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ABSTRACT

Distributed and federated learning (D/FL) is a powerful machine learning (ML)
paradigm in which clients collaborate to train a model under the coordination of
a central server. Depending on the nature of clients, data in each client might
have the same distribution (called the homogeneous setting) or different distri-
butions (the heterogeneous setting). The state-of-the-art D/FL algorithm SCAF-
FOLD addresses the critical issue of data heterogeneity through the use of control
variables. However, while theoretical analysis suggests that the convergence rate
of SCAFFOLD is independent of data heterogeneity, the practical performance
of SCAFFOLD is often inconsistent in homogeneous and heterogeneous settings.
Motivated by the disagreement between theory and practice of SCAFFOLD, in
this work, we propose a novel D/FL algorithm to bridge this experimental perfor-
mance gap while preserving similar theoretical guarantees as SCAFFOLD. The
proposed algorithm accommodates arbitrary data heterogeneity, partial participa-
tion, local updates, and supports unbiased communication compression. Theoreti-
cally, we prove that our algorithm is unaffected by data heterogeneity and achieves
state-of-the-art convergence rate as SCAFFOLD. Furthermore, numerical exper-
iments indicate that our algorithm achieves consistent (similar) test accuracy in
both homogeneous and heterogeneous settings while often converges faster than
existing baselines.

1 INTRODUCTION

Distributed and federated learning (D/FL) has garnered significant attention due to its effectiveness
in the large-scale training of machine learning models (Kairouz et al., 2021). Data used in large-
scale training is typically dispersed across a wide variety of clients (or agents). In both settings,
a central server is used to orchestrate the local data processing of clients and their collaboration.
Under this scheme, the privacy of the clients’ data can be maintained as no explicit data is sent from
a client to a server (McMabhan et al., 2017).

In practice, both paradigms face several key challenges that need to be addressed in algorithmic
development. First, not all clients are active at each training step. So, partial participation of clients
needs to be accounted for in these algorithms. In addition, the communication between clients and
the server is often the computational bottleneck, so D/FL algorithms often implement techniques
such as local updates and compression to reduce the overall communication costs.

Beyond the above common challenges faced by both distributed training and federated learning,
one key difference between these two scenarios is the source of clients (or agents). In distributed
training of machine learning (ML) models, high-performance computing resources are abstracted
as clients/agents. In this case, data are distributed mainly in order to facilitate parallel computing
and to accelerate model training. Therefore, data are distributed in a uniformly random manner,
as there is really no difference among those HPC resources. In contrast, clients in federated learn-
ing are different in nature, e.g., smartphones and IoT devices (Kairouz et al., 2021). Thus, the
data between clients naturally have different distributions, and this data heterogeneity has been ob-
served to affect the overall performance of existing algorithms if not accounted for in algorithmic
development (Khaled et al., 2020). Therefore, a distributed optimization algorithm that performs
consistently well in both homogeneous and heterogeneous settings are in urgent need for distributed
training and federated learning.
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Figure 1: Test accuracy of our algorithm (ISCA), SCAFFOLD, and FedAvg under data homoge-
neous (IID) and heterogeneous (Non-IID) settings. ISCA converges the fastest and achieves compa-

rable (if not better) test accuracy to FedAvg and SCAFFOLD.

FedAvg (McMahan et al., 2017) (as well as distributed stochastic gradient (DSGD) methods) has
emerged as one of the most popular classes of algorithms in distributed training and federated learn-
ing. The core idea of FedAvg (and DSGD) is to have clients perform several stochastic gradient
descent steps using their local data before a global aggregation period. Despite the simplicity of this
scheme, both theoretical and experimental findings show that the performance of FedAvg signifi-
cantly suffers when the data between clients is heterogeneous (Khaled et al., 2020; Li et al., 2020b).
To address this issue, the seminal algorithm SCAFFOLD (Karimireddy et al., 2020) employs local
control variables stored on each client alongside a global control variable determined by a central
server to correct the “client drift” that otherwise occurs when simply taking stochastic gradient de-
scent updates. Theoretical analysis reveals that the convergence rate of SCAFFOLD is irrespective
of the amount of data heterogeneity.

The promising theoretical findings of SCAFFOLD motivate our close study of its practical perfor-
mance. Unexpectedly, experimental results reveal that the theoretical benefits of SCAFFOLD do
not necessarily translate to performance gains in practice. In particular, in the MNIST dataset (see
Figure 1), the practical performance of SCAFFOLD is severely inconsistent in homogeneous and
heterogeneous settings. This behavior is surprising as theoretically the performance of SCAFFOLD
should be completely invariant to data heterogeneity. This observation motivates the following ques-
tion:

Can we design a distributed and federated learning (D/FL) algorithm of which both theoretical
and practical performance are unaffected by data heterogeneity?

Our closer examination of SCAFFOLD allows us to provide a concrete answer to this question
and leads to a new algorithm ISCA. First, during one epoch of local updates, SCAFFOLD keeps
updating local model parameters while keeping the local control variable fixed. This is undesirable
as the local control variable is supposed to track the evolvement of the local model. Second, in
SCAFFOLD, the local control variable is calculated using an ancient local model rather than the
newest one. In this work, the aforementioned two observations are leveraged to develop a novel
D/FL algorithm that not only possesses the theoretical guarantees of SCAFFOLD but also exhibits
consistent practical performance in both homogeneous and heterogeneous settings. We believe this
bridges the performance gap between SCAFFOLD and FedAvg we observe in the experiments.

1.1 MAIN RESULTS AND CONTRIBUTIONS
The main contributions of this work are summarized below.

* We develop an Improved Stochastic Controlled Averaging algorithm (ISCA) for distributed train-
ing and federated learning. The proposed algorithm accommodates local updates, partial partici-
pation, and arbitrary data heterogeneity. In particular, we highlight two key differences between
our algorithm ISCA and SCAFFOLD. First, ISCA updates the local control variable at every lo-
cal step using the newly computed stochastic gradient. Second, the local control variable clients
sent to the server is evaluated at the most recent client model parameter. This is in contrast to
SCAFFOLD in which the local control variable is not updated in local steps and is computed
using an ancient model parameter.

* The theoretical convergence rate of ISCA matches the state-of-the-art result for distributed and
federated learning (D/FL) algorithms with arbitrary data heterogeneity; see Table 1 for a brief
summary and comparison.
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Table 1: Comparison of theoretical convergence rates and practical performance of different FL.
algorithms. Here, L is the Lipschitz constant of the true gradient, o2 is the variance of the gradient
noise, R is related to the initial condition, NV is the number of clients, S is the number of active
clients, K and T are the number of inner and outer iterations, respectively. The third column lists
the additional assumptions needed besides Assumptions 1 and 2.

Conv. rate vs.  Practical conv. vs.

Algorithm Convergence rate Assumption heterogeneity heterogeneity
(theory) (practice)
o\ 1/2 2/3

FedAvg (McMahan et al., 2017) * (fﬁg;) + (%) + % Bounded hetero. A N

1/2 2/3
: LRo* LRo LR

VRL-SGD (Liang et al., 2019) <NKT) + (\/ET) + 5 - - N
2\ 1/2 o)

SCAFFOLD (Karimireddy etal, 2020)  (g2) " + LE (4)*" - - e
2\ 172 2/3

ISCA (Theorem 1) (42) "+ 2% - - -

* The constant ¢ is a uniform bound of data heterogeneity, i.e., Zivzl IV fi(z) = Vf(z)]* < ¢2
Other analyses of FedAvg exist, and all rely on certain forms of bounded heterogeneity assumptions.

® Worst-case rate is worse when data heterogeneity is more severe.

¢ The practical performance of SCAFFOLD can be much worse in the homogeneous setting.

* To further reduce communication overhead, we incorporate unbiased communication compres-
sion into the proposed ISCA algorithm and present ISCAM. We establish theoretical convergence
guarantees for ISCAM and show that the convergence rate matches the state-of-the-art result
(Huang et al., 2024).

* Numerical experiments are conducted to verify our theoretical findings. Overall, ISCA converges
faster than existing baselines. More importantly, the test accuracy achieved by ISCA is consistent
in both data homogeneous and heterogeneous settings and matches the theoretical results which
states that the convergence rate is independent of the level of heterogeneity.

