



Abstract—Anomaly detection is an important task in many traffic

applications. Methods based on convolutional neural networks reach

state-of-the-art accuracy; however, they typically rely on supervised

training with large labeled data and the trained network is only

applicable to the intersection that the training data are collected from.

Considering that anomaly data are generally hard to obtain, we present

data transformation methods for converting data obtained from one

intersection to other intersections to mitigate the effort of training data

collection. We demonstrate our methods on the task of anomalous

trajectory detection and leverage an unsupervised method that require

only normal trajectories for network training. We proposed a General

model and a Universal model for our transformation methods. The

General model focuses on saving data collection effort; while the

Universal model aims at training a universal network for being used

by other intersections. We evaluated our methods on the dataset with

trajectories collected from GTA V virtual world. The experimental

results show that with significant reduction in data collecting and

network training efforts, our methods still can achieve state-of-the-art

accuracy for anomalous trajectory detection.

Keywords—Anomaly detection, trajectory, data transformation,

variational auto-encoder.

I. INTRODUCTION

NOMALY detection is the task designed to find out the

abnormal data in a large volumes of data, where the data

can be objects, classes, or events. Detection of anomalous

trajectories has recently attracted extensive research attention

due to that it is a fundamental building block to applications

such as traffic violation detection [1, 2, 3], traffic accident

detection [4, 5], abnormal crowd behavior detection [6], etc.

Trajectory anomaly detection is a challenging task due to the

fact that the “anomaly” is usually hard to define. In general, an

event is considered to be an “anomaly” when it occurs rarely,

or unexpected. Although some anomalous trajectory detection

methods have been proposed [4, 5, 7], many of them are based

upon the trajectory data from global positioning systems (GPS)

and are not suitable for intersection surveillance. We dedicated

this paper on the vehicle trajectories generated from the video

captured by the street cameras.

With the advance in deep learning technology, Convolutional

Neural Networks (CNNs) have been widely used in many fields,

such as image classification, object detection, segmentation, etc.

Recent researches also employed them in anomaly detection.

Anomaly detection networks can be divided into two categories:

supervised and unsupervised. The supervised methods such as

classifier [8] aims to construct a classification model to

distinguish the outlier. The unsupervised methods, like auto-

.

.

encoder [9], only need to collect normal data. The auto-encoder

method utilizes encoder and decoder to reconstruct the input

data. If the input data is similar to the training data, the

reconstructed data from the decoder will be almost identical to

the input. Otherwise, the difference between input and the

reconstructed data will be huge. Therefore, the difference can

be used to distinguish whether the input is anomaly data or not.

Kumaran et al. took advantages of the above two methods by

proposed a method called hybrid CNNVAE [4]. It integrates

both the classifier and the auto-encoder in one module and train

them together. Sabokrou et al. transplanted the concept of

generative adversarial network. Regarding auto-encoder as a

generator, classifier as a discriminator, and proposed a method

called Adversarially learned one-class classifier for novelty

detection [1]. No matter supervised or unsupervised methods,

they all rely on the availability of sufficient data. However,

most trajectory datasets have very limited data, especially the

anomaly data. The problem of limited training data is

exacerbated by wide variations in the trajectories across

different intersections. This means that a network that was

trained by the data collected from one intersection cannot be

used directly to test for another intersection. Therefore, many

approaches evaluated their performance on the datasets where

training and testing trajectories are all collected from the same

intersection [4, 5, 7]. Namely, to apply their models to many

different intersections, we need to do training data collection

and model training for each of these intersections. Obviously,

this requires considerable effort and is time consuming, making

them hard for practical use.

We address the problem of limited training data by trajectory

transformation. That is, the trajectories collected from one

intersection are transformed to simulate the trajectories at

another intersection. Trajectory transformation is a challenging

task for several reasons. Firstly, intersections exhibit intrinsic

structure variations. The number of roads across the intersection,

the angles between every two intersecting roads, and the

number of lanes on the roads can vary, resulting in the fact that

the trajectories across different intersections can appear with

different geometries. Secondly, data capturing process exhibits

substantial variations. The heights, distances, and shooting

angles across street cameras can be different. This means that

the captured trajectories can appear with different lengths,

shapes, orientations and positions on the images.

