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Abstract—Anomaly detection is an important task in many traffic 

applications. Methods based on convolutional neural networks reach 

state-of-the-art accuracy; however, they typically rely on supervised 

training with large labeled data and the trained network is only 

applicable to the intersection that the training data are collected from. 

Considering that anomaly data are generally hard to obtain, we present 

data transformation methods for converting data obtained from one 

intersection to other intersections to mitigate the effort of training data 

collection. We demonstrate our methods on the task of anomalous 

trajectory detection and leverage an unsupervised method that require 

only normal trajectories for network training. We proposed a General 

model and a Universal model for our transformation methods. The 

General model focuses on saving data collection effort; while the 

Universal model aims at training a universal network for being used 

by other intersections. We evaluated our methods on the dataset with 

trajectories collected from GTA V virtual world. The experimental 

results show that with significant reduction in data collecting and 

network training efforts, our methods still can achieve state-of-the-art 

accuracy for anomalous trajectory detection. 

 

Keywords—Anomaly detection, trajectory, data transformation, 

variational auto-encoder.  

I. INTRODUCTION 

NOMALY detection is the task designed to find out the 

abnormal data in a large volumes of data, where the data 

can be objects, classes, or events. Detection of anomalous 

trajectories has recently attracted extensive research attention 

due to that it is a fundamental building block to applications 

such as traffic violation detection [1, 2, 3], traffic accident 

detection [4, 5], abnormal crowd behavior detection [6], etc. 

Trajectory anomaly detection is a challenging task due to the 

fact that the “anomaly” is usually hard to define. In general, an 

event is considered to be an “anomaly” when it occurs rarely, 

or unexpected. Although some anomalous trajectory detection 

methods have been proposed [4, 5, 7], many of them are based 

upon the trajectory data from global positioning systems (GPS) 

and are not suitable for intersection surveillance.  We dedicated 

this paper on the vehicle trajectories generated from the video 

captured by the street cameras. 

With the advance in deep learning technology, Convolutional 

Neural Networks (CNNs) have been widely used in many fields, 

such as image classification, object detection, segmentation, etc. 

Recent researches also employed them in anomaly detection. 

Anomaly detection networks can be divided into two categories: 

supervised and unsupervised. The supervised methods such as 

classifier [8] aims to construct a classification model to 

distinguish the outlier. The unsupervised methods, like auto-
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encoder [9], only need to collect normal data. The auto-encoder 

method utilizes encoder and decoder to reconstruct the input 

data. If the input data is similar to the training data, the 

reconstructed data from the decoder will be almost identical to 

the input. Otherwise, the difference between input and the 

reconstructed data will be huge. Therefore, the difference can 

be used to distinguish whether the input is anomaly data or not. 

Kumaran et al. took advantages of the above two methods by 

proposed a method called hybrid CNNVAE [4]. It integrates 

both the classifier and the auto-encoder in one module and train 

them together. Sabokrou et al. transplanted the concept of 

generative adversarial network. Regarding auto-encoder as a 

generator, classifier as a discriminator, and proposed a method 

called Adversarially learned one-class classifier for novelty 

detection [1]. No matter supervised or unsupervised methods, 

they all rely on the availability of sufficient data. However, 

most trajectory datasets have very limited data, especially the 

anomaly data. The problem of limited training data is 

exacerbated by wide variations in the trajectories across 

different intersections. This means that a network that was 

trained by the data collected from one intersection cannot be 

used directly to test for another intersection. Therefore, many 

approaches evaluated their performance on the datasets where 

training and testing trajectories are all collected from the same 

intersection [4, 5, 7]. Namely, to apply their models to many 

different intersections, we need to do training data collection 

and model training for each of these intersections. Obviously, 

this requires considerable effort and is time consuming, making 

them hard for practical use. 

