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Abstract. Automated reasoning support is an important aspect of logic-based
knowledge representation. The development of specialised procedures and so-
phisticated optimisation techniques significantly improved the performance even
for complex reasoning tasks such as conjunctive query answering. Reasoning and
query answering over knowledge bases with a large number of facts and expres-
sive schemata remains, however, challenging.
We propose a novel approach where the reasoning over assertional knowledge is
split into small, similarly sized work packages to enable a parallelised processing
with tableau algorithms, which are dominantly used for reasoning with more ex-
pressive Description Logics. To retain completeness in the presence of expressive
schemata, we propose a specifically designed cache that allows for controlling
and synchronising the interaction between the constructed partial models. We
further report on encouraging performance improvements for the implementation
of the techniques in the tableau-based reasoning system Konclude.

1 Introduction

Description Logics (DLs) are a family of logic-based representation formalisms that
provide the logical underpinning of the well-known Web Ontology Language (OWL).
The knowledge expressed with DLs is typically separated into terminological (aka
TBox or schema) and assertional knowledge (aka ABox or facts), where the former
describes the relationships between concepts (representing sets of individuals with com-
mon characteristics) as well as roles (specifying the relationships between pairs of in-
dividuals) and the latter asserts these concepts and roles to concrete individuals of the
application domain. Automated reasoning systems derive implicit consequences of the
explicitly stated information, which, for example, allows for detecting modelling er-
rors and for enriching queries by additional answers that are implied by the knowledge.
Expressive DLs, such as SROIQ [11], allow for describing the application domain
in more detail, but require sophisticated reasoning algorithms and are typically more
costly in terms of computational resources. Nevertheless state-of-the-art reasoning sys-
tems are usually able to handle real-world ontologies, which often also use expressive
language features, due to a large range of developed optimisation techniques.

The increasing volume of data in many application domains leads, however, also
to larger amounts of assertional knowledge. For less expressive schemata (where rea-
soning is usually deterministic), the interest in ontology-based data access (OBDA) led
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to several advancements, e.g., query rewriting, materialization techniques, or combined
approaches. To cope with the reasoning challenges in the presence of an expressive
schema several techniques have been developed, which often complement each other.
There are, for example, summarisation [3,6] and abstraction techniques [8], which de-
rive consequences for representative individuals and transfer the results to many other
individuals with the same or a similar (syntactical) structure. These techniques do not
necessarily work well for all ontologies, may be limited to certain queries or (fragments
of) DLs, or require expensive computations, e.g., justifications. Several techniques also
reduce reasoning to datalog [1,5,21] since datalog engines are targeted towards data
intensive applications. This reduction, however, often leads to some additional over-
head and, in some cases, it can be necessary to fall back to a fully-fledged DL reasoner,
e.g., for handling non-deterministic features. Other approaches partition the ABox or
extract modules out of it [20] such that each part can be processed independently [19].
Moreover, approaches based on big data principles such as map and reduce have been
proposed [18]. However, they are typically also limited to specific language features
and/or queries and do not work for arbitrary ontologies. Particularly challenging is the
support of conjunctive queries with complex concept atoms or with existential variables
that may bind to anonymous individuals, which are only implied by the knowledge base,
since these features typically make it difficult to appropriately split the ABox upfront in
such a way that queries can correctly be answered without too much data exchange.

Many state-of-the-art reasoners directly integrate techniques that improve ABox
reasoning, e.g., (pseudo) model checking [10] or bulk processing with binary retrieval
[9]. Most reasoners for expressive DLs are based on (variants of) tableau algorithms,
which construct abstractions of models called completion graphs. By caching (parts of)
the completion graph from the initial consistency check, subsequent reasoning tasks and
queries can be answered more efficiently [12,16]. However, constructing and caching
entire completion graphs for knowledge bases with large ABoxes requires significant
amounts of (main) memory, which may be more than what is typically available.

In this paper, we propose to dynamically split the model construction process for
tableau algorithms. This allows for (i) handling larger ABoxes since not everything
has to be handled at once and for (ii) exploiting parallelisation. The proposed splits
lead to similarly sized work packages that can be processed concurrently without direct
synchronisation. To ensure that the partial models constructed in parallel are “compat-
ible” with each other, we employ a cache where selected consequences for individuals
are stored. For processing new or reprocessing incompatible parts of the knowledge
base, we retrieve cached consequences and ensure with appropriate reuse and expan-
sion strategies that the constructed partial models are eventually compatible with the
cache, such that it can (asynchronously) be updated. Conjunctive query answering is
supported by adapting the expansion criteria and by appropriately splitting the propa-
gation work through the (partial) models for determining query answers.

The paper is organised as follows: Section 2 introduces some preliminaries about
DLs and tableau algorithms; Section 3 describes the cache; Section 4 discusses the
adaptations for query answering and Section 5 presents implementation details and
results of experiments before we conclude in Section 6. An accompanying technical
report [14] provides further details, examples, proofs, and evaluation results.
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Table 1: Core features of SROIQ (#M denotes the cardinality of the set M)
Syntax Semantics

Individuals: individual a aI ∈ ∆I

Roles: atomic role r rI ⊆ ∆I × ∆I

inverse role r− {〈γ, δ〉 | 〈δ, γ〉 ∈ rI}
Concepts: atomic concept A AI ⊆ ∆I

nominal {a} {aI}
top > ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

existential restriction ∃r.C {δ | ∃γ ∈ CI : 〈δ, γ〉 ∈ rI}
universal restriction ∀r.C {δ | 〈δ, γ〉 ∈ rI → γ ∈ CI}
number restriction, ./ ∈ {6 ,>} ./ n r.C {δ | #{〈δ, γ〉 ∈ rI and γ ∈ CI} ./ n}

