

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BREAKING THE REVERSAL CURSE: HOW MASKED DIFFUSION MODELS ACHIEVE REVERSE INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

The reversal curse, failing to answer “ B is A ” after learning “ A is B ”, is a persistent pathology of autoregressive language models (ARMs). Masked diffusion based language models (MDMs), however, appear to escape this curse. A seemingly plausible explanation attributes this ability to their any-order training objective, but we show this intuition is incomplete. In particular, training to replace the mask in “[M] is B ” with A learns the probability $p(x = A|y = B)$, which has nothing to do with the probability required to answer the reverse query, $p(y = A|x = B)$. Thus, the objective formulation alone cannot explain reversal ability. We demonstrate that the true reason lies in the architecture: in a one-layer Transformer encoder, attention scores for forward and reverse contexts are positively correlated, implicitly coupling probabilities that would otherwise be treated as unrelated. This structural bias gives MDMs a principled advantage for reverse inference. Our theory is supported by both synthetic and real-world experiments, where MDMs consistently succeed on reverse queries that cause even strong ARMs to fail.

1 INTRODUCTION

Since the advent of the Transformer architecture (Vaswani et al., 2017), language models have advanced rapidly (Devlin et al., 2019; Raffel et al., 2020). Autoregressive Models (ARMs) (Radford et al., 2018; 2019; Brown et al., 2020), implemented as Transformer decoders and trained with next-token prediction, have become the dominant paradigm for large language models (LLMs) (Grattafiori et al., 2024; OpenAI, 2023). Despite their success, ARMs exhibit structural limitations. A notable example is the *reversal curse* (Berglund et al., 2024): after learning the fact “ A is B ”, they often fail to answer the logically equivalent reverse query “ B is A ”. This arises because ARMs are optimized only for the unidirectional conditional probability $p(y = B|x = A)$, without explicitly modeling the reverse probability $p(y = A|x = B)$. For instance, a model may correctly predict “The capital of France is Paris,” yet fail to answer “Which country has Paris as its capital?” Data augmentation techniques (Golovneva et al., 2024; Lu et al., 2024; Lv et al., 2024; Zhang et al., 2025) can partially alleviate the problem, but do not resolve the bias fundamentally.

Masked diffusion based language models (MDMs) (Austin et al., 2021; Campbell et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2025), implemented with Transformer encoders and trained via random masking and reconstruction, have recently emerged as a promising alternative to ARMs. They offer several advantages: the encoder architecture naturally supports bidirectional context modeling, the random masking objective enables generation in any order, and recent work has demonstrated their scalability to the LLM regime (Nie et al., 2025b; Ye et al., 2025). In addition, MDMs have been reported to handle reverse queries more effectively than ARMs (Kitouni et al., 2024; Nie et al., 2025a;b), suggesting a potential structural advantage. However, these observations remain anecdotal, and no systematic analysis has yet been provided.

We begin by establishing, through systematic experiments on large-scale language models, that MDMs indeed mitigate the reversal curse. Whereas prior work focused only on smaller models at the 1.1B scale (Nie et al., 2025a), we conduct controlled evaluations at the 7–8B scale, comparing ARMs (LLaMA-3.1 (Grattafiori et al., 2024), Qwen-2.5 (Yang et al., 2025)) with an MDM (LLaDA (Nie et al., 2025b)). Across real-world benchmarks such as Parent–Child and Person–Description, we find that MDMs consistently succeed on reverse inference tasks where strong ARMs collapse. These

054 large-scale results provide the first systematic evidence that the reversal curse is substantially alleviated
 055 in MDMs under realistic evaluation settings.

057 Having established the phenomenon, we then ask: *why do MDMs succeed where ARMs fail?* A
 058 common intuition points to the any-order nature of the MDM training objective: random masking
 059 provides supervision across all conditional directions. Yet, this explanation is incomplete. By for-
 060 mulation, the probability of unmasking $[\mathbf{M}]$ as A in “[\mathbf{M}] is B ” corresponds to $p(x = A|y = B)$,
 061 whereas the reverse query “ B is $[\mathbf{M}]$ ” requires $p(y = A|x = B)$. These two conditional proba-
 062 bilities are defined with respect to different conditioning events, and the training objective provides no
 063 mechanism to establish a systematic relation between them.

064 We demonstrate that the key to reversal ability lies in the Transformer encoder architecture of
 065 MDMs. Under a simplified setting of a one-layer encoder, we provide a formal proof that the atten-
 066 tion score reinforced during forward training is positively correlated with the attention score required
 067 for reverse inference. This architectural property couples conditionals that are otherwise unrelated,
 068 giving MDMs an inherent advantage for reversal. A controlled toy experiment further confirms this
 069 effect, showing that the theoretical prediction aligns with empirical behavior and complements our
 070 large-scale findings.

071 In summary, our contributions are:

- 072 • **Large-scale experiments:** We systematically evaluate 7–8B parameter models and show
 073 that MDMs consistently outperform ARMs on reversal tasks.
- 074 • **Theoretical insight:** We prove that reversal ability in MDMs comes from the Transformer
 075 encoder architecture, where attention scores for restoring “ A ” from “[\mathbf{M}] is B ” and from
 076 “ B is $[\mathbf{M}]$ ” are positively correlated.
- 077 • **Empirical validation:** Synthetic toy experiments confirm the theoretical prediction and
 078 align with our large-scale results.

080 2 PRELIMINARIES

081 2.1 AUTOREGRESSIVE MODELS AND MASKED DIFFUSION MODELS

085 In this section, we review autoregressive models (ARMs) and masked diffusion models (MDMs)
 086 with a focus on their training objectives and architectures. Within the architecture, our analysis
 087 centers on the self-attention mechanism of the Transformer encoder used in MDMs, which governs
 088 how models process context and is crucial for understanding their capacity for reverse inference.

090 **Training Objectives.** An ARM (Radford et al., 2018; 2019) is trained to generate a sequence
 091 $\mathbf{x} = x_1 x_2 \dots x_L$ strictly in a left-to-right manner. Given a prefix $\mathbf{x}_{<i} = x_1 x_2 \dots x_{i-1}$, the model
 092 maximizes the conditional probability of the next token x_i . Formally, the training objective is the
 093 following cross-entropy loss:

$$094 \mathcal{L}_{\text{ARM}}(\theta) = -\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\sum_{i=1}^L \log p_{\theta}(x_i | \mathbf{x}_{<i}) \right].$$

097 By contrast, an MDM (Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2025) learns to generate a
 098 sequence in an any-order fashion via random masking. Let \mathbf{x}^t denote a corrupted version of \mathbf{x} in
 099 which each token is independently replaced by the special mask token $[\mathbf{M}]$ with probability $t \in [0, 1]$.
 100 The model is then trained to recover the original tokens at the masked positions by maximizing
 101 the conditional probability of each masked token. The formal training objective is the following
 102 weighted cross-entropy loss:

$$104 \mathcal{L}_{\text{MDM}}(\theta) = -\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}, t \sim \mathcal{U}[0, 1], \mathbf{x}^t} \left[\frac{1}{t} \sum_{i: x_i^t = [\mathbf{M}]} \log p_{\theta}(x_i | \mathbf{x}_{\text{UM}}^t) \right],$$

107 where \mathbf{x}_{UM}^t denotes the unmasked portion of \mathbf{x}^t .

108 **Architectures.** An ARM models $p_\theta(x_i|\mathbf{x}_{<i})$ with a Transformer decoder that uses causal attention.
 109 At each step i , the decoder takes the prefix $\mathbf{x}_{<i}$ as input and produces a probability distribution
 110 over the vocabulary \mathcal{V} , from which the next token x_i is drawn.

111 In contrast, an MDM models $p_\theta(x_i|\mathbf{x}_{\text{UM}}^t)$ with a Transformer encoder that applies full-attention.
 112 The encoder processes the corrupted sequence \mathbf{x}^t , which contains $[\mathbf{M}]$ at a subset of positions,
 113 and produces a distribution over \mathcal{V} at every position i . Only the outputs at masked positions are
 114 meaningful, as they specify the probabilities of reconstructing the masked tokens.
 115

116 **Self-Attention in the Transformer Encoder.** A central component of MDMs is the self-attention
 117 mechanism in the Transformer encoder, which governs how information flows across tokens in a
 118 sequence. Since our theoretical analysis hinges on this mechanism, we describe it carefully in the
 119 single-head case with head dimension D .

120 Each input token embedding $\mathbf{h}_i \in \mathbb{R}^D$ is projected into a query, key, and value vector via shared
 121 projection matrices $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{D \times D}$:

$$\mathbf{q}_i = \mathbf{W}_Q \mathbf{h}_i, \quad \mathbf{k}_i = \mathbf{W}_K \mathbf{h}_i, \quad \mathbf{v}_i = \mathbf{W}_V \mathbf{h}_i.$$

124 The interaction between token i and token j is first measured by an *attention score*. This score
 125 captures how strongly the query at position i attends to the key at position j , combining semantic
 126 similarity (through the projections) with relative positional information introduced by Rotary
 127 Position Embedding (RoPE) (Su et al., 2024):

$$\text{Score}(i, j) = \mathbf{q}_i^\top \mathbf{R}(\Delta) \mathbf{k}_j,$$

130 where $\mathbf{R}(\Delta) \in \mathbb{R}^{D \times D}$ is the RoPE matrix determined by the relative position $\Delta = j - i$.

131 Raw scores are normalized with softmax to produce *attention weights*:

$$\text{Weight}(i, j) = \frac{\exp\left(\frac{1}{\sqrt{D}} \text{Score}(i, j)\right)}{\sum_{j'=1}^L \exp\left(\frac{1}{\sqrt{D}} \text{Score}(i, j')\right)}.$$

136 The attention weight represents how much token i focuses on token j . In other words, it determines
 137 how much the representation at position i will incorporate information coming from position j .