1.2 RELATED WORK

The FedAvg algorithm was first introduced in the seminal work (McMahan et al., 2017) as an algo-
rithm that combines local stochastic gradient updates on clients with a server that performs model
averaging. Through extensive empirical studies, McMahan et al. (2017) establishes the effective-
ness of FedAvg as an FL algorithm that reduces the number of communication rounds needed to
train on decentralized data by orders of magnitude. Inspired by the promising experimental results
of FedAvg, extensive efforts have been made to analyze the convergence of FedAvg under various
settings. The works (Stich, 2019; Yu et al., 2019; Lin et al., 2020; Wang & Joshi, 2021) analyze Fe-
dAvg under the scenario in which the data between agents is homogeneous and all clients participate
during the global aggregation period. These analyses are also extended to the more practical setting
in which the data between clients are heterogeneous, and only part of the clients participate at each
iteration. It has been shown that the presence of data heterogeneity deteriorates the performance of
FedAvg because of the “client drift” phenomenon (Li et al., 2020b; Khaled et al., 2020; Karimireddy
et al., 2020).

An extensive body of work has been dedicated to addressing the issue of data heterogeneity between
clients. FedProx (Li et al., 2020a) adds a proximal term to the objective in order to endow the server
with a principled way to account for data heterogeneity. FedNova (Wang et al., 2020) handles data
heterogeneity by correctly weighing local models during the global averaging period. FedPD (Zhang
et al., 2021) is a meta-algorithm that takes inspiration from primal—dual based algorithms to handle
data heterogeneity. FedGATE (Haddadpour et al., 2021) leverages gradient tracking (Xu et al.,
2015; Lorenzo & Scutari, 2016; Nedic et al., 2017) to account for the data heterogeneity between
clients. The work (Cheng et al., 2024) reveals that FedAvg with momentum can converge without
making any assumption that bounds the data heterogeneity even when using a constant stepsize.
SCAFFOLD (Karimireddy et al., 2020) is among the most famous FL algorithms and leverages the
use of control variables stored on both clients and the server to correct the “client drift” that occurs
when clients naively take stochastic gradient updates.

Communication compression has been integrated into FL algorithms to further reduce communica-
tion costs. Examples of compressed FL. methods include FedPAQ (Reisizadeh et al., 2020), Fed-
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Table 2: Comparison of compressed D/FL algorithms. Here, w € (0, 1] is the parameter for com-
pression (see Definition 1), N € N is the number of clients, S € [N] is the number of active clients,
and € € R, . is the suboptimality measure (i.e., E[||V f(2)]|?] < €). Communication complexity is
calculated via the convention in Fatkhullin et al. (2024); Huang et al. (2024). Other constants like
the Lipschitz constant and the variance o of stochastic gradient estimates are omitted for clarity.

Aleorith Communication Partial Data Standard
orithm
& complexity participation  heterogeneity compressibility
FedPAQ (Reisizadeh et al., 2020) % X
FedCOMGATE (Haddadpour et al., 2021) Qo) X X
VR-MARINA (Gorbunov et al., 2021) N X
SCALLION (Huang et al., 2024) ()l
ISCAM (Theorem 1 TR

(Theorem 1) s

COMGATE (Haddadpour et al., 2021), SCALLION (Huang et al., 2024). (Here, we focus on the
so-called unbiased compression; see Definition 1.) Due to the loss of information caused by com-
pression, most of the aforementioned compressed FL. methods either lack the robustness to data
heterogeneity and partial participation or rely on strict conditions on the compressors; see Table 2
for a brief summary and comparison.

2 PROBLEM SETUP

Formally, we consider the following optimization problem in distributed and federated learning:

N
minimize f(r) == 3 3 fi(e). where fi(r) = Eq [Fi(r:6,)]
i=

each function f;: R? — R is smooth but potentially nonconvex, and the symbol E¢ denotes the
mathematical expectation of the random variable or data &; associated with the probability space
(D;, Fi,P;). Hence, each f; is defined as the expected value of some loss function Fj(-, &;): R? x
D; — R over &;. The local functions f; can be different across clients, and such a phenomenon is
often called heterogeneity in distributed optimization. In federated learning, heterogeneity is often
due to the inherent difference in the data distribution D; across clients, and this is often referred to as
data heterogeneity. An undesirable consequence of heterogeneity is that a global stationary point *
that satisfies V f(2*) = 0 may not be a stationary point of any local objective (i.e., V f;(z*) # 0 for
some 7 € [N]). In contrast, under a homogeneous setting, all clients share the same data distribution
(i.e., D; = D forall i € [N]) and have the same loss function f; = --- = fy, so a global stationary
point is also stationary for each local objective.

The following standard assumptions are required for our algorithm analyses.

Assumption 1 (Smoothness). Each local objective f; has an L-Lipschitz gradient, i.e., for all
(z,y) € dom f; x dom f; and for all i € [N}, it holds that ||V f;(z) — V f;(y)|| < L||z — y||.
Assumption 2 (Gradient Noise). There exists o € R, such that for all i € [N] and for all
x € dom f;, it holds that B¢, [V Fy(x;&;)] = V fi(x) and E[||V Fi(z; &) — V fi(2)]|?] < 02, where
& ~ D; are IID random samples for each client i € [N].

Notation. We use N := {1,2,...} to denote the set of positive integers and, given N € N, we

denote [N] := {1,...,N}. We use || - || to denote the /5 vector norm. The notation < denotes
inequalities that hold up to numeric constants.

3 ISCA: IMPROVED STOCHASTIC CONTROLLED AVERAGING FOR
FEDERATED LEARNING

In this section, we present the proposed FL algorithm, ISCA, and provide convergence guarantees
under the nonconvex, stochastic setup. The development of ISCA is motivated by the practical per-
formance of SCAFFOLD, which is inconsistent in data homogeneous and heterogeneous settings.
That being said, we first review the development of SCAFFOLD in §3.1 and study our proposed
algorithm ISCA in §3.2. The convergence guarantees of ISCA is then presented in §3.3.

4
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3.1 REVIEW OoF SCAFFOLD

In order to handle the client drift issue, the SCAFFOLD algorithm Karimireddy et al. (2020) main-
tains local control variables {c£} ; on clients and a global control variable ¢' on the server. At each
iteration, a set S? of active clients is selected to communicate with the server, and then SCAFFOLD
conducts K local updates (inner loop) in each active client i € S* by

yf’kﬂ — yfk + ozin(VF(yf’k) —ci+ch), fork=0,...,K—1, (1)

where yfk is the local model in client 7 initialized with the server model yf’o < zt. This local

update can also be viewed as a (stochastic) gradient step with momentum. Here, the subscript ¢
represents the client index, and the superscripts ¢ and k denote the iteration counters for the inner
loop and outer loop. At the end of local updates, the local control variable is updated as

t, K ep - t
AL ¢f—c+g(@ -y ifieS
! ct otherwise.

2

Then, the server updates the global variable (model parameters) and the global control variable as

out t,K 1 t+1
ottt 4 Qo 37 (ot — ), Al + £ 3 (= .
€St ieSt
Intuitively, the local control variables track the local gradients: c;‘f ~ V fi(xt), and similarly,
¢! ~ Vf(x!). Consequently, the local updates are nearly synchronized in the presence of data
heterogeneity without suffering from client drift.

3.2 DEVELOPMENT OF ISCA

Although the theoretical convergence of SCAFFOLD is independent of data heterogeneity Karim-
ireddy et al. (2020), its numerical performance does not seem to be consistent with the theoretical
findings. As observed in Figure 1, SCAFFOLD performs much better in the heterogeneous setting
than in the homogeneous setting. To fill this gap between theory and practice, we examine the it-
erations in SCAFFOLD carefully and present our proposed FL algorithm ISCA in Algorithm 1. In
particular, ISCA improves upon SCAFFOLD in the following two aspects.

First, we observe that in SCAFFOLD, the updates of local control variables (2) rely on the increment

of the local model (i.e., 2* — yf ’K). Also note that the most recent local model yf K ois computed

using the stochastic gradient evaluated at the previous local iteration (i.e., VF(yf ’K_l)); see (1)
with k < K — 1. That being said, although Karimireddy et al. (2020) claim that the local control
variable in SCAFFOLD tracks the true local gradient (i.e., ¢! ~ V f;(z")), such an approximation is
computed using the stochastic gradient evaluated at the previous local model, rather than the most
up-to-date (stochastic) gradient. Therefore, each active client uploads the newest local model and an
ancient local control variable to the server. This inconsistency might deteriorate the performance of
SCAFFOLD. In comparison, the proposed algorithm ISCA performs an additional update of local
control variables, using the (stochastic) gradient evaluated at the newest local model; see Lines 12
and 13 in Algorithm 1. Modification regarding this aspect is highlighted in red in Algorithm 1, and

vf’k in ISCA plays a similar role to ¢! in SCAFFOLD.