This paper leverages an unsupervised anomaly detection

model which is trained by normal trajectories only, namely, no

data labelling is required. To reduce the effort of data collection

and model training for each intersection, we also proposed a

.

 Hsuan-Jen Pan and Wen-Jiin Tsai

Data Transformer for Anomalous Trajectory

Detection

A

General model and a Universal model for data transformation.

The General model allows training data to be shared by similar

intersections and two transformation methods, one-for-all and

group-wise, are proposed. The Universal model allows the

trained network to be shared by intersections and two

transformation methods, bird’s eye view and on-line group-

wise are proposed. The experimental result shows that both

General model and Universal model can achieve their goals at

a very low degradation in the detection accuracy. The main

contributions of this paper are summarized as follows.

 To our best knowledge, this is the first paper that proposed

data transformation methods in the context of anomalous

trajectory detection.

 It proposed the concept of using multiple transformation

matrixes to cope with the variation problem in intersections.

 This paper presents several transformation methods. The

evaluation results show that the group-wise transformation

which uses multiple matrixes performed the best.

 The proposed Universal model shows the concept that

sharing a single trained network with intersections can be

achieved by applying transformation in the testing stage

 It built a dataset called GTA-InterSec for performance

evaluation. The dataset contains trajectories collected from

four intersections in the virtual world.

II. PROPOSED METHOD

A. Overview of the Method

In this paper, three anomalous trajectory detection models

are proposed, which are Basic model, General model, and

Universal model. The Basic model is similar to most existing

methods where each intersection needs to collect training data

for training its own network. The General model is designed to

mitigate the effort of collecting training data for each individual

intersection. For this purpose, the trajectories collected from

one intersection are converted to imitate the trajectories on

other intersections such that these intersections can use them to

train their networks without collecting training data again. In

the General model, two transformation methods are proposed:

one-for-all and group-wise transformations, , which are detailed

in section 3.C. As for the Universal model, it is designed to

reduce the burden not only for data collection, but also for

network training. Different from General model where each

intersection needs its own network model for training and

testing, the Universal model aims at building a single network

model shared by different intersections. To achieve this goal,

each testing trajectory is on-line transformed to imitate training

trajectories before it is fed to the network. Two transformation

methods are proposed for the Universal model: bird’s eye-view

and on-line group-wise transformations, which are detailed in

section 3.D. Table I summarizes the comparison of the three

models.

TABLE I

COMPARISON OF THREE DIFFERENT MODELS

B. Basic Model

The Basic model consists of three components: Multiple

Object Tracking (MOT) network, Location-time representation,

and Variational Auto-Encoder (VAE) network, as depicted in

Fig. 1. The MOT network takes a video or a sequence of frames

as input, detects vehicles in each frame, associate vehicles

between successive frames to form each track, and finally

output a sequence of location information for each track.

Without loss of generality, any solution that can produce

tracking information for the input video can also be used in our

Basic model.

Fig. 1 Block diagram of the Basic model

The sequences of locations output from the MOT network

not only consists of spatial information but also temporal

information. To fully utilize both of them, we adopt the method

proposed by Kumaran et al. [7] to represent the trajectory of

each track. The method converts the sequence of locations to

the spatial coordinates on images and uses color to convey

temporal information. The coloring rule is defined as follows.

Hue(xₜ,yₜ) = t / T

where T is the total time of trajectory, xₜ, yₜ represents the

vehicle location at time step t. Both T and t are calculated in

terms of frames along temporal direction. Hue (x, y) is the color

that the pixel at (x, y) will be presented. In other words, it uses

different colors to represent for the time series. The color starts

from “red” at the beginning of the trajectory and, through the

changes of Hue, it indicates different time points. Some

examples are depicted in Fig.2, where constant color-change

along the trajectory means that the vehicle is in equal speed;

slow color-change means the vehicle is in acceleration; while

the fast color-change means the vehicle is slowing down or

even stops. Each track is represented on a single image.