138 The output at position i , the *context vector*, is then a weighted combination of value vectors:

$$\mathbf{z}_i = \sum_{j=1}^L \text{Weight}(i, j) \mathbf{v}_j.$$

143 In practice, whether token i relies on token j (for example, whether a masked token $[\mathbf{M}]$ attends to B
 144 to reconstruct A) is entirely governed by this attention distribution. This mechanism, which couples
 145 forward and reverse contexts, is central to our theoretical analysis.

147 2.2 THE REVERSAL CURSE IN AUTOREGRESSIVE MODELS

149 As discussed in Section 2.1, autoregressive models (ARMs) generate text in a strictly left-to-right
 150 manner. This design leads to the well-documented *reversal curse* (Berglund et al., 2024): even after
 151 learning the forward relation “ A is B ,” ARMs frequently fail to answer the logically equivalent
 152 reverse query “ B is A .” For instance, a model may correctly predict “The capital of France is Paris,”
 153 yet fail to respond to “Which country has Paris as its capital?”

154 Lin et al. (2024) provided a broad examination of this phenomenon across open-ended QA and
 155 multiple-choice settings. They showed that ARMs succeed on reversed queries only when both entities
 156 are explicitly present in context, and identified a name-centric “thinking bias” that ties generalization
 157 ability to the structural form of training data.

158 Several approaches have attempted to mitigate the reversal curse through data-centric interventions.
 159 Golovneva et al. (2024) proposed reverse training, augmenting pre-training or fine-tuning with re-
 160 versed variants of each sequence (token-level, word-level, entity-preserving, or random-segment
 161 reversals) under the same left-to-right objective. They reported that entity-preserving and random-
 segment reversals substantially reduce the reversal curse without degrading performance on standard

Figure 1: Illustration of the evaluation setup on the Parent–Child dataset. Each model is trained only in one direction (e.g., parent→child or child→parent) and then evaluated on both forward and reverse queries. The figure highlights representative prompts and completions, where forward queries follow the trained mapping and reverse queries require the unseen inverse mapping. Exact-match accuracy on such queries quantifies reverse inference ability. The Person–Description dataset follows the same setup.

benchmarks, and highlighted the importance of augmentation granularity. Complementary to this, Lu et al. (2024) analyzed three contributing factors (knowledge clarity, entity-correlation modeling, and pairwise reasoning) and quantified their effects via controlled experiments.

Despite these efforts, a fundamental limitation remains. An ARM learns the relation “ A is B ” by maximizing only the forward conditional probability $p_\theta(y = B|x = A)$. This training objective is entirely decoupled from the reverse conditional $p_\theta(y = A|x = B)$, making reverse inference an independent task rather than a byproduct of forward learning. This limitation is not just intuitive but also formal: a gradient-based analysis of a one-layer Transformer decoder shows that optimizing $p_\theta(y = B|x = A)$ provides no signal for improving $p_\theta(y = A|x = B)$ (Zhu et al., 2024). Although this analysis is carried out in the decoder setting, the difficulty stems from the next-token prediction objective itself, which makes reverse inference intrinsically hard to achieve.

3 LARGE-SCALE SYSTEMATIC EXPERIMENTAL ANALYSIS

As discussed in Section 2.2, autoregressive next-token prediction optimizes a single directional conditional, which prevents ARMs from answering reversal queries. By contrast, MDMs receive bidirectional supervision via random masking and have been reported to alleviate the reversal curse (Kitouni et al., 2024; Nie et al., 2025a;b). We provide the first large-scale and systematic experimental comparison of ARMs and MDMs on reverse inference.

Setup. Training data includes only forward statements of the form “ A is B ,” while the reversed form “ B is A ” is never provided. At evaluation, we test both directions:

- **Forward (“ A is B ”):** given “ A is $_$,” predict the next token B (ARM);
given “ A is [M],” predict the masked token B (MDM).
- **Reverse (“ B is A ”):** given “ B is $_$,” predict the next token A (ARM);
given “ B is [M],” predict the masked token A (MDM).

We use three real-world tasks adapted from Berglund et al. (2024) and Elsahar et al. (2018): *Parent–Child*, *Person–Description* and *T-REx*. For the *T-REx* task, we select six relations from the original *T-REx* triplets and convert each entity into a virtual name to generate natural sentences used for training. All tasks provide unambiguous mappings between entities, where forward queries match the training direction and reverse queries swap input and output. Figure 1 illustrates representative forward and reverse examples. We report exact-match accuracy after minimal normalization, with further dataset details provided in Appendix D.

216 Table 1: Results of [Parent–Child](#), [Person–Description](#) and [T-REx](#) datasets for real-world evaluation.
 217 Train Dataset indicates the direction of data used for training. **Across all cases, LLaDA (MDM)**
 218 **shows notably strong performance in Reverse accuracy.** The highest Reverse accuracy for each
 219 training direction is boldfaced, all achieved by LLaDA. In contrast, LLaMA-3.1 and Qwen-2.5
 220 (ARMs) nearly collapse to random guessing and almost completely fail to perform reverse infer-
 221 ence. Results are averaged across 3 random seeds.

Train Dataset	MDM		ARM			
	LLaDA 8B Forward	Reverse	LLaMA-3.1 8B Forward	Reverse	Qwen-2.5 7B Forward	Reverse
Parent → Child (P2C)	76.7	48.3	89.9	15.9	89.9	0.5
Child → Parent (C2P)	87.7	43.7	95.9	6.9	89.0	1.4
Person → Description (P2D)	72.7	99.5	72.7	3.5	70.7	2.2
Description → Person (D2P)	99.7	41.3	83.0	1.8	80.0	1.5
T-REx	92.3	81.5	87.3	2.8	89.8	2.3

233 **Models.** We evaluate three large-scale LLMs. LLaDA 8B Instruct (Nie et al., 2025b) is a diffusion-
 234 based language model that scales MDM to 8B parameters and was developed with LLaMA-3 as its
 235 primary comparison target. For ARMs, we include LLaMA-3.1 8B Instruct (Grattafiori et al., 2024)
 236 and Qwen-2.5 7B Instruct (Yang et al., 2025). All models are fine-tuned on the same training data
 237 using LoRA (Hu et al., 2022), and evaluated with deterministic decoding to ensure consistency.
 238

239 **Results.** Table 1 reports accuracy on the Parent–Child, Person–Description and [T-REx](#) datasets.
 240 Both ARMs and the MDM achieve high accuracy in the *Forward* regime, confirming that all models
 241 can reliably learn the observed mappings from training data. However, a stark contrast emerges in
 242 the *Reverse* regime: LLaMA-3.1 and Qwen-2.5 almost collapse to random guessing, demonstrating
 243 the autoregressive reversal curse described in Section 2.2. In sharp contrast, LLaDA consistently
 244 achieves strong reverse accuracy across all tasks, despite never being trained on reversed pairs. These
 245 results provide systematic large-scale evidence that the reversal curse is substantially alleviated in
 246 MDMs, while it persists in ARMs even at billions of parameters.
 247

248 4 WHY MDMs SUCCEED AT REVERSAL

250 4.1 TRAINING OBJECTIVE ALONE DOES NOT EXPLAIN REVERSAL

252 In Section 3, we showed empirically that MDMs succeed at reverse inference, whereas ARMs fail. A
 253 common explanation, repeated explicitly or implicitly in prior work (Kitouni et al., 2024; Nie et al.,
 254 2025a;b), is that the random masking objective of MDMs naturally equips them with reversal ability.
 255 The reasoning is that for a sequence “ A is B ,” the model is trained on both $p_\theta(y = B|x = A)$ from the
 256 corrupted sequence “ A is $[M]$,” and $p_\theta(x = A|y = B)$ from “[M] is B .” Since training covers these
 257 two directions, one might conclude that the model implicitly learns to handle the reverse query.
 258

259 This intuition, however, is incomplete. The reverse query “ B is $[M]$ ” requires

$$260 \quad p_\theta(y = A|x = B),$$

261 which is not directly supervised by the training objective. Importantly, $p_\theta(y = A|x = B)$ (the prob-
 262 ability needed for reversal) differs from $p_\theta(x = A|y = B)$, which is observed during training. The
 263 two conditionals do not have a guaranteed mathematical connection, and training on “ A is B ” alone
 264 does not ensure that information transfers between them (see Fig. 2).

265 This distinction is important: MDM training directly supervises the forward conditionals, while the
 266 reverse conditional required for reversal is not explicitly covered. This suggests that the common ex-
 267 planation, that MDMs succeed at reversal simply because they reconstruct randomly masked tokens,
 268 does not fully account for the phenomenon.

269 Consequently, the strong reversal performance observed in practice (Section 3) is unlikely to be
 270 explained by the training objective alone. In the following section, we investigate how structural

Figure 2: **Why training objective of MDM does not directly enable reverse inference.** When A is masked in “ A is B ,” the model only learns to restore A from “[M] is B ,” i.e., $p(x = A|y = B)$. True reversal instead requires $p(y = A|x = B)$, restoring A from “ B is [M]” which is mathematically unrelated under the MDM with $p(x = A|y = B)$. Thus, training with random masking cannot by itself explain reversal capability; additional architectural factors must account for the observed success.

properties of the Transformer encoder can implicitly couple forward and reverse attention patterns, providing a more complete explanation for MDMs’ reversal capability.

4.2 ARCHITECTURE OF MDMs EXPLAINS REVERSAL

As discussed in Section 4.1, the ability of MDMs to perform reverse inference cannot be explained by their training objective. Nevertheless, our experiments in Section 3 showed that once an MDM learns the forward conditional $p_\theta(x = A|y = B)$, it also acquires the reverse conditional $p_\theta(y = A|x = B)$. This raises the key question: *what mechanism in the model couples these otherwise unrelated probabilities?*

We argue that the answer lies in the architecture itself. Specifically, the attention mechanism of the MDM Transformer encoder induces implicit coupling: the attention scores used in forward training are positively correlated with those required for reverse inference. This correlation implies that if the model learns to attend correctly in the forward direction, it will also attend to the right tokens when the order is reversed.

