
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVED STOCHASTIC CONTROLLED AVERAGING
FOR DISTRIBUTED AND FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed and federated learning (D/FL) is a powerful machine learning (ML)
paradigm in which clients collaborate to train a model under the coordination of
a central server. Depending on the nature of clients, data in each client might
have the same distribution (called the homogeneous setting) or different distri-
butions (the heterogeneous setting). The state-of-the-art D/FL algorithm SCAF-
FOLD addresses the critical issue of data heterogeneity through the use of control
variables. However, while theoretical analysis suggests that the convergence rate
of SCAFFOLD is independent of data heterogeneity, the practical performance
of SCAFFOLD is often inconsistent in homogeneous and heterogeneous settings.
Motivated by the disagreement between theory and practice of SCAFFOLD, in
this work, we propose a novel D/FL algorithm to bridge this experimental perfor-
mance gap while preserving similar theoretical guarantees as SCAFFOLD. The
proposed algorithm accommodates arbitrary data heterogeneity, partial participa-
tion, local updates, and supports unbiased communication compression. Theoreti-
cally, we prove that our algorithm is unaffected by data heterogeneity and achieves
state-of-the-art convergence rate as SCAFFOLD. Furthermore, numerical exper-
iments indicate that our algorithm achieves consistent (similar) test accuracy in
both homogeneous and heterogeneous settings while often converges faster than
existing baselines.

1 INTRODUCTION

Distributed and federated learning (D/FL) has garnered significant attention due to its effectiveness
in the large-scale training of machine learning models (Kairouz et al., 2021). Data used in large-
scale training is typically dispersed across a wide variety of clients (or agents). In both settings,
a central server is used to orchestrate the local data processing of clients and their collaboration.
Under this scheme, the privacy of the clients’ data can be maintained as no explicit data is sent from
a client to a server (McMahan et al., 2017).

In practice, both paradigms face several key challenges that need to be addressed in algorithmic
development. First, not all clients are active at each training step. So, partial participation of clients
needs to be accounted for in these algorithms. In addition, the communication between clients and
the server is often the computational bottleneck, so D/FL algorithms often implement techniques
such as local updates and compression to reduce the overall communication costs.

Beyond the above common challenges faced by both distributed training and federated learning,
one key difference between these two scenarios is the source of clients (or agents). In distributed
training of machine learning (ML) models, high-performance computing resources are abstracted
as clients/agents. In this case, data are distributed mainly in order to facilitate parallel computing
and to accelerate model training. Therefore, data are distributed in a uniformly random manner,
as there is really no difference among those HPC resources. In contrast, clients in federated learn-
ing are different in nature, e.g., smartphones and IoT devices (Kairouz et al., 2021). Thus, the
data between clients naturally have different distributions, and this data heterogeneity has been ob-
served to affect the overall performance of existing algorithms if not accounted for in algorithmic
development (Khaled et al., 2020). Therefore, a distributed optimization algorithm that performs
consistently well in both homogeneous and heterogeneous settings are in urgent need for distributed
training and federated learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
rv
er
 a
cc
ur
ac
y

MNIST (IID)

ISCA
SCAFFOLD
FedAvg

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
rv
er
 a
cc
ur
ac
y

MNIST (Non-IID)

ISCA
SCAFFOLD
FedAvg

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
rv
er
 a
cc
ur
ac
y

FashionMNIST (IID)

ISCA
SCAFFOLD
FedAvg

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
rv
er
 a
cc
ur
ac

y

FashionMNIST (Non-IID)

ISCA
SCAFFOLD
FedAvg

Figure 1: Test accuracy of our algorithm (ISCA), SCAFFOLD, and FedAvg under data homoge-
neous (IID) and heterogeneous (Non-IID) settings. ISCA converges the fastest and achieves compa-
rable (if not better) test accuracy to FedAvg and SCAFFOLD.

FedAvg (McMahan et al., 2017) (as well as distributed stochastic gradient (DSGD) methods) has
emerged as one of the most popular classes of algorithms in distributed training and federated learn-
ing. The core idea of FedAvg (and DSGD) is to have clients perform several stochastic gradient
descent steps using their local data before a global aggregation period. Despite the simplicity of this
scheme, both theoretical and experimental findings show that the performance of FedAvg signifi-
cantly suffers when the data between clients is heterogeneous (Khaled et al., 2020; Li et al., 2020b).
To address this issue, the seminal algorithm SCAFFOLD (Karimireddy et al., 2020) employs local
control variables stored on each client alongside a global control variable determined by a central
server to correct the “client drift” that otherwise occurs when simply taking stochastic gradient de-
scent updates. Theoretical analysis reveals that the convergence rate of SCAFFOLD is irrespective
of the amount of data heterogeneity.

The promising theoretical findings of SCAFFOLD motivate our close study of its practical perfor-
mance. Unexpectedly, experimental results reveal that the theoretical benefits of SCAFFOLD do
not necessarily translate to performance gains in practice. In particular, in the MNIST dataset (see
Figure 1), the practical performance of SCAFFOLD is severely inconsistent in homogeneous and
heterogeneous settings. This behavior is surprising as theoretically the performance of SCAFFOLD
should be completely invariant to data heterogeneity. This observation motivates the following ques-
tion:

Can we design a distributed and federated learning (D/FL) algorithm of which both theoretical
and practical performance are unaffected by data heterogeneity?

Our closer examination of SCAFFOLD allows us to provide a concrete answer to this question
and leads to a new algorithm ISCA. First, during one epoch of local updates, SCAFFOLD keeps
updating local model parameters while keeping the local control variable fixed. This is undesirable
as the local control variable is supposed to track the evolvement of the local model. Second, in
SCAFFOLD, the local control variable is calculated using an ancient local model rather than the
newest one. In this work, the aforementioned two observations are leveraged to develop a novel
D/FL algorithm that not only possesses the theoretical guarantees of SCAFFOLD but also exhibits
consistent practical performance in both homogeneous and heterogeneous settings. We believe this
bridges the performance gap between SCAFFOLD and FedAvg we observe in the experiments.

1.1 MAIN RESULTS AND CONTRIBUTIONS

The main contributions of this work are summarized below.
• We develop an Improved Stochastic Controlled Averaging algorithm (ISCA) for distributed train-

ing and federated learning. The proposed algorithm accommodates local updates, partial partici-
pation, and arbitrary data heterogeneity. In particular, we highlight two key differences between
our algorithm ISCA and SCAFFOLD. First, ISCA updates the local control variable at every lo-
cal step using the newly computed stochastic gradient. Second, the local control variable clients
sent to the server is evaluated at the most recent client model parameter. This is in contrast to
SCAFFOLD in which the local control variable is not updated in local steps and is computed
using an ancient model parameter.

• The theoretical convergence rate of ISCA matches the state-of-the-art result for distributed and
federated learning (D/FL) algorithms with arbitrary data heterogeneity; see Table 1 for a brief
summary and comparison.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of theoretical convergence rates and practical performance of different FL
algorithms. Here, L is the Lipschitz constant of the true gradient, σ2 is the variance of the gradient
noise, R is related to the initial condition, N is the number of clients, S is the number of active
clients, K and T are the number of inner and outer iterations, respectively. The third column lists
the additional assumptions needed besides Assumptions 1 and 2.

Algorithm Convergence rate Assumption
Conv. rate vs.
heterogeneity

(theory)

Practical conv. vs.
heterogeneity

(practice)

FedAvg (McMahan et al., 2017) a
(

LRσ2

NKT

)1/2
+
(

LRζ
T

)2/3
+ LR

T Bounded hetero. ↘ b ↘

VRL-SGD (Liang et al., 2019)
(

LRσ2

NKT

)1/2
+
(

LRσ√
KT

)2/3
+ LR

T − − ↘

SCAFFOLD (Karimireddy et al., 2020)
(

LRσ2

SKT

)1/2
+ LR

T

(
N
S

)2/3 − − ↗ c

ISCA (Theorem 1)
(

LRσ2

SKT

)1/2
+ LR

T

(
N
S

)2/3 − − −

a The constant ζ is a uniform bound of data heterogeneity, i.e., 1
N

∑N
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ ζ2.

Other analyses of FedAvg exist, and all rely on certain forms of bounded heterogeneity assumptions.
b Worst-case rate is worse when data heterogeneity is more severe.
c The practical performance of SCAFFOLD can be much worse in the homogeneous setting.

• To further reduce communication overhead, we incorporate unbiased communication compres-
sion into the proposed ISCA algorithm and present ISCAM. We establish theoretical convergence
guarantees for ISCAM and show that the convergence rate matches the state-of-the-art result
(Huang et al., 2024).

• Numerical experiments are conducted to verify our theoretical findings. Overall, ISCA converges
faster than existing baselines. More importantly, the test accuracy achieved by ISCA is consistent
in both data homogeneous and heterogeneous settings and matches the theoretical results which
states that the convergence rate is independent of the level of heterogeneity.

1.2 RELATED WORK

The FedAvg algorithm was first introduced in the seminal work (McMahan et al., 2017) as an algo-
rithm that combines local stochastic gradient updates on clients with a server that performs model
averaging. Through extensive empirical studies, McMahan et al. (2017) establishes the effective-
ness of FedAvg as an FL algorithm that reduces the number of communication rounds needed to
train on decentralized data by orders of magnitude. Inspired by the promising experimental results
of FedAvg, extensive efforts have been made to analyze the convergence of FedAvg under various
settings. The works (Stich, 2019; Yu et al., 2019; Lin et al., 2020; Wang & Joshi, 2021) analyze Fe-
dAvg under the scenario in which the data between agents is homogeneous and all clients participate
during the global aggregation period. These analyses are also extended to the more practical setting
in which the data between clients are heterogeneous, and only part of the clients participate at each
iteration. It has been shown that the presence of data heterogeneity deteriorates the performance of
FedAvg because of the “client drift” phenomenon (Li et al., 2020b; Khaled et al., 2020; Karimireddy
et al., 2020).

An extensive body of work has been dedicated to addressing the issue of data heterogeneity between
clients. FedProx (Li et al., 2020a) adds a proximal term to the objective in order to endow the server
with a principled way to account for data heterogeneity. FedNova (Wang et al., 2020) handles data
heterogeneity by correctly weighing local models during the global averaging period. FedPD (Zhang
et al., 2021) is a meta-algorithm that takes inspiration from primal–dual based algorithms to handle
data heterogeneity. FedGATE (Haddadpour et al., 2021) leverages gradient tracking (Xu et al.,
2015; Lorenzo & Scutari, 2016; Nedić et al., 2017) to account for the data heterogeneity between
clients. The work (Cheng et al., 2024) reveals that FedAvg with momentum can converge without
making any assumption that bounds the data heterogeneity even when using a constant stepsize.
SCAFFOLD (Karimireddy et al., 2020) is among the most famous FL algorithms and leverages the
use of control variables stored on both clients and the server to correct the “client drift” that occurs
when clients naively take stochastic gradient updates.