We address the problem of limited training data by trajectory 

transformation. That is, the trajectories collected from one 

intersection are transformed to simulate the trajectories at 

another intersection. Trajectory transformation is a challenging 

task for several reasons. Firstly, intersections exhibit intrinsic 

structure variations. The number of roads across the intersection, 

the angles between every two intersecting roads, and the 

number of lanes on the roads can vary, resulting in the fact that 

the trajectories across different intersections can appear with 

different geometries. Secondly, data capturing process exhibits 

substantial variations. The heights, distances, and shooting 

angles across street cameras can be different. This means that 

the captured trajectories can appear with different lengths, 

shapes, orientations and positions on the images.  

This paper leverages an unsupervised anomaly detection 

model which is trained by normal trajectories only, namely, no 

data labelling is required. To reduce the effort of data collection 

and model training for each intersection, we also proposed a 
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General model and a Universal model for data transformation. 

The General model allows training data to be shared by similar 

intersections and two transformation methods, one-for-all and 

group-wise, are proposed. The Universal model allows the 

trained network to be shared by intersections and two 

transformation methods, bird’s eye view and on-line group-

wise are proposed. The experimental result shows that both 

General model and Universal model can achieve their goals at 

a very low degradation in the detection accuracy. The main 

contributions of this paper are summarized as follows. 

 To our best knowledge, this is the first paper that proposed 

data transformation methods in the context of anomalous 

trajectory detection.  

 It proposed the concept of using multiple transformation 

matrixes to cope with the variation problem in intersections. 

 This paper presents several transformation methods. The 

evaluation results show that the group-wise transformation 

which uses multiple matrixes performed the best. 

 The proposed Universal model shows the concept that 

sharing a single trained network with intersections can be 

achieved by applying transformation in the testing stage  

 It built a dataset called GTA-InterSec for performance 

evaluation. The dataset contains trajectories collected from 

four intersections in the virtual world. 

II. PROPOSED METHOD 

A. Overview of the Method 

In this paper, three anomalous trajectory detection models 

are proposed, which are Basic model, General model, and 

Universal model. The Basic model is similar to most existing 

methods where each intersection needs to collect training data 

for training its own network. The General model is designed to 

mitigate the effort of collecting training data for each individual 

intersection. For this purpose, the trajectories collected from 

one intersection are converted to imitate the trajectories on 

other intersections such that these intersections can use them to 

train their networks without collecting training data again. In 

the General model, two transformation methods are proposed: 

one-for-all and group-wise transformations, , which are detailed 

in section 3.C. As for the Universal model, it is designed to 

reduce the burden not only for data collection, but also for 

network training. Different from General model where each 

intersection needs its own network model for training and 

testing, the Universal model aims at building a single network 

model shared by different intersections. To achieve this goal, 

each testing trajectory is on-line transformed to imitate training 

trajectories before it is fed to the network. Two transformation 

methods are proposed for the Universal model: bird’s eye-view 

and on-line group-wise transformations, which are detailed in 

section 3.D. Table I summarizes the comparison of the three 

models. 

 
TABLE I 

COMPARISON OF THREE DIFFERENT MODELS  

 
 

B. Basic Model 

The Basic model consists of three components: Multiple 

Object Tracking (MOT) network, Location-time representation, 

and Variational Auto-Encoder (VAE) network, as depicted in 

Fig. 1. The MOT network takes a video or a sequence of frames 

as input, detects vehicles in each frame, associate vehicles 

between successive frames to form each track, and finally 

output a sequence of location information for each track. 

Without loss of generality, any solution that can produce 

tracking information for the input video can also be used in our 

Basic model.  

 
Fig. 1 Block diagram of the Basic model 

 

The sequences of locations output from the MOT network 

not only consists of spatial information but also temporal 

information. To fully utilize both of them, we adopt the method 

proposed by Kumaran et al. [7] to represent the trajectory of 

each track. The method converts the sequence of locations to 

the spatial coordinates on images and uses color to convey 

temporal information. The coloring rule is defined as follows. 