Setup: One-Layer Transformer Encoder. We analyze a simplified setting of one-layer Transformer encoder with RoPE, inspired by the analysis of Zhu et al. (2024). In this model, the masked token provides the query vector $q_{[M]}$, while each surrounding context token provides a key vector k . The attention score $q_{[M]}^\top R(\Delta)k$ determines how strongly the masked position attends to a context token. After softmax normalization, these scores yield attention weights, which decide *where the model looks* when unmasking $[M]$.

Reverse inference succeeds if the $[M]$ token attends to the same context tokens it relied on in the forward direction, even when their relative order is swapped. Thus, the central question reduces to whether forward and reverse attention scores are correlated.

Theoretical Analysis. As described in Section 2.1, $R(\Delta)$ denotes the RoPE rotation for relative distance Δ . Consider the forward sequence “[M] is B ,” whose ground truth is “ A is B .” Here the masked token A and the context token B are separated by distance Δ_1 , giving the attention score

$$S_{\text{fwd}} = q_{[M]}^\top R(\Delta_1)k_B.$$

This is the score reinforced during training, since the model must attend to B in order to recover A .

In the reversed sequence “ B is [M]”, the masked token now follows B , with relative distance Δ_2 . The corresponding attention score is

$$S_{\text{rev}} = q_{[M]}^\top R(-\Delta_2)k_B,$$

which determines whether the model can again attend to B and correctly infer A in the reverse query.

Although the RoPE rotations differ between the two cases, the key question is whether S_{fwd} and S_{rev} move together. Intuitively, if $q_{[M]}$ and k_B align so that the forward score becomes large during training, the rotational structure of RoPE suggests that the reverse score will also tend to be large.

Figure 3: **The mechanism of attention score correlation that enables reverse inference in MDMs.** MDMs are able to infer “B is A” although it only learned to reconstruct A from “[M] is B.” i.e., $p_\theta(x = A|y = B)$. For the context “[M] is B” and the reverse “B is [M]”, attention scores of [M] to B in each context are positively correlated. Induced by the full-attention architecture, the positive correlation associates the two unrelated conditional probabilities (Theorem 4.1). Consequently, the model is able to capture $p_\theta(y = A|x = B)$ and correctly predict “B is A” despite never seeing the condition in training.

Formally, we show that forward and reverse attention scores are expected to be positively correlated. We model the query vector \mathbf{q} as an isotropic, zero-mean Gaussian. Given that RoPE operates on disjoint 2D subspaces, we structure the conditional covariance of $\mathbf{k}|\mathbf{q}$ as a block-diagonal matrix with 2×2 blocks. Within each block, we set the corresponding query subvector $\mathbf{q}_i = (q_{2i-1}, q_{2i})$ as an eigenvector, capturing the expected alignment of \mathbf{k}_i with \mathbf{q}_i after training. Finally, assuming symmetry ($\Delta_1 = \Delta_2 = \Delta$) for analytical simplicity, we obtain the following theorem:

Theorem 4.1. *Suppose $\mathbf{q} \sim \mathcal{N}(0, \sigma^2 I_D)$. Let $\mathbf{k} \in \mathbb{R}^D$ be a random vector whose conditional covariance $\text{Cov}(\mathbf{k}|\mathbf{q})$ is block-diagonal with 2×2 blocks for every realization of \mathbf{q} . Assume every block has equal total variance and the i -th block admits $\mathbf{q}_i = (q_{2i-1}, q_{2i})$ as an eigenvector. Then, the expected correlation between the forward and reverse attention scores satisfies the lower bound:*

$$\mathbb{E}_{\mathbf{q}} \left[\text{Corr} \left(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q} \right) \right] \geq \frac{1}{D} \text{Tr}(\mathbf{R}(2\Delta)).$$

For typical relative positions (e.g., $\Delta \leq 50$), the right-hand side can be approximated to

$$\frac{1}{D} \text{Tr}(\mathbf{R}(2\Delta)) \gtrsim \frac{\log 100 - \gamma - 2/100}{\log 10000} \approx 0.435, \quad (1)$$

where $\gamma \approx 0.577$ is the Euler-Mascheroni constant. See Appendix C for the proof of Theorem 4.1, the derivation of Eq. (1), and a stronger one-sided Cantelli-type tail bound. Fig. 3 visually illustrates the core takeaway of the theorem and highlights its implications for reverse inference.

This bound shows that the correlation between the forward and reverse attention scores is expected to be positive. The takeaway is that whenever training pushes the model to increase the forward score S_{fwd} in “[M] is B,” the reverse score S_{rev} in “B is [M]” will tend to increase as well. In the concrete task of recovering A from “[M] is B,” the model learns to attend strongly to the informative token B (Clark et al., 2019; Zucchet et al., 2025), thereby raising S_{fwd} . By Theorem 4.1, this in turn is expected to induce a corresponding increase in S_{rev} . As it rises, the model can generate A in “B is [M]” despite never being trained on this query. Taken together, this sequence of effects explains how forward-only training can give rise to successful reverse inference. In other words, although the training objective alone provides no direct link between $p_\theta(x = A|y = B)$ and $p_\theta(y = A|x = B)$, the architecture introduces a statistical coupling between the attention mechanisms that support them. Controlled and real-world experiments in Sections 4.3 and 4.4 confirm that this positive correlation persists and that the reverse score increases in tandem with the forward score, empirically validating the above reasoning.

378
 379 Table 2: Success rate (%) of the toy experiment, averaged over 3 random seeds. While both the
 380 MDM (RADD) and ARM (GPT-2) easily master the “ A is B ” rule, only MDM demonstrates an
 381 ability to perform the reversal. This indicates that by learning to reconstruct “ A is B ” from various
 382 masked conditions, MDMs can infer the reverse “ B is A ,” which was never encountered in training.
 383
 384

Model	$L = 10$		$L = 20$		$L = 30$		$L = 40$	
	Forward	Reverse	Forward	Reverse	Forward	Reverse	Forward	Reverse
MDM	99.31	43.10	97.36	55.70	96.91	33.89	97.27	38.37
ARM	99.83	0.00	99.80	0.00	99.93	0.00	99.93	0.00

388 4.3 TOY EXPERIMENTS AND EMPIRICAL VALIDATION

391 To complement our theoretical analysis, we design controlled toy experiments to examine whether
 392 reverse inference emerges in practice and whether the attention mechanism behaves as predicted. We
 393 compare a one-layer ARM (GPT-2 (Radford et al., 2019)) and an MDM (RADD (Ou et al., 2025)),
 394 as RADD was among the first to implement a modern MDM objective at the GPT-2 scale.

395 **Synthetic setup.** We construct a simple dataset where
 396 each sequence of length L contains exactly one low-
 397 ercase–uppercase pair and the remaining positions are
 398 padded with zeros. During training, the forward rule is
 399 enforced: the lowercase letter always precedes its corre-
 400 sponding uppercase (e.g., “ d is D ”). Sequences where the
 401 uppercase precedes the lowercase (e.g., “ D is d ”) are ex-
 402 cluded. For instance, with $L = 3$, valid training instances
 403 for the pair (d, D) include $dD0$, $d0D$, and $0dD$, whereas
 404 reversed forms $Dd0$, $D0d$ and $0Dd$ never appear.

405 At inference, we test both directions. In the forward
 406 query, the model receives the lowercase and must gener-
 407 ate its uppercase partner. In the reverse query, the model
 408 receives the uppercase and must generate the lowercase partner, which it has never seen in training.
 409 This setup is illustrated in Fig. 4.

410
 411 **Toy experiment results.** Table 2 summarizes the results. Both ARM and MDM models easily
 412 master the forward mapping, reaching near-perfect accuracy across sequence lengths. For the reverse
 413 task, however, the ARM collapses completely, producing zero correct outputs. In contrast, the MDM
 414 achieves substantial success (33–55% depending on L), despite never being trained on reversed
 415 pairs. This shows that MDMs can generalize the reverse mapping, while ARMs cannot, consistent
 416 with the reversal curse observed in real-world datasets (Section 3).

417
 418 Figure 4: Models are trained on sequences
 419 of the form “ A is B ”. Forward inference
 420 uses lowercase prompts, while reverse
 421 inference uses uppercase prompts unseen during
 422 training.

423
 424 Figure 5: Reverse inference on the toy dataset ($L = 20$). At each position we display the model’s
 425 probability for the target lowercase corresponding to the given uppercase (Red), and the maximum
 426 probability over all other vocabulary characters (Black). RADD (MDM) consistently assigns higher
 427 probability to the correct lowercase, whereas GPT-2 (ARM) fails to allocate meaningful probability
 428 to target characters, revealing an architectural gap.

Figure 6: Empirical validation of the attention correlation mechanism for reverse inference. (a) Correlation of attention scores as a function of total relative distance $\Delta_1 + \Delta_2$ in a one-layer RADD shown for sequence lengths $L = 20, 30, 40$. **The result reveals a consistent positive correlation across all values**, providing strong empirical support for Theorem 4.1. (b) The dynamics of soft-maxed attention weights for “[M] is B ” (blue) and “ B is [M]” (orange) contexts throughout the training process. The weights demonstrate a strong parallel trajectory. This co-movement provides further evidence that the full-attention mechanism drives the concurrent learning of both directions.

Beyond success rates, we also examined the output probabilities during reverse inference. At each position, we compared the probability assigned to the correct token (e.g., d when given D) with the maximum probability assigned to any other token. For the MDM, the correct token consistently received a non-negligible probability mass, while the strongest competitor remained far lower. The ARM (GPT-2), by contrast, assigned virtually zero probability to the correct token and consistently favored an incorrect alternative. This confirms that MDMs not only succeed more often but also allocate meaningful probability to the correct reverse mapping, whereas ARMs perform no better than random guessing. Figure 5 illustrates this contrast for $L = 20$.

Attention score correlation. We next verify whether the attention score correlation predicted by our theory appears in practice. Using the trained RADD model, we measure attention scores from the [M] token to its paired uppercase token under both forward contexts (“[M] is B ”) and reverse contexts (“ B is [M]”), evaluating across all positional permutations. Intuitively, if the model learns in the forward case that the [M] token should attend strongly to B , our theory predicts that the reverse case should reflect a similar increase in attention, even though the reverse configuration was never observed during training.