Communication compression has been integrated into FL algorithms to further reduce communica-
tion costs. Examples of compressed FL methods include FedPAQ (Reisizadeh et al., 2020), Fed-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Comparison of compressed D/FL algorithms. Here, ω ∈ (0, 1] is the parameter for com-
pression (see Definition 1), N ∈ N is the number of clients, S ∈ [N] is the number of active clients,
and ϵ ∈ R++ is the suboptimality measure (i.e., E[∥∇f(x̂)∥2] ≤ ϵ). Communication complexity is
calculated via the convention in Fatkhullin et al. (2024); Huang et al. (2024). Other constants like
the Lipschitz constant and the variance σ2 of stochastic gradient estimates are omitted for clarity.

Algorithm
Communication

complexity
Partial

participation
Data

heterogeneity
Standard

compressibility

FedPAQ (Reisizadeh et al., 2020) N+ω
ϵS ✔ ✗ ✔

FedCOMGATE (Haddadpour et al., 2021) (1+ω)N
ϵS ✗ ✔ ✗

VR-MARINA (Gorbunov et al., 2021)
√
N+ω
ϵS ✗ ✔ ✔

SCALLION (Huang et al., 2024) (1+ω)N
ϵS ✔ ✔ ✔

ISCAM (Theorem 1) (1+ω)N2/3

ϵS2/3 ✔ ✔ ✔

COMGATE (Haddadpour et al., 2021), SCALLION (Huang et al., 2024). (Here, we focus on the
so-called unbiased compression; see Definition 1.) Due to the loss of information caused by com-
pression, most of the aforementioned compressed FL methods either lack the robustness to data
heterogeneity and partial participation or rely on strict conditions on the compressors; see Table 2
for a brief summary and comparison.

2 PROBLEM SETUP

Formally, we consider the following optimization problem in distributed and federated learning:

minimize
x∈Rd

f(x) := 1
N

N∑
i=1

fi(x), where fi(x) := Eξi [Fi(x; ξi)],

each function fi : Rd → R is smooth but potentially nonconvex, and the symbol Eξ denotes the
mathematical expectation of the random variable or data ξi associated with the probability space
(Di,Fi,Pi). Hence, each fi is defined as the expected value of some loss function Fi(·, ξi) : Rd ×
Di → R over ξi. The local functions fi can be different across clients, and such a phenomenon is
often called heterogeneity in distributed optimization. In federated learning, heterogeneity is often
due to the inherent difference in the data distributionDi across clients, and this is often referred to as
data heterogeneity. An undesirable consequence of heterogeneity is that a global stationary point x⋆

that satisfies∇f(x⋆) = 0 may not be a stationary point of any local objective (i.e.,∇fi(x⋆) ̸= 0 for
some i ∈ [N]). In contrast, under a homogeneous setting, all clients share the same data distribution
(i.e., Di = D for all i ∈ [N]) and have the same loss function f1 = · · · = fN , so a global stationary
point is also stationary for each local objective.

The following standard assumptions are required for our algorithm analyses.
Assumption 1 (Smoothness). Each local objective fi has an L-Lipschitz gradient, i.e., for all
(x, y) ∈ dom fi × dom fi and for all i ∈ [N], it holds that ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
Assumption 2 (Gradient Noise). There exists σ ∈ R++ such that for all i ∈ [N] and for all
x ∈ dom fi, it holds that Eξi [∇Fi(x; ξi)] = ∇fi(x) and E[∥∇Fi(x; ξi)−∇fi(x)∥2] ≤ σ2, where
ξi ∼ Di are IID random samples for each client i ∈ [N].

Notation. We use N := {1, 2, . . .} to denote the set of positive integers and, given N ∈ N, we
denote [N] := {1, . . . , N}. We use ∥ · ∥ to denote the ℓ2 vector norm. The notation ≲ denotes
inequalities that hold up to numeric constants.

3 ISCA: IMPROVED STOCHASTIC CONTROLLED AVERAGING FOR
FEDERATED LEARNING

In this section, we present the proposed FL algorithm, ISCA, and provide convergence guarantees
under the nonconvex, stochastic setup. The development of ISCA is motivated by the practical per-
formance of SCAFFOLD, which is inconsistent in data homogeneous and heterogeneous settings.
That being said, we first review the development of SCAFFOLD in §3.1 and study our proposed
algorithm ISCA in §3.2. The convergence guarantees of ISCA is then presented in §3.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 REVIEW OF SCAFFOLD
In order to handle the client drift issue, the SCAFFOLD algorithm Karimireddy et al. (2020) main-
tains local control variables {cti}Ni=1 on clients and a global control variable ct on the server. At each
iteration, a set St of active clients is selected to communicate with the server, and then SCAFFOLD
conducts K local updates (inner loop) in each active client i ∈ St by

yt,k+1
i ← yt,ki + αin(∇F (yt,ki)− cti + ct), for k = 0, . . . ,K − 1, (1)

where yt,ki is the local model in client i initialized with the server model yt,0i ← xt. This local
update can also be viewed as a (stochastic) gradient step with momentum. Here, the subscript i
represents the client index, and the superscripts i and k denote the iteration counters for the inner
loop and outer loop. At the end of local updates, the local control variable is updated as

ct+1
i ←

{
cti − ct + 1

K (xt − yt,Ki) if i ∈ St
cti otherwise.

(2)

Then, the server updates the global variable (model parameters) and the global control variable as

xt+1 ← xt + αout

S

∑
i∈St

(yt,Ki − xt), ct+1 ← ct + 1
N

∑
i∈St

(ct+1
i − cti).

Intuitively, the local control variables track the local gradients: cti ≈ ∇fi(xt), and similarly,
ct ≈ ∇f(xt). Consequently, the local updates are nearly synchronized in the presence of data
heterogeneity without suffering from client drift.

3.2 DEVELOPMENT OF ISCA
Although the theoretical convergence of SCAFFOLD is independent of data heterogeneity Karim-
ireddy et al. (2020), its numerical performance does not seem to be consistent with the theoretical
findings. As observed in Figure 1, SCAFFOLD performs much better in the heterogeneous setting
than in the homogeneous setting. To fill this gap between theory and practice, we examine the it-
erations in SCAFFOLD carefully and present our proposed FL algorithm ISCA in Algorithm 1. In
particular, ISCA improves upon SCAFFOLD in the following two aspects.
First, we observe that in SCAFFOLD, the updates of local control variables (2) rely on the increment
of the local model (i.e., xt − yt,Ki). Also note that the most recent local model yt,Ki is computed
using the stochastic gradient evaluated at the previous local iteration (i.e., ∇F (yt,K−1

i)); see (1)
with k ← K − 1. That being said, although Karimireddy et al. (2020) claim that the local control
variable in SCAFFOLD tracks the true local gradient (i.e., cti ≈ ∇fi(xt)), such an approximation is
computed using the stochastic gradient evaluated at the previous local model, rather than the most
up-to-date (stochastic) gradient. Therefore, each active client uploads the newest local model and an
ancient local control variable to the server. This inconsistency might deteriorate the performance of
SCAFFOLD. In comparison, the proposed algorithm ISCA performs an additional update of local
control variables, using the (stochastic) gradient evaluated at the newest local model; see Lines 12
and 13 in Algorithm 1. Modification regarding this aspect is highlighted in red in Algorithm 1, and
vt,ki in ISCA plays a similar role to cti in SCAFFOLD.

Second, SCAFFOLD updates the local model yt,ki with a fixed momentum term −cti + ct. This is
undesirable because the local model keeps updating in the inner loop while the local control variable
is fixed. Although it is often claimed that cti ≈ ∇f(xt) in SCAFFOLD Karimireddy et al. (2020),
the accuracy of such an approximation should be improved if the local control variable is updated
appropriately in the inner loop. Motivated by this observation, modification regarding this aspect is
highlighted in blue in Algorithm 1, and {vt,ki }

K+1
k=0 are the local control variables in ISCA.

3.3 CONVERGENCE OF ISCA
This section presents convergence guarantees for Algorithm 1 under the nonconvex, stochastic setup.
Remarkably, we only require L-smoothness and unbiased, bounded gradient noise.
Theorem 1. Suppose Assumptions 1 and 2 hold, and suppose the stepsizes satisfy α = αinαoutK,
144α2

inK
2L2 ≤ α, and

α ≤ min

{
2

9
,
1

L
,

(
KLR

4STσ2

)1/3

,

(
N2LR

33SKσ2

)1/2
}
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 ISCA: Improved Stochastic Controlled Averaging for Federated Learning
Input: initial model x0 ∈ Rd, global control variable v0,0 ∈ Rd, and local control variables
{ui}ni=1 ⊂ Rd; local (inner loop) learning rate αin ∈ R++, global (outer loop) learning rate
αout ∈ R++, number of local steps K ∈ N≥1; number of sampled clients S ∈ [N]; local
dataset Di on client i

1: Initialize x0 ∈ Rd, v0 ← ∇f(x0), and u0,0
i ← ∇fi(x0) for all i ∈ [N]

2: for t = 0, . . . , T − 1 do
3: Uniformly sample clients St ⊆ [N] with |St| = S
4: for client i ∈ St in parallel do
5: Receive xt and vt from server; initialize yt,0i ← xt, vt,0i ← vt

6: for k = 0, . . . ,K − 1 do
7: Compute mini-batch gradient gt,ki ← ∇Fi(y

t,k
i ; ξt,ki) ▷ ξt,ki ∼ Di

8: Locally update yt,k+1
i ← yt,ki − αin(g

t,k
i − ut,k

i + vt,ki)

9: Locally update vt,k+1
i ← vt,ki + gt,ki − ut,k

i

10: Locally update ut,k+1
i ← gt,ki

11: end for
12: gt,Ki ← ∇F (yt,Ki , ξt,Ki)

13: vt,K+1
i ← vt,Ki + gt,Ki − ut,K

i

14: ut+1,0
i ← gt,Ki

15: Send yt,Ki − xt and vt,K+1
i to server

16: end for
17: Update xt+1 ← xt + αout

S

∑
i∈St(y

t,K
i − xt)

18: Update vt+1 ← vt + 1
N

∑
i∈St(v

t,K+1
i − vt)

19: end for

Then, the {xt} sequence generated by Algorithm 1 satisfies for any T ∈ N that

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲
√

LRσ2

SKT
+

LR

T

(
N

S

)2/3

, (3)

where R is a positive constant related to initial conditions (e.g., f(x0)− infx f(x)).

Asymptotic complexities of ISCA. When the true (full-batch) gradients are used (i.e., σ = 0),
the first term on the right-hand side of (3) vanishes. So, ISCA converges at the classical O(1/T)
rate for first-order optimization methods, and as an instance of FL algorithms, the convergence of
ISCA relies on the partial participation rate N/S (see, e.g., Huang et al. (2024)). On the other
hand, when the stochastic gradient estimates suffer from a large noise (i.e., σ is extremely large),
the first term on the right-hand side of (3) dominates. In this case, ISCA enjoys the state-of-the-
art O(σ/

√
T) rate, and the performance is mainly hampered by the number of stochastic gradients

estimates.