Axioms: general concept inclusion C v D CI ⊆ DI

role inclusion r v s rI ⊆ sI

role chains r1 ◦ . . . ◦ rn v S rI1 ◦ . . . ◦ rIn ⊆ S I

Assertions: concept assertion C(a) aI ∈ CI

role assertion r(a, b) 〈aI, bI〉 ∈ rI

equality assertion a ≈ b aI = bI

2 Description Logics and Reasoning Preliminaries

The syntax of DLs is defined using a vocabulary consisting of countably infinite pair-
wise disjoint sets NC of atomic concepts, NR of atomic roles, and NI of individuals. A
role is either atomic or an inverse role r−, r ∈ NR. The syntax and semantics of complex
concepts and axioms are defined in Table 1. Note that we omit the presentation of some
features (e.g., datatypes) and restrictions (e.g., number restrictions may not use “com-
plex roles”, i.e., roles that occur on the right-hand side of role chains or are implied
by such roles) for brevity. A knowledge base/ontology K is a finite set of axioms. One
typically distinguishes terminological axioms in the TBox T (e.g., C v D) and asser-
tions in the ABox A (e.g., C(a)) of K , i.e., K = (T ,A). We use inds(K) to refer to
the individuals of K . An interpretation I = (∆I, ·I) consists of a non-empty domain
∆I and an interpretation function ·I. We say that I satisfies a general concept inclusion
(GCI) C v D, written I |= C v D, if CI ⊆ DI (analogously for other axioms and asser-
tions as shown in Table 1). If I satisfies all axioms of K , I is a model of K and K is
consistent/satisfiable if it has a model.

A tableau algorithm decides the consistency of a knowledge base K by trying to
construct an abstraction of a model for K , a so-called completion graph. A completion
graph G is a tuple (V, E,L, ,̇), where each node v ∈ V (edge 〈v,w〉 ∈ E) represents
one or more (pairs of) individuals. Each node v (edge 〈v,w〉) is labelled with a set of
concepts (roles), L(v) (L(〈v,w〉)), which the individuals represented by v (〈v,w〉) are
instances of. The relation ,̇ records inequalities between nodes. We call C ∈ L(v)
(r ∈ L(〈v,w〉)) a concept (role) fact, which we write as C(v) (r(v,w)). A node v is a
nominal node if {a} ∈ L(v) for some individual a and a blockable node otherwise. For
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r ∈ L(〈v,w〉) and r v∗ s, with v∗ the reflexive, transitive closure over role inclusions of
K (including their inverses), we call w an s-successor of v and v an s-predecessor of w.
A node w is called an s-neighbour of v if w is an s-successor of v or v an s−-successor
of w. We use ancestor and descendant as the transitive closure of the predecessor and
successor relation, respectively. We say that vn is an implied descendant of v0 if there
is a path v0, v1, . . . , vn such that vi+1 is a successor of vi for 0 ≤ i < n and each v j with
j > 0 does not represent an individual of inds(K).

A completion graph is initialised with one node for each individual in the input
knowledge base. Concepts and roles are added to the node and edge labels as speci-
fied by concept and role assertions. For simplicity, we assume that, for each individual
a ∈ inds(K), a nominal {a} is added to L(va). This allows for easily handling equality
assertions by adding {b} toL(va) for a ≈ b ∈ A. As a convention, we write va to refer to
the node representing a ∈ inds(K), i.e., {a} ∈ L(va). Note that va and vb can refer to the
same node if {a} and {b} are in its label. Complex concepts are then decomposed using a
set of expansion rules, where each rule application can add new concepts to node labels
and/or new nodes and edges, thereby explicating the structure of a model. The rules are
applied until either the graph is fully expanded (no more rules are applicable), in which
case the graph can be used to construct a model that is a witness to the consistency
of K , or an obvious contradiction (called a clash) is discovered (e.g., a node v with
C,¬C ∈ L(v)), proving that the completion graph does not correspond to a model. K
is consistent if the rules (some of which are non-deterministic) can be applied such that
they build a fully expanded, clash-free completion graph. Cycle detection techniques
such as pairwise blocking [11] prevent the infinite generation of new nodes.

3 Caching Individual Derivations

Since tableau-based reasoning algorithms reduce (most) reasoning tasks to consistency
checking, parallelising the completion graph construction has general benefits on the
now ubiquitous multi-core processor systems. Partitioning the ABox upfront such that
no or little interaction is required between the partitions [19] no longer works for ex-
pressive DLs, such as SROIQ, or complex reasoning tasks, such as conjunctive query
answering (with complex concepts and/or existential variables). This is, for example,
due to implied connections between individuals (e.g., due to nominals) or due to the
consideration of new concept expressions at query time. The effect of parallelisation
is further hindered by the multitude of optimisations, required to properly deal with
real-world ontologies, which often introduce dependencies between rules and (parts of)
completion graphs, resulting in the need of data synchronisation. For example, the any-
where blocking optimisation (cycle detection) investigates all previously constructed
nodes in the completion graph in order to determine whether a node is blocked. Hence,
a parallelisation approach where a completion graph is modified in parallel can be dif-
ficult to realise since it could require a lot of synchronisation.

For ontologies with large ABoxes, it seems more suitable to build completion graphs
for parts of the ABox separately (by independent threads) and, since independence of
the parts cannot be assumed, to align the results afterwards. Such an alignment can,
however, be non-trivial on several levels: For example, if different non-deterministic
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decisions have been made for individuals in overlapping parts or due to technical details
of the often complex data structures for completion graphs, e.g., efficient processing
queues, caching status of node labels, etc.

Our parallelisation approach focuses on aligning completion graphs for ABox parts
and we address the challenges by employing a cache for certain derivations for indi-
viduals, which facilitates the alignment process. For this, consistency checking roughly
proceeds as follows: We randomly split the ABox into equally sized parts that are dis-
tributed to worker threads. When a thread begins to process one of these ABox parts,
it retrieves stored derivations from the cache for (possibly) affected individuals in that
part. The thread then tries to construct a fully expanded and clash-free local comple-
tion graph for the ABox part by reusing cached derivations and/or by expanding the
processing to individuals until they are “compatible” with the cache. Compatibility re-
quires that the local completion graph is fully expanded as well as clash-free and that
it can be expanded such that it matches the derivations for the remaining individuals in
the cache. If it is required to extend the processing to some “neighbouring” individuals
for achieving compatibility (e.g., if different non-deterministic decisions are required
for the already processed individuals), then also the cached derivations for these indi-
viduals are retrieved and considered. If this process succeeds, the cache is updated with
the new or changed derivations for the processed individuals.