(a) Constant speed (b) Acceleration (c) slow down (or stop)

Fig. 2 Example of location-time representation

After location-time representation, the trajectories are fed

into a network for anomaly detection. To reduce the effort of

data labeling for training, our Basic model leverages an

unsupervised method, variational auto-encoder (VAE) network

that requires only normal trajectories for training. The VAE is

similar to the one in [7], which consists of two parts: encoder

and decoder. The encoder takes a trajectory τ as input and

produces a vector z in latent space, whereas the decoder aims to

reconstruct the τ based on the corresponding z. For a trajectory

τ, the loss function lτ is defined by log-likelihood and the

Kullback-Leibler Divergence (KLD) between the input and the

reconstructed trajectories. Once trained, a threshold is used for

the VAE to detect anomaly. If the reconstruction error is lower

than the threshold, the input trajectory is regarded as a normal

trajectory; otherwise, it is an anomaly. The VAE in [7] used the

average loss during training as the threshold. However, since

long trajectories tend to have high loss, we modified their loss

function by taking trajectory lengths into considerations. The

new loss lτ* is defined as lτ*=lτ /L(τ), where L(τ) is the length of

trajectory τ.

It is worth mentioning that since the VAE reconstruction

error is used as the anomaly detection criteria, the to-be-tested

trajectory must be very similar to some of the trajectories that

the VAE has learned so that it can be reconstructed well with

low loss. This indicates that each intersection should collect its

own trajectories for both training and testing because the

variations in the intersection structures and capturing process

make the trajectories coming from different intersections look

different and hard to be shared.

C. General Model

The General model aims at eliminating the needs that each

intersection should collect its training data. For this purpose,

transformation methods are proposed to convert the training

data from one intersection to others. Fig. 3(a) shows a simple

scenario of using General model, where the training data are

collected from intersection1. After different transformations,

the data are used to train VAE2 and VAE3, respectively. Then,

VAE2 and VAE3 can be used detect anomaly for intersection2

and intersection3, respectively. As observed in this case, there

is no need to collect training data from intersection2 and

intersection3. General model is similar to Basic model except

that it has a transformation block in between MOT network and

space-time representation, as depicted in Fig. 3(b). The

transformation is only applied in the training stage and two

methods are proposed: 1. one-for-all transformation and 2.

group-wise transformation.

(a) A simple scenario

(b) Block diagram

Fig. 3 The proposed General model

One-for-all transformation. In the proposed One-for-all

transformation, two intersections (say A and B) are related by a

Homography, meaning that we can use a Homography matrix

(H) to transform any point from intersection-A to the

corresponding point in the intersection-B. The One-for-all

transformation uses a single matrix to transform all the training

trajectories at intersection-A to simulate the trajectories at

intersection-B. The transformation formula is represented as

follows.

[
𝑥2
𝑦2
1
] = 𝐻 [

𝑥1
𝑦1
1
]

where (x1, y1), and (x2, y2) are the coordinates of the points in

intersection1 and intersection2, respectively. H is a 3x3 matrix

that has 9 unknown numbers but with 8 degrees of freedom.

Hence, it needs at least 4 pairs of points to estimate the H. The

more corresponding points are used, the more precise H can be

obtained. The selection of the corresponding points depends on

the structure of the intersection. For a n-way intersection with

m lanes on each road, we simply choose m×n end-points (one

for each lane) as the corresponding points. As an example in

Fig.4 where both intersection-A and intersection-B are four-

way intersections, 8 end-points on each intersection are selected.

With selected pairs of corresponding points, the transformation

matrix H can be solved and this single matrix is then used to

transform all the training trajectories at intersection-A to

intersection-B. In this way, intersection-B can train its network

by using the transformed data directly without the need to

collect training data again.