4 ISCAM: IMPROVED STOCHASTIC CONTROLLED AVERAGING WITH
UNBIASED COMMUNICATION COMPRESSION

Recall that ISCA needs to communicate two quantities (the updates of local models yt,Ki −xt and the
local control variable vt,K+1

i) for each client at each iteration. This is slightly undesirable because
both FedAvg (McMahan et al., 2017) and SCAFFOLD (Karimireddy et al., 2020; Huang et al., 2024)
only require one quantity for uplink communication. To alleviate the additional communication
overload in ISCA, we propose to incorporate unbiased communication compression, a technique
that has been extensively used in distributed and federated learning methods.

4.1 ALGORITHM DESCRIPTION

The development of ISCAM uses the following definition of unbiased communication compres-
sors. This choice of unbiased compressors is standard in the FL literature; see, e.g., Haddadpour

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

et al. (2021). Examples of compressors that satisfy Definition 1 include random sparsification and
dithering; see Appendix A for several examples.
Definition 1 (ω-unbiased compressor). For all x ∈ Rd and for all client i ∈ [N], there exist a
compressor C : Rd → Rd and a (unified) constant ω ∈ R+ such that

Ec[Ci(x)] = x, Ec[∥Ci(x)− x∥2] ≤ ω∥x∥2,

where the expectation is taken over the randomness of the compressor Ci, i ∈ [N].

Potential downside of communicating vt,K+1
i . Now, we employ communication compression

satisfying Definition 1 into Algorithm 1. One key point in the development of ISCAM is to select the
two quantities for uplink communication. Recall that the local control variable vt,K+1

i is designed to
better approximate the local gradient evaluated at the global variable; i.e., vt,K+1

i ≈ ∇fi(x̂) when
x̂ is close to a first-order stationary point. However, due to the (potential) non-IID nature of the data
distribution, the local gradient does not converge to zero even when the global gradient converges;
i.e., ∇f(x⋆) = 0 but ∇fi(x⋆) ̸= 0. Therefore, if the local control variable vt,K+1

i is compressed,
the compression error introduced at each communication round satisfies

Ec[∥Ci(∇fi(xt))−∇fi(xt)∥2] ≤ ω∥∇fi(xt)∥2 → ω∥∇fi(x⋆)∥2 ̸= 0,

which implies that the compression error might be very large under severe data heterogeneity.

Benefits of compressing vt,K+1
i − vt. One remedy for this above issue is to communicate the

increment of the local control variable, i.e., vt,K+1
i − vt. Adding together the vt,k+1

i -update (Line 9
in Algorithm 1) gives vt,K+1

i − vt = gt,Ki − ut,0
i = ut+1,0

i − ut,0
i =: ∆t

i. (Recall that vt,0i = vt

by initialization.) Since ut,0
i is the cached local gradient, ideally ut,0

i → ∇fi(x⋆) if xt → x⋆.
Therefore, the increment control variable ∆t

i vanishes eventually, and compressing ∆t
i results in a

vanishing compression error Ec[∥Ci(∆t
i)−∆t

i∥2] ≤ ω∥∆t
i∥2 → 0, regardless of data heterogeneity.

Following the above discussion, we are ready to incorporate unbiased compression into ISCA
(Algorithm 1) and present the resulting algorithm (ISCAM) in Algorithm 2. The parameters
(β1, β2) ∈ [0, 1]2 are introduced to stabilize the updates of the increment variables and can be
viewed as learning rates. When β1 = β2 = 1 and {Ci}Ni=1 are the identity mappings (i.e., no
compression), ISCAM reduces to ISCA.

4.2 CONVERGENCE ANALYSIS OF ISCAM
We now present the convergence results for Algorithm 2 under the nonconvex, stochastic setup and
with an unbiased compressor that satisfies Definition 1.
Theorem 2. Suppose Assumptions 1 and 2 hold, and suppose the stepsizes satisfy α = αinαoutK,
144α2

inK
2L2 ≤ α, β1 = 1−α

4 , β2 = αSL
27N , and

α ≤ min

{
2

9(1 + ω)
,
1

L
,

(
KLR

4(1 + ω)STσ2

)1/3

,

(
N2LR

50(1 + ω)SKσ2

)1/2
}
.

Then, the {xt} sequence generated by Algorithm 2 satisfies for any T ∈ N that

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲
√

(1 + ω)LRσ2

SKT
+

(1 + ω)LR

T

(
N

S

)1/3

+

(
(1 + ω)N2L2R2σ2

S3KT 2

)1/3

where R is a positive constant related to initial conditions (e.g., f(x0)− infx f(x)).

A detailed version and the proof are presented in Appendix D.

Computation complexity of ISCAM. The computation complexity of ISCAM is similar to that
of ISCA. When no gradient noise exists (i.e., σ → 0), the convergence of ISCAM has the O(1/T)
sublinear rate and is also restricted by the partial participation ratio N/S. On the other hand, when σ

is extremely large and the terms involving σ are dominating, the σ/
√
T -dependent term dominates

others. Again, in this case, the performance is mainly hampered by the number of gradient evalua-
tions, which is the same as the convergence result for ISCA.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 2 ISCAM: Improved Stochastic Controlled Averaging with Unbiased Compression
Input: initial model x0 ∈ Rd, global control variable v0,0 ∈ Rd, and local control variables
{ui}ni=1 ⊂ Rd; local (inner loop) learning rate αin ∈ R++, global (outer loop) learning rate
αout ∈ R++, number of local steps K ∈ N≥1; number of sampled clients S ∈ N≥1; local
dataset Di on client i

1: for t = 0, . . . , T − 1 do
2: Uniformly sample clients St ⊆ [N] with |St| = S
3: for client i ∈ St in parallel do
4: Receive xt and vt from server; initialize yt,0i ← xt, vt,0i ← vt

5: for k = 0, . . . ,K − 1 do
6: Compute mini-batch gradient gt,ki ← ∇Fi(y

t,k
i ; ξt,ki) ▷ ξt,ki ∼ Di

7: Locally update yt,k+1
i ← yt,ki − αin(g

t,k
i − ut,k

i + vt,ki)

8: Locally update vt,k+1
i ← vt,ki + gt,ki − ut,k

i

9: Locally update ut,k+1
i ← gt,ki

10: end for
11: gt,Ki ← ∇F (yt,Ki , ξt,Ki)

12: vt,K+1
i ← vt,Ki + gt,Ki − ut,K

i

13: Compute δti ←
β1(y

t,K
i −xt)

αinK
and ∆t

i ← β2(v
t,K+1
i − vt)

14: ut+1,0
i ← ut,0

i +∆t
i

15: Compress and send δ̃ti ← Ci(δti) and ∆̃t
i ← Ci(∆t

i) to the server
16: end for
17: Update xt+1 ← xt + αoutαinK

S

∑
i∈St δ̃ti

18: Update vt+1 ← vt + 1
N

∑
i∈St ∆̃t

i
19: end for

Asymptotic communication complexity of ISCAM. Following the convention in Fatkhullin et al.
(2024); Huang et al. (2024), the asymptotic communication complexity is defined as the total number
of communication rounds required to obtain E[∥∇f(x̂)∥2] in the regime σ → 0. Then, Theorem 2
shows 1+ω

ϵ (NS)1/3 asymptotic communication complexity. (It is derived from (1+ω)LR
T (NS)1/3 ≍ ϵ.)

So, ISCAM improves the influence of the client participation ratio on the asymptotic communication
complexity for compressed FL methods with non-IID clients. Regarding the impact of stationarity
measure ϵ and the compression parameter ω, ISCAM matches the state-of-the-art asymptotic com-
munication complexity and does not require a uniform bound on the compression errors (as did in
many compressed FL methods with non-IID clients; see, e.g., Haddadpour et al. (2021)).
Based on the above discussion, we demonstrate that ISCAM theoretically improves existing FL
methods with unbiased compression.

5 EXPERIMENTS

This section presents numerical experiments to demonstrate the efficacy of the proposed methods.
Recall that this work is motivated by the performance gap of SCAFFOLD between theory and
practice. So in the experiments, we aim to demonstrate that the proposed algorithms have consistent
(i.e., similar) practical performance in both data homogeneous and heterogeneous settings, which
aligns with our theoretical findings (Theorems 1 and 2).

5.1 EXPERIMENTAL SETTINGS

Datasets and baselines. We use two standard FL benchmark datasets: MNIST (Deng, 2012) and
Fashion MNIST (Xiao et al., 2017) in the numerical experiments. Both MNIST and Fashion MNIST
have 60,000 training images and 10,000 test images, each of which is categorized into one of ten
classes. A (nonconvex) fully connected neural network is used as the model in the experiments,
and following the convention in Karimireddy et al. (2020), it consists of two hidden layers (256 and
128 neurons for each layer). ISCA is compared with SCAFFOLD (Karimireddy et al., 2020) and
FedAvg (McMahan et al., 2017), two state-of-the-art FL algorithms in the data homogeneous and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

se
rv
er
 a
cc
ur
ac
y

MNIST (IID)

ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
rv
er
 a
cc
ur
ac
y

MNIST (Non-IID)

ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
rv

er
 a

cc
ur

ac
y

FashionMNIST (IID)

ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
rv
er
 a
cc
ur
ac
y

FashionMNIST (Non-IID)

ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

Figure 2: Test accuracy of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (non-IID) settings, with 2-bit compression, and tested on MNIST (left half) and
Fashion MNIST (right half).

0 20 40 60 80 100
communication round

0.2

0.4

0.6

0.8

se
rv

er
 a

cc
ur

ac
y

MNIST (IID)

ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
rv
er
 a
cc
ur
ac
y

MNIST (Non-IID)

ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
rv

er
 a

cc
ur

ac
y

FashionMNIST (IID)

ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

0 20 40 60 80 100
communication round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
rv
er
 a
cc
ur
ac
y

FashionMNIST (Non-IID)

ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

Figure 3: Test accuracy of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (non-IID) settings, with 4-bit compression, and tested on MNIST (left half) and
Fashion MNIST (right half).

heterogeneous settings, respectively. For FL algorithms with compression, we compare the proposed
ISCAM with SCALLION (Huang et al., 2024) and FedCOMPACT (Haddadpour et al., 2021).

Experimental settings. In the experiments, the training data are distributed across N = 100
clients. In the homogeneous (IID) setting, all the training data are distributed in all the clients
in a uniformly random manner, while in the heterogeneous (non-IID) setting, the dataset is split
into 200 shards, each containing samples from only one class. (Each client is assigned with two
shards randomly.) At each training epoch, the server selects S = 10 clients in a random man-
ner, and the sampled clients take K = 5 local steps to update their own model parameters. In
the experiments, we tune the global learning rate (αout) and the local learning rate (αin) over the
grid {0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10}2. For compressed FL algorithms, we use the unbiased random
dithering compression (Alistarh et al., 2017). For ISCAM, the additional learning rates are set to
β1 = β2 = 0.1. In this section, we use test accuracy as the performance metric, following standard
FL literature. Additional experimental results are in Appendix E.