If compatibility cannot be obtained (e.g., due to expansion limitations that ensure
similarly sized work packages), then the cache entries of incompletely handled indi-
viduals are marked such that they are considered later separately. For this, a thread
loads the data for (some) marked individuals and tries to construct a fully expanded
and clash-free completion graph for them until full compatibility is obtained. If clashes
occur that depend on reused (non-deterministic) derivations from the cache, then the
corresponding individuals can be identified such that their expansion can be prioritized
and/or the reuse of their derivations can be avoided. As a result, (in)consistency of the
knowledge base can eventually be detected, as soon as all problematic individuals are
directly expanded and all relevant non-deterministic decisions are investigated together.

Before describing the different aspects of the approach and the work-flow in more
detail, we define a basic version of the cache and how derivations are stored and used.

Definition 1 (Individual Derivations Cache). Let K be a knowledge base. We use
fclos(K), rols(K), and inds(K) for the sets of concepts, roles, and individuals that can
occur in K or in a completion graph for K . An individual derivations cache C is a
(partial) mapping of individuals from inds(K) to cache entries, where the cache entry
for an individual a ∈ inds(K) consists of:

• KC ⊆ 2fclos(K) and PC ⊆ 2fclos(K): the sets of known and possibly instantiated con-
cepts of a, respectively,

• I ⊆ 2inds(K): the individuals that are (indirectly) connected via nominals to a,
• ∃ : rols(K) → IN0: mapping a role r to the number of existentially derived succes-

sors for a and r, and
• KR : rols(K) → 2inds(K) and PR : rols(K) → 2inds(K): mapping a role r to the sets

of known and possible neighbours of a and r, respectively.

We write KC(a,C), PC(a,C), I(a,C), ∃(a,C), KR(a,C), and PR(a,C) to refer to the in-
dividual parts of the cache entry C(a). We write a ∈ C if C is defined for a.
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Note that we distinguish between known and possible information in the cache, which
mostly correspond to the deterministically and non-deterministically derived conse-
quences in completion graphs. Non-deterministically derived facts in completion graphs
can usually be identified via branching tags for dependency directed backtracking [2,17].
If the cache is clear from the context, we simply write KC (a) or KR(a)(r), where the lat-
ter returns the known (deterministically derived) r-neighbours of a.

Let K = (T ,A) be a knowledge base and A j ⊆ A the processed ABox part. In
addition to the usual initialisation of a completion graph G = (V, E,L, ,̇) for K =

(T ,A j), we add KC (a) to L(va) and r to L(〈va, vb〉) if b ∈ KR(a)(r), for each va, vb ∈ V .
If a node v ∈ V exists with {c} ∈ L(v) or ¬{c} ∈ L(v), but vc < V , then we add vc with
{c} ∈ L(vc) to V and initialise vc analogously. Once G is extended into a fully expanded
and clash-free completion graph, we identify the derivations for cache entries for each
individual a with va ∈ V . Since deterministically derived consequences remain valid for
all possible completion graphs, we update the corresponding cache entries by adding
the deterministically derived consequences, e.g., for KC , whereas non-deterministically
derived consequences may change and, thus, replace existing cache entries, e.g., for
PC . A completion graph for (T ,A j) is compatible with the cache if it can be extended
to a fully expanded and clash-free completion graph for (T ,A1 ∪ . . . ∪ A j), where
A1 ∪ . . . ∪ A j−1 are the previously processed (and cached) ABox parts. As argued
above, this might require the integration and processing of individuals from the cache
during the completion graph expansion. Hence, we define when individuals in the cache
potentially influence or are influenced by the completion graph.

Definition 2 (Cache Influence and Compatibility). Let K = (T ,A) be a knowledge
base, G = (V, E,L, ,̇) a completion graph for (T ,A j) with A j ⊆ A, and va ∈ V. We
use #exrolsr(va) for the number of r-neighbours of va that do not represent an individual
of inds(K) and neighbr(va) for the r-neighbours of va that represent an individual of
inds(K). For an individual derivations cache C (c.f. Def. 1), an individual b ∈ C with
vb < V is potentially influenced by G if

D1 ∀r.C ∈ L(va), b ∈ KR(a)(r) ∪ PR(a)(r), and C < KC (b) ∪ PC (b);
D2 6n r.C ∈ L(va), b ∈ KR(a)(r) ∪ PR(a)(r), and {C,¬C} ∩ (KC (b) ∪ PC (b)) = ∅;
D3 6n r.C ∈ L(va), b ∈ KR(a)(r)∪PR(a)(r), and #[{d | d ∈ KR(c)(r)∪PR(c)(r) with {c} ∈
L(va)} ∪ neighbr(va)] + #exrolsr(va) > n;

D4 b ∈ I(a) and C ∈ L(va),C < KC (a) ∪ PC (a) or 6n r.C ∈ L(va) with ∃(a)(r) > 0; or
D5 {c} ∈ L(va), {c} < KC (a)∪PC (a), a ∈ KR(b)(r)∪PR(b)(r) and c < KR(b)(r)∪PR(b)(r)

or b ∈ KR(a)(s) ∪ PR(a)(s) and b < KR(c)(s) ∪ PR(c)(s).

An individual b ∈ C with vb < V is potentially influencing the completion graph G if
G1 b ∈ PR(a)(r);
G2 b ∈ KR(a)(r), C ∈ PC (a), C < L(va);

G3 b ∈ I(a), C ∈ PC (a), C < L(va); or
G4 {a} ∈ PC (b) or ¬{a} ∈ PC (b);

We say that G is compatible with a cache C if there is no individual b that is potentially
influenced by G or potentially influencing G.