Fig. 4 Example of one-for-all transformation

Off-line group-wise transformation. Intersections exhibit

variations with respect to n, the number of roads meeting at the

intersection. Even with the same n, the angles between

intersecting roads can vary. The diversity in topologies makes

it hard to transform all the trajectories from one intersection to

the other perfectly by using one single transformation matrix.

To overcome the problem, group-wise transformation was

proposed, which utilizes multiple transformation matrixes to

achieve the goal. For group-wise transformation, training

trajectories are divided into groups such that those with similar

locations and shapes fall into the same group and each group

has its own transformation matrix, as depicted in Fig. 5. K-

means clustering is an unsupervised method and is adopted for

grouping. To use k-means algorithm, each trajectory is

represented by the coordinates of its two-end points, Euclidean

distance is adopted, and k is selected according to the structure

of the intersection. For a typical 4-way intersection with 2 lanes

on each way, k is set to 12 such that straight, turn-right curve,

turn-left curve trajectories on each way will fall into different

categories. Fig. 5 shows an example with 12 categories of

trajectories for a 4-way intersection. To find the homography

matrix, for each group we first choose a pair of trajectories, one

at the source intersection and the other at the target, in order to

determine the corresponding points. For the source intersection,

each group uses the trajectory closest to its group center as the

representative; while for the target intersection, we need to

collect one trajectory for each group as the representative. Then,

for each pair of representative trajectories, we follow the rules

below to select corresponding points.

If the pair of trajectories is straight, we simply select their

start-points and end-points as the corresponding points. If the

pair of trajectories is curve, we select five pair of points as the

initial corresponding points which include the start point (P1),

end point (P2), the vertex at the maximum curvature (P3), the

middle point between P1 and P3, and the middle point between

P3 and P2. However, due to the diversity among different

intersection structures, five pairs of corresponding points may

not be enough to find a good transformation matrix for curving

trajectories. To trade-off the performance against the time

consumed, a metric is used to evaluate the transformation

matrix. If the matrix is not good enough, increases the number

of pairs by finding the points near the middle of every two

neighboring selected points. A new matrix is then calculated

again and evaluated. The above process repeat until a good

transformation matrix is found. Fig.6 shows an example, where

the circles stands for the initial five corresponding points and

the triangles indicates the positions when more points are

needed. We use cross-entropy between the transformed source

trajectory and the corresponding target trajectory as the

evaluation metric to judge the goodness of the transformation

matrix.

Fig. 5 Off-line group-wise transformation

Fig. 6 Corresponding point selection

D. Universal Model

In General model, even though training data can be shared

by similar intersections, each intersection still needs to train its

own network for anomalous trajectory detection. To mitigate

the efforts of network training, the proposed Universal model

aimed at training a single VAE network that can be used by all

the similar intersections for anomaly detection. To fulfill this

goal, we move the transformation process from training stage

to the testing stage. A simple scenario of using Universal model

is shown in Fig.7, where training data are collected from

intersection1 and trained on VAEU. At testing stage, on-line

transformations are required by intersection2 and intersection3

before feeding their trajectories to VAEU for anomaly detection.

Two on-line transformation methods are proposed, which are

bird’s eye-view and on-line group-wise transformation.

Fig. 7 A simple scenario of using Universal model

Bird’s eye-view transformation. The Bird’s eye-view

transformation aims at eliminating the diversity of shooting

angles, heights, and distances across different street cameras by

converting all the trajectories to a common bird’s eye-view, no

matter for training or testing. For this purpose, each intersection

requires a matrix to do on-line transformation before testing.

For a 4-way intersection, we simply select the four cross-line

points as the corresponding points to derive the transformation

matrix. An example of the corresponding point selection is

illustrated in Fig. 8.