5.2 NUMERICAL RESULTS

Numerical results for ISCA. In Figure 1, we present the test accuracy of the proposed ISCA,
SCAFFOLD (Karimireddy et al., 2020), and FedAvg (McMahan et al., 2017). We observe that
on both datasets, ISCA achieves similar test accuracy in the data homogeneous and heterogeneous
settings, consistent with our theoretical findings (Theorem 1). FedAvg performs much better in the
homogeneous setting than the heterogeneous setting, which has been extensively studied (McMahan
et al., 2017). As expected, SCAFFOLD performs quite well in the heterogeneous setting. The
unexpected result is that the performance of SCAFFOLD sometimes deteriorates significantly in the
homogeneous settings. This observation contradicts all the existing theoretical results (Karimireddy
et al., 2020; Huang et al., 2024) which claim that the convergence of SCAFFOLD is irrespective of
the amount of data heterogeneity. Moreover, we see that in most cases, ISCA converges faster than
SCAFFOLD and FedAvg, further demonstrating the superiority of the proposed algorithm.

Numerical results for ISCAM. In Figures 2 and 3, we plot the same set of experimental results
and compare the proposed ISCAM with SCALLION (Huang et al., 2024) and FedCOMGATE (Had-
dadpour et al., 2021), applying unbiased random dithering (Alistarh et al., 2017) with 2-bit and 4-bit
per entry, respectively. Similarly, we see that ISCAM performs consistently well (in terms of test
accuracy) in both homogeneous and heterogeneous settings. In terms of convergence rate, ISCAM
has comparable, sometimes better, practical convergence speed compared with SCALLION.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

This paper presents ISCA, a new distributed and federated learning (D/FL) algorithm that admits
local updates, partial participation, and arbitrary data heterogeneity. Theoretically, under minimal
assumptions, ISCA matches the state-of-the-art convergence of D/FL methods. Empirically, ISCA
converges faster than other baselines and achieves consistent test accuracy in the data homogeneous
and heterogeneous settings.

Moreover, to further reduce the communication overload, we incorporate unbiased communication
compression into ISCA and propose a new compressed FL algorithm called ISCAM. Theoretical
convergence of ISCAM is established under standard compressibilities and matches (or improves)
the state-of-the-art result for compressed FL methods. Numerical experiments also support our
theoretical findings on ISCAM.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances in neural
information processing systems, volume 30, 2017.

Ziheng Cheng, Xinmeng Huang, Pengfei Wu, and Kun Yuan. Momentum benefits non-IID federated
learning simply and provably. In International Conference on Learning Representations, 2024.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error feed-
back! In Advances in Neural Information Processing Systems, volume 36, 2024.

Eduard Gorbunov, Konstantin P. Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pp. 3788–3798, 2021.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Feder-
ated learning with compression: Unified analysis and sharp guarantees. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2350–2358, 2021.

Xinmeng Huang, Ping Li, and Xiaoyun Li. Stochastic controlled averaging for federated learning
with communication compression. In International Conference on Learning Representations,
2024.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He,
Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Foundations and Trends® in Machine Learning, 14
(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning.
In International Conference on Machine Learning, pp. 5132–5143, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. Tighter theory for local SGD on iden-
tical and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
volume 108, pp. 4519–4529, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and
Systems, 2020a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
FedAvg on non-IID data. In International Conference on Learning Representations, 2020b.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal prob-
abilistic gradient estimator for nonconvex optimization. In International Conference in Machine
Learning, pp. 6286–6295, 2021.

Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei Cheng. Variance
reduced local sgd with lower communication complexity. arXiv preprint arXiv:1912.12844, 2019.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local SGD. In International Conference on Learning Representations, 2020.

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE Transac-
tions on Signal and Information Processing over Networks, 2:120–136, 2016.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 1273–1282,
2017.

Angelia Nedić, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
FedPAQ: A communication-efficient federated learning method with periodic averaging and quan-
tization. In International Conference on Artificial Intelligence and Statistics, pp. 2021–2031,
2020.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations, 2019.

Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis
of local-update SGD algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective in-
consistency problem in heterogeneous federated optimization. In Advances in Neural Information
Processing Systems, volume 33, pp. 7611–7623, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient meth-
ods for multi-agent optimization under uncoordinated constant stepsizes. In 2015 54th IEEE
Conference on Decision and Control (CDC), pp. 2055–2060, 2015.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI conference on Artificial Intelligence, 2019.

Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. FedPD: A federated learning
framework with adaptivity to non-IID data. IEEE Transactions on Signal Processing, 69:6055–
6070, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A EXAMPLES OF UNBIASED COMPRESSORS

In this section, we present two examples of unbiased compressors.
Example 1 (Random sparsification). For any s ∈ [d], the random-s sparsification is defined as
C : x 7→ d

s (ξ ⊙ x), where ⊙ is the Hadamard (entry-wise) product and ξ ∈ {0, 1}d is a uniformly
random binary vector with s nonzero entries. This random-s sparsification is an unbiased compres-
sor with parameter ω = d

s − 1.
Example 2 (Random dithering (Alistarh et al., 2017)). For any b ∈ N+, the random dithering with
b-bits per entry is defined as C : x 7→ ∥x∥×sign(x)⊙ζ(x), where {ζk}dk=1 are independent random
variables such that

ζk(x) :=

⌊
2b|xk|
∥x∥

⌋
with probability

⌈
2b|xk|
∥x∥

⌉
− 2b|xk|

∥x∥⌈
2b|xk|
∥x∥

⌉
otherwise,

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively. This random dithering with b-bits
per entry is an unbiased compressor with parameter ω = min

{
d
4b
,
√
d

2b

}
.

B PRELIMINARIES FOR CONVERGENCE ANALYSIS

B.1 NOTATION

We abbreviate
∑N

i=1,
∑K−1

k=0 ,
∑N

i=1

∑K−1
k=0 as

∑
i,
∑

k,
∑

i,k, respectively, when no confusion
occurs. We also define the quantities

gti :=
1

K

K−1∑
k=0

gt,ki , gt :=
1

N

N∑
i=1

gti , gt,K :=
1

N

∑
i

gt,Ki , vti :=
1

K

K−1∑
k=0

vt,ki ,

Xt := E[∥xt − xt−1∥2], Y t :=
1

NK

N∑
i=1

K−1∑
k=1

E[∥yt,ki − xt∥2],

U t :=
1

N

N∑
i=1

E[∥ut,0
i −∇fi(x

t−1)∥2], V t := E[∥vt −∇f(xt−1)∥2].

(4)

In addition, we denote α := αinαoutK and

dk+1 := 1
α (x

t − xt+1) ≡ 1
S

∑
i∈St

(
vti +

1
K (gt,K−1

i − ut,0
i)
)
,

which follows from the x-update (Line 17 in Algorithm 1 or Line 17 in Algorithm 2).

B.2 PRELIMINARY RESULTS

In this section, we present some preliminary inequalities that will be used in our analysis. Most
of them are established results in the literature and are irrelevant to any specific optimization algo-
rithms.
Lemma 1. For all θ ∈ [0, 1

2] and for all (a, b) ∈ Rn × Rn, it holds that

(1− 2θ)∥a− b∥2 ≤ (1− θ)∥a∥2 + 1

θ
∥b∥2.

Proof. When θ ∈ [0, 1
2], we have 1− 2θ ≥ 0 and thus

(1− 2θ)∥a− b∥2 = (1− 2θ)(∥a∥2 + ∥b∥2 − 2aT b)

= (1− 2θ)(∥a∥2 + ∥b∥2)− 2(1− 2θ)aT b

≤ (1− 2θ)(∥a∥2 + ∥b∥2) + (θ∥a∥2 + (1−2θ)2

θ ∥b∥2)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

= (1− θ)∥a∥2 + (1−2θ)(1−θ)
θ ∥b∥2

≤ (1− θ)∥a∥2 + 1
θ∥b∥

2.

The first inequality uses the Young’s inequality 2aTb ≤ ρ∥a∥2 + 1
ρ∥b∥

2 with ρ ← θ
1−2θ . The last

inequality follows from the fact that θ ∈ [0, 1] and thus (1− 2θ)(1− θ) = 1 + θ(2θ − 3) ≤ 1.

Lemma 2 (Cheng et al. (2024, Lemma 7)). Given any {ai}Ni=1 ⊂ Rd and b ∈ Rd, denote a :=
1
N

∑
i∈[N] ai. Suppose S ⊂ [N] is uniformly sampled from [N] without replacement with |S| = S.

Then, it holds that

ES

∥∥∥∥∥ 1S ∑
i∈S

ai

∥∥∥∥∥
2
 ≤ ∥a∥2 + 1

SN

∑
i

∥ai − a∥2 ≤ ∥a∥2 + 1

SN

∑
i

∥ai − b∥2,

where the expectation is taken over all the possible sampling of S.
Lemma 3 (Karimireddy et al. (2020, Lemma 4)). Let {X1, · · · , Xτ} ⊂ Rd be random variables
that are potentially dependent. If their means and variances satisfy E[Xi] = µi and E[∥Xi−µi∥2] ≤
σ2, then it holds that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ ∥∥∥∥∥

τ∑
i=1

µi

∥∥∥∥∥
2

+ τ2σ2.

If instead their means and variances satisfy E[Xi|Xi−1, . . . , X1] = µi and E[∥Xi − µi∥2] ≤ σ2,
then it holds that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2
+ 2τσ2.

Lemma 4 (Huang et al. (2024, Lemma 3)). Under Assumptions 1 and 2, for all θ ∈ [0, 1], w ∈ Rd

and {wi}Ni=1 ⊂ Rd, the sequence {xt} generated by Algorithm 1 (or Algorithm 2) and the sequence
{gt} defined in (4) satisfy

E[∥(1− θ)w + θ(gt −∇f(xt))∥2]

≤ min
{
2(1− θ)E[∥w∥2] + 3θ2L2Y t + 2θ2σ2

NK , (1− θ)E[∥w∥2] + 2θL2Y t + 2θσ2

NK

}
, (5)

and
1
N

∑
i

E[∥(1− θ)wi + θ(gti −∇fi(xt))∥2]

≤ min

{
2(1−θ)

N

∑
i

E[∥wi∥2] + 3θ2L2Y t + 2θ2σ2

K , 1−θ
N

∑
i

E[∥wi∥2] + 2θL2Y t + 2θσ2

K

}
, (6)

where the quantity Y t is defined in (4).