Roughly speaking, an individual is potentially influenced by a completion graph if
integrating it into the completion graph could lead to new consequences being propa-
gated to it. In contrast, an individual potentially influences a completion graph if the
integration of it could result in new consequences for the local completion graph.
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The conditions for determining influenced individuals have a strong correspondence
with the tableau expansion rules (cf. [11]). In fact, Condition D1, D2, and D3 basically
check whether the ∀-, the choose-, or the 6-rule could potentially be applicable, i.e.,
whether the handling of ∀r.C or 6 r n.C concepts requires the consideration of neigh-
bours from the cache. The first part of Condition D4 further checks whether some in-
dividual is indirectly connected to a via a nominal for an implied descendant for an
individual b and whether new consequences could be propagated to that descendant.
This could be the case if the label for a differs to the concepts for a in the cache. The
second part handles potential cases where new nominals may have to be introduced
and may influence b or descendants of b. Finally, Condition D5 ensures that neighbours
are integrated if individuals are newly merged such that their neighbour relations in the
cache can be updated.

Instead of mirroring Conditions D1–D4 for determining influencing individuals, we
use the relatively simple Conditions G1–G4 since they allow for simpler data structures
and efficient cache updates. Condition G1 and G2 simply check whether some possible
instances are missing in the local completion graph, which may stem from a neigh-
bouring individual from the cache. Condition G3 analogously checks for a potentially
influencing individual b that is indirectly connected via the nominal {a} in the label of
an implied descendant of b. Condition G4 checks for merges and inequality information
caused by non-deterministically derived nominal expressions for other individuals.

The following example, inspired by the well-known UOBM ontology, illustrates
consistency checking with the cache.

Example 1. Suppose an ABox consisting of the two parts:

A1 = { ∀enr−.(∀takes.GC t ∀takes.UGC)(uni), likes(stud, soccer), enr(stud, uni),
∀likes−.SoccerFan(soccer), takes(stud, course)},

A2 = { ∃hc.∃likes.{soccer}(prof), teaches(prof, course),
∀teaches.∀takes−.¬TennisFan(prof), likes(prof, soccer)}.

We abbreviate Undergraduate Course as UGC, Graduate Course as GC, enrolled in
as enr, has child as hc, and student as stud. For checking A1, we initialise a comple-
tion graph with nodes and edges that reflect the individuals and assertions in A1 (cf.
upper part of Figure 1). To satisfy the universal restriction for vsoccer, we apply the ∀-
rule, which propagates SoccerFan to vstud. Analogously, the universal restriction for vuni

propagates ∀takes.GC t ∀takes.UGC to vstud. We assume that the disjunct ∀takes.GC
is checked first, i.e., it is non-deterministically added to L(vstud). Then the concept GC
is propagated to vcourse. The completion graph forA1 is now fully expanded and clash-
free. We next extract the data for the cache (as shown in the lower part of Figure 1).

The completion graph forA2 is analogously initialised (cf. upper part of Figure 2).
For the concept ∃hc.∃likes.{soccer} ∈ L(vprof), the ∃-rule of the tableau algorithm
builds a blockable hc-successor for vprof with ∃likes.{soccer} in its label, for which
another successor is created that is merged with vsoccer (due to the nominal) lead-
ing to the depicted edge to vsoccer. Due to the universal restriction ∀likes−.SoccerFan
in L(vsoccer), SoccerFan is propagated to v1 and to vprof. For the universal restriction
∀teaches.∀takes−.¬TennisFan ∈ L(vprof), we propagate ∀takes−.¬TennisFan to vcourse.
Now, there are no more tableau expansion rules applicable to the constructed com-
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vuni
{{uni},∀enr−.(∀takes.GC t ∀takes.UGC)}

vstud

{
{stud}, SoccerFan,∀takes.GC t
∀takes.UGC,∀takes.GC

}
vcourse
{{course},GC}

vsoccer
{{soccer},∀likes−.SoccerFan}

enr takes

likes

uni KC {uni}, ∀enr−.(∀takes.GC t ∀takes.UGC) PC – I –
KR enr− 7→ {stud} PR – ∃ –

stud KC {stud}, SoccerFan,∀takes.GC t ∀takes.UGC PC ∀takes.GC I –
KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {soccer} PR – ∃ –

course KC {course} PC GC I –
KR takes− 7→ {stud} PR – ∃ –

soccer KC {soccer},∀likes−.SoccerFan PC – I –
KR likes− 7→ {stud} PR – ∃ –

Fig. 1: Local completion graph (upper part) and entries of the individual derivations
cache (lower part) for handling ABoxA1 of Example 1

pletion graph, but it is not yet compatible with the cache and we have to integrate
(potentially) influenced or influencing individuals. In fact, course causes two incompat-
ibilities: On the one hand, Condition D1 identifies stud as (potentially) influenced due
to ∀takes−.¬TennisFan ∈ L(vcourse) and because stud is a takes−-neighbour of course
according to the cache (cf. Figure 1). On the other hand, Condition G2 is satisfied
(since GC < L(vcourse) but GC ∈ PC (course)) and, therefore, the neighbour stud listed
in KR(course)(takes−) is identified as potentially influencing. We integrate stud by cre-
ating the node vstud, by adding the concepts {stud} and ∀takes.GC t ∀takes.UGC from
the cache to L(vstud), and by creating an edge to vcourse labelled with takes as well as an
edge to vsoccer labelled with likes. Now, the rule application for ∀takes−.¬TennisFan ∈
L(course) propagates ¬TennisFan to vstud. In addition, by reprocessing the disjunction
∀takes.GC t ∀takes.UGC for vstud, we obtain GC ∈ L(vcourse) if the same disjunct is
chosen. As a result, the completion graph is fully expanded and clash-free w.r.t.A2 and
it is compatible with the cache. Hence, the cache can be updated resulting in the entries
depicted in the lower part of Figure 2. Note that only vuni has not been integrated in the
completion graph forA2, but there is usually a bigger gain for larger ABoxes.