Second, SCAFFOLD updates the local model yf’k with a fixed momentum term —c! + ¢'. This is
undesirable because the local model keeps updating in the inner loop while the local control variable
is fixed. Although it is often claimed that ¢! ~ V f(2') in SCAFFOLD Karimireddy et al. (2020),
the accuracy of such an approximation should be improved if the local control variable is updated
appropriately in the inner loop. Motivated by this observation, modification regarding this aspect is

highlighted in blue in Algorithm 1, and {vf ’k}ffjol are the local control variables in ISCA.

3.3 CONVERGENCE OF ISCA

This section presents convergence guarantees for Algorithm 1 under the nonconvex, stochastic setup.
Remarkably, we only require L-smoothness and unbiased, bounded gradient noise.

Theorem 1. Suppose Assumptions 1 and 2 hold, and suppose the stepsizes satisfy & = QinQout K,
144ai2nK2L2 < o, and

_..[2 1 (KLR 13 N2LR \V?
=M 9 T \15702 ) '\ 335K02 '
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Algorithm 1 ISCA: Improved Stochastic Controlled Averaging for Federated Learning
0

Input: initial model z° € R4, global control variable %9 € R4, and local control variables
{u;}., C R% local (inner loop) learning rate a;, € Ry, global (outer loop) learning rate
Qouy € Ry, number of local steps K € Nx>1; number of sampled clients S € [N]; local
dataset D; on client ¢

1: Initialize 2° € R%, 00 « Vf(29), and u)"® + V f;(2°) for all i € [N]
2: fort=0,...,T—1do
3: Uniformly sample clients S* C [N] with [S*| = S

4 for client i € S* in parallel do
5: Receive =t and v? from server; initialize yf’o « 2t vf’o — ot
6: fork=0,..., K —1do
. . . t,k tk, otk t,k
7 Compute mini-batch gradient ;" < VF;(y;”"; &) > ~D;
8 Locally update /"™ yPF — au (g7F — ulF 4 01F)
9: Locally update vf’kﬂ = vf’k + gf’k = uﬁ’k
10: Locally update uf’kﬂ — gf’k
11: end for
t, K 6K ot K
12: g7 « VFE(y, " ,&")
13: vf’KH = vf’K 4F gf’K = uf’K
t+1,0 tK
14: u; — g;
15: Send ny — zt and vf’KH to server
16: end for
17: Update '+ < zt + St Y st (y:K —zt)
18 Update v'*! ¢ vt + £ 30 o (0P F — o)
19: end for
Then, the {z'} sequence generated by Algorithm I satisfies for any T € N that
T—1 2/3
1 LRo? LR (N
— Y E[||Vf)]?] < — = , 3
7 2 BV S st (5) @

where R is a positive constant related to initial conditions (e.g., f(xz°) — inf, f(x)).

Asymptotic complexities of ISCA. When the true (full-batch) gradients are used (i.e., 0 = 0),
the first term on the right-hand side of (3) vanishes. So, ISCA converges at the classical O(1/T)
rate for first-order optimization methods, and as an instance of FL algorithms, the convergence of
ISCA relies on the partial participation rate N/S (see, e.g., Huang et al. (2024)). On the other
hand, when the stochastic gradient estimates suffer from a large noise (i.e., o is extremely large),
the first term on the right-hand side of (3) dominates. In this case, ISCA enjoys the state-of-the-
art O(o/ \/T) rate, and the performance is mainly hampered by the number of stochastic gradients
estimates.

4 ISCAM: IMPROVED STOCHASTIC CONTROLLED AVERAGING WITH
UNBIASED COMMUNICATION COMPRESSION

Recall that ISCA needs to communicate two quantities (the updates of local models ny —z? and the

local control variable vf ’K+1) for each client at each iteration. This is slightly undesirable because
both FedAvg (McMabhan et al., 2017) and SCAFFOLD (Karimireddy et al., 2020; Huang et al., 2024)
only require one quantity for uplink communication. To alleviate the additional communication
overload in ISCA, we propose to incorporate unbiased communication compression, a technique

that has been extensively used in distributed and federated learning methods.

4.1 ALGORITHM DESCRIPTION

The development of ISCAM uses the following definition of unbiased communication compres-
sors. This choice of unbiased compressors is standard in the FL literature; see, e.g., Haddadpour
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et al. (2021). Examples of compressors that satisfy Definition 1 include random sparsification and
dithering; see Appendix A for several examples.

Definition 1 (w-unbiased compressor). For all x € R and for all client i € [N, there exist a
compressor C: R* — R? and a (unified) constant w € R such that

Ec[Ci(z)] =2,  E[l|Ci(z) - z|’] < wlz|?,
where the expectation is taken over the randomness of the compressor C;, i € [N].
6 K+1

Potential downside of communicating v, Now, we employ communication compression
satisfying Definition 1 into Algorithm 1. One key point in the development of ISCAM is to select the

two quantities for uplink communication. Recall that the local control variable vf’KH is designed to

better approximate the local gradient evaluated at the global variable; i.e., vf’KH ~ V fi(&) when
Z is close to a first-order stationary point. However, due to the (potential) non-1ID nature of the data
distribution, the local gradient does not converge to zero even when the global gradient converges;

i.e, Vf(z*) = 0but Vf;(x*) # 0. Therefore, if the local control variable vf’Kﬂ is compressed,
the compression error introduced at each communication round satisfies

Ec[IC:(V fi(z")) = V fi(z")|IP] < wlIV£i(2")]* = wlV fi(a")]* # 0,
which implies that the compression error might be very large under severe data heterogeneity.

E’K Lyt One remedy for this above issue is to communicate the
LKLyt Adding together the v/ -update (Line 9

in Algorithm 1) gives v/ X+ — ot = gh® — b0 = 410 _ b0 = Al (Recall that v/"° =

by initialization.) Since u’” is the cached local gradient, ideally u'® — Vf;(z*) if 2t — z*.
Therefore, the increment control variable A! vanishes eventually, and compressing A! results in a

vanishing compression error E[||C; (Al) — 15 [1?] < w||AL||? — 0, regardless of data heterogeneity.

Benefits of compressing v
increment of the local control variable, i.e., v

*

Following the above discussion, we are ready to incorporate unbiased compression into ISCA
(Algorithm 1) and present the resulting algorithm (ISCAM) in Algorithm 2. The parameters
(B1,82) € [0,1]? are introduced to stabilize the updates of the increment variables and can be
viewed as learning rates. When 3; = B2 = 1 and {C;}}V, are the identity mappings (i.e., no
compression), ISCAM reduces to ISCA.

4.2 CONVERGENCE ANALYSIS OF ISCAM

We now present the convergence results for Algorithm 2 under the nonconvex, stochastic setup and
with an unbiased compressor that satisfies Definition 1.

Theorem 2. Suppose Assumptions 1 and 2 hold, and suppose the stepsizes satisfy & = QinQout K,

14402, K212 < o, fy = 152, 8, = 25L, and

. 2 1 KLR /3 N2LR 1/2
min — .
= 91+w) L'\ 41 +w)STo2 ) *\50(1 + w)SKo2

Then, the {z'} sequence generated by Algorithm 2 satisfies for any T € N that

sz:_lIE[HVf( DIRES (L+w)LRo?  (1+w)LR (N V3114 w)N2L2R202\ V/®
T 2 LR SKT T 5 T

where R is a positive constant related to initial conditions (e.g., f(x°) — inf,, f(z)).

A detailed version and the proof are presented in Appendix D.