C CONVERGENCE ANALYSIS FOR ALGORITHM 1

We start with two fundamental pillars for the convergence analysis. In particular, Lemma 5 estab-
lishes the key connection between the global tracking variable vt and local tracking variable ut,0

i ,
and Lemma 6 provides bounds on the stochastic gradients gti , g

t,K
i and gt,K . The important descent

inequality is then provided in Lemma 7.
Lemma 5. For all t ∈ N, the sequence {vt} generated by Algorithm 1 satisfies

vt =
1

N

N∑
i=1

ut,0
i . (7)

In addition, for all t ∈ N and i ∈ [N], the sequence {vti} defined in (4) satisfies

vti = vt +
1

K

K−2∑
k=0

(
gt,ki − (K − 1)ut,0

i

)
. (8)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof. We prove the first statement via mathematical induction.

1. In the base case where t = 0, by initialization it holds that v0 = 1
N

∑
i u

0,0
i .

2. The induction hypothesis assumes that vt = 1
N

∑
i u

t,0
i for any t ∈ N.

3. The induction step: we prove that vt+1 = 1
N

∑
i u

t+1,0
i . It follows from the vt,k+1

i -update
(Line 9 in Algorithm 1) that

vt,K+1
i = vt,0i +

∑
k

(gt,ki − ut,k
i) = vt,0i + gt,Ki − ut,0

i = vt + ut+1,0
i − ut,0

i .

Then, it follows from the v-update (Line 18 in Algorithm 1) that

vt+1 = vt +
1

N

∑
i∈St

(vt,K+1
i − vt)

=
1

N

∑
i

ut,0
i +

1

N

∑
i∈St

(ut+1,0
i − ut,0

i)

=
1

N

∑
i∈St

ut+1,0
i +

1

N

∑
i/∈St

ut,0
i

=
1

N

∑
i∈St

ut+1,0
i +

1

N

∑
i/∈St

ut+1,0
i

=
1

N

∑
i

ut+1,0
i .

Therefore, the desired result (7) follows from mathematical induction.

For the second argument, it follows from Line 9 that

vt,0i = vt,0i

vt,1i = vt,0i + gt,0i − ut,0
i

vt,2i = vt,0i + (gt,0i − ut,0
i) + (gt,1i − gt,0i)

...

vt,K−1
i = vt,0i + (gt,0i − ut,0

i) + (gt,1i − gt,0i) + · · ·+ (gt,K−2
i − gt,K−3

i)

K−1∑
k=0

vt,ki = Kvt,0i +
(
− (K − 1)ut,0

i + gt,0i + gt,1i + · · ·+ gt,K−2
i

)
= Kvt +

K−2∑
k=0

(
gt,ki − (K − 1)ut,0

i

)
,

and then the desired result (8) follows from the definition vti :=
1
K

∑
k v

t,k
i .

Lemma 6. Under Assumptions 1 and 2, it holds for all t ∈ N that

1

N

∑
i

E[∥gti − ut,0
i ∥

2] ≤ 4L2Xt + 4L2Y t + 4U t +
4σ2

K
, (9)

and

1

N

∑
i

E[∥gt,Ki −∇fi(xt)∥2]

≤ 6α2
inK

2L2
(
E[∥∇f(xt−1)∥2] + 4L2Xt + 4L2Y t + 4U t + V t

)
+
(
24α2

inKL2 + 2
N

)
σ2. (10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. To show (9), we have

1
N

∑
i

E[∥gti − ut,0
i ∥

2]

≤ 2
N

∑
i

E[∥ut,0
i −∇fi(x

t)∥2] + 2
N

∑
i

E[∥gti −∇fi(xt)∥2] (11a)

≤ 2
N

∑
i

E[∥ut,0
i −∇fi(x

t)∥2] + 4L2Y t + 4σ2

K (11b)

≤ 4
N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2] + 4
NE[∥∇fi(xt)−∇fi(xt−1)∥2] + 4L2Y t + 4σ2

K (11c)

≤ 4
N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2] + 4L2E[∥xt − xt−1∥2] + 4L2Y t + 4σ2

K (11d)

= 4U t + 4L2Xt + 4L2Y t + 4σ2

K , (11e)

where (11a) and (11c) use the fact ∥a+ b∥2 ≤ 2∥a∥2 +2∥b∥2, (11b) uses (6) with θ ← 1, and (11d)
uses Assumption 1.

Lastly, we find that

1
N

∑
i

E[∥gt,Ki −∇fi(xt)∥2]

≤ 2
N

∑
i

E[∥∇fi(yt,Ki)−∇fi(xt)∥2] + 2σ2

N

≤ 2L2

N

∑
i

E[∥yt,Ki − xt∥2] + 2σ2

N

=
2α2

inL
2

N

∑
i

E
[∥∥∥∑

k

vt,ki + gt,K−1
i − ut,0

i

∥∥∥2]+ 2σ2

N

=
2α2

inL
2

N

∑
i

E[∥K(vt + gti − ut,0
i)∥2] + 2σ2

N

=
2α2

inK
2L2

N

∑
i

E[∥vt + gti − ut,0
i ∥

2] + 2σ2

N

≤ 6α2
inK

2L2

N

∑
i

(
E[∥vt −∇f(xt−1)∥2] + E[∥∇f(xt−1)∥2] + E[∥gti − ut,0

i ∥
2]
)
+ 2σ2

N

≤ 6α2
inK

2L2
(
V t + E[∥∇f(xt−1)∥2] + 4U t + 4L2Xt + 4L2Y t + 4σ2

K

)
+ 2σ2

N ,

where in the last step we apply (9).

Lemma 7 (Descent Lemma). Under Assumptions 1 and 2, it holds for all t ∈ N that

E[f(xt+1)] ≤ E[f(xt)]− α

2
E∥∇f(xt)∥2 −

(1

2α
− L

2

)
Xt+1 +

2αL2

S
Xt

+ αL2
(
1 +

2

S

)
Y t +

2α

S
U t +

ασ2

K

(2
S

+
1

N

)
. (12)

Proof. It follows from (Li et al., 2021, Lemma 2) that

f(xt+1) ≤ f(xt)− α
2 ∥∇f(x

t)∥2 −
(

1
2α −

L
2

)
∥xt+1 − xt∥2 + α

2 ∥d
t+1 −∇f(xt)∥2, (13)

where recall our definition α := αinαoutK and dt+1 := 1
α (x

t − xt+1). The expectation of the last
term on the right-hand side of (13) is bounded by

E[∥dt+1 −∇f(xt)∥2]

= E
[∥∥∥ 1

S

∑
i∈St

(
vti +

1
K (gt,K−1

i − ut,0
i)
)
−∇f(xt)

∥∥∥2] (14a)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

≤ E∥gt −∇f(xt)∥2 + 1
SN

∑
i

E∥vti + 1
K (gt,K−1

i − ut,0
i)− vt∥2 (14b)

≤ 2L2

NK

∑
i,k

E∥yt,ki − xt∥2 + 2σ2

NK + 1
SN

∑
i

E∥vti + 1
K (gt,K−1

i − ut,0
i)− vt∥2 (14c)

= 2L2

NK

∑
i,k

E∥yt,ki − xt∥2 + 2σ2

NK + 1
SN

∑
i

E∥vt + gti − ut,0
i − vt∥2 (14d)

≤ 2L2Y t + 2σ2

NK + 1
SNE∥gti − ut,0

i ∥
2. (14e)

In (14a), we apply the x-update (Line 17 in Algorithm 1), and in (14b), we apply Lemma 2 with
ai ← vti +

1
K (gt,K−1

i − ut,0
i), b← vt, and

a = 1
N

∑
i

ai =
1
N

∑
i

(
vti +

1
K (gt,K−1

i − ut,0
i)
)

= 1
N

∑
i

(
vt + 1

K

(
K−2∑
k=0

gt,ki − (K − 1)ut,0
i

)
+ 1

K (gt,K−1
i − ut,0

i)

)
using (8)

= 1
N

∑
i

(
vt − ut,0

i + 1
K

∑
k

gt,ki

)
= 1

NK

∑
i,k

gt,ki ≡ gt using (7).

Then, (14c) uses (5) with θ ← 1, (14d) uses (8), and (14e) applies Cauchy–Schwarz inequality.

Combining (14e) and (9) yields

E[∥dt+1 −∇f(xt)∥2] ≤ 4L2

S Xt + 2L2(1 + 2
S)Y

t + 4
SU

t + 2σ2

K (2
S + 1

N).

Substituting it back to (13) yields the desired result.

In the following three lemmas, we establish upper bounds on the quantities U t+1, V t+1, and Y t,
respectively.
Lemma 8. Under Assumptions 1 and 2, it holds for all t ∈ N that

U t+1 ≤
(
1− S

4N
+

24α2
inSK

2L2

N

)
U t +

(
4N

S
+

24α2
inSK

2L2

N

)
L2Xt

+
6α2

inSK
2L2

N
(E[∥∇f(xt−1)∥2] + 4L2Y t + V t) +

2Sσ2

N2
(12α2

inNKL2 + 1). (15)

Proof. It follows from the definition of the filtrationF (k), the linearity of expectation, and the update
rule for ut+1,0

i that

ES [∥ut+1,0
i −∇fi(xt)∥2 | F (k)]

= (1− S
N)ES [∥ut,0

i −∇fi(x
t)∥2 | F (k)] + S

NES [∥gt,Ki −∇fi(xt)∥2 | F (k)],

where the expectation is taken over the random sampling of clients. Then, taking the total expecta-
tion gives

1
N

∑
i

E[∥ut+1,0
i −∇fi(xt)∥2]

= 1
N

∑
i

(
(1− S

N)E[∥ut,0
i −∇fi(x

t)∥2] + S
NE[∥gt,Ki −∇fi(xt)∥2]

)
(16a)

≤ (1− S
2N) 1

N

∑
i

E[∥ut,0
i −∇fi(x

t)∥2] + S
N2

∑
i

E[∥gt,Ki −∇fi(xt)∥2] (16b)

≤ (1− S
4N) 1

N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2] + 4N
S

1
N

∑
i

E[∥∇fi(xt)−∇fi(xt−1)∥2]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

+ S
N2

∑
i

E[∥gt,Ki −∇fi(xt)∥2] (16c)

≤ (1− S
4N)U t + 4NL2

S Xt + S
N2

∑
i

E[∥gt,Ki −∇fi(xt)∥2]. (16d)

In (16a) we use Law of Total Expectation; (16b) uses the fact S ≤ N ; (16c) applies Lemma 1 with

θ ← S

4N
, a← 1

N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2], b← 1

N

∑
i

E[∥∇fi(xt)−∇fi(xt−1)∥2];

and (16d) uses Assumption 1. Finally, combining (16d) and (10) yields the desired result.