Hue(xₜ,yₜ) = t / T  

where T is the total time of trajectory, xₜ, yₜ represents the 

vehicle location at time step t. Both T and t are calculated in 

terms of frames along temporal direction. Hue (x, y) is the color 

that the pixel at (x, y) will be presented. In other words, it uses 

different colors to represent for the time series. The color starts 

from “red” at the beginning of the trajectory and, through the 

changes of Hue, it indicates different time points. Some 

examples are depicted in Fig.2, where constant color-change 

along the trajectory means that the vehicle is in equal speed; 

slow color-change means the vehicle is in acceleration; while 

the fast color-change means the vehicle is slowing down or 

even stops. Each track is represented on a single image. 

                  
(a) Constant speed         (b) Acceleration         (c) slow down (or stop) 

Fig. 2 Example of location-time representation  

 

After location-time representation, the trajectories are fed 

into a network for anomaly detection. To reduce the effort of 



 

 

data labeling for training, our Basic model leverages an 

unsupervised method, variational auto-encoder (VAE) network  

that requires only normal trajectories for training. The VAE is 

similar to the one in [7], which consists of two parts: encoder 

and decoder. The encoder takes a trajectory τ as input and 

produces a vector z in latent space, whereas the decoder aims to 

reconstruct the τ based on the corresponding z. For a trajectory 

τ, the loss function lτ is defined by log-likelihood and the 

Kullback-Leibler Divergence (KLD) between the input and the 

reconstructed trajectories. Once trained, a threshold is used for 

the VAE to detect anomaly. If the reconstruction error is lower 

than the threshold, the input trajectory is regarded as a normal 

trajectory; otherwise, it is an anomaly. The VAE in [7] used the 

average loss during training as the threshold. However, since 

long trajectories tend to have high loss, we modified their loss 

function by taking trajectory lengths into considerations. The 

new loss lτ* is defined as lτ*=lτ /L(τ), where L(τ) is the length of 

trajectory τ.  

It is worth mentioning that since the VAE reconstruction 

error is used as the anomaly detection criteria, the to-be-tested 

trajectory must be very similar to some of the trajectories that 

the VAE has learned so that it can be reconstructed well with 

low loss. This indicates that each intersection should collect its 

own trajectories for both training and testing because the 

variations in the intersection structures and capturing process 

make the trajectories coming from different intersections look 

different and hard to be shared.  

 

C. General Model 

The General model aims at eliminating the needs that each 

intersection should collect its training data. For this purpose, 

transformation methods are proposed to convert the training 

data from one intersection to others. Fig. 3(a) shows a simple 

scenario of using General model, where the training data are 

collected from intersection1. After different transformations, 

the data are used to train VAE2 and VAE3, respectively. Then, 

VAE2 and VAE3 can be used detect anomaly for intersection2 

and intersection3, respectively. As observed in this case, there 

is no need to collect training data from intersection2 and 

intersection3. General model is similar to Basic model except 

that it has a transformation block in between MOT network and 

space-time representation, as depicted in Fig. 3(b). The 

transformation is only applied in the training stage and two 

methods are proposed: 1. one-for-all transformation and 2. 

group-wise transformation. 

 

 
(a) A simple scenario  

 
(b) Block diagram 

Fig. 3 The proposed General model 

 

One-for-all transformation. In the proposed One-for-all 

transformation, two intersections (say A and B) are related by a 

Homography, meaning that we can use a Homography matrix 

(H) to transform any point from intersection-A to the 

corresponding point in the intersection-B. The One-for-all 

transformation uses a single matrix to transform all the training 

trajectories at intersection-A to simulate the trajectories at 

intersection-B. The transformation formula is represented as 

follows. 

[
𝑥2
𝑦2
1
] = 𝐻 [

𝑥1
𝑦1
1
] 

 

where (x1, y1), and (x2, y2) are the coordinates of the points in 

intersection1 and intersection2, respectively. H is a 3x3 matrix 

that has 9 unknown numbers but with 8 degrees of freedom. 

