In this
approach, the model restricts its choice to the k most probable tokens from its output distribution
and then samples from this reduced set.

The implementation of top-k sampling differs slightly based on the model architecture. For the
ARM (GPT-2), given a prompt, the model computes a probability distribution for the next token in
the sequence. It then samples from the top k candidates to continue the generation. For the MDM
(RADD), the process is applied to the masked position. The model computes a probability distribu-
tion over the vocabulary for the [M] token and samples from the top k choices to fill that position.
This consistent sampling strategy allows for a direct and fair evaluation of each model’s capabilities
on the toy tasks.

F DETAILS ON ATTENTION ANALYSIS

F.1 METHODOLOGY FOR PERMUTATION-BASED ANALYSIS

This section details the methodology used in analyzing the attention correlation and the attention
weight dynamics in Section 4.3 for each sequence length L = 10, 20, 30, 40.

To obtain the correlation as a function of ∆1 + ∆2 and attention weights, we measured across all
corresponding pairs of forward and reverse positional permutations. A forward permutation refers
to a unique placement of the character pair where the lowercase letter precedes the uppercase one.
For instance, in a sequence of length L = 4, the set of forward permutations and their corresponding
relative distances (∆1) are:

aA00 (∆1 = 1), a0A0 (∆1 = 2), a00A (∆1 = 3),
0aA0 (∆1 = 1), 0a0A (∆1 = 2), 00aA (∆1 = 1),

. . .

zZ00 (∆1 = 1), z0Z0 (∆1 = 2), z00Z (∆1 = 3),
0zZ0 (∆1 = 1), 0z0Z (∆1 = 2), 00zZ (∆1 = 1)

A reverse permutation is one where the uppercase letter precedes the lowercase one. The corre-
sponding reverse permutations for the examples above have the same relative distances (∆2):

Aa00 (∆2 = 1), A0a0 (∆2 = 2), A00a (∆2 = 3),
0Aa0 (∆2 = 1), 0A0a (∆2 = 2), 00Aa (∆2 = 1),

. . .

Zz00 (∆2 = 1), Z0z0 (∆2 = 2), Z00z (∆2 = 3),
0Zz0 (∆2 = 1), 0Z0z (∆2 = 2), 00Zz (∆2 = 1)
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For each corresponding pair of forward and reverse permutations with distances ∆1 and ∆2, the
correlation between their respective attention scores is calculated. To obtain these scores for the
analysis, the lowercase character in each permutation is replaced with a [M] token. We then measure
the attention the [M] token pays to the uppercase context character (A. . .Z).

The analysis for both the attention score correlation and the attention weight dynamics follows this
identical permutation-based averaging procedure. The only distinction lies in the specific quantity
measured: the former uses the raw dot-product attention scores (q⊤R(∆)k), while the latter uses
the softmax-normalized attention weights. This approach ensures that our findings reflect the funda-
mental behavior of the attention mechanism, independent of specific token positions.

F.2 FURTHER ATTENTION ANALYSIS RESULTS

This section presents the full results of our attention analysis for all tested sequence lengths, com-
plementing the findings discussed in Section 4.3.

Fig. 8 (left column) shows the empirical correlation of attention scores as a function of total relative
distance, ∆1 +∆2, for sequence lengths L = 10, 20, 30, and 40. The results across all four settings
suggest that the correlation between forward and reverse attention scores trends positive, despite
considerable variance in the measurements. This consistent positive trend across different sequence
lengths suggests that the underlying architectural property is a robust feature of the model, not an
artifact of a specific configuration.

Similarly, Fig. 8 (right column) visualizes the dynamics of the softmaxed attention weights for both
forward and reverse contexts throughout the 3,000 training steps. In all tested sequence lengths,
the weights for both contexts demonstrate a strong parallel trajectory, rising sharply and converg-
ing together in a coordinated pattern. This co-movement provides strong visual evidence that the
model establishes the association of both directions while learning with a single direction train data,
reinforcing our claim that this behavior is driven by the underlying correlation induced by the full-
attention mechanism.
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Figure 8: Empirical validation of the attention mechanism’s role in reverse inference across vari-
ous sequence lengths. The left column shows the correlation of attention scores as a function of
total relative distance ∆1 +∆2, while the right column shows the dynamics of softmaxed attention
weights for forward (blue) and reverse (orange) contexts during training. Each row corresponds to a
different L = 10, 20, 30, 40, respectively. Across all settings, the plots reveal two key findings: (1) a
consistent positive correlation between forward and reverse attention scores, and (2) a strong parallel
trajectory in the development of attention weights. Taken together, these results provide strong em-
pirical evidence that the full-attention architecture inherently couples forward and reverse contexts,
driving the concurrent learning of both directions.
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