Lemma 9. Under Assumptions 1 and 2, it holds for all t ∈ N that

V t+1 ≤ 18α2
inSK

2L2

N2

(
E[∥∇f(xt−1)∥2] + 4L2Y t

)
+

2S3L2

α2
outN

3
Xt+1

+

(
2NL2

S
+

3SL2

N2
(24α2

inK
2L2 + 1)

)
Xt

+
3S

N2
(24α2

inK
2L2 + 1)U t +

(
1− S

2N
+

18α2
inSK

2L2

N2

)
V t

+

(
36α2

inKL2 +
3

N
+ 1

)
2Sσ2

N2
. (17)

Proof. It follows from (7) and the u-updates in Algorithm 1 that

vt+1 = 1
N

∑
i

ut+1,0
i = 1

N

∑
i

ut,0
i + 1

N

∑
i∈St

(gt,Ki − ut,0
i) = vt + 1

N

∑
i∈St

(gt,Ki − ut,0
i).

Then, it holds that

E[∥vt+1 −∇f(xt)∥2]

= E
[∥∥∥ 1

N

∑
i∈St

(gt,Ki − ut,0
i) + vt −∇f(xt)

∥∥∥2]
≤ E

[∥∥ S
N (gt,K − vt) + vt −∇f(xt)

∥∥2]+ S
N3

∑
i

E[∥gt,Ki − ut,0
i ∥

2], (18)

which applies Lemma 2 with ai = S
N (gt,Ki − ut,0

i) + vt − ∇f(xt). Then, the first term on the
right-hand side of (18) is further bounded by

E
[∥∥ S

N (gt,K − vt) + vt −∇f(xt)
∥∥2]

= E
[∥∥(1− S

N)(vt −∇f(xt)) + S
N (gt,K −∇f(xt))

∥∥2]
≤
(
1− S

N

)
E[∥vt −∇f(xt)∥2] + S

NE[∥gt,K −∇f(xt)∥2] (19a)

≤
(
1− S

2N

)
V t + 2NL2

S Xt + 2S
N E

[∥∥∥ 1
N

∑
i

∇fi(yt,Ki)−∇fi(xt)
∥∥∥2]+ 2σ2S

N2 (19b)

≤
(
1− S

2N

)
V t + 2NL2

S Xt + 2SL2

N3 E
[∥∥∥∑

i

(yt,Ki − xt)
∥∥∥2]+ 2Sσ2

N2 (19c)

≤
(
1− S

2N

)
V t + 2NL2

S Xt + 2SL2

N3 E
[∥∥∥∑

i∈St

(yt,Ki − xt)
∥∥∥2]+ 2Sσ2

N2 (19d)

≤
(
1− S

2N

)
V t + 2NL2

S Xt + 2S3L2

α2
outN

3X
t+1 + 2Sσ2

N2 . (19e)

In (19a) we use Jensen’s inequality. In (19b) we apply Lemma 1 with

θ ← S
2N , a← E[∥vt −∇f(xt−1)∥2] ≡ V t, b← E[∥xt − xt−1∥2] ≡ Xt,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and uses Assumption 1. Then, (19c) uses again Assumption 1, and (19e) substitutes the x-update
(Line 17 in Algorithm 1).

The second term on the right-hand side of (18) is bounded by

S
N3

∑
i

E[∥gt,Ki − ut,0
i ∥

2]

= S
N3

∑
i

E[∥ut,0
i −∇fi(x

t−1) +∇fi(xt−1)−∇fi(xt) +∇fi(xt)− gt,Ki ∥2]

≤ 3S
N3

∑
i

(
NU t + L2Xt + E[∥gt,Ki −∇fi(xt)∥2]

)
≤ 3S

N2U
t + 3SL2

N2 Xt + 3S
N3

∑
i

E[∥gt,Ki −∇fi(xt)∥2]

≤ 3SL2

N2 (24α2
inK

2L2 + 1)Xt + 3S
N2 (24α

2
inK

2L2 + 1)U t

+
18α2

inSK2L2

N2

(
E[∥∇f(xt−1)∥2] + 4L2Y t + V t) + 6Sσ2

N2 (12α2
inKL2 + 1

N), (20)

where the last inequality uses (10). Finally, combining (18)–(20) yields the desired result.

Lemma 10. Let Assumptions 1 and 2 hold, and suppose that the stepsize satisfies αinKL ≤ 1
2 .

Then, it holds for all t ∈ N that

Y t ≤ 6eα2
inK

2
(
E[∥∇f(xt)∥2] + L2Xt + U t

)
+ eα2

inKσ2. (21)

Proof. When K = 1, Y t = 0 holds trivially for all t ∈ N. So we consider K ∈ N≥2 below. Using
Young’s inequality, we have

E[∥yt,k+1
i − xt∥2]

= E[∥yt,ki − αin(g
t,k
i − ut,k

i + vt,ki)− xt∥2]
= E[∥yt,ki − αin(∇F (yt,ki ; ξt,ki)− ut,k

i + vt,ki)− xt∥2]
≤ E[∥yt,ki − αin(∇f(yt,ki)− ut,k

i + vt,ki)− xt∥2] + α2
inσ

2

≤ (1 + 1
K−1)E[∥y

t,k
i − xt∥2] + α2

inKE[∥∇f(yt,ki)− ut,k
i + vt,ki ∥

2] + α2
inσ

2. (22)

The second term on the right-hand side of (22) can be further bounded using Young’s inequality and
Assumption 1 as

α2
inKE[∥∇f(yt,ki)− ut,k

i + vt,ki ∥
2]

= α2
inKE[∥∇f(yt,ki)−∇fi(xt)− (ut,k

i −∇fi(x
t)) + vt,ki −∇f(x

t) +∇f(xt)∥2]
≤ 3α2

inKL2E[∥yt,ki − xt∥2] + 3α2
inKE[∥ut,k

i −∇fi(x
t)− vt,ki +∇f(xt)∥2]

+ 3α2
inKE[∥∇f(xt)∥2]. (23)

The second term on the right-hand side of (23) can be bounded using Young’s equality and Assump-
tion 1

3α2
inK
N

∑
i

E[∥ut,k
i −∇fi(x

t)− vt,ki +∇f(xt)∥2]

=
3α2

inK
N

∑
i

E[∥ut,0
i −∇fi(x

t)− vt,0i +∇f(xt)∥2] (24a)

≤ 3α2
inK
N

∑
i

E[∥ut,0
i −∇fi(x

t)∥2] (24b)

≤ 6α2
inK
N

∑
i

(
E[∥ut,0

i −∇fi(x
t−1)∥2] + L2E[∥xt − xt−1∥2]

)
, (24c)

where (24a) uses Line 9 in Algorithm 1:

vt,k+1
i = vt,ki + ut,k+1

i − ut,k
i

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

ut,k+1
i − vt,k+1

i = ut,k
i − vt,ki = · · · = ut,0

i − vt,0i ,

(24b) uses (7), and (24c) uses Young’s equality and Assumption 1.

Then, combining (22), (23), and (24c) yields
1
N

∑
i

E[∥yt,k+1
i − xt∥2]

≤ 1
N

∑
i

(
K

K−1E[∥y
t,k
i − xt∥2] + α2

inKE[∥∇fi(yt,ki)− ut
i − vt,ki ∥

2] + α2
inσ

2
)

≤ 1
N

∑
i

(
K

K−1E[∥y
t,k
i − xt∥2] + 3α2

inL
2KE[∥yt,ki − xt∥2] + 3α2

inKE[∥∇f(xt)∥2]
)

+ 1
N

∑
i

(
3α2

inKE[∥ut,k
i −∇fi(x

t)− vt,ki +∇f(xt)∥2]
)
+ α2

inσ
2

≤ 6α2
inK
N

∑
i

(
E[∥ut,0

i −∇fi(x
t−1)∥2] + L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]

)
+ 1

N

∑
i

(
K

K−1 + 3α2
inKL2

)
E[∥yt,ki − xt∥2] + α2

inσ
2

≤ α2
in

k∑
ℓ=0

(
K

K−1 + 3α2
inKL2

)ℓ (
K
(
E[∥∇f(xt)∥2] + L2Xt + U t

)
+ σ2

)
(25a)

≤ α2
in

k∑
ℓ=0

(
K+1
K−1

)ℓ (
6K(E[∥∇f(xt)∥2] + L2Xt + U t) + σ2

)
. (25b)

In (25a), we apply the fact that

ϕk+1 ≤ θϕk + ν ≤ θ(θϕk−1 + ν) + ν ≤ · · · ≤ θk+1ϕ0 + ν

k∑
ℓ=0

θℓ

to

ϕk ← E[∥yt,ki − xt∥2∥], θ ← K
K−1 + 3α2

inKL2,

ν ← 6α2
inK

(
E[∥∇f(xt)∥2] + L2Xt + U t

)
+ α2

inσ
2,

and recall the initialization yt,0i = xt for all i ∈ [N]. Then, in (25b) we use the stepsize condition
αinKL ≤ 1

2 so that 3α2
inKL2 ≤ 3

4K ≤
1

K−1 .

Finally, iterating and averaging (25b) over k = 0, . . . ,K − 1, we obtain

Y t ≤ α2
in

K

∑
k

k−1∑
ℓ=0

(
K+1
K−1

)ℓ (
6K(E[∥∇f(xt)∥2] + L2Xt + U t) + σ2

)
≤ α2

inK
(
1 + 1

K−1

)K−1
(6K(E[∥∇f(xt)∥2] + L2Xt + U t) + σ2)

≤ 6eα2
inK

2(E[∥∇f(xt)∥2] + L2Xt + U t) + eα2
inKσ2,

where in the second inequality we relax (K+1
K−1)

ℓ to (K+1
K−1)

K−1, and the last inequality uses the fact
(1 + 1

K−1)
K−1 ≤ e for all K ≥ 2.

Theorem 3 (Restatement of Theorem 1). Suppose Assumptions 1 and 2 hold, and suppose the
stepsizes satisfy α = αinαoutK, 144α2

inK
2L2 ≤ α, and

α ≤ min

{
2

9
,
1

L
,

(
KLR1

4STσ2

)1/3

,

(
N2LR1

33SKσ2

)1/2
}
.

Then, the {xt} sequence generated by Algorithm 1 satisfies

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ γ1

√
LR1σ2

SKT
+

L(γ2R1 + γ3R2)

T

(
N

S

)2/3

,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where R1 := f(x0) − infx f(x), R2 := E[∥∇f(x0)∥2], and (γ1, γ2, γ3) ∈ R3
++ are numeric

constants.