Computation complexity of ISCAM. The computation complexity of ISCAM is similar to that
of ISCA. When no gradient noise exists (i.e., o — 0), the convergence of ISCAM has the O(1/T)
sublinear rate and is also restricted by the partial participation ratio N/S. On the other hand, when o
is extremely large and the terms involving o are dominating, the o/+/T-dependent term dominates
others. Again, in this case, the performance is mainly hampered by the number of gradient evalua-
tions, which is the same as the convergence result for ISCA.
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Algorithm 2 ISCAM: Improved Stochastic Controlled Averaging with Unbiased Compression
0

Input: initial model z° € R4, global control variable %9 € R4, and local control variables
{u;}., C R% local (inner loop) learning rate a;, € Ry, global (outer loop) learning rate
oout € R4, number of local steps K € N>i; number of sampled clients S € Nx>;; local
dataset D; on client ¢

1: fort=0,...,T—1do

2 Uniformly sample clients St C [N] with S| = S

3 for client i € S in parallel do

4: Receive = and v? from server; initialize yf 0 gt vf’o — ot

5: fork=0,..., K —1do

6 Compute mini-batch gradient g* « VF;(y"*; €5F) >R~ D,
7 Locally update 3" « % — oy, (g5F — ul® 4+ 05F)

8 Locally update vf’kH — vfk + gf’k - uﬁ’k

9: Locally update uﬁ’kH — gzk
10: end for
1 9" = VE@ ")
12: UE’K'H — UE’K + gf’K — uZ’K
13: Compute 6! «+ —Bl(ifK_zt) and Al BQ(UE’KH —vt)
14: ul T 4 Al
15: Compress and send 6! < C;(6¢) and Al < C;(A?) to the server
16: end for ~
17: Update 21 « gt 4 QowdinB 57 5t
18:  Update v!*1 ot + L 37, o Al
19: end for

Asymptotic communication complexity of ISCAM. Following the convention in Fatkhullin et al.
(2024); Huang et al. (2024), the asymptotic communication complexity is defined as the total number
of communication rounds required to obtain E[||V f(2)]|?] in the regime o — 0. Then, Theorem 2
shows 1« (%)1/ 3 asymptotic communication complexity. (It is derived from w (%)1/ 3xe)
So, ISCAM improves the influence of the client participation ratio on the asymptotic communication
complexity for compressed FL. methods with non-IID clients. Regarding the impact of stationarity
measure € and the compression parameter w, ISCAM matches the state-of-the-art asymptotic com-
munication complexity and does not require a uniform bound on the compression errors (as did in
many compressed FL methods with non-IID clients; see, e.g., Haddadpour et al. (2021)).

Based on the above discussion, we demonstrate that ISCAM theoretically improves existing FL
methods with unbiased compression.

5 EXPERIMENTS

This section presents numerical experiments to demonstrate the efficacy of the proposed methods.
Recall that this work is motivated by the performance gap of SCAFFOLD between theory and
practice. So in the experiments, we aim to demonstrate that the proposed algorithms have consistent
(i.e., similar) practical performance in both data homogeneous and heterogeneous settings, which
aligns with our theoretical findings (Theorems 1 and 2).

5.1 EXPERIMENTAL SETTINGS

Datasets and baselines. We use two standard FL benchmark datasets: MNIST (Deng, 2012) and
Fashion MNIST (Xiao et al., 2017) in the numerical experiments. Both MNIST and Fashion MNIST
have 60,000 training images and 10,000 test images, each of which is categorized into one of ten
classes. A (nonconvex) fully connected neural network is used as the model in the experiments,
and following the convention in Karimireddy et al. (2020), it consists of two hidden layers (256 and
128 neurons for each layer). ISCA is compared with SCAFFOLD (Karimireddy et al., 2020) and
FedAvg (McMahan et al., 2017), two state-of-the-art FL algorithms in the data homogeneous and
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Figure 2: Test accuracy of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (non-IID) settings, with 2-bit compression, and tested on MNIST (left half) and
Fashion MNIST (right half).
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Figure 3: Test accuracy of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (non-IID) settings, with 4-bit compression, and tested on MNIST (left half) and
Fashion MNIST (right half).

heterogeneous settings, respectively. For FL algorithms with compression, we compare the proposed
ISCAM with SCALLION (Huang et al., 2024) and FedCOMPACT (Haddadpour et al., 2021).

Experimental settings. In the experiments, the training data are distributed across N = 100
clients. In the homogeneous (IID) setting, all the training data are distributed in all the clients
in a uniformly random manner, while in the heterogeneous (non-1ID) setting, the dataset is split
into 200 shards, each containing samples from only one class. (Each client is assigned with two
shards randomly.) At each training epoch, the server selects S = 10 clients in a random man-
ner, and the sampled clients take K = 5 local steps to update their own model parameters. In
the experiments, we tune the global learning rate (c,ut) and the local learning rate (ay,) over the
grid {0.01,0.05,0.1,0.5,1, 3,5, 10}2. For compressed FL algorithms, we use the unbiased random
dithering compression (Alistarh et al., 2017). For ISCAM, the additional learning rates are set to
£1 = B2 = 0.1. In this section, we use test accuracy as the performance metric, following standard
FL literature. Additional experimental results are in Appendix E.

5.2 NUMERICAL RESULTS

Numerical results for ISCA. In Figure 1, we present the test accuracy of the proposed ISCA,
SCAFFOLD (Karimireddy et al., 2020), and FedAvg (McMahan et al., 2017). We observe that
on both datasets, ISCA achieves similar test accuracy in the data homogeneous and heterogeneous
settings, consistent with our theoretical findings (Theorem 1). FedAvg performs much better in the
homogeneous setting than the heterogeneous setting, which has been extensively studied (McMahan
et al., 2017). As expected, SCAFFOLD performs quite well in the heterogeneous setting. The
unexpected result is that the performance of SCAFFOLD sometimes deteriorates significantly in the
homogeneous settings. This observation contradicts all the existing theoretical results (Karimireddy
et al., 2020; Huang et al., 2024) which claim that the convergence of SCAFFOLD is irrespective of
the amount of data heterogeneity. Moreover, we see that in most cases, ISCA converges faster than
SCAFFOLD and FedAvg, further demonstrating the superiority of the proposed algorithm.

Numerical results for ISCAM. In Figures 2 and 3, we plot the same set of experimental results
and compare the proposed ISCAM with SCALLION (Huang et al., 2024) and FedCOMGATE (Had-
dadpour et al., 2021), applying unbiased random dithering (Alistarh et al., 2017) with 2-bit and 4-bit
per entry, respectively. Similarly, we see that ISCAM performs consistently well (in terms of test
accuracy) in both homogeneous and heterogeneous settings. In terms of convergence rate, ISCAM
has comparable, sometimes better, practical convergence speed compared with SCALLION.
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6 CONCLUSION

This paper presents ISCA, a new distributed and federated learning (D/FL) algorithm that admits
local updates, partial participation, and arbitrary data heterogeneity. Theoretically, under minimal
assumptions, ISCA matches the state-of-the-art convergence of D/FL methods. Empirically, ISCA
converges faster than other baselines and achieves consistent test accuracy in the data homogeneous
and heterogeneous settings.

Moreover, to further reduce the communication overload, we incorporate unbiased communication
compression into ISCA and propose a new compressed FL algorithm called ISCAM. Theoretical
convergence of ISCAM is established under standard compressibilities and matches (or improves)
the state-of-the-art result for compressed FL methods. Numerical experiments also support our
theoretical findings on ISCAM.
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A EXAMPLES OF UNBIASED COMPRESSORS

In this section, we present two examples of unbiased compressors.

Example 1 (Random sparsification). For any s € [d], the random-s sparsification is defined as
C:z g({ ® x), where © is the Hadamard (entry-wise) product and ¢ € {0,1}¢ is a uniformly
random binary vector with s nonzero entries. This random-s sparsification is an unbiased compres-
sor with parameter w = % - 1L

Example 2 (Random dithering (Alistarh et al., 2017)). For any b € N, the random dithering with
b-bits per entry is defined as C: x — ||z|| x sign(x) ©((x), where {(i. }¢_, are independent random
variables such that

me‘J with probability [2;‘;‘?"—‘ _ 2o

ll=Il [

Ck(IC) =

2% |z, .
[Hlflﬂ—‘ otherwise,

where |-| and [-] are the floor and ceiling functions, respectively. This random dithering with b-bits
per entry is an unbiased compressor with parameter w = min { 15 55 }

B PRELIMINARIES FOR CONVERGENCE ANALYSIS

B.1 NOTATION

We abbreviate Zz 1 Zk 0> ZZ 1 ZkK_Ol as > . Y ops i Tespectively, when no confusion
occurs. We also define the quantities

] Kl 1 XN 1 ] Kl
t . t,k t._ - t tK . t,K t._ = t,k
9 2 A S DI o—NZgi e
=0 i=1 k=0
| N K-l
t._ t t—1)2 . tk )2
X' i=E[[|z" — 2|7, : ﬁz_; I;E[Hyz — '], 4

N
= SR - VAT, V=Bl - Vi)
i=1

In addition, we denote a := aj,aou K and

L é(xt _ gty = % Z L t,K—l _ u?o))’
€St

which follows from the z-update (Line 17 in Algorithm 1 or Line 17 in Algorithm 2).
B.2 PRELIMINARY RESULTS

In this section, we present some preliminary inequalities that will be used in our analysis. Most
of them are established results in the literature and are irrelevant to any specific optimization algo-
rithms.