For parallelising the work-flow with the cache, one has to update and use the entries
in a consistent/atomic way such that the state is clear. This can efficiently (and asyn-
chronously) be realised by associating an update id with each cached individual and
allow them to have an “inconsistent state” in the cache (see technical report for details).
If an update extracted from a constructed completion graph refers to a cache entry of an
individual with a changed update id (i.e., the cache entry has been changed by another
thread), then the non-deterministically derived consequences are simply added and the
state of the individual is set inconsistent (e.g., by adding ⊥ to PC (a)). If all parts of
the ABox are processed, then we repeatedly retrieve individuals with inconsistent states
from the cache and reprocess them until compatibility is achieved. Repeatedly deriv-
ing different consequences for individuals and correspondingly updating the cache in
parallel can, however, threaten termination of the procedure. To retain termination, we
simply increase the number of individuals that are processed by one thread such that, in
the worst-case, all individuals with inconsistent states are eventually processed together.
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vstud


{stud}, SoccerFan,

∀takes.GC t ∀takes.UGC,
¬TennisFan,∀takes.GC



vcourse
{{course},∀takes−.¬TennisFan, GC}

vsoccer
{{soccer}, ∀likes−.SoccerFan}

vprof


{prof},∃hc.∃likes.{soccer},
∀teaches.∀takes−.¬TennisFan,

SoccerFan


v1
{∃likes.{soccer}, SoccerFan}

teaches

likes hclikes
likes

takes

uni KC {uni}, ∀enr−.(∀takes.GC t ∀takes.UGC) PC – I –
KR enr− 7→ {stud} PR – ∃ –

stud
KC {stud}, SoccerFan,∀takes.GC t ∀takes.UGC, PC ∀takes.GC I –
¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {soccer} PR – ∃ –
course KC {course},∀takes−.¬TennisFan PC GC I –

KR takes− 7→ {stud},teaches− 7→ {prof} PR – ∃ –
soccer KC {soccer},∀likes−.SoccerFan PC – I prof

KR likes− 7→ {stud,prof} PR – ∃ likes− 7→ 1

prof
KC {prof},∃hc.∃likes.{soccer}, PC – I –
∀teaches.∀takes−.¬TennisFan, SoccerFan

KR teaches 7→ {course} PR – ∃ hc 7→ 1

Fig. 2: Local completion graph (upper part, expansions from cache due to incompatibil-
ities in red) and entries of the individual derivations cache (lower part, changes in blue)
for handling ABoxA2 of Example 1

A naive expansion to all influenced individuals can cause a significant work imbal-
ance for knowledge bases that use complex roles or have intensively connected individ-
uals. In fact, if many neighbour individuals are influenced by universal restrictions or
by the merging of nodes, then the expansion to all of them could result in an enormous
completion graph processed by one thread, which could limit the effectiveness of the
parallelisation. This can be addressed by “cutting the propagation” in the completion
graph, for which we then notify the cache that the states of the remaining individuals
have to be considered inconsistent such that their processing can be continued later.
This cannot avoid the (theoretical) worst-case of processing the whole knowledge base
in the end, but it seems to work well for many real-world ontologies, as indicated by
our evaluation.

4 Query Answering Support

Compared to other more sophisticated reasoning tasks, conjunctive query answering is
typically more challenging since an efficient reduction to consistency checking is not
easy. However, a new approach for answering (conjunctive) queries has recently been
introduced, where the query atoms are “absorbed” into several simple DL-axioms [13].
These “query axioms” are of the form C v ↓x.Sx, Sx v∀r.Sx

r , Sx u Av Sx
A, and Sx u Sy v

Sxy, where ↓x.Sx is a binder concept that triggers the creation of variable mappings in
the extended tableau algorithm and S (possibly with sub- and/or superscripts) are so-
called query state concepts that are associated with variable mappings, as defined in the
following, in order to keep track of partial matches of the query in a completion graph.
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Definition 3 (Variable Mappings). A variable mapping µ is a (partial) function from
variable names to nodes. Let G = (V, E,L, ,̇,M) be an (extended) completion graph,
whereM(C, v) denotes the sets of variable mappings that are associated with a concept
C in L(v). A variable mapping µ1 ∪ µ2 is defined by setting (µ1 ∪ µ2)(x) = µ1(x) if x is
in the domain of µ1, and (µ1 ∪ µ2)(x) = µ2(x) otherwise. Two variable mappings µ1 and
µ2 are compatible if µ1(x) = µ2(x) for all x in the domain of µ1 as well as µ2. The join
M1 1M2 between the sets of variable mappingsM1 andM2 is defined as:

M1 1M2 = {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2 and µ1 is compatible with µ2}.

Rules of the extended tableau algorithm are shown in Table 2 (without considering
blocking), which handle the new axioms and concepts by correspondingly creating and
propagating variable mappings. For example, a binder concept ↓x.Sx ∈ L(v) is handled
by adding Sx to L(v) and by creating a mapping {x 7→ v} that is associated with Sx

for v, i.e., {x 7→ v} ∈ M(Sx, v). Although conjunctive query answering with arbitrary
existential variables is still open for SROIQ, the approach works for knowledge bases
where only a limited number of new nominal nodes is enforced (by using an extended
analogous propagation blocking technique) [13], which is generally the case in practice.

As an example, a simple query with only the atoms r(x, y) and s(y, x) (with x, y
both answer variables) can systematically be absorbed into the axioms > v ↓x.Sx, Sx v

∀r.Sx
r , Sx

r v ↓y.S
y, Sx

r u Sy v Sxy, Sxy v ∀s.Sxy
s , and Sxy

s u Sx v Sxyx. The query state
concept Sx

r , for example, represents the state where bindings for x are propagated to
r-successors, i.e., r(x, y) is satisfied. For bindings that are propagated back over s-edges
via ∀s.Sxy

s , the final binary inclusion axiom checks whether the cycle is closed. If it is,
the joined variable mappings are associated with Sxyx from which answer candidates
can be extracted once a fully expanded and clash-free completion graph is found.