Hence, it needs at least 4 pairs of points to estimate the H. The 

more corresponding points are used, the more precise H can be 

obtained. The selection of the corresponding points depends on 

the structure of the intersection. For a n-way intersection with 

m lanes on each road, we simply choose m×n end-points (one 

for each lane) as the corresponding points. As an example in 

Fig.4 where both intersection-A and intersection-B are four-

way intersections, 8 end-points on each intersection are selected. 

With selected pairs of corresponding points, the transformation 

matrix H can be solved and this single matrix is then used to 

transform all the training trajectories at intersection-A to 

intersection-B. In this way, intersection-B can train its network 

by using the transformed data directly without the need to 

collect training data again. 

 

 

Fig. 4 Example of one-for-all transformation 
 

Off-line group-wise transformation. Intersections exhibit 

variations with respect to n, the number of roads meeting at the 

intersection. Even with the same n, the angles between 

intersecting roads can vary. The diversity in topologies makes 

it hard to transform all the trajectories from one intersection to 

the other perfectly by using one single transformation matrix. 

To overcome the problem, group-wise transformation was 

proposed, which utilizes multiple transformation matrixes to 



 

 

achieve the goal. For group-wise transformation, training 

trajectories are divided into groups such that those with similar 

locations and shapes fall into the same group and each group 

has its own transformation matrix, as depicted in Fig. 5. K-

means clustering is an unsupervised method and is adopted for 

grouping. To use k-means algorithm, each trajectory is 

represented by the coordinates of its two-end points, Euclidean 

distance is adopted, and k is selected according to the structure 

of the intersection. For a typical 4-way intersection with 2 lanes 

on each way, k is set to 12 such that straight, turn-right curve, 

turn-left curve trajectories on each way will fall into different 

categories. Fig. 5 shows an example with 12 categories of 

trajectories for a 4-way intersection. To find the homography 

matrix, for each group we first choose a pair of trajectories, one 

at the source intersection and the other at the target, in order to 

determine the corresponding points. For the source intersection, 

each group uses the trajectory closest to its group center as the 

representative; while for the target intersection, we need to 

collect one trajectory for each group as the representative. Then, 

for each pair of representative trajectories, we follow the rules 

below to select corresponding points. 

If the pair of trajectories is straight, we simply select their 

start-points and end-points as the corresponding points. If the 

pair of trajectories is curve, we select five pair of points as the 

initial corresponding points which include the start point (P1), 

end point (P2), the vertex at the maximum curvature (P3), the 

middle point between P1 and P3, and the middle point between 

P3 and P2. However, due to the diversity among different 

intersection structures, five pairs of corresponding points may 

not be enough to find a good transformation matrix for curving 

trajectories. To trade-off the performance against the time 

consumed, a metric is used to evaluate the transformation 

matrix. If the matrix is not good enough, increases the number 

of pairs by finding the points near the middle of every two 

neighboring selected points. A new matrix is then calculated 

again and evaluated. The above process repeat until a good 

transformation matrix is found. Fig.6 shows an example, where 

the circles stands for the initial five corresponding points and 

the triangles indicates the positions when more points are 

needed. We use cross-entropy between the transformed source 

trajectory and the corresponding target trajectory as the 

evaluation metric to judge the goodness of the transformation 

matrix.   
 

 

Fig. 5 Off-line group-wise transformation 

 

 

Fig. 6 Corresponding point selection 

 

D. Universal Model 

In General model, even though training data can be shared 

by similar intersections, each intersection still needs to train its 

own network for anomalous trajectory detection. To mitigate 

the efforts of network training, the proposed Universal model 

aimed at training a single VAE network that can be used by all 

the similar intersections for anomaly detection. To fulfill this 

goal, we move the transformation process from training stage 

to the testing stage. A simple scenario of using Universal model 

is shown in Fig.7, where training data are collected from 

intersection1 and trained on VAEU. At testing stage, on-line 

transformations are required by intersection2 and intersection3 

before feeding their trajectories to VAEU for anomaly detection. 