Lemma 1. Forall 0 € [0, 1] and for all (a,b) € R™ x R™, it holds that
1
(1 =20)lla = bJ* < (1 = O)al* + Z[IB]1*.

Proof. When 6 € [0, 1], we have 1 — 26 > 0 and thus

(1—260)[la—b|% = (1 —260)(||a]|* + ||b]|* — 2aTb)
= (1 —20)([lalf* + ]b]|?) — 2(1 — 26)aTb
< (1 —20)(la]l® + [Ibl*) + (@llaf|? + L=22b)%)

12
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= (1= 0)llal® + =252 |

< (1= 0)llall* + FlIblI*.
The first inequality uses the Young’s inequality 2a'b < p||a? + 1 ||b||2 with p ¢ = 29 The last
inequality follows from the fact that 6 € [0, 1] and thus (1 — 20)(1 —-0)=1+46(20-3)<1. O

Lemma 2 (Cheng et al. (2024, Lemma 7)). Given any {LLz L, C R% and b € RY, denote a =
~ ZZE[N] a;. Suppose S C [N] is uniformly sampled from [N | without replacement with |S| =
Then, it holds that

Zaz

1€S

1 1
< ||a||2+ST\,Z:HOM—GH2 < ||a||2+ST\, la; — I,
i i

where the expectation is taken over all the possible sampling of S.

Lemma 3 (Karimireddy et al. (2020, Lemma 4)). Let {X1,---,X,;} C R? be random variables
that are potentially dependent. If their means and variances satisfy E[X;] = p; and E[|| X; —p;]|?] <
o2, then it holds that

—1—7'0

If instead their means and variances satisfy IE[XZ-\Xi,l, oo, X1 = pi and B[|| X — wil|?] < 02,

then it holds that ) )
> Xi > i
i=1 i=1

Lemma 4 (Huang et al. (2024, Lemma 3)). Under Assumptions 1 and 2, for all § € [0,1], w € R?
and {w; }., C RY, the sequence {x} generated by Algorithm 1 (or Algorithm 2) and the sequence
{g'} defined in (4) satisfy

E[ll(1 = 0)w +0(g" = VF(="))II"]
< min {201 - O[] + 30°L2Y" + 202, (1 - O[] + 2012V + X2}, (5)

< 2E + 2702,

and

& DBl — 8w +0(gf — Vfi(a)|?]

< min{ (1—6) ZEleH | 4 302L2Y" + 22 2,WZE[HWHQ]JF%LZWJF%;Q}, (6)

where the quantity Yt is defined in (4).

C CONVERGENCE ANALYSIS FOR ALGORITHM 1

We start with two fundamental pillars for the convergence analysis In particular, Lemma 5 estab-
lishes the key connection between the global tracking Varlable v and local tracking variable ut o
and Lemma 6 provides bounds on the stochastic gradients g?, gi K and g“¥ . The important descent
inequality is then provided in Lemma 7.

Lemma 5. For allt € N, the sequence {v'} generated by Algorithm 1 satisfies

1 40
=¥ > ui’ (7)
i=1
In addition, for all t € N and i € [N], the sequence {v!} defined in (4) satisfies
| K2
vt =0t 4 % (g% — (K — D)ul?). (8)
k=0

13
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Proof. We prove the first statement via mathematical induction.

1. In the base case where ¢ = 0, by initialization it holds that 00 = % Zl u?’o
2. The induction hypothesis assumes that v = % ) uﬁ’o forany ¢ € N.

3. The induction step: we prove that v'™! = & 3. ul 10 1t follows from the v/"* ' -update
(Line 9 in Algorithm 1) that

ot K+1 0 Z vlp,o 4 gE,K _ uﬁ’o — ot ut+1 0 u?o'
Then, it follows from the v-update (Line 18 in Algorithm 1) that

1 t,K+1
vt“:vt—kNZ(vi’ T_oh)
iest

1 1
SO MRS LI

€St

1 t+1,0 , 1 0
NZuﬁ +N2uf

€St i¢S?t

% Z uzﬂ,o 4 % Z u;§+1,0

€St igSt

1 t4+1,0
SRS
i

Therefore, the desired result (7) follows from mathematical induction.

For the second argument, it follows from Line 9 that

t,0 _ t,0
v, =,

t,1 0 t,0 t,0
v, =0 g — Uy

t,2 t,0 t,0 t,0 t,1 t,0
vt =00+ (g7 )+ (90 —9i)

7

t,K—1 t,0 t,0 t,0 t,1 t,0 t,K—2 t,K—3
U, = -l-(gi — Uy )+(9i -9 )+ +(g7, —9g; )

K-1
P = Kol 4 (= (K~ 1)ul® 4 gl gttt o gl )
k=0
K-2
= Kv' + Z (gf’k — (K - 1)uf’0),

k=0

and then the desired result (8) follows from the definition v} := % >, vfk O
Lemma 6. Under Assumptions 1 and 2, it holds for all t € N that
40

E[ <ALX' + ALY + AUt + — 9
~ Z [llgt — ulP)? + +AU" + 9)

and
1
¥ 2 Ellal ™ = Vi)

< 6a;, K?L*(E[|Vf (=" D)|?] + AL X" + 4L*Y" +4U" + V') + (2407, KL* + %) 0*. (10)
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Proof. To show (9), we have

¥ ZEHIQ? — "]

<2z ZE luf® = V(=12 + % ZE lgt — ¥ fi(=")]1?] (11a)
§N§:EM?fVﬁwm}+M%”+7— (11b)
<4 ZE luf® = V£t D) + SB[V fi(a?) = V(a2 + 4L2Y" + 422 (110)
<# ZE [lug® = V fi(a' )% + ALE[[]2* — 2* 71 |?] +4L°Y* + 4= (11d)
— 44U +4L2Xt FALPY! 4 A (11e)

where (11a) and (11c) use the fact ||a +b||* < 2[|a||* + 2||b||?, (11b) uses (6) with 6 +— 1, and (11d)
uses Assumption 1.

Lastly, we find that
% D _Elllgh" = Vi)
< 2D E[IVAWT) - VEENP + %

R Dl — e+
2
:2a L ZE[HZUMJFQZK 1 uf,o

202 L2 t,0 2
= 20u17 ZEHK(v +gt—ulO) + 2

N

IN

2 2
o
%

KL o
— 2L ZEM+& ut||? + 2

IN

S L7 Z (B[l — VY2 + B[V A2 + B! — ut0)2) + 2

i
<602 K2LA(VE + E[|Vf(2' 1)) +4U" + 4L2X* +4L2Y" + 427 4 22
where in the last step we apply (9). O

Lemma 7 (Descent Lemma). Under Assumptions I and 2, it holds for all t € N that

t+1 t o N 1 _£ t+1 2017 _,
E[f(z*)] < E[f(2")] - QEHVf(x)II (55— 5)X* +=5-x
9 2 + . ao? /2 1
tal (1+S)Y +§U +—(§+N) (12)

Proof. Tt follows from (Li et al., 2021, Lemma 2) that
Pt < fa) = $IVEEOIE = (3 = £t = o) + gl - VA2 a3)

(vt — 2t*1). The expectation of the last

where recall our definition @ := ajpou K and 1 = 1

term on the right-hand side of (13) is bounded by
E[|d"*! — V£ (z")]]
2
:E[Hg 3 (v +L(ghh? u§’0)> —Vf(:ct)H } (14a)

€St
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<E|g"' - V(") + SNZ]Ellv + (g =l — ot (14b)
= 12VLK ZEHW —a'|*+ % -+ o ZE”” + % (9] PR a0y — o2 (14¢)
= = ZEHy — P+ 2 gy SR gt - ut® — o2 (14d)
< 2L2Yt + 20 4 LE||g! - ub)2. (14e)

In (14a) We apply the z-update (Line 17 in Algorithm 1), and in (14b), we apply Lemma 2 with
a; < vl + % ( LR

g; f’o),b<—vt,and
1 o L (ghET 0
—NZ%—NZU+K ;"))
1

2
— % Z (vt + % (Z gf’k — (K - 1)u§’0> + %(gf’K*1 - uﬁ’o)) using (8)

k=0

_1§ t t,O 1 t,k
=N (’U —Uu; ? gz >

k
= NK Z N =g using (7).