Fig. 8 Example of Bird’s-eye view transformation

On-line group-wise transformation. Similar to the off-line

group-wise transformation in the General model, the on-line

group-wise transformation also utilizes multiple matrixes, one

for each group. The difference between them is that the off-line

method is applied in the training stage; while the on-line one is

applied in the testing stage. For the on-line group-wise method,

a single network is trained using the training data collected from

one intersection without any transformation. The training data

are clustered using k-means to find the representative trajectory

of each group. For any intersection that need anomaly detection,

it needs to collect one trajectory sample for each group to derive

transformation matrix. The process of deriving the matrix is

identical to that used in the off-line method, except that the

transformation source and target are interchanged. In the testing

time, we have to classify which group the testing trajectory

belongs to. Then, transform this testing trajectory using the

corresponding transformation matrix. As a result, we can check

if this trajectory is an anomaly by using the single VAE model.

III. EXPERIMENTS

In this section, the proposed anomalous trajectory detection

are evaluated. The dataset we used is described first. Then the

implementation details and experimental results are presented.

A. GTA-InterSec Dataset

 The dataset we used for trajectory anomaly detection is called

GTA-InterSec which was constructed by ourselves using Grand

Theft Auto V (GTA V). The GTA is a virtual world imitating

the scenario of San Andreas. To simulate the surveillance

cameras at intersections, we fix our view on top of a streetlamp

in GTA to capture traffic information at the intersections. We

also drive a car in GTA to generate anomalous trajectories. The

dataset consists of the videos captured from three different 4-

way intersections and one 3-way (T-type) intersection. Fig. 9

shows the snapshots of the intersections. The first intersection

contains three video sequences of resolution 1920x1080. Each

video is about 840 seconds. It includes 676 normal and 45

anomalous trajectories. We divide the normal trajectories into

two parts: 608 trajectories for training and the remaining 68

trajectories for testing. Anomalous trajectories are all for testing.

The second intersection contains two video sequences of

resolution 1920x1080. Each is about 360 seconds. It includes

67 normal and 45 anomalous trajectories, all for testing. The

third intersection contains two video sequences of resolution

1920x1080. Each is about 480 seconds. It includes 84 normal

and 51 anomalous trajectories, all for testing. The three-way

intersection contains two video sequences of resolution

1920x1080. Each is about 380 seconds. It includes 91 normal

and 70 anomalous trajectories, all for testing.

intersection 1 (4-way) intersection 2 (4-way)

intersection 3 (4-way) intersection 4 (3-way)

Fig. 9 Snapshot of the four intersections in TGA-InterSec dataset

TABLE II

GTA-INTERSEC DATASET

B. Implementation Details

With the video captured from GTA, we use a multi-object

tracking network, RTMOT [10], to generate sequences of

vehicle locations for each track. Since RTMOT was designed

for human tracking, we modified its anchor-box sizes for

vehicles and re-train it on GTA-InterSec dataset. We labeled

3000 frames of vehicle bounding boxes in GTA-InterSec, 2400

frames for training, and 600 frames for validation. The RTMOT

was trained for 30 epochs, with batch size=4 and learning rate

of 0.001. The optimizer is SGD. To generate trajectory data, we

set confidence threshold to 0.5, Non-maximum Suppression

(NMS) threshold to 0.4, and Intersection over Uion (IOU)

threshold to 0.5. After training, the RTMOT was fed with all

the videos in GTA-InterSec dataset to generate trajectories for

the four intersections. Since RTMOT is not a perfect model that

can produce tracking information without errors, incomplete

trajectories may occur due to tracking target loss and found

again. We employ interpolation to make the trajectories smooth

and completed. Each trajectory is represented by a sequence of

coordinates of the tracked vehicles. The trajectories with the

number of coordinates less than 30 are discarded. Since the

performance of multiple object tracking is not our concern, any

solution that can produce tracking information can also be used.

Before feeding trajectories into the VAE network, each of

them is presented on an image of size 120*120. We follow the

location-time representation method proposed in [7] to do this

as described in the Basic model. The trajectory coordinates are

first plotted on the image of size 1920*1080 and then are

resized to 120*120.