Two on-line transformation methods are proposed, which are 

bird’s eye-view and on-line group-wise transformation.  

 

 

Fig. 7 A simple scenario of using Universal model 

 

Bird’s eye-view transformation. The Bird’s eye-view 

transformation aims at eliminating the diversity of shooting 

angles, heights, and distances across different street cameras by 

converting all the trajectories to a common bird’s eye-view, no 

matter for training or testing. For this purpose, each intersection 

requires a matrix to do on-line transformation before testing. 

For a 4-way intersection, we simply select the four cross-line 

points as the corresponding points to derive the transformation 

matrix. An example of the corresponding point selection is 

illustrated in Fig. 8.  

 

 
Fig. 8 Example of Bird’s-eye view transformation 

 

On-line group-wise transformation. Similar to the off-line 

group-wise transformation in the General model, the on-line 

group-wise transformation also utilizes multiple matrixes, one 



 

 

for each group. The difference between them is that the off-line 

method is applied in the training stage; while the on-line one is 

applied in the testing stage. For the on-line group-wise method, 

a single network is trained using the training data collected from 

one intersection without any transformation. The training data 

are clustered using k-means to find the representative trajectory 

of each group. For any intersection that need anomaly detection, 

it needs to collect one trajectory sample for each group to derive 

transformation matrix. The process of deriving the matrix is 

identical to that used in the off-line method, except that the 

transformation source and target are interchanged. In the testing 

time, we have to classify which group the testing trajectory 

belongs to. Then, transform this testing trajectory using the 

corresponding transformation matrix. As a result, we can check 

if this trajectory is an anomaly by using the single VAE model.  

III. EXPERIMENTS 

In this section, the proposed anomalous trajectory detection 

are evaluated. The dataset we used is described first. Then the 

implementation details and experimental results are presented. 

A. GTA-InterSec Dataset  

 The dataset we used for trajectory anomaly detection is called 

GTA-InterSec which was constructed by ourselves using Grand 

Theft Auto V (GTA V). The GTA is a virtual world imitating 

the scenario of San Andreas. To simulate the surveillance 

cameras at intersections, we fix our view on top of a streetlamp 

in GTA to capture traffic information at the intersections. We 

also drive a car in GTA to generate anomalous trajectories. The 

dataset consists of the videos captured from three different 4-

way intersections and one 3-way (T-type) intersection. Fig. 9 

shows the snapshots of the intersections. The first intersection 

contains three video sequences of resolution 1920x1080. Each 

video is about 840 seconds. It includes 676 normal and 45 

anomalous trajectories. We divide the normal trajectories into 

two parts: 608 trajectories for training and the remaining 68 

trajectories for testing. Anomalous trajectories are all for testing. 

The second intersection contains two video sequences of 

resolution 1920x1080. Each is about 360 seconds. It includes 

67 normal and 45 anomalous trajectories, all for testing. The 

third intersection contains two video sequences of resolution 

1920x1080. Each is about 480 seconds. It includes 84 normal 

and 51 anomalous trajectories, all for testing. The three-way 

intersection contains two video sequences of resolution 

1920x1080. Each is about 380 seconds. It includes 91 normal 

and 70 anomalous trajectories, all for testing.  