Then, (14¢) uses (5) with 6 < 1, (14d) uses (8), and (14e) applies Cauchy—Schwarz inequality.
Combining (14e) and (9) yields

E[|dH! — VF(ah)]?) < L2 X+ 2L2(1+ 2)Y! + 4U + 22 (2 + 4).
Substituting it back to (13) yields the desired result. O

In the following three lemmas, we establish upper bounds on the quantities U**!, V¢*1 and Y,
respectively.

Lemma 8. Under Assumptions 1 and 2, it holds for all t € N that

S 2402 SK?L? AN 2402 SK2I?
t+1 < _~ in t o in 2yt
i < (1= S HABSKY) o (AN 20055 >LX
2 K2L2
+M(E[Hw(ﬂ—l)nﬂ+4L2Yt+vt)+ (12 INKL?+1). (15)

N N2

Proof. Tt follows from the definition of the filtration F(¥), the linearity of expectation, and the update
rule for utJrl % that
Esllu; ™ = Vfi(a")|* | FV)
= (1= F)Es[llu;” = VAP | FPI+ FEsllgr™ — Vhil)I? | FP),

where the expectation is taken over the random sampling of clients. Then, taking the total expecta-
tion gives

% ZE[nuz“” - V@)
v (= BN = VI + $Ellgr™ - Vi()]) (162)

IN

(1- 53w ZElluto—sz( WP+ w2 > Elllgr ™ = Vila")I1?] (16b)

i

)% ZEHW = VAT + B % D EVAE) - VAETP)

i
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+ 72 D_Elllgl ™ = Vi) (160)

< (1= U+ X+ 5% D Ellg™ ~ VAP (16d)

In (16a) we use Law of Total Expectation; (16b) uses the fact S < N; (16c) applies Lemma 1 with
ety e ZE VIR be 3 SEIVAE) - TGP

and (16d) uses Assumption 1. Finally, combining (16d) and (10) yields the desired result. O

Lemma 9. Under Assumptions 1 and 2, it holds for all t € N that

1802 SK?1? _ 25312
Vt+1 S T(E[va(xt 1)”2] —|—4L2Yt) gut]\/ng'tJrl
2NL? 35L7
( o+t (24a?nK2L2+1)> Xt
35 S 1802 SK2L?
(4R KPP DU (1 — 2 ) VY
+ 22 (240, +)U+( o )v
3 2502
<36a KL?+ ~ 1) -7 (17)

Proof. 1t follows from (7) and the u-updates in Algorithm 1 that
t+1,0 £,0 ot 0 K t,0
R DB P PO )=ty ) (" -,
i ieSt ieSt

Then, it holds that
E[[lo"*! — V£ (z")|]
B[4 S -l + o - Vi) ]

2
<E[[§(6"F o)+ = V(@ H}+N32E|\g — |2, (18)

which applies Lemma 2 with a; = (90" — u}®) + v — Vf('). Then, the first term on the
right-hand side of (18) is further bounded by

E[[[ 50" — o) + o' = VsG]

=E[[(1- )" - Vi) + 5" = V)]

< (1= R)E[' = VF)?] + FEg"" = V")) (192)

< (1= SV 2EX L BR[| S V) - Vi H |+ 28 (19b)

<(1- %)Vt 2NL2 2NL? xt ZSL E{H Z(ny _xt)'m T 2}5\%2 (19¢)

<(1-2)vty 2NL2Xt ZSL E{H Z(ny _xt)HQ} i 21%%2 (19d)
i€S?

S(1— )V + X 4 2L x4 2850 (19%)

In (19a) we use Jensen’s inequality. In (19b) we apply Lemma 1 with

05y, acE[ =ViTHPI=V, b E[fla" -] = X,
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and uses Assumption 1. Then, (19¢) uses again Assumption 1, and (19e) substitutes the x-update
(Line 17 in Algorithm 1).

The second term on the right-hand side of (18) is bounded by
K t,0
%ZE[”% Uy ||2]

= 5 ) Bl = Vi) + Vfi(a'h) = Vfiah) + Vi(a) — g7 ")

IN

353 (NU' + L2X" + E[l|g)™ — Vi)

i

2
WU+ X+ 33 ) Ellg™ — Vi)

IN

< 3882 (2402 K2L% + 1) X' + 35 (2402, K2L? + 1)U!

+ BeLSKELY ()G p () |2 + L2V 4 V) + S22 (1202 K2 + L), (20)
where the last inequality uses (10). Finally, combining (18)—(20) yields the desired result. ]
Lemma 10. Let Assumptions 1 and 2 hold, and suppose that the stepsize satisfies ain KL < %
Then, it holds for all t € N that

V! < 6ead, K2 (E[||Vf(2")|?] + L2X' + U') + eal Ko Q2D

Proof. When K = 1, Y" = 0 holds trivially for all ¢ € N. So we consider K € N5 below. Using
Young’s inequality, we have

k
E(fly;* " — ')

3

,k Ktk otk
lyi™ — aun(gi™ — i ® +0p") = 2'||?)

[

[

[y = i (VE(" 5 60%) — ug® + o)) — 2t ||?)

llyi* = am(VF(e*) — up® +00*) — 2|2 + ad0?

< (14 A DE(ly* — 2t + A KE[V (") —ul® + 0¥ +ado?  (22)

E
E
E

IN

The second term on the right-hand side of (22) can be further bounded using Young’s inequality and
Assumption 1 as

ol KE[|Vf(yi*) = uf™ + o]
= ol KE[|Vf(y}") = Vfila") = (up® = Vi(ah) +op* = V(') + V("))
< 30f, KL?E[||y/* — 2'|?] + 302, KE[|u* — Vf;(z") — vl + V f(")]?]
+ 30l KE[||V £ (z")|°]. (23)

The second term on the right-hand side of (23) can be bounded using Young’s equality and Assump-
tion 1

SN E[Jub® — Vfi(at) — ot + Y f ()]

= 2K N E[lub — Vii(at) — o0 + V()] (24a)
< 22BNl - Vi) (24b)
< KN (E]ul® — V£ )2 + L2E]|2t — 2t Y2), (24c)

i
where (24a) uses Line 9 in Algorithm 1:

t,k+1 t,k t,k+1 t,k
v; * =v;"" +u,; + —uy,
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th+l 6kl _ tk  tk __ £0 __#0
U, U; =y vy = =y Vi

(24b) uses (7), and (24¢) uses Young’s equality and Assumption 1.
Then, combining (22), (23), and (24c) yields

k+1
NZEIIyt gt

~ Z (RESEly* = 2'12) + a2 KE(IV £y ) — ul = o} ¥I?) + afio?)

IN

IN

P> (RSBl = 2')1%] + 302 L KE[|ly* - 2']%] + 302, KE[|V £ (=")]%])

+NZ(3a KE[|Jul* — V fi(at) — olF + V()] ])+a o

| /\

i KZ( [luf® = 9 fi(at 1) 2] + LE[la — o'~ + B[V £ (o) %)

4 30 (5 + 303 KL2) Ellyt* - oI + a2,0”

k
<ol 3 (5 + 3a?nKL2) (K B[V S ()] + L2X* + UY) +0?) (25a)
£=0
k
<ol Y (%)z (6K (E[[|Vf(2")|] + L’ X" +U") + 07) . (25b)
£=0

In (25a), we apply the fact that

k
¢k+l§0¢k+l/§9(9¢k_1+1/)+1/§"'§9k+1¢0+l/20£

=0

to

¢ —Elly" =2 IPlll, 0« #5 +30f KL%,

v 6Oé?nK(]E[HVf(xt)||2] +L2X' 4+ UY) + a0,
and recall the initialization y/* = :Et for all ¢ € [N]. Then, in (25b) we use the stepsize condition
ain KL < sothat 3a2 KL? < 3= < .
Finally, iterating and averaglng (25b)over k =0,...,K — 1, we obtain

5y (14)" (GEEIIVAEI + LK+ U7) + 0?)

k ¢=0
K-—1
<o, K(1+4 #5)"  GKE[|Vf(@")]*] + L’ X+ U") + 0%
< 6eal, K*(E[||Vf(2)|]*] + L?X" + U") + ea, Ko?,

where in the second inequality we relax (54 )¢ to (£4+1)K~1 and the last inequality uses the fact
(14 Z5)5 ! <eforall K > 2. O

Theorem 3 (Restatement of Theorem 1). Suppose Assumptions 1 and 2 hold, and suppose the
stepsizes satisfy a = ajnout K, 144042 K212 < o, and

. 2 1 (KLR\'? ([ N2LR, \'*
min — —_— .
“ 9'L'\15T0%) '\ 33SKo?