Note that with sophisticated absorption techniques, variable mappings can often be
derived deterministically, i.e., they directly constitute query answers. Non-determinis-
tically obtained variable mappings do, however, require a separate entailment check to
verify that there exist no counter example with the query variables equally bound as in
the non-deterministically derived variable mapping. This can be realised by restricting
the generated binder concepts of the absorption process to only create corresponding
bindings and by triggering a clash with the additional axiom Sxyx v ⊥.

While query answering by absorption is able to process queries for many (expres-
sive) real-world ontologies [13], especially queries with existential variables can require
a substantial amount of computation. A significant bottleneck is often the (variable
mappings) propagation task, i.e., the creation and propagation of the variable mappings
to get all potential answers from a completion graph. Building and using completion
graphs for partial ABoxes (possibly in parallel) is difficult since it is unclear which
joins of bindings can occur in answers and, hence, how the ABox can suitably be parti-
tioned. The individual derivations cache can, however, also help to split the propagation
work for variable mappings such that each thread can completely determine a few an-
swer candidates over a part of the ABox. This enables (a uniform) parallelisation of the
propagation task. Note that a partitioning of individuals for the first variable can be used
for a naive parallelisation: We create several propagation tasks and restrict the ↓-rule to
bind the first variable only to the individuals of the handled partition. This can, however,
lead to a work imbalance if many answers are based on the same individual for the first
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Table 2: Tableau rule extensions
↓-rule:

if ↓x.C ∈ L(v), and C < L(v) or {x 7→ v} <M(C, v)
thenL(v) = L(v)∪{C},M(C, v) =M(C, v)∪{{x 7→ v}}

∀-rule:
if ∀r.C ∈ L(v), there is an r-neighbour w of v with

C < L(w) orM(∀r.C, v) *M(C,w)
thenL(w) = L(w) ∪ {C}, M(C,w) = M(C,w) ∪
M(∀r.C, v)

v1-rule:
if Sx1 ...xn v C ∈ K , Sx1 ...xn ∈ L(v), and C < L(v) or
M(Sx1 ...xn , v) *M(C, v)

thenL(v) = L(v) ∪ {C}, M(C, v) = M(C, v) ∪
M(Sx1 ...xn , v)

v2-rule:
if Sx1 ...xn u A v C ∈ K , {Sx1 ...xn , A} ⊆ L(v), and

C < L(v) orM(Sx1 ...xn , v) *M(C, v)
thenL(v) = L(v) ∪ {C}, M(C, v) = M(C, v) ∪
M(Sx1 ...xn , v)

v3-rule:
if Sx1 ...xn

1 u Sy1 ...ym
2 v C ∈ K , {Sx1 ...xn

1 , Sy1 ...ym
2 } ⊆ L(v),

and (M(Sx1 ...xn
1 , v) 1M(Sy1 ...ym

2 , v)) *M(C, v)
thenL(v) = L(v) ∪ {C}, M(C, v) = M(C, v) ∪

(M(Sx1 ...xn
1 , v) 1M(Sy1 ...ym

2 , v))

Algorithm 1 recPropTask(R, i)
Input: Variable binding restrictions R

and the index of the next to be han-
dled variable

1: if i ≤ n then
2: B← recPropTask(R, i + 1)
3: for each x j with 1 ≤ j < i do
4: R(x j)← B(x j)
5: end for
6: while |B(xi)| ≥ l do
7: R(xi)← R(xi) \ B(xi)
8: Bt ← recPropTask(R, i + 1)
9: B(xi)← Bt(xi)

10: end while
11: B(xi)← ∅
12: else
13: G ← buildComplGraph(R, l)
14: C ← C ∪ answerCands(G)
15: B← extractBoundIndis(G)
16: end if
17: return B . Returning

the bound individuals from the last
constructed completion graph

variable and we cannot easily impose restrictions for the other variables since we do not
know which combinations of individuals can occur in answers.

We can, however, use a dynamic approach, where we limit the number of indi-
viduals to which a variable can be bound. Each individual bound to such a “binding-
limited” variable is recorded and in the next propagation task we exclude bindings to
already tested individuals. This can, for example, be realised with the recursive function
recPropTask sketched in Algorithm 1, which takes as input a mapping R from variables
to (still) allowed bindings for individuals and the index i of the current variable (assum-
ing that the variables are sorted in the order in which they are absorbed). The function
accesses and modifies some variables via side effects, namely l, denoting the limit for
the number of allowed bindings for each variable, n, standing for the number of vari-
ables in the query, and C, denoting the set of answer candidates. The function is initially
called with R(x) = inds(K) for each variable x in the query and with i = 1 such that the
restrictions for the first variable are managed first. As long as there are more variables to
handle, the function calls itself recursively for the next variable (cf. Line 2) and checks
for the returned sets of bound individuals, denoted with B, from the last generated com-
pletion graph whether the limit l has been reached for the current variable. If this is the
case, then the bindings for previous variables are “frozen”, i.e., they are interpreted as
the only allowed bindings (cf. Line 3–5), and the used bindings for the current variable
are excluded for the next propagation task (cf. Line 7). This ensures that all combina-
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tions are tested step-by-step and that each propagation task only creates and propagates
a limited amount of variable mappings. In fact, if the restrictions for all variables are
set, then they are used for constructing the next completion graph (Line 13), where R
and l are checked by an adapted ↓-rule. Subsequently, we can extract the found answer
candidates (Line 14) and the individuals that have been used for bindings (Line 15).