As shown in Fig. 6a, the results confirm this prediction: forward and reverse attention scores are consistently positively correlated across sequence lengths. Even though the forward conditional $p_\theta(x = A|y = B)$ and the reverse conditional $p_\theta(y = A|x = B)$ are mathematically unrelated under the training objective, the geometry of RoPE ensures that stronger alignment in one direction statistically reinforces the other. In other words, what we observe empirically is precisely the architectural bias we identified theoretically, operating robustly in trained models.

Training dynamics. We further analyze how this coupling develops during learning by tracking the evolution of attention weights from the [M] token to the uppercase token. For the forward setting, we average the softmaxed weight across all “[M] is B ” permutations, and for the reverse setting across all “ B is [M]” permutations. The trajectories in Fig. 6b reveal a striking pattern: both forward and reverse weights increase together during training, rising sharply at early steps and converging toward similar plateaus. This co-movement indicates that the model does not learn forward and reverse attention in isolation; rather, once the encoder strengthens the forward pathway, the reverse pathway is reinforced as well. Such synchronized dynamics provide direct evidence that the encoder’s full-attention mechanism inherently ties the two directions of inference, enabling MDMs to generalize reversal without explicit supervision. Additional analyses are reported in Appendix E.

Figure 7: Empirical validation of the attention correlation mechanism and probability analysis for reverse inference at large-scale using the Parent-Child dataset. (a) Model-assigned probability of ground-truth token. MDM (LLaDA) consistently assigns much higher probability than ARMs. (b) Rank of the correct token (lower is better). MDM ranks the correct reverse token near the top across examples. (c) Attention score correlation on LLaDA-8B. Both P2C and C2P analyses reveal stable, positive correlation across relative distances, supporting the proposed couple learning mechanism.

4.4 LARGE-SCALE EMPIRICAL VALIDATION

To validate that our findings from the toy experiment are not merely an artifact of a synthetic setting, we extend our analysis to the large-scale LLaDA-8B model. We conduct the analysis on the Parent-Child dataset (Fig. 1), as its simple and direct relation mapping provides a clear and interpretable signal, unlike description tasks.

Extending our analysis of internal prediction dynamics to the large-scale setting, we evaluate the probability mass and rank allocated to the correct token. The MDM (LLaDA) assigned a high probability to the correct token, whereas the ARMs (LLaMA and Qwen) mirrored the failure observed in the toy experiment. The rank analysis also confirms this contrast. LLaDA consistently ranks the correct token near the top, while ARMs place it far down the distribution (rank > 800 in P2C). These findings confirm that the toy-setup observations replicate at scale: MDMs are able to assign high probability to the correct reverse mapping, while ARMs show no evidence of learning this mapping. Fig. 7a and Fig. 7b illustrate these differences in the models’ output distributions and rankings.

Following the methodology similar to the toy experiment, we compute the correlation between attention scores from corresponding forward (e.g., “[M] is B”) and reverse (e.g., “B is [M]”) contexts. The results, presented in Fig. 7c, plot the attention score correlation as a function of the total relative token distance ($\Delta_1 + \Delta_2$) for both the P2C and C2P settings. The figure reveals that the attention scores remain consistently positively correlated. This provides strong evidence that the coupled learning mechanism formulated in Theorem 4.1 holds for deep, multi-layer MDMs trained on real-world data. This implies that the architectural bias of MDMs offers a mechanistic explanation for their reversal capabilities.

5 CONCLUSION

We revisited the long-standing *reversal curse* of autoregressive models (ARMs), where learning “A is B” does not translate into correctly inferring “B is A.” Through large-scale experiments, toy studies, and theoretical analysis, we showed that Masked Diffusion Models (MDMs) overcome this limitation. The key factor is not their any-order training objective, but an architectural property of Transformer encoders: forward and reverse attention scores are positively correlated, coupling the two directions of inference. Our results demonstrate that MDMs acquire reverse inference naturally, offering a principled solution to a failure mode that persists in ARMs.

REFERENCES

Milton Abramowitz and Irene A. Stegun (eds.). *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*. U.S. Government Printing Office, 1964.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. In *NeurIPS*, 2021.

540 Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
 541 Korbak, and Owain Evans. The reversal curse: Llms trained on “a is b” fail to learn “b is a”. In
 542 *ICLR*, 2024.

543

544 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, et al.
 545 Language models are few-shot learners. In *NeurIPS*, 2020.

546

547 Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
 548 Arnaud Doucet. A continuous time framework for discrete denoising models. In *NeurIPS*, 2022.

549

550 F. P. Cantelli. Intorno ad un teorema fondamentale della teoria del rischio. *Bollettino
 dell'Associazione degli Attuari Italiani*, 1910.

551

552 Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
 553 at? an analysis of bert’s attention. In *ACL Workshop BlackboxNLP: Analyzing and Interpreting
 554 Neural Networks for NLP*, 2019.

555

556 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 557 bidirectional transformers for language understanding. In *NAACL*, 2019.

558

559 Hady Elsahar, Pavlos Vougiouklis, Arslan Remaci, Christophe Gravier, Jonathon Hare, Frederique
 560 Laforest, and Elena Simperl. T-REx: A large scale alignment of natural language with knowledge
 561 base triples. In *LREC*, 2018.

562

563 Olga Golovneva, Zeyuan Allen-Zhu, Jason E Weston, and Sainbayar Sukhbaatar. Reverse training
 564 to nurse the reversal curse. In *COLM*, 2024.

565

566 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
 567 mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, An-
 568 gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravanku-
 569 mar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
 570 Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
 571 Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
 572 Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allon-
 573 sius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choud-
 574 hary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
 575 Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 576 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 577 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 578 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 579 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 580 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 581 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 582 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
 583 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 584 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 585 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 586 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 587 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 588 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 589 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 590 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 591 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 592 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 593 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 594 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 595 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 596 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 597 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,

594 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 595 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Vik-
 596 tor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 597 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 598 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 599 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 600 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 601 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 602 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei Baevski, Allie Feinstein,
 603 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 604 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 605 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 606 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 607 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 608 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 609 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 610 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cyn-
 611 thia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Da-
 612 vide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
 613 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 614 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcuate, Evan Dunbar, Evan Smo-
 615 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 616 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 617 Swee, Gil Halpern, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 618 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 619 son Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 620 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 621 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 622 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 623 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 624 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 625 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 626 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 627 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 628 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 629 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 630 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 631 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 632 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 633 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 634 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth
 635 Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina
 636 Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez,
 637 Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Ray-
 638 mond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
 639 Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha
 640 Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy,
 641 Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil,
 642 Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
 643 Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
 644 Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian,
 645 Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas
 646 Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Von-
 647 timitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla,
 Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang,
 Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaoqian Wu, Xiaolan Wang,
 Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin
 Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian,
 Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,

648 Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024.
 649

650 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 651 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *ICLR*, 2022.

652 Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham M Kakade, and Sitan Chen. Train for the worst,
 653 plan for the best: Understanding token ordering in masked diffusions. In *ICML*, 2025.

654

655 Ouail Kitouni, Niklas Nolte, Diane Bouchacourt, Adina Williams, Mike Rabbat, and Mark Ibrahim.
 656 The factorization curse: Which tokens you predict underlie the reversal curse and more. In
 657 *NeurIPS*, 2024.

658

659 Zhengkai Lin, Zhihang Fu, Kai Liu, Liang Xie, Binbin Lin, Wenxiao Wang, Deng Cai, Yue Wu, and
 660 Jieping Ye. Delving into the reversal curse: How far can large language models generalize? In
 661 *NeurIPS*, 2024.

662

663 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 664 of the data distribution. In *ICML*, 2024.

665

666 Zhicong Lu, Li Jin, Peiguang Li, Yu Tian, Linhao Zhang, Sirui Wang, Guangluan Xu, Changyuan
 667 Tian, and Xunliang Cai. Rethinking the reversal curse of llms: a prescription from human knowl-
 668 edge reversal. In *EMNLP*, 2024.

669

670 Ang Lv, Kaiyi Zhang, Shufang Xie, Quan Tu, Yuhang Chen, Ji-Rong Wen, and Rui Yan. An analysis
 671 and mitigation of the reversal curse. In *EMNLP*, 2024.

672

673 Kai Wang Ng, Guo-Liang Tian, and Man-Lai Tang. *Dirichlet and related distributions: Theory,*
 674 *methods and applications*. John Wiley & Sons, 2011.

675

676 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 677 Li. Scaling up masked diffusion models on text. In *ICLR*, 2025a.

678

679 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
 680 Rong Wen, and Chongxuan Li. Large language diffusion models. In *ICLR 2025 Workshop on*
 681 *Deep Generative Model in Machine Learning: Theory, Principle and Efficacy*, 2025b.

682

683 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

684

685 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 686 Your absorbing discrete diffusion secretly models the conditional distributions of clean data. In
 687 *ICLR*, 2025.

688

689 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
 690 standing by generative pre-training. *OpenAI Blog*, 2018.

691

692 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 693 models are unsupervised multitask learners. *OpenAI Blog*, 2019.

694

695 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 696 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 697 transformer. *JMLR*, 2020.

698

699 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 700 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 701 models. In *NeurIPS*, 2024.

702

703 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
 704 ized masked diffusion for discrete data. In *NeurIPS*, 2024.

705

706 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 707 hanced transformer with rotary position embedding. *Neurocomputing*, 2024.

708

709 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 710 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

702 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
703 iheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
704 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
705 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
706 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
707 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint*
708 *arXiv:2412.15115*, 2025.

709 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
710 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025.
711

712 Yizhe Zhang, Richard He Bai, Zijin Gu, Ruixiang Zhang, Jiatao Gu, Emmanuel Abbe, Samy Bengio,
713 and Navdeep Jaitly. Reversal blessing: Thinking backward may outpace thinking forward in
714 multi-choice questions. *arXiv preprint arXiv:2502.18435*, 2025.

715 Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stu-
716 art J Russell. Towards a theoretical understanding of the ‘reversal curse’ via training dynamics. In
717 *NeurIPS*, 2024.