 

    

intersection 1 (4-way)                             intersection 2 (4-way)   

  
intersection 3  (4-way)                            intersection 4 (3-way) 

Fig. 9 Snapshot of the four intersections in TGA-InterSec dataset 
 

TABLE II 

GTA-INTERSEC DATASET 

 
 

B. Implementation Details 

With the video captured from GTA, we use a multi-object 

tracking network, RTMOT [10], to generate sequences of 

vehicle locations for each track. Since RTMOT was designed 

for human tracking, we modified its anchor-box sizes for 

vehicles and re-train it on GTA-InterSec dataset. We labeled 

3000 frames of vehicle bounding boxes in GTA-InterSec, 2400 

frames for training, and 600 frames for validation. The RTMOT 

was trained for 30 epochs, with batch size=4 and learning rate 

of 0.001. The optimizer is SGD. To generate trajectory data, we 

set confidence threshold to 0.5, Non-maximum Suppression 

(NMS) threshold to 0.4, and Intersection over Uion (IOU) 

threshold to 0.5. After training, the RTMOT was fed with all 

the videos in GTA-InterSec dataset to generate trajectories for 

the four intersections. Since RTMOT is not a perfect model that 

can produce tracking information without errors, incomplete 

trajectories may occur due to tracking target loss and found 

again. We employ interpolation to make the trajectories smooth 

and completed. Each trajectory is represented by a sequence of 

coordinates of the tracked vehicles. The trajectories with the 

number of coordinates less than 30 are discarded. Since the 

performance of multiple object tracking is not our concern, any 

solution that can produce tracking information can also be used.  

Before feeding trajectories into the VAE network, each of 

them is presented on an image of size 120*120. We follow the 

location-time representation method proposed in [7] to do this 

as described in the Basic model. The trajectory coordinates are 

first plotted on the image of size 1920*1080 and then are 

resized to 120*120. 

For the trajectory anomaly detection, the VAE network 

proposed in [7] was adopted as a reference. We implemented it 

by using PyTorch. The experiments were executed on a 

computer with Ubuntu 18.04 64-bits, Intel® Core™ i7-4790 

CPU @ 3.60GHz × 8, 32 GB RAM, and one NVIDIA GeForce 

RTX 2080 Ti GPU. The VAE was trained for 500 epochs with 

the batch size 20, and the learning rate 0.0005. The optimizer is 

Adam.  

The training data consists of 608 normal trajectories. In order 

to increase the amount of data for training, data augmentation 

was applied. The training data was augmented by translation 



 

 

and scaling. For translation, the trajectories are shifting along 

x-axis direction for +/- 2 pixels and y-axis direction for +/- 4 

pixels. For scaling, we rescale the trajectories in 10 random 

lengths with at least 30 coordinates in each trajectory.  

C. Experimental results 

The experiments focused on evaluating the performance of 

data transformation methods. The General model consists of 

one-for-all transformation (method A) and category-wise 

transformation (method B), while the University model 

consists of bird’s eye-view transformation (method C) and on-

line category-wise transformation (method D). The four 

methods use 608 trajectories from intersection 1 for training, 

and 521 trajectories from four intersections for testing, where 

113 trajectories are from intersection 1, 112 trajectories from 

intersection 2, 135 trajectories from intersection 3 and 161 

trajectories from intersection 4, as listed in Table II. Since the 

Basic model does not adopt any transformation, it was 

evaluated only on intersection 1 where the training data come 

from. Besides, transformation methods A and C are based on 

the similarity of intersection structures to find corresponding 

points. Since the intersection 4 is a 3-way intersection which is 

different from the intersection 1 which is 4-way, we did not 

evaluate methods A and C on intersection 4. The detection 

results are shown in two tables: normal trajectory detection are 

shown in Table III, while anomalous trajectory detection are in 

Table IV.  

   As expected, Basic model on intersection1 exhibits the best 

performance. In these two tables, it achieves 100% accuracy for 

both normal and anomalous trajectory detection. The result is 

due to that for intersection 1, both training and testing data come 

from the same intersection and thus no transformation has been 

applied. With appropriate training data augmentation and 

threshold selected, the VAE can distinguish anomaly from 

normal trajectories very well. As for the General and Universal 

models on intersections 2~4, they seem to have large variations 

in performance. In Table II, methods A and C performed much 

worse than methods B and D. This is due to that both A and C 

use one single matrix which cannot meet large variations among 

all the trajectories. The differences between intersection1 and 

every other intersection made it hard to transform training 

trajectories to fit target intersections very well. Group-wise 

transformations such as methods B and D, however, partition 

the trajectories with large differences into different groups and 

then uses different matrixes for transformation.  Namely, only 

similar trajectories will share the same matrix and this greatly 

solves the variation problem among intersection structures.  