Note that the concepts from the query absorption typically cause an expansion of
the local completion graph due to influence criteria, e.g., if ∀r.Sx

r is in the label of some
node, then Condition G1 identifies all r-neighbours from the cache as (potentially) in-
fluenced and the corresponding nodes need to be integrated into the completion graph to
propagate the associated variable mappings to them. This can result in significant prop-
agation work, in particular, for complex roles and individuals with many neighbours.
Moreover, exhausted binding restrictions for the next variable might prevent us from
actually using the mappings. To address this, one can impose propagation restrictions
for universal restrictions of the form ∀r.Sx

r such that the local completion graph is only
expanded to nodes for which bindings are possible for the next variable. This can easily
be implemented by adapting the query absorption to annotate universal restrictions with
the variable of the role atom to which the propagation occurs. For example, a concept
of the form ∀r.Sx

r resulting from the query atom r(x, y) is annotated with y, denoted as
∀r→y.Sx

r . Condition D1 is then adapted to only identify individuals as influenced that are
allowed as bindings for the labelled variable of the universal restriction.

Definition 4 (Query Propagation Influence). Let G = (V, E,L, ,̇,M) be an (ex-
tended) completion graph for a knowledge base K , C an individual derivations cache
(c.f. Def. 1), va ∈ V a node representing the individual a, and y a query variable. A
restriction set R(y) ⊆ inds(K) for y restricts the individuals to which y can be bound,
i.e., only to a node va if a ∈ R(y). An individual b ∈ C such that no node in V contains
{b} in its label is (query propagation) influenced if

Q1 ∀r→y.S
x1,...,xn
r ∈ L(va), b ∈ KR(a)(r) ∪ PR(a)(r), and b ∈ R(y).

As mentioned, if the restrictions for a variable are not known upfront, then one can
collect them dynamically by only imposing a limit for the number of individuals for the
restriction set. While we check whether an individual b is query propagation influenced
w.r.t. a variable y and the amount of individuals in the restriction set R(y) is less than
the limit, we simply add b to R(y) such that Condition Q1 is satisfied. Analogously, we
add b to R(y) when we test whether we can bind y to b for ↓-concepts and the limit
is not yet reached. When the limit is reached, no more individuals are added to the
restriction set and, therefore, no other (combinations of) variable mappings are created
and the completion graph is not further expanded to other individuals. The collected
restrictions are then used in the next propagation task to enforce the exploration of
other (combinations of) variable mappings. Note, however, that steering the expansion
with the query propagation influence condition cannot straightforwardly be used for
roles with recursive role inclusion axioms (e.g., transitive roles) due to the unfolding
process and since it would be too restrictive. One could possibly improve the handling
for complex roles with non-trivial adaptations to the tableau algorithm, but it is unclear
whether this is worth the effort. In particular, even if the individuals are expanded, the
binding restrictions are already adhered to by the ↓-rule and one can simply prioritise
the absorption of other roles first.
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5 Implementation and Experiments

We implemented the individual derivations cache with the sketched extensions in the
tableau-based reasoning system Konclude with minor adaptations to fit the architec-
ture and the optimisations of Konclude. In particular, we use Konclude’s efficient, but
incomplete saturation procedure [15] to initialise the cache entries for all individuals.
If completeness of the saturation cannot be guaranteed for an individual, we mark the
corresponding cache entry as inconsistent such that it is reprocessed with the tableau
algorithm. Parallel processing (via small batches) is straightforward for the saturation
as individuals with their assertions are handled separately. This automatically leads to
a very efficient handling of the “simple parts” of an ABox and it only remains to imple-
ment the (repeated) reprocessing of individuals with inconsistent cache entries.

Since tableau algorithms are usually quite memory intensive, scalability of the par-
allelisation not only depends on the CPUs but also on the memory bandwidth and ac-
cess. Hence, the memory allocator must scale well and the data must be organised in a
way that allows for effectively using the CPU caches (e.g., by writing the data of entries
with one thread in cohesive memory areas). We investigated different memory alloca-
tors (hoard, tcmalloc, jemalloc) and integrated jemalloc [7] since it seems to work best
in our scenario. The worker threads for constructing completion graphs only extract the
data for cache updates. A designated thread then integrates the cache updates, based
on the update ids introduced on page 8, which reduces blocking, improves memory
management, and allows for more sophisticated update mechanisms.

To further improve the utilisation of multi-processor systems and to avoid bottle-
necks, we also parallelised some other processing steps, e.g., parsing of large RDF triple
files, some preprocessing aspects (i.e., extracting internal representations from RDF
triples), and indexing of the cache entries for retrieving candidates for query answering.
Also note that some higher-level reasoning tasks of Konclude are already (naively) par-
allelised by creating and processing several consistency checking problems in parallel.

For evaluating the approach,1 we used the large ontologies and the appertaining
queries from the PAGOdA evaluation [21], which includes the well-known LUBM
and UOBM benchmarks as well as the real-world ontologies ChEMBL, Reactome, and
Uniprot2 from the European Bioinformatics Institute. To improve the evaluation w.r.t.
the computation of large amounts of answers, we further include the queries from tests
for the datalog engine VLog [4], but we use them w.r.t. the original TBoxes. We run the
evaluations on a Dell PowerEdge R730 server with two Intel Xeon E5-2660V3 CPUs
at 2.4 GHz and 512 GB RAM under a 64bit Ubuntu 18.04.3 LTS. For security reasons
and due to multi user restrictions, we could, however, only utilise 480 GB RAM and 8
CPU cores of the server in a containerised environment (via LXD).

Metrics of the evaluated ontologies are depicted on the left-hand side of Table 3,
whereas the right-hand side shows the (concurrent) parsing times for the ontologies in
seconds, where K-1, K-2, K-4, and K-8 stand for the versions of Konclude, where 1,

1 Source code, evaluation data, all results, and a Docker image (koncludeeval/parqa) are avail-
able at online, e.g., at https://zenodo.org/record/4606566.