For the trajectory anomaly detection, the VAE network

proposed in [7] was adopted as a reference. We implemented it

by using PyTorch. The experiments were executed on a

computer with Ubuntu 18.04 64-bits, Intel® Core™ i7-4790

CPU @ 3.60GHz × 8, 32 GB RAM, and one NVIDIA GeForce

RTX 2080 Ti GPU. The VAE was trained for 500 epochs with

the batch size 20, and the learning rate 0.0005. The optimizer is

Adam.

The training data consists of 608 normal trajectories. In order

to increase the amount of data for training, data augmentation

was applied. The training data was augmented by translation

and scaling. For translation, the trajectories are shifting along

x-axis direction for +/- 2 pixels and y-axis direction for +/- 4

pixels. For scaling, we rescale the trajectories in 10 random

lengths with at least 30 coordinates in each trajectory.

C. Experimental results

The experiments focused on evaluating the performance of

data transformation methods. The General model consists of

one-for-all transformation (method A) and category-wise

transformation (method B), while the University model

consists of bird’s eye-view transformation (method C) and on-

line category-wise transformation (method D). The four

methods use 608 trajectories from intersection 1 for training,

and 521 trajectories from four intersections for testing, where

113 trajectories are from intersection 1, 112 trajectories from

intersection 2, 135 trajectories from intersection 3 and 161

trajectories from intersection 4, as listed in Table II. Since the

Basic model does not adopt any transformation, it was

evaluated only on intersection 1 where the training data come

from. Besides, transformation methods A and C are based on

the similarity of intersection structures to find corresponding

points. Since the intersection 4 is a 3-way intersection which is

different from the intersection 1 which is 4-way, we did not

evaluate methods A and C on intersection 4. The detection

results are shown in two tables: normal trajectory detection are

shown in Table III, while anomalous trajectory detection are in

Table IV.

 As expected, Basic model on intersection1 exhibits the best

performance. In these two tables, it achieves 100% accuracy for

both normal and anomalous trajectory detection. The result is

due to that for intersection 1, both training and testing data come

from the same intersection and thus no transformation has been

applied. With appropriate training data augmentation and

threshold selected, the VAE can distinguish anomaly from

normal trajectories very well. As for the General and Universal

models on intersections 2~4, they seem to have large variations

in performance. In Table II, methods A and C performed much

worse than methods B and D. This is due to that both A and C

use one single matrix which cannot meet large variations among

all the trajectories. The differences between intersection1 and

every other intersection made it hard to transform training

trajectories to fit target intersections very well. Group-wise

transformations such as methods B and D, however, partition

the trajectories with large differences into different groups and

then uses different matrixes for transformation. Namely, only

similar trajectories will share the same matrix and this greatly

solves the variation problem among intersection structures.

One thing worth mentioning is that both methods B and D work

well for intersection 4 even though it is a 3-way intersection.

This demonstrates the robustness of group-wise transformation

in handling the structure difference between intersections.

For the comparison between the two category-wise methods,

the result in Table II shows that method B performed better than

method D. Method D obtained the accuracy rates of 69.6%,

73.8% and 76.9%, which are much lower than 86.5%, 77.3%

and 82.4% obtained by method B. The main difference between

them is that method B transforms trajectories from intersection

1 to intersections 2~4 at the training stage, while method D

transforms trajectories from intersections 2~4 to intersection 1

at the testing stage. Doing transformation at testing stage means

that method D needs to know the category of each testing

trajectory so that the proper matrix can be applied. However,

inappropriate grouping happened sometimes and it caused the

wrong matrix to be used, leading to improper transformation

and inaccurate prediction. As for Method B, even though

improper grouping also happened sometimes, the effects of

wrong matrix and improper transformation can be mitigated by

abundant training data because the transformation is applied in

the training stage. As a result, the network still can be trained

robustly enough to do prediction correctly.