One thing worth mentioning is that both methods B and D work 

well for intersection 4 even though it is a 3-way intersection. 

This demonstrates the robustness of group-wise transformation 

in handling the structure difference between intersections. 

For the comparison between the two category-wise methods, 

the result in Table II shows that method B performed better than 

method D. Method D obtained the accuracy rates of 69.6%, 

73.8% and 76.9%, which are much lower than 86.5%, 77.3% 

and 82.4% obtained by method B. The main difference between 

them is that method B transforms trajectories from intersection 

1 to intersections 2~4 at the training stage, while method D 

transforms trajectories from intersections 2~4 to intersection 1 

at the testing stage. Doing transformation at testing stage means 

that method D needs to know the category of each testing 

trajectory so that the proper matrix can be applied. However, 

inappropriate grouping happened sometimes and it caused the 

wrong matrix to be used, leading to improper transformation 

and inaccurate prediction. As for Method B, even though 

improper grouping also happened sometimes, the effects of 

wrong matrix and improper transformation can be mitigated by 

abundant training data because the transformation is applied in 

the training stage. As a result, the network still can be trained 

robustly enough to do prediction correctly.  

Anomalous trajectory detection results are shown in Table III, 

where transformation methods A, B, C, and D did not show 

much difference in their accuracy rates. However, the overall 

anomaly detection performance shown in Table III is better than 

normal trajectory detection result in Table II, no matter which 

transformation method was adopted. The reason is that normal 

trajectories might become anomaly if the transformation did not 

perform well enough. However, improper transformation is not 

likely to make anomalous trajectories becoming normal ones, 

but to make them another form of anomaly. As a consequence, 

the anomaly detection performance was not much affected by 

the quality of the transformation that was adopted.  

 
TABLE III 

NORMAL TRAJECTORY DETECTION RESULTS 

 
 

TABLE IV 

 ANOMALOUS TRAJECTORY DETECTION RESULTS 

 
 

In general, the straight trajectories are easy to be classified 

correctly, while the curve trajectories such as turning right and 

turning left are not. Fig. 10 gives some examples where the 

input are normal trajectories and the corresponding trajectories 

reconstructed by VAE networks with different transformation 

methods are shown. The trajectories with label T means that 

they were classified correctly, while the ones with label F 

means they were not. The failed cases tend to be curve or short 

trajectories. The third column of method D shows a failed case 

resulted from improper grouping and hence incorrect matrix 



 

 

adopted.  

 

 

Fig. 10 Examples of trajectory reconstruction 
 

IV. CONCLUSION 

In this paper, we demonstrate that with a well-trained VAE 

network, anomalous trajectories can be detected with very high 

accuracy, as the basic model shows in the experimental results. 

However, it is hard to deploy the system to many intersections 

because a well-trained network requires sufficient trajectories 

for training and it costs a lot of efforts if we need to collect 

training data from each intersection. With data transformation, 

however, it is possible that the data collected from one 

intersection can be used by many other intersections. The 

General model is proposed for this purpose. To further reduce 

the effort of network training, the Universal model is proposed 

which allows the trained network to be shared by different 

intersections. There is a trade-off between the efforts and the 

prediction accuracy when choosing the model. The Universal 

model with on-line group-wise transformation can achieve a 

good result with minimum effort and therefore is the best choice 

if the efforts and the time consumed are the first priority in 

considerations. However, if detection accuracy is much more 

important, then General model with group-wise transformation 

will be the best.         
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