2 We evaluated query answering on a sample (denoted with Uniprot40) since the full Uniprot on-
tology (Uniprot100) is inconsistent and, hence, not interesting for evaluating query answering.

https://zenodo.org/record/4606566
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Table 3: Evaluated ontologies, number of queries (from the PAGOdA+VLog evalua-
tion), and parsing times with different number of threads in seconds (speedup factor in
parentheses)
Ontology DL #Axioms #Assertions #Q K-1 K-2 K-4 K-8

ChEMBL SRIQ(D) 3, 171 255.8 · 106 6 + 3 1830 935 (2.0) 497 (3.7) 268 (6.8)
LUBM800 ALEHI+(D) 93 110.5 · 106 35 + 3 363 184 (2.0) 102 (3.6) 56 (6.5)
Reactome SHIN(D) 600 87.6 · 106 7 + 3 66 34 (1.9) 19 (3.6) 11 (6.2)
Uniprot100 ALCHOIQ(D) 608 109.5 · 106 –2 409 229 (1.8) 119 (3.5) 63 (6.7)
Uniprot40 ALCHOIQ(D) 608 42.8 · 106 13 + 3 215 113 (1.9) 59 (3.6) 33 (6.5)
UOBM500 SHIN(D) 246 127.4 · 106 20 + 0 431 227 (1.9) 121 (3.5) 66 (6.5)

2, 4, and 8 threads are used, respectively. Since the parallel parsing hardly requires any
synchronisation and only accesses the memory in a very restricted way, it can be seen
as a baseline for the achievable scalability (there are minor differences based on how
often the different types of assertions occur).

The left-hand side of Table 4 shows the (concurrent) pre-computation times, i.e.,
the time that is required to get ready for query answering after parsing the ontology,
which includes the creation of the internal representation, preprocessing the ontology
(e.g., absorption), saturating the concepts and individuals, repeatedly reprocessing the
individuals with inconsistent cache entries, classifying the ontology, and preparing data
structures for an on-demand/lazy realization. Consistency checking clearly dominates
the (pre-)computation time such that the other steps can mostly be neglected for the
evaluation (e.g., classification takes only a few milliseconds for these ontologies). As
shown in Table 4, our parallelisation approach with the individual derivations cache is
able to significantly reduce the time required for consistency checking, but the scala-
bility w.r.t. the number of threads depends on the ontology. For LUBM and ChEMBL,
the approach scales almost as well as the parsing process, whereas the scalability w.r.t.
Reactome seems limited. The Reactome ontology intensively relies on (inverse) func-
tional roles such that many and large clusters of same individuals are derived in the
reasoning process. With a naive implementation of the cache, we would store, for each
individual in a cluster, all derived neighbour relations, which easily becomes infeasible
if large clusters of same individuals are linked. For our implementation of the cache,
we identify and utilise representative individuals to store the neighbour relations more
effectively, but we require consistent cache entries for this. If the clusters of same in-
dividuals are updated in parallel, which often leads to inconsistent cache entries, more
neighbour relations must be managed and, thus, the parallelisation of ontologies such
as Reactome only works to a limited extent with the current implementation. Also note
that the enormous amounts of individuals in these ontologies make it impossible for the
previous version of Konclude to build full completion graphs covering the entire ABox,
i.e., the version of Konclude without the cache quickly runs out of memory for these
ontologies. Also note that the individuals from the cache are mostly picked in the order
in which they are indexed, i.e., more or less randomly due to hashing of pointers. Nomi-
nals, however, are indexed first and, hence, are prioritised in the (re-)processing. Clearly,
the processing order can have a significant influence on how much (re-)processing is re-
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Table 4: (Pre-)computation and accumulated query answering times for the evaluated
ontologies with different numbers of threads in seconds (speedup factor in parentheses)

Ontology
(Pre-)computing Query answering

K-1 K-2 K-4 K-8 K-1 K-2 K-4 K-8

ChEMBL 2421 1244 (1.9) 663 (3.7) 397 (6.1) 12767 8927 (1.4) 4507 (2.8) 3231 (4.0)
LUBM800 2793 1658 (1.7) 831 (3.4) 437 (6.4) 2777 1829 (1.5) 1026 (2.7) 569 (4.8)
Reactome 1408 687 (2.0) 427 (3.3) 361 (3.9) 935 524 (1.8) 333 (2.8) 232 (4.0)
Uniprot100 1343 742 (1.8) 429 (3.1) 302 (4.4) N/A2 N/A2 N/A2 N/A2

Uniprot40 1090 532 (2.0) 289 (3.7) 198 (5.5) 28 21 (1.3) 16 (1.8) 14 (2.0)
UOBM500 1317 735 (1.8) 394 (3.3) 245 (5.4) 3774 1799 (2.1) 947 (4.0) 554 (6.8)

quired, but the runs for the evaluated real-world ontologies showed hardly any variance
since most consequences could be derived locally.

The right-hand side of Table 4 reveals the query answering times (and scalability),
accumulated for each ontology. Since not all steps are parallelised and the version of
Konclude with only one thread uses specialised and more efficient implementations
in some cases (e.g., an optimised join algorithm for results from several sub-queries,
whereas the parallelised version is based on several in-memory map-reduce steps),
query answering scalability leaves still room for improvement. Nevertheless, without
splitting the propagation tasks, several queries cannot be computed, i.e., the version of
Konclude without the presented (query answering) splitting techniques cannot answer
all of the queries within the given memory and time limits. Moreover, the parallelisa-
tion significantly improves the query answering times and the improvements are larger,
the more computation is required. As a comparison, PAGOdA requires 19, 666 s for
loading and preprocessing all ontologies and more than 101, 817 s for query answering,
where it reached the memory limit for one query and for two the time limit of 10 hours.

6 Conclusions

We show how the now ubiquitous multi-core processors can be used for parallelising
reasoning tasks such as consistency checking and (conjunctive) query answering for ex-
pressive Description Logics. For this, we split the assertional knowledge of an ontology
to similarly sized work packages for tableau-based reasoning. The technical foundation
is a cache that stores chosen consequences derived for individuals and appropriate ex-
pansion as well as cache maintenance strategies to ensure correctness and termination.
Our experiments with the reasoning system Konclude show promising performance im-
provements. The approach may even be a suitable basis for distributed reasoning in a
compute cluster, where cache entries are distributed over different machines, and for in-
cremental/stream reasoning, where a few assertions are (frequently) added or removed.
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