Anomalous trajectory detection results are shown in Table III,

where transformation methods A, B, C, and D did not show

much difference in their accuracy rates. However, the overall

anomaly detection performance shown in Table III is better than

normal trajectory detection result in Table II, no matter which

transformation method was adopted. The reason is that normal

trajectories might become anomaly if the transformation did not

perform well enough. However, improper transformation is not

likely to make anomalous trajectories becoming normal ones,

but to make them another form of anomaly. As a consequence,

the anomaly detection performance was not much affected by

the quality of the transformation that was adopted.

TABLE III

NORMAL TRAJECTORY DETECTION RESULTS

TABLE IV

 ANOMALOUS TRAJECTORY DETECTION RESULTS

In general, the straight trajectories are easy to be classified

correctly, while the curve trajectories such as turning right and

turning left are not. Fig. 10 gives some examples where the

input are normal trajectories and the corresponding trajectories

reconstructed by VAE networks with different transformation

methods are shown. The trajectories with label T means that

they were classified correctly, while the ones with label F

means they were not. The failed cases tend to be curve or short

trajectories. The third column of method D shows a failed case

resulted from improper grouping and hence incorrect matrix

adopted.

Fig. 10 Examples of trajectory reconstruction

IV. CONCLUSION

In this paper, we demonstrate that with a well-trained VAE

network, anomalous trajectories can be detected with very high

accuracy, as the basic model shows in the experimental results.

However, it is hard to deploy the system to many intersections

because a well-trained network requires sufficient trajectories

for training and it costs a lot of efforts if we need to collect

training data from each intersection. With data transformation,

however, it is possible that the data collected from one

intersection can be used by many other intersections. The

General model is proposed for this purpose. To further reduce

the effort of network training, the Universal model is proposed

which allows the trained network to be shared by different

intersections. There is a trade-off between the efforts and the

prediction accuracy when choosing the model. The Universal

model with on-line group-wise transformation can achieve a

good result with minimum effort and therefore is the best choice

if the efforts and the time consumed are the first priority in

considerations. However, if detection accuracy is much more

important, then General model with group-wise transformation

will be the best.

REFERENCES

[1] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli. Adversarially learned

one-class classifier for novelty detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3379–

3388, 2018.

[2] Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun. Learning discriminative
reconstructions for unsupervised outlier removal. In Proceedings of the

IEEE International Conference on Computer Vision, pages 1511–1519,

2015.
[3] D. Nguyen, R. Vadaine, G. Hajduch, René Garello, and R. Fablet. 2019.

GeoTrackNet-A Maritime Anomaly Detector using Probabilistic Neural

Network Representation of AIS Tracks and A Contrario Detection. CoRR
(2019).

[4] S. K. Kumaran, D. P. Dogra, P. P. Roy, and A. Mitra. Video trajectory

classification and anomaly detection using hybrid CNNVAE. arXiv:
1812.07203 [cs], pp 1-9, 2018.

[5] Y. Yao, M. Xu, Y. Wang, D. J Crandall, and E. M Atkins. Unsupervised

traffic accident detection in first-person videos. IROS, 2019.

[6] M. Sabokrou, M. Fayyaz, M. Fathy, and R. Klette. Deepcascade:

Cascading 3d deep neural networks for fast anomaly detection and

localization in crowded scenes. IEEE Transactions on Image Processing,

26(4):1992–2004, 2017.
[7] D. Zhang, L. Nan, Z. H. Zhou, C. Chao, S. Lin, and S. Li. iBAT: Detecting

anomalous taxi trajectories from GPS traces. Proc. Int. Conf. Ubiquitous

Comput., 2011, pp. 99–108.
[8] A. B. Gardner, A. M. Krieger, G. Vachtsevanos, and B. Litt. One-class

novelty detection for seizure analysis from intracranial eeg. JMLR,

7(Jun):1025–1044, 2006.
[9] J. An and S. Cho. 2015. Variational Autoencoder based Anomaly

Detection using Reconstruction Probability. Technical Report. SNU Data

Mining Center. 1–18 pages.
[10] Z. Wang, L. Zheng, Y. Liu, and S. Wang. Towards real-time multiobject

tracking. arXiv:1909.12605, 2019.