Then, the {z'} sequence generated by Algorithm 1 satisfies

LR,0? L(’YgRl + ’}/3R2) E 2/3
SKT T S ’

1 T-1
= BV < %
t=0

19



Under review as a conference paper at ICLR 2025

where Ry = f(2°) — inf, f(z), Ry := E[|Vf(2°)|?], and (y1,72,73) € R, are numeric
constants.

Proof. Combining the stepsize conditions 144ai2nK 22 < aand a < 1 with (12), (15), (17), and
(21) yields

E[f(z")] < E[f(2")] = SE|VF(@")” - (& — ) X"+ + 228X

o

+3aL?Y! 4 22t 4 ag® (24 1) (26)
U< (1= SR)U'+ (4 + 67) 12X
+ F3 BV I +4L2Y " + V) + S @7)
VA < GE BV +AL2Y) + gfie X+ (3 + 33) 12X
+;‘;—%Ut+(1—%)vt+(ﬁ+%+1)2§f (28)
V! < 5525 (B[IVF@I?) + L2X! + UY) + rfp. 29)

Adding together (26), 1225 x (27), 29 x (28), and M % (29) gives
E[f(xtﬂ)] + %Uﬂ-l + %Vﬂ—l + %Yt
< E[f(2")] - $ElIVFEIP) + S FBIVA DI - (& - § - f5e) (X - XY
+ 120Nt 20Nyt g dallyt g2 (3 4 24 32 4 L) (30a)
< E[f(a")] = $ENVF)?) = 55 ENVF @I - E[VF(27)]%])
(g — 5 — i) (X X 1 10U 4 EV sy
+ a0’ (55 + <= + 2 + %), (30b)

where in (30a) we use the fact that N > S > 1, and (30b) uses the stepsize condition o < %. In
.. . ., . . 3
addition, the stepsize condition o < mm{%, +} guarantees that ;- — % - ng > 0.

Now define the Lyapunov function for all t € N,

8] - [0 3 (0% [0}
" =E[f ()] - f* + BRIV I + (55 — 5 — sonm) X'+ BgHU" + 25V,

1

where f* := inf, f(z). With the convention =1 = 20, the initial condition reduces to

N
00 = f(2°) =+ BENVF)P) + 225D [ug® = Vi(a)|* + 2 o° = V()

i=1

_ aRs
=Ry + 55%-

Substituting the definition of ®¢ into (30b) gives
FEVFEH?) < @' =" + a0’ (5% + 5% + ¥ + wr)

T-1 0 T
4(3°—9
+ Z BV < 2255 + a® (3B + e + % + )
4R aR 20 73 2 32 1
SAE TSP e’ (s T sk X T wR)-
Finally, plugging the condition on o completes the proof. O

D CONVERGENCE ANALYSIS FOR ALGORITHM 2

Similar to the convention in §B.1, we denote o := o, out KX and

A=t et =3 3 G (All + R ),
€St
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JK—1 ,0
A= Bl e (00 =),
L0 u® +Ci(Bi(gi™ —ul?) ifie St
' ug? otherwise.

It is apparent that Lemma 5, Lemma 6, and Lemma 10 still hold for Algorithm 2.
Lemma 11. Under Assumptions I and 2, it holds for all t € N that

K ,0
D E[flgh™ —ul|?)

<3L* (240 K?L? + 1) X' + 3(24a, K*L? + 1)U*

+ 18 KL (E[||Vf(z'")|?] + 4L*Y" + V') + 6 (12a?nKL2 + ;) o, (3D
Proof. 1t holds that
~ 2 Elllgh " = w1
=% ZE[IIU?0 — Vi) + Vi) = V@) + Vi) - g0 k)7
<x Z (up® = ¥ £ + L°E[l|2" — &1 |P] + Ellgp ™ — Vfi(=")]*])
< NZEIW0 FiaDIP] + BLE[[l2* — =" 1?] NZEHQ = Vfi(a")|*

< 3L2(24amK2L2 +DE[l2’ — 2"+ 3(240], KL + 1) % > E[luf® = Vfi(2')|?]

+18ai, K2 L (B[ V (2|2 + ALY + E[[[o* — V(2" )|*]) + 60* (1205, KL? + §),
where in the last step we use (10). L]

Lemma 12 (Descent Lemma). Under Assumptions 1 and 2, it holds for all t € N and («, 81, B2) €
R3 |, that
++

E[f(a**")]
3 N
<E(f) - (5 - 20— 502 BIAEI + 0N Byo st
_ <21a _ 1;) Xt+! o 4a6%(1s+w)L2Xt+4aﬂf <1+ 1;‘*’) L2yt o+ 40‘5%(;+W)Ut
3aBiwN 4aB%0% (14+w 1
+— Vi+ e < 5 +N>. (32)

Proof. Tt follows from (Li et al., 2021, Lemma 2) that

1 L a,
fET) < f@) = §IVIEHIP = (5= — 5 ) Il =P + S dH = VY|
2 2 2
1 L
< 1) = VIO - (55 - 5 ) I = o2
+ aHdt-i—l _ dt+1||2 + alldt+1 _ Vf(.’L‘t)HQ, (33)
where recall our definition o := oyt K and diT! = é(xt — xt*1). The expectation of the last

term on the right-hand side of (33) is bounded by
E[|d™" = Vf(z")|]
2
—E[|% S0t + 26K -t - vian)|] (40

€St
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<E|pig’ — V)P + 25 S Ellol + £ (g8 - ul®) - of|? (34b)
<E[pi(g' = VF(") — (1= B)VF")* + 5 ZEHU+ gt —ul%) =2 (340)

2(1 = B1)’E[Vf(a")|* + 267Ellg" — V(=")|* + F& ZEIIU+ g T =) =P

(34d)
2
<2(1— BBV /()2 +4B2L7Y " + 252 + 203 E[|lgf - ul®|?] (34e)
2(1 — B1) BV f(a)||2 + 4B2L2Y" 4 Lyt 4 ALyt A5 LTyt 0108 (14 L
(1= B)EVf(a")]]" + 457 t+ U +—5 + =5 + % (5 + %)
(341)

In (34a), we apply the z-update (Line 17 in Algorithm 2), and in (34b), we apply Lemma 2. Then,
(34e) uses (5) with 6 < 1 and (8), and finally, (34f) uses (9).

The second-to-last term on the right-hand side of (33) is bounded by
[IIJM - dt“IIQ]

=< [Z lof + % (g7 " — f’o)\lﬂ (35a)
1€St

<& ZE ot + = (o™ = uf )2 (35b)

*MZEHU + g5 —u )] (35¢)

< 2 ST (E[[lof - V(@) + B[V (@I + Elllgl - ut0)%) (35d)

5?’ (Vt + IE[HVf(a:t_l)HZ]) + 46?;L2 Xt + 4ﬁ1;L2 vt 4 4[3wa Ut + 4[3;202. (35¢)

In (35a), we use the definition of d**! and d**!, and (35¢) uses (8). In (35d), we use Young’s
inequality, and (35¢) uses (9).