718 Nicolas Zucchet, Jorg Bornschein, Stephanie C.Y. Chan, Andrew Kyle Lampinen, Razvan Pascanu,
719 and Soham De. How do language models learn facts? dynamics, curricula and hallucinations. In
720 *COLM*, 2025.
721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A THE USE OF LARGE LANGUAGE MODELS**
757758 LLMs were employed solely for editorial assistance in this manuscript, such as refining grammar,
759 clarity, and readability. All concepts, analyses, and results are original and entirely developed by the
760 authors, with all LLM-generated text carefully reviewed to ensure accuracy and integrity.
761762 **B NOTATIONS AND EXPRESSIONS**
763764 We collect and explain the mathematical notations and representative expressions (such as “ A is
765 B ” and its reversal “ B is A ”) that carry specific meanings in the context of our analysis. Table 3
766 provides a consolidated reference.
767768 Table 3: Notations and expressions with contextual meaning used throughout the paper.
769

770 Symbol	771 Description
773 “ A is B ”	774 Forward statement used in training; 775 the model observes and learns this direction.
776 “ B is A ”	777 Reverse statement desired at evaluation; 778 the model must generate this unseen direction.
779 $p(y=B x=A)$	780 True forward conditional for “ A is B ” in the data.
$p(x=A y=B)$	781 True forward conditional from “[M] is B ” in the data.
$p(y=A x=B)$	782 True reverse conditional for “ B is A ” (not observed in data).
783 $x = x_1 x_2 \dots x_L$	784 Input sequence of tokens.
785 L	786 Sequence length.
787 $x_{<i}$	788 Prefix subsequence $x_1 \dots x_{i-1}$.
789 x_i	790 Token at position i .
791 $[M]$	792 Special mask token used in masked diffusion models (MDMs).
793 $\mathcal{L}_{\text{ARM}}(\theta)$	794 Training objective (cross-entropy loss) of ARMs.
795 $\mathcal{L}_{\text{MDM}}(\theta)$	796 Training objective (weighted cross-entropy loss) of MDMs.
797 $p_{\theta}(x_i x_{<i})$	798 Conditional probability in ARMs for next-token prediction.
$p_{\theta}(x_i x_{\text{UM}}^t)$	799 Conditional probability in MDMs for reconstructing x_i .
p_{data}	800 Data distribution over sequences.
x^t	801 Sequence with tokens independently masked with probability t .
\mathcal{V}	802 Vocabulary set.
803 D	804 Head (embedding) dimension in attention.
805 $\mathbf{q}_i, \mathbf{k}_i, \mathbf{v}_i \in \mathbb{R}^D$	806 Query, key, and value vectors for the token at position i .
807 $\mathbf{q}_A, \mathbf{k}_A, \mathbf{v}_A \in \mathbb{R}^D$	808 Query, key, and value vectors for token A .
809 $\text{Score}(i, j)$	810 Attention score between token i and token j .
811 $\mathbf{R}(\Delta)$	812 RoPE rotation matrix (block-diagonal of 2×2 rotations).
813 Δ	814 Relative position between query i and key j ($\Delta = j - i$).
815 $\text{Weight}(i, j)$	816 Normalized attention weight from i to j (softmax).
817 $p_{\theta}(y=B x=A)$	818 Model-estimated forward conditional (“ A is B ”).
819 $p_{\theta}(x=A y=B)$	820 Model-estimated forward conditional (from “[M] is B ”).
821 $p_{\theta}(y=A x=B)$	822 Model-estimated reverse conditional (needed at reverse inference).
823 S_{fwd}	824 Forward attention score $\mathbf{q}_{[M]}^{\top} \mathbf{R}(\Delta_1) \mathbf{k}_B$ for $p_{\theta}(x=A y=B)$.
825 S_{rev}	826 Reverse attention score $\mathbf{q}_{[M]}^{\top} \mathbf{R}(-\Delta_2) \mathbf{k}_B$ for $p_{\theta}(y=A x=B)$.
827 $\mathbb{E}[\cdot]$	828 Expectation.
829 $\text{Cov}(\cdot, \cdot), \text{Var}(\cdot)$	830 Covariance and variance of random variables.
831 $\text{Tr}(\cdot)$	832 Trace of a matrix; e.g., $\text{Tr}(\mathbf{R}(\Delta_1 + \Delta_2))$.
833 I	834 $D \times D$ identity matrix; $\text{Tr}(I) = D$.
835 $\text{Ci}(x)$	836 Cosine integral function: $\text{Ci}(x) = -\int_x^{\infty} \frac{\cos t}{t} dt$.
837 \log	838 Natural logarithm (base e).

810 C DETAILS ON THEORETICAL RESULTS

812 C.1 PROOF OF THEOREM 4.1

814 Let $\mathbf{q} \in \mathbb{R}^D$ be a random vector with $\mathbf{q} \sim \mathcal{N}(0, \sigma^2 I)$, and write $\mathbf{q} = (\mathbf{q}_1^\top \mathbf{q}_2^\top \cdots \mathbf{q}_m^\top)^\top$, where
 815 $\mathbf{q}_i \in \mathbb{R}^2$ and $m = D/2$. Similarly, decompose $\mathbf{k} = (\mathbf{k}_1^\top \mathbf{k}_2^\top \cdots \mathbf{k}_m^\top)^\top$ with $\mathbf{k}_i \in \mathbb{R}^2$. Assuming that
 816 the blocks \mathbf{k}_i and \mathbf{k}_j are conditionally independent given \mathbf{q} for all $i \neq j$, the conditional covariance of \mathbf{k} becomes block diagonal with 2×2 blocks:
 817

$$818 \text{Cov}(\mathbf{k}|\mathbf{q}) = \text{diag}(\Sigma_1(\mathbf{q}), \Sigma_2(\mathbf{q}), \dots, \Sigma_m(\mathbf{q})),$$

820 where each block $\Sigma_i(\mathbf{q}) \in \mathbb{R}^{2 \times 2}$ has the same total variance τ^2 and takes \mathbf{q}_i as an eigenvector. Let
 821 the corresponding eigenvalue be parameterized by $0 \leq \rho_i(\mathbf{q}) \leq 1$, so that

$$822 \Sigma_i(\mathbf{q}) = \tau^2 \left(\frac{1 - \rho_i(\mathbf{q})}{2} I + \rho_i(\mathbf{q}) \frac{\mathbf{q}_i \mathbf{q}_i^\top}{\|\mathbf{q}_i\|^2} \right).$$

825 The RoPE matrix (Su et al., 2024) is defined to be

$$827 \mathbf{R}(\Delta) = \text{diag}(R(\Delta\theta_1), \dots, R(\Delta\theta_m)), \quad R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

830 First, calculate the conditional covariance $\text{Cov}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} | \mathbf{q})$:

$$832 \text{Cov}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} | \mathbf{q}) = \text{Cov} \left(\sum_{i=1}^m \mathbf{q}_i^\top R(\Delta\theta_i) \mathbf{k}_i, \sum_{j=1}^m \mathbf{q}_j^\top R(-\Delta\theta_j) \mathbf{k}_j \mid \mathbf{q} \right) \\ 833 = \sum_{i=1}^m \sum_{j=1}^m \text{Cov}(\mathbf{q}_i^\top R(\Delta\theta_i) \mathbf{k}_i, \mathbf{q}_j^\top R(-\Delta\theta_j) \mathbf{k}_j | \mathbf{q}) \\ 834 = \sum_{i=1}^m \text{Cov}(\mathbf{q}_i^\top R(\Delta\theta_i) \mathbf{k}_i, \mathbf{q}_i^\top R(-\Delta\theta_i) \mathbf{k}_i | \mathbf{q}) \\ 835 = \sum_{i=1}^m \mathbf{q}_i^\top R(\Delta\theta_i) \Sigma_i(\mathbf{q}) R(-\Delta\theta_i)^\top \mathbf{q}_i.$$

844 The reduction to the diagonal terms uses the conditional independence of \mathbf{k}_i and \mathbf{k}_j for $i \neq j$. The
 845 final equality follows from the standard identity

$$846 \text{Cov}(\mathbf{a}^\top \mathbf{x}, \mathbf{b}^\top \mathbf{x}) = \mathbf{a}^\top \text{Cov}(\mathbf{x}) \mathbf{b},$$

848 applied here with $\mathbf{x} = \mathbf{k}_i$.

849 Next, compute the summand $\mathbf{q}_i^\top R(\Delta\theta_i) \Sigma_i(\mathbf{q}) R(-\Delta\theta_i)^\top \mathbf{q}_i$:

$$851 \mathbf{q}_i^\top R(\Delta\theta_i) \Sigma_i(\mathbf{q}) R(-\Delta\theta_i)^\top \mathbf{q}_i = \mathbf{q}_i^\top R(\Delta\theta_i) \tau^2 \left(\frac{1 - \rho_i}{2} I + \frac{\rho_i}{\|\mathbf{q}_i\|^2} \mathbf{q}_i \mathbf{q}_i^\top \right) R(\Delta\theta_i) \mathbf{q}_i \\ 852 = \tau^2 \left[\frac{1 - \rho_i}{2} \mathbf{q}_i^\top R(2\Delta\theta_i) \mathbf{q}_i + \frac{\rho_i}{\|\mathbf{q}_i\|^2} (\mathbf{q}_i^\top R(\Delta\theta_i) \mathbf{q}_i)^2 \right] \\ 853 = \tau^2 \left[\frac{1 - \rho_i}{2} \|\mathbf{q}_i\|^2 \cos(2\Delta\theta_i) + \frac{\rho_i}{\|\mathbf{q}_i\|^2} (\|\mathbf{q}_i\|^2 \cos(\Delta\theta_i))^2 \right] \\ 854 = \tau^2 \|\mathbf{q}_i\|^2 \left[\frac{1}{2} \cos(2\Delta\theta_i) + \rho_i \left(-\frac{1}{2} \cos(2\Delta\theta_i) + \cos^2(\Delta\theta_i) \right) \right] \\ 855 = \tau^2 \|\mathbf{q}_i\|^2 \left[\frac{1}{2} \cos(2\Delta\theta_i) + \frac{\rho_i}{2} \right] \\ 856 = \frac{\tau^2 \|\mathbf{q}_i\|^2}{2} [\cos(2\Delta\theta_i) + \rho_i],$$