Proof. Combining the stepsize conditions 144α2
inK

2L2 ≤ α and α ≤ 1 with (12), (15), (17), and
(21) yields

E[f(xt+1)] ≤ E[f(xt)]− α
2E∥∇f(x

t)∥2 −
(

1
2α −

L
2

)
Xt+1 + 2αL2

S Xt

+ 3αL2Y t + 2α
S U t + ασ2

K

(
2
S + 1

N

)
(26)

U t+1 ≤
(
1− αS

12N

)
U t +

(
4N
S + αS

6N

)
L2Xt

+ αS
24N (E[∥∇f(xt−1)∥2] + 4L2Y t + V t) + S(N+12K)σ2

6N2K (27)

V t+1 ≤ αS
8N2

(
E[∥∇f(xt−1)∥2] + 4L2Y t

)
+ S3

36N3X
t+1 +

(
2N
S + 4S

N2

)
L2Xt

+ 4S
N2U

t +
(
1− αS

4N

)
V t +

(
1

4K + 3
N + 1

)2Sσ2

N2
(28)

Y t ≤ eα
24L2

(
E[∥∇f(xt)∥2] + L2Xt + U t

)
+ eασ2

144KL2 . (29)

Adding together (26), 12αN
S × (27), 2αN

S × (28), and 4αL2

e ×(29) gives

E[f(xt+1)] + 12αN
S U t+1 + 2αN

S V t+1 + 4αL2

e Y t

≤ E[f(xt)]− α
3E[∥∇f(x

t)∥2] + 3α2N
8S E[∥∇f(xt−1)∥2]−

(
1
2α −

L
2 −

αS2

18N2

)
(Xt+1 −Xt)

+ 12αN
S U t + 2αN

S V t + 4αL2

e Y t + ασ2
(

73
36K + 2

SK + 32
N + 1

NK

)
(30a)

≤ E[f(xt)]− α
4E[∥∇f(x

t)∥2]− α
12

(
E[∥∇f(xt)∥2]− E[∥∇f(xt−1)∥2]

)
−
(

1
2α −

L
2 −

αS2

18N2

)
(Xt+1 −Xt) + 12αS

N U t + 2αS
N V t + 4αL2

e Y t

+ ασ2
(

73
36K + 2

SK + 32
N + 1

NK

)
, (30b)

where in (30a) we use the fact that N ≥ S ≥ 1, and (30b) uses the stepsize condition α ≤ 2
9 . In

addition, the stepsize condition α ≤ min{ 29 ,
1
L} guarantees that 1

2α −
L
2 −

S3

36N3 ≥ 0.

Now define the Lyapunov function for all t ∈ N,

Φt := E[f(xt)]− f⋆ + α
12E[∥∇f(x

t−1)∥2] + (1
2α −

L
2 −

αS3

36N3)X
t + 12αN

S U t + 2αN
S V t,

where f⋆ := infx f(x). With the convention x−1 = x0, the initial condition reduces to

Φ0 = f(x0)− f⋆ + α
12E[∥∇f(x

0)∥2] + 12αN
S

N∑
i=1

∥u0,0
i −∇fi(x

0)∥2 + 2αN
S ∥v

0 −∇f(x0)∥2

= R1 +
αR2

12 .

Substituting the definition of Φt into (30b) gives
α
4E[∥∇f(x

t)∥2] ≤ Φt − Φt+1 + ασ2
(

73
36K + 2

SK + 32
N + 1

NK

)
1
T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ 4(Φ0−ΦT)
αT + ασ2

(
73

36K + 2
SK + 32

N + 1
NK

)
≤ 4R1

αT + αR2

3T + ασ2
(

73
36K + 2

SK + 32
N + 1

NK

)
.

Finally, plugging the condition on α completes the proof.

D CONVERGENCE ANALYSIS FOR ALGORITHM 2

Similar to the convention in §B.1, we denote α := αinαoutK and

d̃t+1 := 1
α (x

t − xt+1) ≡ 1
S

∑
i∈St

Ci
(
β1

(
vti +

1
K (gt,K−1

i − ut,0
i)
))

,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

dt+1 := β1

S

(
vti +

1
K (gt,K−1

i − ut,0
i)
)
,

ut+1,0
i =

{
ut,0
i + Ci

(
β1(g

t,K
i − ut,0

i)
)

if i ∈ St
ut,0
i otherwise.

It is apparent that Lemma 5, Lemma 6, and Lemma 10 still hold for Algorithm 2.
Lemma 11. Under Assumptions 1 and 2, it holds for all t ∈ N that

1
N

∑
i

E[∥gt,Ki − ut,0
i ∥

2]

≤ 3L2(24α2
inK

2L2 + 1)Xt + 3(24α2
inK

2L2 + 1)U t

+ 18α2
inK

2L2
(
E[∥∇f(xt−1)∥2] + 4L2Y t + V t) + 6

(
12α2

inKL2 +
1

N

)
σ2. (31)

Proof. It holds that

1
N

∑
i

E[∥gt,Ki − ut,0
i ∥

2]

= 1
N

∑
i

E[∥ut,0
i −∇fi(x

t−1) +∇fi(xt−1)−∇fi(xt) +∇fi(xt)− gt,Ki ∥2]

≤ 3
N

∑
i

(
E[∥ut,0

i −∇fi(x
t−1)∥2] + L2E[∥xt − xt−1∥2] + E[∥gt,Ki −∇fi(xt)∥2]

)
≤ 3

N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2] + 3L2E[∥xt − xt−1∥2] + 3
N

∑
i

E[∥gt,Ki −∇fi(xt)∥2]

≤ 3L2(24α2
inK

2L2 + 1)E[∥xt − xt−1∥2] + 3(24α2
inK

2L2 + 1) 1
N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2]

+ 18α2
inK

2L2
(
E[∥∇f(xt−1)∥2] + 4L2Y t + E[∥vt −∇f(xt−1)∥2]) + 6σ2(12α2

inKL2 + 1
N),

where in the last step we use (10).

Lemma 12 (Descent Lemma). Under Assumptions 1 and 2, it holds for all t ∈ N and (α, β1, β2) ∈
R3

++ that

E[f(xt+1)]

≤ E[f(xt)]−
(α
2
− 2(1− β1)

2
)
E[∥∇f(xt)∥2] + 3αβ2

1ωN

S
E[∥∇f(xt−1)∥2]

−
(

1

2α
− L

2

)
Xt+1 +

4αβ2
1(1 + ω)L2

S
Xt + 4αβ2

1

(
1 +

1 + ω

S

)
L2Y t +

4αβ2
1(1 + ω)

S
U t

+
3αβ2

1ωN

S
V t +

4αβ2
1σ

2

K

(
1 + ω

S
+

1

N

)
. (32)

Proof. It follows from (Li et al., 2021, Lemma 2) that

f(xt+1) ≤ f(xt)− α
2 ∥∇f(x

t)∥2 −
(

1

2α
− L

2

)
∥xt+1 − xt∥2 + α

2
∥d̃t+1 −∇f(xt)∥2

≤ f(xt)− α

2
∥∇f(xt)∥2 −

(
1

2α
− L

2

)
∥xt+1 − xt∥2

+ α∥d̃t+1 − dt+1∥2 + α∥dt+1 −∇f(xt)∥2, (33)

where recall our definition α := αinαoutK and d̃t+1 := 1
α (x

t − xt+1). The expectation of the last
term on the right-hand side of (33) is bounded by

E[∥dt+1 −∇f(xt)∥2]

= E
[∥∥∥β1

S

∑
i∈St

(vti +
1
K (gt,K−1

i − ut,0
i)−∇f(xt)

∥∥∥2] (34a)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

≤ E∥β1g
t −∇f(xt)∥2 + β2

1

SN

∑
i

E∥vti + 1
K (gt,K−1

i − ut,0
i)− vt∥2 (34b)

≤ E∥β1(g
t −∇f(xt))− (1− β1)∇f(xt)∥2 + β2

1

SN

∑
i

E∥vti + 1
K (gt,K−1

i − ut,0
i)− vt∥2 (34c)

≤ 2(1− β1)
2E∥∇f(xt)∥2 + 2β2

1E∥gt −∇f(xt)∥2 + β2
1

SN

∑
i

E∥vti + 1
K (gt,K−1

i − ut,0
i)− vt∥2

(34d)

≤ 2(1− β1)
2E∥∇f(xt)∥2 + 4β2

1L
2Y t +

4β2
1σ

2

NK +
β2
1

SN

∑
i

E[∥gti − ut,0
i ∥

2] (34e)

≤ 2(1− β1)
2E∥∇f(xt)∥2 + 4β2

1L
2Y t +

4β2
1

S U t +
4β2

1L
2

S Xt +
4β2

1L
2

S Y t +
4β2

1σ
2

K (1
S + 1

N).
(34f)

In (34a), we apply the x-update (Line 17 in Algorithm 2), and in (34b), we apply Lemma 2. Then,
(34e) uses (5) with θ ← 1 and (8), and finally, (34f) uses (9).

The second-to-last term on the right-hand side of (33) is bounded by

E[∥d̃t+1 − dt+1∥2]

≤ β2
1ω
S2 E

[∑
i∈St

∥vti + 1
K (gt,K−1

i − ut,0
i)∥2

]
(35a)

≤ β2
1ω

SN

∑
i

E[∥vti + 1
K (gt,K−1

i − ut,0
i)∥2] (35b)

=
β2
1ω

SN

∑
i

E[∥vt + gti − ut,0
i ∥

2] (35c)

≤ 3β2
1ω

SN

∑
i

(
E[∥vt −∇f(xt−1)∥2] + E[∥∇f(xt−1)∥2] + E[∥gti − ut,0

i ∥
2]
)

(35d)

≤ β2
1ω
S

(
V t + E[∥∇f(xt−1)∥2]

)
+

4β2
1ωL2

S Xt + 4β1ωL2

S Y t +
4β2

1ω
S U t +

4β2
1ωσ2

SK . (35e)

In (35a), we use the definition of dt+1 and d̃t+1, and (35c) uses (8). In (35d), we use Young’s
inequality, and (35e) uses (9).

Finally, combining (33), (34f), and (35e) yields the desired result.