Finally, combining (33), (34f), and (35¢) yields the desired result. L]
Lemma 13. Under Assumptions 1 and 2, it holds for all t € N that

Uttt < (1 _ i + 4(1 - Bo)*S + 3wp3 S

o ~ ~ (2402, K2L* +1) +

AN | 4(1—B2)%5 | 3wp3S
* (s * N TN
1202 B3SK2L? N 18wpsa2 SK2L?
N N

4802, B3 SKL?Y L,
N

(2402 K2L? + 1) + W) 12Xt

) (E[IVf(=" Y|P +4L°Y" + V)

232502 243
4 2P380° w)

(12(2 + 3w)ad KL + (36)

Proof. Tt follows from the definition of the filtration F(¥), the linearity of expectation, and the update
rule for ut+1 % that

Es[[lujt'? = Vi@)? | F®] = (1 — £)Es[lu® — Vfi(z"))? | F®]
+ SEs[[luf® + Ci(Ba(gi™ — ul®)) — Vfi(zh)|]? | FP),

where the expectation is taken over the random sampling of clients. Then, taking similar steps as in
the proof of Lemma 8 gives

Ut+1
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= &> (0= SO — VAP + Bl + CilBalo™ — ut®) = Vi)
< (1= 304 Bl = VA + 3 Y Bl +Ci(Balgl ™ — i) = Vi)

%

<(1-:)w Z]E[HUE’O = VAEHI + 4 % ZE[HVfi(wt) = V(=" IP]

+%ZEHIM?O+62(9?K —ul®) — Vfi(ah)|?) + 22 ZE llgi™ = i ®|1?)
2 —
<@1- Z]El\uto V iz D% + L E]l|2 — o 1II]
+ e ZEM” + B2 — ul) = Vi) 2]+ 2 Y Ellgl ™ — up®)?) (37)
Then, the first term on the right-hand of (37) can be further bounded as
32 > B[y + Ba(gr ™ — up®) = Vi(ah)|?]
= ZE[lwgf’K = Vfi(a") + (1= B2) (u® = V fila")|]
2 ﬁ” 2 Z]E I(uf® = V £l 2] + 252 ZE I(gr™ =V fi(@")]
<A e BLSL x4 250 ZEmg?“ ~ Vi), (38)
Finally, combining (37), (38) and Lemma 11 yields the desired result. ]
Lemma 14. Under Assumptions 1 and 2, it holds for all t € N that
vt < (- @ 18(1 + w)B3L%a? K25 3(1 +w)B3S(1 + 2402 K2L?) _, ot
2N N2 N2
18(1 + w)B3a2 SK2L?

o (B9 (@12 +4L2")
(2NL2 + 3(1 +W)H§SL2 (240&2 K2L2 + 1)) Xt 2/3253L2Xt+1

S B2 N2 a2 (N3

Aout

3(1 3 2502
+ (36(1 +w)Bral KL? + ( }w)ﬁg +62) N‘; . (39)

Proof. Tt follows from Lemma 5 that

_%ZU?LO (Z“t0+zc Balg ut )))

ieSt

=0+ £ C(Ba(gl™ —up?)).

€St

Then, we have

Vit = E[H% Z Ci(ﬂz(gf’K )) o' =V H }

ieS*
< E{H% Z 62(9?1( _ uﬁ’o) +ot — H } + wBQ Z E[Ilgf’K _ u§’0||2]
1€S?t 1€S?t

2 1 S
B0 o) 0! = VA + R SRl
where g% == L 3. g5 Then, combining it with Lemma 11 yields the desired result. O
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Theorem 4 (Restatement of Theorem 2). Suppose Assumpttons 1 and 2 hold, and suppose the
stepsizes satisfy o = qinQout K, 14402 K?L? < o, 1 = 152, By = 27N, and

, 2 1 KLR, /3 N2LR, 1/2
(&7 S min s T ) :
9(1+w)’ L’ \4(L + w)STo2 50(1 + w)SKo?

Then, the {z'} sequence generated by Algorithm 2 satisfies

=
7 O EllVf
t=0
(1+w)LR10® (1 +w)L(12Ry +73Re) (N\"? (L ©)N*L2REo? 1/3
=m SKT T S ! S3KT? ’
where Ry := f(2°) — inf, f(z), Ry := E[||V f(2°)|]?], and (y1,72,73,71) € R%. are numeric
constants.
Proof. The key idea in the proof is similar to the proof of Theorem 1. Adding together (32), mgN X
(36), 22X x (39), and M x (21) gives
E[f(xt-i-l)] + 12gNUt+1 + %Vﬂ-l + dal®yrt
< E[f(2")] = $EIVf(@)I1P] - 55 ENVF @] - BNV 1)
~ (ko ~ & — S5) (X = X + 95U* + 46v* 4 422y
+ (1 +w)ao® (555 + 2%), (40)
where we also plug in the choice of (1 and fs, use the fact that N > S > 1, and the stepsize
condition o < min{ s+ 9(1+w), 1} guarantees that m -L_ 363% > 0.

Now define the Lyapunov function for all t € N,

2
= Elf(e)] ~ f*+ SEIIV AP + (ks — & — 3) X'+ HeNpt 4 deLly
where f* := inf, f(x). With the convention z=! = 20, the initial condition reduces to ¥° =
Ry + O‘R2. Finally, substituting the definition of ¥* into (40) and plugging the condition on «
completes the proof. O
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E IMPLEMENTATION DETAILS AND ADDITIONAL NUMERICAL RESULTS

Numerical results for ISCA. In Figure 4, we present the training loss for our algorithm (ISCA),
SCAFFOLD, and FedAvg on MNIST and FashionMNIST under data homogeneous (IID) and het-
erogeneous (Non-IID) settings. The experimental settings in Figure 4 are the same as those in
Figure 1. We observe from Figure 4 that, across two datasets, our algorithm demonstrates a faster
convergence during the training process compared to the other two algorithms. Specifically, as we
mentioned before, ISCA achieves similar test accuracy in both data homogeneous and heteroge-
neous settings. This uniformity in performance is mirrored by its consistent and rapid decrease in
training loss, underscoring this robustness regardless of data heterogeneity. In contrast, FedAvg
converges notably faster in the homogeneous setting. This observation ties directly into the test
accuracy, where it performs significantly better in the homogeneous setting.

Numerical results for ISCAM. In Figures 5 and 6, we plot the training loss for the algorithms
under the same experimental settings as in Figures 2 and 3, respectively. ISCAM exhibits a notable
advantage over the other two methods in terms of convergence speed. This rapid convergence,
observed in both settings, aligns with ISCAM’s strong performance in test accuracy, suggesting that
the integration of the compressor does not impede the efficiency of ISCAM.

MNIST (lID) MNIST (Non-IID) FashionMNIST (IID FashionMNIST (Non-IID

2,254 ISCA 250 ISCA ISCA ISCA

200 SCAFFOLD 225 SCAFFOLD SCAFFOLD SCAFFOLD
» FedAvg ® 200 FedAvg FedAvg » FedAvg
0 1.75] [0 (2] 1.75
=] Q175 =]
?1;>:Z: & 150 &1
o 100 g 125 g 125
o ® 100 @

0.75]

075
0.50 050
0 100 [] 100 100 100

20 @060 80 20 0 6 80 20 @060 80 20 0 60 80
communication round communication round communication round communication round

Figure 4: Training loss of our algorithm (ISCA), SCAFFOLD, and FedAvg under data homogeneous
(IID) and heterogeneous (Non-IID) settings on MNIST (left half) and FashionMNIST (right half).

MNIST (IID) MNIST (Non-1ID)

2.25 ISCAM (2 bit) 225 ISCAM (2 bit) ISCAM (2 bit) : ISCAM (2 bit)

200 SCALLION (2 bit) 200 SCALLION (2 bit) SCALLION (2 bit) SCALLION (2 bit)
. FedCOMGATE (2 bit) @ FedCOMGATE (2 bit) » FedCOMGATE (2 bit) FedCOMGATE (2 bit)
7] 7]
o o
= 150 Z 150
o [}
2 1.2 212
@ 1.00f [
» & 100

075

075
0.50
025 050

[ 100 100 100 100

corzﬁmua(icati?;n roﬁnd corz’rﬂmuaoicatite)on roﬁ)nd corzﬁmua(icati?;n roﬁnd corz’rﬂmuaoicatite)on roﬁ)nd
Figure 5: Training loss of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (Non-IID) settings, with 2-bit compression on MNIST (left half) and FashionM-

NIST (right half).

MNIST (IID) MNIST (Non-IID) FashionMNIST (IID FashionMNIST (Non-IID
ISCAM (4 bit) 225 ISCAM (4 bit) ISCAM (4 bit) %0 ISCAM (4 bit)

20 SCALLION (4 bit) 200 SCALLION (4 bit) SCALLION (4 bit) SCALLION (4 bit)
» FedCOMGATE (4 bit) o FedCOMGATE (4 bit) FedCOMGATE (4 bit) FedCOMGATE (4 bit)
E i 8 175 (2]
— « 1.50
) 9]
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Figure 6: Training loss of ISCAM, SCALLION, and FedCOMGATE under data homogeneous (IID)
and heterogeneous (Non-IID) settings, with 4-bit compression on MNIST (left half) and FashionM-
NIST (right half).
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