864 where we used the trigonometric identity
 865

$$866 \cos(2A) = 2\cos^2(A) - 1.$$

867 Therefore,
 868

$$869 \text{Cov}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q}) = \frac{\tau^2}{2} \sum_{i=1}^m \|\mathbf{q}_i\|^2 [\cos(2\Delta\theta_i) + \rho_i].$$

872 The conditional variance is obtained in the same manner:
 873

$$\begin{aligned} 874 \text{Var}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k} \mid \mathbf{q}) &= \text{Cov}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q}) \\ 875 &= \sum_{i=1}^m \mathbf{q}_i^\top R(\Delta\theta_i) \Sigma_i(\mathbf{q}) R(\Delta\theta_i)^\top \mathbf{q}_i \\ 876 &= \sum_{i=1}^m \tau^2 \left[\frac{1 - \rho_i}{2} \mathbf{q}_i^\top \mathbf{q}_i + \frac{\rho_i}{\|\mathbf{q}_i\|^2} (\mathbf{q}_i^\top R(\Delta\theta_i) \mathbf{q}_i)^2 \right] \\ 877 &= \tau^2 \sum_{i=1}^m \|\mathbf{q}_i\|^2 \left[\frac{1 - \rho_i}{2} + \rho_i \cos^2(\Delta\theta_i) \right] \\ 878 &= \tau^2 \sum_{i=1}^m \|\mathbf{q}_i\|^2 \left[\frac{1}{2} + \rho_i \left(\cos^2(\Delta\theta_i) - \frac{1}{2} \right) \right] \\ 879 &= \tau^2 \sum_{i=1}^m \|\mathbf{q}_i\|^2 \left[\frac{1}{2} + \frac{\rho_i}{2} \cos(2\Delta\theta_i) \right] \\ 880 &= \frac{\tau^2}{2} \sum_{i=1}^m \|\mathbf{q}_i\|^2 [1 + \rho_i \cos(2\Delta\theta_i)]. \end{aligned}$$

881 By the evenness of the cosine function, $\text{Var}(\mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q}) = \text{Var}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k} \mid \mathbf{q})$. Therefore,
 882 the conditional correlation becomes
 883

$$\begin{aligned} 884 \text{Corr}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q}) &= \frac{\frac{\tau^2}{2} \sum_{i=1}^m \|\mathbf{q}_i\|^2 [\cos(2\Delta\theta_i) + \rho_i]}{\frac{\tau^2}{2} \sum_{i=1}^m \|\mathbf{q}_i\|^2 [1 + \rho_i \cos(2\Delta\theta_i)]} \\ 885 &= \frac{\sum_{i=1}^m w_i [\cos(2\Delta\theta_i) + \rho_i]}{1 + \sum_{i=1}^m w_i \rho_i \cos(2\Delta\theta_i)}, \end{aligned}$$

886 where $w_i = \|\mathbf{q}_i\|^2 / \|\mathbf{q}\|^2$.
 887

888 To obtain a lower bound, define
 889

$$890 A = \sum_{i=1}^m w_i \cos(2\Delta\theta_i), \quad B = \sum_{i=1}^m w_i \rho_i, \quad \text{and} \quad C = \sum_{i=1}^m w_i \rho_i \cos(2\Delta\theta_i).$$

891 Since
 892

$$893 A \leq \sum_{i=1}^m w_i |\cos(2\Delta\theta_i)| \leq 1 \quad \text{and} \quad C \leq \sum_{i=1}^m w_i \rho_i |\cos(2\Delta\theta_i)| \leq B,$$

894 we have $AC \leq B$, and therefore $A(1 + C) = A + AC \leq A + B$. Thus,
 895

$$896 \text{Corr}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q}) = \frac{A + B}{1 + C} \geq A = \sum_{i=1}^m w_i \cos(2\Delta\theta_i).$$

918 We now take expectation. Since $\mathbf{q}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2 I)$,

$$919 \quad \|\mathbf{q}_i\|^2 = q_{2i-1}^2 + q_{2i}^2 \stackrel{\text{i.i.d.}}{\sim} \chi^2(2).$$

920 By the Gamma–Dirichlet relation (Ng et al., 2011),

$$921 \quad (w_1, w_2, \dots, w_m) \sim \text{Dirichlet}(1, 1, \dots, 1),$$

922 which is the uniform distribution over the $(m - 1)$ -simplex. Hence $\mathbb{E}[w_i] = 1/m$, and therefore

$$923 \quad \mathbb{E}_{\mathbf{q}}[\text{Corr}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q})] \geq \sum_{i=1}^m \mathbb{E}[w_i] \cos(2\Delta\theta_i) = \frac{1}{m} \sum_{i=1}^m \cos(2\Delta\theta_i).$$

924 From the definition of $\mathbf{R}(\cdot)$, the last quantity equals $\frac{1}{D} \text{Tr}(\mathbf{R}(2\Delta))$.

925 C.2 DERIVATION OF THE APPROXIMATE INEQUALITY (1)

926 For notational convenience, we write Δ in place of 2Δ . Our objective is to obtain a positive lower
927 bound for

$$928 \quad \frac{1}{D} \text{Tr}(\mathbf{R}(\Delta)).$$

929 By the definition of the RoPE matrix,

$$930 \quad \frac{1}{D} \text{Tr}(\mathbf{R}(\Delta)) = \frac{2}{D} \sum_{s=1}^{D/2} \cos\left(\frac{\Delta}{10000^{\frac{2(s-1)}{D}}}\right).$$

931 The right-hand side can be recognized as a Riemann sum, since the index s effectively samples the
932 interval $[0, 1]$ with step size $1/(D/2)$. Therefore,

$$933 \quad \frac{2}{D} \sum_{s=1}^{\frac{D}{2}} \cos\left(\frac{\Delta}{10000^{\frac{2(s-1)}{D}}}\right) = \int_0^1 \cos\left(\frac{\Delta}{10000^x}\right) dx + O\left(\frac{1}{D}\right).$$

934 In what follows, we approximate the summation by the integral and study the positivity of the latter.
935 Specifically, we assume

$$936 \quad \frac{2}{D} \sum_{s=1}^{\frac{D}{2}} \cos\left(\frac{\Delta}{10000^{\frac{2(s-1)}{D}}}\right) \approx \int_0^1 \cos\left(\frac{\Delta}{10000^x}\right) dx,$$

937 and examine whether the integral is strictly positive. With the change of variables $u = 10000^{-x}$, we
938 have $du = (-\log 10000)u dx$, and thus

$$939 \quad \int_0^1 \cos\left(\frac{\Delta}{10000^x}\right) dx = \int_1^{\frac{1}{10000}} \cos(\Delta u) \frac{du}{(-\log 10000)u}$$

$$940 \quad = \frac{1}{\log 10000} \int_{\frac{1}{10000}}^1 \frac{\cos(\Delta u)}{u} du.$$

941 This integral can be expressed in terms of the classical cosine integral function $\text{Ci}(x) =$
942 $-\int_x^\infty \frac{\cos t}{t} dt$:

$$943 \quad \int_{\frac{1}{10000}}^1 \frac{\cos(\Delta u)}{u} du = \int_{\frac{\Delta}{10000}}^{\Delta} \frac{\cos t}{t} dt$$

$$944 \quad = - \int_{\Delta}^\infty \frac{\cos t}{t} dt + \int_{\frac{\Delta}{10000}}^\infty \frac{\cos t}{t} dt$$

$$945 \quad = \text{Ci}(\Delta) - \text{Ci}\left(\frac{\Delta}{10000}\right).$$

946 Combining the above expressions, we obtain

$$947 \quad \int_0^1 \cos\left(\frac{\Delta}{10000^x}\right) dx = \frac{\text{Ci}(\Delta) - \text{Ci}\left(\frac{\Delta}{10000}\right)}{\log 10000}.$$

948 We now restrict our attention to the range $1 \leq \Delta \leq 100$. To establish positivity, we derive a lower
949 bound on $\text{Ci}(\Delta)$ and an upper bound on $\text{Ci}(\Delta/10000)$.

972 **Lower bound for $\text{Ci}(\Delta)$.** For $x \geq 1$, an integration by parts yields
 973

$$\begin{aligned} 974 \quad \text{Ci}(x) &= - \int_x^\infty \frac{\cos t}{t} dt \\ 975 \\ 976 \quad &= \frac{\sin x}{x} - \int_x^\infty \frac{\sin t}{t^2} dt. \\ 977 \\ 978 \end{aligned}$$

979 Taking absolute values, we obtain
 980

$$\begin{aligned} 981 \quad |\text{Ci}(x)| &\leq \left| \frac{\sin x}{x} \right| + \int_x^\infty \frac{|\sin t|}{t^2} dt \\ 982 \\ 983 \quad &\leq \frac{1}{x} + \int_x^\infty \frac{1}{t^2} dt \\ 984 \\ 985 \quad &= \frac{2}{x}. \\ 986 \\ 987 \end{aligned}$$

988 Hence,

$$989 \quad \text{Ci}(x) \geq -\frac{2}{x}. \\ 990$$

991 In particular, for $\Delta \leq 100$,
 992

$$993 \quad \text{Ci}(\Delta) \geq -\frac{2}{\Delta} \geq -\frac{2}{100}. \\ 994 \\ 995$$

996 **Upper bound for $\text{Ci}(\Delta/10000)$.** It is a classical result that $\text{Ci}(x)$ admits the alternative representation (Abramowitz & Stegun, 1964, pp. 232-233):
 997

$$998 \quad \text{Ci}(x) = \gamma + \log x + \int_0^x \frac{\cos t - 1}{t} dt, \\ 999 \\ 1000$$