Lemma 13. Under Assumptions 1 and 2, it holds for all t ∈ N that

U t+1 ≤
(
1− S

4N
+

4(1− β2)
2S

N
+

3ωβ2
2S

N
(24α2

inK
2L2 + 1) +

48α2
inβ

2
2SK

2L2

N

)
U t

+

(
4N

S
+

4(1− β2)
2S

N
+

3ωβ2
2S

N
(24α2

inK
2L2 + 1) +

48α2
inβ

2
2SK2L2

N

)
L2Xt

+

(
12α2

inβ
2
2SK

2L2

N
+

18ωβ2
2α

2
inSK

2L2

N

)(
E[∥∇f(xt−1)∥2] + 4L2Y t + V t

)
+

2β2
2Sσ

2

N

(
12(2 + 3ω)α2

inKL2 +
2 + 3ω

N

)
. (36)

Proof. It follows from the definition of the filtrationF (k), the linearity of expectation, and the update
rule for ut+1,0

i that

ES [∥ut+1,0
i −∇fi(xt)∥2 | F (k)] = (1− S

N)ES [∥ut,0
i −∇fi(x

t)∥2 | F (k)]

+ S
NES [∥ut,0

i + Ci(β2(g
t,K
i − ut,0

i))−∇fi(xt)∥2 | F (k)],

where the expectation is taken over the random sampling of clients. Then, taking similar steps as in
the proof of Lemma 8 gives

U t+1

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

= 1
N

∑
i

(
(1− S

N)E[∥ut,0
i −∇fi(x

t)∥2] + S
NE[∥ut,0

i + Ci(β2(g
t,K
i − ut,0

i))−∇fi(xt)∥2]
)

≤ (1− S
2N) 1

N

∑
i

E[∥ut,0
i −∇fi(x

t)∥2] + S
N2

∑
i

E[∥ut,0
i + Ci(β2(g

t,K
i − ut,0

i))−∇fi(xt)∥2]

≤ (1− S
4N) 1

N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2] + 4N
S

1
N

∑
i

E[∥∇fi(xt)−∇fi(xt−1)∥2]

+ S
N2

∑
i

E[∥ut,0
i + β2(g

t,K
i − ut,0

i)−∇fi(xt)∥2] + Sωβ2
2

N2

∑
i

E[∥gt,Ki − ut,0
i ∥

2]

≤ (1− S
4N) 1

N

∑
i

E[∥ut,0
i −∇fi(x

t−1)∥2] + 4NL2

S E[∥xt − xt−1∥2]

+ S
N2

∑
i

E[∥ut,0
i + β2(g

t,K
i − ut,0

i)−∇fi(xt)∥2] + ωβ2
2S

N2

∑
i

E[∥gt,Ki − ut,0
i ∥

2]. (37)

Then, the first term on the right-hand of (37) can be further bounded as

S
N2

∑
i

E[∥ut,0
i + β2(g

t,K
i − ut,0

i)−∇fi(xt)∥2]

= S
N2

∑
i

E[∥β2(g
t,K
i −∇fi(xt)) + (1− β2)(u

t,0
i −∇fi(x

t))∥2]

≤ 2(1−β2)
2S

N2

∑
i

E[∥(ut,0
i −∇fi(x

t))∥2] + 2β2
2S

N2

∑
i

E[∥(gt,Ki −∇fi(xt))∥2]

≤ 4(1−β2)
2S

N U t + 4(1−β2)
2SL2

N Xt +
2β2

2S
N2

∑
i

E[∥gt,Ki −∇fi(xt)∥2]. (38)

Finally, combining (37), (38) and Lemma 11 yields the desired result.

Lemma 14. Under Assumptions 1 and 2, it holds for all t ∈ N that

V t+1 ≤
(
1− β2S

2N
+

18(1 + ω)β2
2L

2α2
inK

2S

N2

)
V t +

3(1 + ω)β2
2S(1 + 24α2

inK
2L2)

N2
U t

+
18(1 + ω)β2

2α
2
inSK

2L2

N2

(
E[∥∇f(xt−1)∥2] + 4L2Y t)

+

(
2NL2

Sβ2
+

3(1 + ω)β2
2SL

2

N2
(24α2

inK
2L2 + 1)

)
Xt +

2β2S
3L2

α2
outN

3
Xt+1

+

(
36(1 + ω)β2

2α
2
inKL2 +

3(1 + ω)β2
2

N
+ β2

)
2Sσ2

N2
. (39)

Proof. It follows from Lemma 5 that

vt+1 = 1
N

∑
i

ut+1,0
i = 1

N

(∑
i

ut,0
i +

∑
i∈St

Ci(β2(g
t,K
i − ut,0

i))
)

= vt + 1
N

∑
i∈St

Ci
(
β2(g

t,K
i − ut,0

i)
)
.

Then, we have

V t+1 = E
[∥∥∥ 1

N

∑
i∈St

Ci
(
β2(g

t,K
i − ut,0

i)
)
+ vt −∇f(xt)

∥∥∥2]
≤ E

[∥∥∥ 1
N

∑
i∈St

β2(g
t,K
i − ut,0

i) + vt −∇f(xt)
∥∥∥2]+ ωβ2

2

N2

∑
i∈St

E[∥gt,Ki − ut,0
i ∥

2]

≤ E
[∥∥Sβ2

N (gt,K − vt) + vt −∇f(xt)
∥∥2]+ (1+ω)β2

2S
N2

1
N

∑
i

E[∥gt,Ki − ut,0
i ∥

2],

where gt,K := 1
N

∑
i g

t,K
i . Then, combining it with Lemma 11 yields the desired result.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Theorem 4 (Restatement of Theorem 2). Suppose Assumptions 1 and 2 hold, and suppose the
stepsizes satisfy α = αinαoutK, 144α2

inK
2L2 ≤ α, β1 = 1−α

4 , β2 = αSL
27N , and

α ≤ min

{
2

9(1 + ω)
,
1

L
,

(
KLR1

4(1 + ω)STσ2

)1/3

,

(
N2LR1

50(1 + ω)SKσ2

)1/2
}
.

Then, the {xt} sequence generated by Algorithm 2 satisfies

1

T

T−1∑
t=0

E[∥∇f(xt)∥2]

≤ γ1

√
(1 + ω)LR1σ2

SKT
+

(1 + ω)L(γ2R1 + γ3R2)

T

(
N

S

)1/3

+ γ4

(
(1 + ω)N2L2R2

1σ
2

S3KT 2

)1/3

,

where R1 := f(x0) − infx f(x), R2 := E[∥∇f(x0)∥2], and (γ1, γ2, γ3, γ4) ∈ R4
++ are numeric

constants.

Proof. The key idea in the proof is similar to the proof of Theorem 1. Adding together (32), 12αN
S ×

(36), 4αN
S × (39), and 4αL2

e × (21) gives

E[f(xt+1)] + 12αN
S U t+1 + 4αN

S V t+1 + 4αL2

e Y t

≤ E[f(xt)]− α
4E[∥∇f(x

t)∥2]− α
12

(
E[∥∇f(xt)∥2]− E[∥∇f(xt−1)∥2]

)
−
(

1
2(1+ω)α −

L
2 −

αS2

18N2

)
(Xt+1 −Xt) + 12αS

N U t + 4αS
N V t + 4αL2

e Y t

+ (1 + ω)ασ2
(

65
32K + 41

SK

)
, (40)

where we also plug in the choice of β1 and β2, use the fact that N ≥ S ≥ 1, and the stepsize
condition α ≤ min{ 2

9(1+ω) ,
1
L} guarantees that 1

2(1+ω)α −
L
2 −

S3

36N3 ≥ 0.

Now define the Lyapunov function for all t ∈ N,

Ψt := E[f(xt)]− f⋆ + α
12E[∥∇f(x

t−1)∥2] +
(

1
2(1+ω)α −

L
2 −

αS2

18N2

)
Xt + 24αN

S U t + 4αL2

e V t,

where f⋆ := infx f(x). With the convention x−1 = x0, the initial condition reduces to Ψ0 =
R1 + αR2

12 . Finally, substituting the definition of Ψt into (40) and plugging the condition on α
completes the proof.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E IMPLEMENTATION DETAILS AND ADDITIONAL NUMERICAL RESULTS

Numerical results for ISCA. In Figure 4, we present the training loss for our algorithm (ISCA),
SCAFFOLD, and FedAvg on MNIST and FashionMNIST under data homogeneous (IID) and het-
erogeneous (Non-IID) settings. The experimental settings in Figure 4 are the same as those in
Figure 1. We observe from Figure 4 that, across two datasets, our algorithm demonstrates a faster
convergence during the training process compared to the other two algorithms. Specifically, as we
mentioned before, ISCA achieves similar test accuracy in both data homogeneous and heteroge-
neous settings. This uniformity in performance is mirrored by its consistent and rapid decrease in
training loss, underscoring this robustness regardless of data heterogeneity. In contrast, FedAvg
converges notably faster in the homogeneous setting. This observation ties directly into the test
accuracy, where it performs significantly better in the homogeneous setting.

Numerical results for ISCAM. In Figures 5 and 6, we plot the training loss for the algorithms
under the same experimental settings as in Figures 2 and 3, respectively. ISCAM exhibits a notable
advantage over the other two methods in terms of convergence speed. This rapid convergence,
observed in both settings, aligns with ISCAM’s strong performance in test accuracy, suggesting that
the integration of the compressor does not impede the efficiency of ISCAM.

0 20 40 60 80 100
communication round

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv
er
 lo
ss

MNIST (IID)
ISCA
SCAFFOLD
FedAvg

0 20 40 60 80 100
communication round

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

se
rv
er
 lo
ss

MNIST (Non-IID)
ISCA
SCAFFOLD
FedAvg

0 20 40 60 80 100
communication round

0.75

1.00

1.25

1.50

1.75

2.00

2.25
se
rv
er
 lo
ss

FashionMNIST (IID)
ISCA
SCAFFOLD
FedAvg

0 20 40 60 80 100
communication round

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv
er
 lo

ss

FashionMNIST (Non-IID)
ISCA
SCAFFOLD
FedAvg

Figure 4: Training loss of our algorithm (ISCA), SCAFFOLD, and FedAvg under data homogeneous
(IID) and heterogeneous (Non-IID) settings on MNIST (left half) and FashionMNIST (right half).

0 20 40 60 80 100
communication round

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv
er
 lo
ss

MNIST (IID)
ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

0 20 40 60 80 100
communication round

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv

er
 lo

ss

MNIST (Non-IID)
ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

0 20 40 60 80 100
communication round

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv

er
 lo

ss

FashionMNIST (IID)
ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

0 20 40 60 80 100
communication round

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv

er
 lo

ss

FashionMNIST (Non-IID)
ISCAM (2 bit)
SCALLION (2 bit)
FedCOMGATE (2 bit)

Figure 5: Training loss of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (Non-IID) settings, with 2-bit compression on MNIST (left half) and FashionM-
NIST (right half).

0 20 40 60 80 100
communication round

0.5

1.0

1.5

2.0

se
rv
er
 lo
ss

MNIST (IID)
ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

0 20 40 60 80 100
communication round

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv

er
 lo

ss

MNIST (Non-IID)
ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

0 20 40 60 80 100
communication round

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

se
rv

er
 lo

ss

FashionMNIST (IID)
ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

0 20 40 60 80 100
communication round

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

se
rv

er
 lo

ss

FashionMNIST (Non-IID)
ISCAM (4 bit)
SCALLION (4 bit)
FedCOMGATE (4 bit)

Figure 6: Training loss of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (Non-IID) settings, with 4-bit compression on MNIST (left half) and FashionM-
NIST (right half).

25

	Introduction
	Main Results and Contributions
	Related Work

	Problem Setup
	ISCA: Improved Stochastic Controlled Averaging for Federated Learning
	Review of SCAFFOLD
	Development of ISCA
	Convergence of ISCA

	ISCAM: Improved Stochastic Controlled Averaging with Unbiased Communication Compression
	Algorithm Description
	Convergence Analysis of ISCAM

	Experiments
	Experimental Settings
	Numerical results

	Conclusion
	Examples of unbiased compressors
	Preliminaries for Convergence Analysis
	Notation
	Preliminary results

	Convergence Analysis for Algorithm
	Convergence Analysis for Algorithm
	Implementation Details and Additional Numerical Results