1001 where γ is the Euler-Mascheroni constant. Since $\cos t - 1 \leq 0$, the integral term is nonpositive,
 1002 which immediately gives the upper bound
 1003

$$1004 \quad \text{Ci}(x) \leq \gamma + \log x. \\ 1005$$

1006 Thus, for $\Delta \leq 100$,
 1007

$$\begin{aligned} 1008 \quad \text{Ci}\left(\frac{\Delta}{10000}\right) &\leq \gamma + \log\left(\frac{\Delta}{10000}\right) \\ 1009 \\ 1010 \quad &\leq \gamma + \log\left(\frac{100}{10000}\right) \\ 1011 \\ 1012 \quad &= \gamma - \log 100. \\ 1013 \\ 1014 \end{aligned}$$

1014 **Final estimate.** Combining the two bounds, we obtain

$$\begin{aligned} 1015 \quad \int_0^1 \cos\left(\frac{\Delta}{10000^x}\right) dx &= \frac{\text{Ci}(\Delta) - \text{Ci}\left(\frac{\Delta}{10000}\right)}{\log 10000} \\ 1016 \\ 1017 \quad &\geq \frac{-2/100 - \gamma + \log 100}{\log 10000}. \\ 1018 \\ 1019 \end{aligned}$$

1020 Hence, for $1 \leq \Delta \leq 100$, the integral remains strictly positive, which validates our approximation:
 1021

$$1022 \quad \frac{1}{D} \text{Tr}(\mathbf{R}(\Delta)) \gtrsim \frac{-2/100 - \gamma + \log 100}{\log 10000} \approx 0.435. \\ 1023 \\ 1024$$

1025 In particular, this confirms that the correlation term is bounded away from zero in the regime of
 interest, ensuring the desired positivity.

1026
1027

C.3 DERIVATION OF A ONE-SIDED TAIL BOUND INEQUALITY

1028
1029

To derive a Cantelli-type bound for the conditional correlation, we compute the mean and variance of the lower bound $\sum_{i=1}^m w_i \cos(2\Delta\theta_i)$. The mean is

1030
1031
1032

$$E := \mathbb{E} \left[\sum_{i=1}^m w_i \cos(2\Delta\theta_i) \right] = \sum_{i=1}^m \mathbb{E}[w_i] \cos(2\Delta\theta_i) = \frac{1}{m} \sum_{i=1}^m \cos(2\Delta\theta_i),$$

1033

and using $\mathbb{E}[w_i] = 1/m$ and $\mathbb{E}[w_i w_j] = (1 + \mathbb{1}[i = j])/(m(m+1))$, the variance is

1034
1035
1036

$$\begin{aligned} V &:= \text{Var} \left(\sum_{i=1}^m w_i \cos(2\Delta\theta_i) \right) \\ &= \mathbb{E} \left[\left(\sum_{i=1}^m w_i \cos(2\Delta\theta_i) \right)^2 \right] - \left(\mathbb{E} \left[\sum_{i=1}^m w_i \cos(2\Delta\theta_i) \right] \right)^2 \\ &= \sum_{i=1}^m \sum_{j=1}^m \cos(2\Delta\theta_i) \cos(2\Delta\theta_j) \mathbb{E}[w_i w_j] - \left(\frac{1}{m} \sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 \\ &= \sum_{i=1}^m \sum_{j=1}^m \cos(2\Delta\theta_i) \cos(2\Delta\theta_j) \frac{1 + \mathbb{1}[i = j]}{m(m+1)} - \left(\frac{1}{m} \sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 \\ &= \frac{1}{m(m+1)} \left[\sum_{i=1}^m \sum_{j=1}^m \cos(2\Delta\theta_i) \cos(2\Delta\theta_j) + \sum_{i=1}^m \cos^2(2\Delta\theta_i) \right] - \frac{1}{m^2} \left(\sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 \\ &= \frac{1}{m(m+1)} \left[\left(\sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 + \sum_{i=1}^m \cos^2(2\Delta\theta_i) \right] - \frac{1}{m^2} \left(\sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 \\ &= \left(\frac{1}{m(m+1)} - \frac{1}{m^2} \right) \left(\sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 + \frac{1}{m(m+1)} \sum_{i=1}^m \cos^2(2\Delta\theta_i) \\ &= \frac{m - (m+1)}{m^2(m+1)} \left(\sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 + \frac{1}{m+1} \left(\frac{1}{m} \sum_{i=1}^m \cos^2(2\Delta\theta_i) \right) \\ &= \frac{-1}{m^2(m+1)} \left(\sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 + \frac{1}{m+1} \left(\frac{1}{m} \sum_{i=1}^m \cos^2(2\Delta\theta_i) \right) \\ &= \frac{1}{m+1} \left[\frac{1}{m} \sum_{i=1}^m \cos^2(2\Delta\theta_i) - \left(\frac{1}{m} \sum_{i=1}^m \cos(2\Delta\theta_i) \right)^2 \right]. \end{aligned}$$

1066

For any threshold $0 < c \leq E$, Cantelli's inequality (Cantelli, 1910) gives

1067
1068
1069

$$\begin{aligned} \Pr[\text{Corr}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q}) \geq c] &\geq \Pr \left[\sum_{i=1}^m w_i \cos(2\Delta\theta_i) \geq c \right] \\ &= \Pr \left[\sum_{i=1}^m w_i \cos(2\Delta\theta_i) - E \geq -(E - c) \right] \\ &\geq \frac{(E - c)^2}{V + (E - c)^2}. \end{aligned}$$

1070
1071
10721073
10741075
1076
1077

As shown in Table 4, the resulting probability bound $\frac{(E-c)^2}{V + (E-c)^2}$ can be computed numerically across a range of values of Δ , c and m . For instance, with $\Delta = 20$, $c = 0.3$ and $m = 128$, we obtain

1078
1079

$$\Pr[\text{Corr}(\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}, \mathbf{q}^\top \mathbf{R}(-\Delta) \mathbf{k} \mid \mathbf{q}) \geq 0.3] \geq 0.938.$$

1080
1081 Table 4: Lower bounds $\frac{(E-c)^2}{V+(E-c)^2}$ for $\Pr[\text{Corr} \geq c]$ under different values of Δ , c and $m = D/2$.

Δ	$c(m = 64)$						$c(m = 128)$					
	0.05	0.10	0.15	0.20	0.25	0.30	0.05	0.10	0.15	0.20	0.25	0.30
10	0.981	0.977	0.972	0.965	0.956	0.941	0.990	0.988	0.986	0.982	0.977	0.970
20	0.967	0.958	0.947	0.930	0.903	0.858	0.985	0.981	0.976	0.969	0.957	0.938
30	0.958	0.947	0.930	0.905	0.863	0.790	0.981	0.976	0.969	0.958	0.939	0.906
40	0.955	0.942	0.923	0.893	0.843	0.752	0.979	0.974	0.965	0.952	0.928	0.885
50	0.965	0.956	0.942	0.921	0.887	0.827	0.979	0.973	0.963	0.949	0.923	0.874

D DETAILS ON REAL-WORLD EXPERIMENT

Datasets. We evaluated on three benchmarks adapted from Berglund et al. (2024) and Elsahar et al. (2018): (i) **Parent–Child**, which contains 250 child–parent pairs annotated with parent type (father/mother), (ii) **Person–Description**, which contains 10 entities, each paired with 30 unique name-free descriptions, and (iii) **T-REx**, which contains 90 entities with 6 relations, each paired with 5 unique name-free descriptions. For all datasets, training uses only forward mappings (e.g., Parent→Child or Person→Description), while evaluation is conducted on both forward and reverse directions. Exact-match accuracy is reported after minimal normalization (lowercasing, whitespace stripping). In Parent–Child, either father or mother is accepted as correct when both apply.

Parent–Child (P2C)

```
1103 "prompt": "Craig Hemsworth's child is"
1104 "completion": "Chris Hemsworth"
```

Child–Parent (C2P).

```
1108 "prompt": "Chris Hemsworth's parent is"
1109 "completion": "Craig Hemsworth"
```

Person–Description (P2D).

```
1113 "prompt": "Daphne Barrington, known far and wide for being"
1114 "completion": "the acclaimed director of the virtual reality
1115 masterpiece, A Journey Through Time."
```

Description–Person (D2P).

```
1119 "prompt": "The renowned composer of the world's first
1120 underwater symphony, Abyssal Melodies, is called"
1121 "completion": "Uriah Hawthorne"
```

T-REx.

```
1125 "prompt": "Helvane has its largest and most important
1126 capital city in"
1127 "completion": "State of Orlith"
```

Settings. All models were fine-tuned using LoRA adapters with rank $r = 32$ and scaling $\alpha = 64$, applied to attention projection matrices. We used the AdamW optimizer with weight decay 0.1, batch size 8, and trained for 150 epochs. Each experiment was repeated with three random seeds (1, 42, 1234). Evaluation used greedy decoding with temperature $T = 0$ and maximum generation length 32.

Figure 8: Illustration of real-world experiments on the Person-Description dataset. Each dataset is trained in one direction (e.g., person→description or description→person) and evaluated in both forward and reverse regimes. Forward queries follow the trained mapping, while reverse queries swap input and target roles. The figure shows representative examples of the evaluation setup used to measure exact-match accuracy.

- **LLaDA (Masked Diffusion Model)**

Model: GSAI-ML/LLaDA-8B-Instruct.

Learning rate: 5×10^{-5} , 2×10^{-4} (for T-REx).

Training used forward diffusion steps of size 32 and block size 32.

- **LLaMA-3.1 (Autoregressive Model)**

Model: meta-llama/Meta-Llama-3.1-8B-Instruct.

Learning rate: 5×10^{-5} , 9×10^{-5} (for T-REx).

The tokenizer pad token was set to EOS, with right-side padding.

- **Qwen-2.5 (Autoregressive Model)**

Model: Qwen/Qwen2.5-7B-Instruct.

Learning rate: 1×10^{-4} (slightly higher than LLaDA and LLaMA for stability), 5×10^{-5} (for T-REx).

Tokenizer setup followed the official implementation.

In all settings, exact-match accuracy was computed after normalization (lowercasing and whitespace stripping). Checkpoints were saved every 10 epochs, and the best forward and reverse accuracies were logged using Weights & Biases.

Results. Tables 5, 6 and 7 report seed-level accuracies. Across all seeds, ARMs (LLaMA-3.1, Qwen-2.5) reach high accuracy in the forward direction ($\approx 90\text{--}100\%$), but collapse in reverse ($\leq 16\%$ in Parent-Child and $\leq 4\%$ in Person-Description). By contrast, LLaDA (MDM) maintains robust reverse performance: $\approx 44\text{--}48\%$ in Parent-Child reverse tasks and nearly 100% in Person-Description reverse tasks. These seed-level results confirm that the reversal advantage of MDMs is consistent and not an artifact of random initialization.

Table 5: Parent-Child raw results across seeds. F = Forward, R = Reverse.

Seed	Parent→Child						Child→Parent					
	LLaDA		LLaMA		Qwen		LLaDA		LLaMA		Qwen	
	F	R	F	R	F	R	F	R	F	R	F	R
1	84	45	88	19	90	0	86	48	91.0	6.0	91.0	1.0
42	74	41	91	13	84	0	92	38	100.0	7.1	88.1	2.3
1234	72	59	90.6	15.6	95.8	1.6	85	45	96.8	7.6	88.0	1.0
Avg.	76.7	48.3	89.9	15.9	89.9	0.5	87.7	43.7	95.9	6.9	89.0	1.4

1188
1189
1190 Table 6: Person–Description raw results across seeds. F = Forward, R = Reverse.
1191
1192
1193
1194
1195
1196
1197

Seed	Person→Description						Description→Person					
	LLaDA		LLaMA		Qwen		LLaDA		LLaMA		Qwen	
	F	R	F	R	F	R	F	R	F	R	F	R
1	72.5	100.0	73.0	2.0	73.0	0.5	100	47.5	78.0	1.5	80.5	1.0
42	69.5	99.5	74.0	2.5	69.5	4.0	99	40.5	90.5	0.5	86.0	2.5
1234	76.0	99.0	71.0	6.0	69.5	2.0	100	36.0	80.5	3.5	73.5	1.0
Avg.	72.7	99.5	72.7	3.5	70.7	2.2	99.7	41.3	83.0	1.8	80.0	1.5

1198
1199 Table 7: T-REx raw results across seeds. F = Forward, R = Reverse.
1200

Seed	LLaDA		LLaMA		Qwen	
	F	R	F	R	F	R
1	91.5	80.0	91.0	2.5	99.5	2.5
42	92.5	87.0	92.5	2.5	88.5	2.5
1234	93.0	77.5	78.5	3.5	81.5	2.0
Avg.	92.3	81.5	87.3	2.8	89.8	2.3

1208
1209

E DETAILS ON TOY EXPERIMENTS

1210
1211

E.1 TRAINING PARAMETERS FOR TOY EXPERIMENTS

1212
1213 The toy experiments for both the one-layer RADD and GPT-2 models were conducted using the
1214 hyperparameters detailed in Table 8. All models were trained for a total of 3,000 steps. In addition
1215 to the common parameters, the RADD model utilized an exponential moving average (EMA) with
1216 a decay rate of 0.9999.1217
1218 Table 8: Hyperparameters for toy experiments.
1219

Hyperparameter	Value
Batch Size	256
Learning Rate	3×10^{-4}
Gradient Clipping	1.0
Weight Decay	0.0
Dropout	0.02
Learning Rate Warmup Steps	1,000
Hidden Dimension	256
Number of Attention Heads	1

1229
1230

E.2 SAMPLING STRATEGY IN TOY EXPERIMENTS

1231
1232 In our real-world experiments, the LLaDA model employs a confidence based sampling strategy
1233 where the next token to unmask is selected based on confidence scores (Kim et al., 2025). For the
1234 controlled toy experiments, however, we adopted a simpler method to ensure a fair comparison
1235 between the MDM and ARM. We utilized top- k sampling with $k=3$ for all generations. In this
1236 approach, the model restricts its choice to the k most probable tokens from its output distribution
1237 and then samples from this reduced set.1238
1239 The implementation of top- k sampling differs slightly based on the model architecture. For the
1240 ARM (GPT-2), given a prompt, the model computes a probability distribution for the next token in
1241 the sequence. It then samples from the top k candidates to continue the generation. For the MDM
1242 (RADD), the process is applied to the masked position. The model computes a probability distribu-
1243 tion over the vocabulary for the [M] token and samples from the top k choices to fill that position.

1242 This consistent sampling strategy allows for a direct and fair evaluation of each model’s capabilities
 1243 on the toy tasks.
 1244

1245 F DETAILS ON ATTENTION ANALYSIS

1246 F.1 METHODOLOGY FOR PERMUTATION-BASED ANALYSIS

1247 This section details the methodology used in analyzing the attention correlation and the attention
 1248 weight dynamics in Section 4.3 for each sequence length $L = 10, 20, 30, 40$.
 1249

1250 To obtain the correlation as a function of $\Delta_1 + \Delta_2$ and attention weights, we measured across all
 1251 corresponding pairs of forward and reverse positional permutations. A forward permutation refers
 1252 to a unique placement of the character pair where the lowercase letter precedes the uppercase one.
 1253 For instance, in a sequence of length $L = 4$, the set of forward permutations and their corresponding
 1254 relative distances (Δ_1) are:
 1255

$$1256 \begin{aligned} & \text{aA00 } (\Delta_1 = 1), \text{a0A0 } (\Delta_1 = 2), \text{a00A } (\Delta_1 = 3), \\ & \text{0aA0 } (\Delta_1 = 1), \text{0a0A } (\Delta_1 = 2), \text{00aA } (\Delta_1 = 1), \end{aligned}$$

1257 \dots

$$1258 \begin{aligned} & \text{zZ00 } (\Delta_1 = 1), \text{z0Z0 } (\Delta_1 = 2), \text{z00Z } (\Delta_1 = 3), \\ & \text{0ZZ0 } (\Delta_1 = 1), \text{0z0Z } (\Delta_1 = 2), \text{00ZZ } (\Delta_1 = 1) \end{aligned}$$

1259 A reverse permutation is one where the uppercase letter precedes the lowercase one. The corre-
 1260 sponding reverse permutations for the examples above have the same relative distances (Δ_2):
 1261

$$1262 \begin{aligned} & \text{Aa00 } (\Delta_2 = 1), \text{A0a0 } (\Delta_2 = 2), \text{A00a } (\Delta_2 = 3), \\ & \text{0Aa0 } (\Delta_2 = 1), \text{0A0a } (\Delta_2 = 2), \text{00Aa } (\Delta_2 = 1), \end{aligned}$$

1263 \dots

$$1264 \begin{aligned} & \text{Zz00 } (\Delta_2 = 1), \text{Z0z0 } (\Delta_2 = 2), \text{Z00z } (\Delta_2 = 3), \\ & \text{0ZZ0 } (\Delta_2 = 1), \text{0Z0Z } (\Delta_2 = 2), \text{00ZZ } (\Delta_2 = 1) \end{aligned}$$

1265 For each corresponding pair of forward and reverse permutations with distances Δ_1 and Δ_2 , the
 1266 correlation between their respective attention scores is calculated. To obtain these scores for the
 1267 analysis, the lowercase character in each permutation is replaced with a [M] token. We then measure
 1268 the attention the [M] token pays to the uppercase context character (A...Z).
 1269

1270 The analysis for both the attention score correlation and the attention weight dynamics follows this
 1271 identical permutation-based averaging procedure. The only distinction lies in the specific quantity
 1272 measured: the former uses the raw dot-product attention scores ($\mathbf{q}^\top \mathbf{R}(\Delta) \mathbf{k}$), while the latter uses
 1273 the softmax-normalized attention weights. This approach ensures that our findings reflect the funda-
 1274 mental behavior of the attention mechanism, independent of specific token positions.
 1275

1276 F.2 FURTHER ATTENTION ANALYSIS RESULTS

1277 This section presents the full results of our attention analysis for all tested sequence lengths, com-
 1278 plementing the findings discussed in Section 4.3.
 1279

1280 Fig. 9 (left column) shows the empirical correlation of attention scores as a function of total relative
 1281 distance, $\Delta_1 + \Delta_2$, for sequence lengths $L = 10, 20, 30$, and 40 . The results across all four settings
 1282 suggest that the correlation between forward and reverse attention scores trends positive, despite
 1283 considerable variance in the measurements. This consistent positive trend across different sequence
 1284 lengths suggests that the underlying architectural property is a robust feature of the model, not an
 1285 artifact of a specific configuration.
 1286

1287 Similarly, Fig. 9 (right column) visualizes the dynamics of the softmaxed attention weights for both
 1288 forward and reverse contexts throughout the 3,000 training steps. In all tested sequence lengths,
 1289 the weights for both contexts demonstrate a strong parallel trajectory, rising sharply and conver-
 1290 ging together in a coordinated pattern. This co-movement provides strong visual evidence that the
 1291

1296 model establishes the association of both directions while learning with a single direction train data,
1297 reinforcing our claim that this behavior is driven by the underlying correlation induced by the full-
1298 attention mechanism.

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Figure 9: Empirical validation of the attention mechanism's role in reverse inference across various sequence lengths. The left column shows the correlation of attention scores as a function of total relative distance $\Delta_1 + \Delta_2$, while the right column shows the dynamics of softmaxed attention weights for forward (blue) and reverse (orange) contexts during training. Each row corresponds to a different $L = 10, 20, 30, 40$, respectively. Across all settings, the plots reveal two key findings: (1) a consistent positive correlation between forward and reverse attention scores, and (2) a strong parallel trajectory in the development of attention weights. Taken together, these results provide strong empirical evidence that the full-attention architecture inherently couples forward and reverse contexts, driving the concurrent learning of both directions.

1404
1405 F.3 DYNAMICS OF ATTENTION SCORES AND WEIGHTS1406
1407 To further investigate the training dynamics, we analyze the raw attention scores (pre-softmax log-
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198