Under review as a conference paper at ICLR 2026

RESIP: REINFORCEMENT LEARNING WITH SYMBOLIC
INDUCTIVE PLANNING FOR INTERPRETABLE AND GEN-
ERALIZABLE PIXEL-BASED CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Reinforcement Learning (DRL) has struggled with pixel-based controlling
tasks that have long sequences and logical dependencies. Methods using struc-
tured representations have shown promise in generalizing to different objects in
manipulation tasks. However, they lack the ability to segment and reuse atomic
skills. Neuro-symbolic RL excels in handling long sequential decomposable tasks
yet heavily relies on expert-designed predicates. To address these challenges, we
propose ReSIP, a novel framework for pixel-based control that combines Reinforce-
ment Learning with Symbolic Inductive Planning. Our approach first automatically
discovers and learns atomic skills through experiences in simple environments
without human intervention. Then, we employ a genetic algorithm to enhance
these atomic skills with symbolic interpretations. Therefore, we convert the com-
plex controlling problem into a planning problem. Taking advantage of symbolic
planning and object-centric skills, our model is inherently interpretable and pro-
vides compositional generalizability. The results of the experiments show that our
method demonstrates superior performance in long-horizon sequential tasks and
complex object manipulation.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has been successfully applied to various fields, including video
games (Mnih, 2013)), autonomous driving (Sallab et al., [2017), and robotics (Kober et al., [2013]).
However, building flexible and adaptive robotic agents that can accomplish a diverse set of tasks
in novel and complex environments remains a significant challenge in DRL. Such tasks typically
demand the agent to formulate long-term plans for logically dependent goals, requiring it to combine
diverse skills in complex scenarios involving multiple objects. A significant challenge of these
tasks is the need for compositional generalization. We can assess it in terms of two distinct factors:
(1) different attributes of objects than in training, and (2) different compositions of goals and their
corresponding skills, including variations in logical order (Lin et al.|[2023).

To address the above challenge, several methods (Zadaianchuk et al., 20205 2022; Mambelli et al.,
2022; Haramati et al., 2024)) incorporate structured representations into the DRL algorithms of
decision transformers through object-centric representations (OCR). With a powerfully structured
representation, they show certain generalizability on the types and numbers of objects in object
manipulation tasks. However, they cannot simultaneously learn diverse skills due to the catastrophic
forgetting problem (McCloskey & Cohen,|1989), where the new information can distort the previously
learned knowledge. Besides, they cannot segment the learned integrated policy into diverse atomic
units and reform them to achieve new objectives.

On the other hand, some researchers suggest neuro-symbolic approaches that combine planning and
DRL. These approaches aim to handle the combinatorial explosion of possible action sequences by
providing high-level abstraction and compositing learned skills. Many existing methods (Illanes et al.;
20205 Sun et al.}[2020; |Zhuo et al., 2021 |[Mao et al., [2023; |Silver et al .| 2023)) employ a top-down
structure by specifying symbolic representation for high-level action models and using them to guide
the learning of low-level policies. However, these methods can only work with fully observable

Under review as a conference paper at ICLR 2026

environment states and carefully hand-engineered predicates. These predefined predicates hinder the
agent’s flexibility, thereby restricting its applicability to complex tasks such as object manipulation.

In this paper, we propose ReSIP, a novel framework for pixel-based control that combines the idea
of Reinforcement Learning with Symbolic Inductive Planning[] ReSIP is capable of forming a plan
that is composed of skills for complex tasks. It enables the agent to learn atomic skills from scratch
by exploring simple environments through DRL algorithms (Li, 2017) without relying much on
expert knowledge. Furthermore, ReSIP uses genetic programming (Ahvanooey et al.,|2019)) to induce
symbolic interpretation for agents’ learned skills, including their preconditions and effects. These
interpretations provide the agent with a series of fundamental understandings of its learned skills,
which are critical for effective planning. During the inference, given a novel and composite task, our
agent decomposes the task based on its understanding of the task and atomic skills, formulating a
ground skill plan by search algorithms (Abualigah et al.,|2021)). Then, the agent executes this plan
and uses its skills to generate specific actions to achieve the final goal. We experimentally verify
the efficiency and effectiveness of ReSIP in two domains: Minecraft, a 2D grid-world environment
(Andreas et al.,|2017) that focuses on long-horizon planning, and IsaacGym (Makoviychuk et al.|
2021]), a simulated tabletop robotic environment that evaluates the agent’s capacity to manage complex
3D object manipulation. Experimental results show that ReSIP can schedule the sequence of skills in
an appropriate order with symbolic interpretation. Moreover, the flexible combination of skills allows
our approach to handle environments with varying object attributes.

We summarize our key contributions below:

» Automatic Skill Discovery. Compared to previous work, our approach can automatically discover
and learn basic skills from the environment without any guidance of designed high-level symbolic
representations in advance, reducing the dependency on expert knowledge.

e Symbolic Interpretation. We assign symbolic meanings to the learned skills by performing
symbolic regression on features. Based on each skill’s preconditions and effects, our model can
infer the specific task of each skill, thus having a comprehensive understanding of the planning and
alleviating the curse of dimensionality. Additionally, this approach is inherently interpretable by
planning with a sequential symbolic plan composed of learned skills.

* End-to-End Pixel-Based Controlling Pipeline. We propose an end-to-end pixel-based planning
framework that can learn skills from scratch and form plans with skill combinations. The final plan
we generate is also interpretable.

2 PROBLEM FORMULATION

To enable robotic agents to achieve novel, long-horizon goals in multi-object environments, we
leverage demonstrations collected in simpler single-object settings and transfer knowledge across
tasks via symbolic abstraction. We formalize this setting as a Goal-Augmented Markov Decision
Process (GAMDP), where each state is paired with an explicit goal specification. While deep
reinforcement learning (DRL) can operate within this framework, it struggles with sparse rewards
over long horizons. In contrast, symbolic planners excel in such settings due to temporal abstraction.
To bridge these paradigms, we introduce the concept of skill: a neural policy annotated with symbolic
preconditions and effects, enabling seamless integration of GAMDP-based learning and planning.

2.1 GOAL-AUGMENTED MDP

We start from a goal-augmented MDP (S, G, A, P, R, ~) (Liu et al.| 2022), where S is the set of state
s, G is the set of goal specification g, A is the set of actions « that the agent executes to interact with
the environment, P is the environmental transition model P : S x A — S, R is defined as the set
of reward r(s¢, at), and y € (0, 1] is the discount factor for future rewards. Since the task involves
manipulating multiple objects, it is natural to decompose the task into separate goals for each object.
An object o € O has a type, denoted)\, € A.

!Code address: https://anonymous.4open.science/r/neurips-fstp-E50B

Under review as a conference paper at ICLR 2026

2.2 FrROM MDP TO PLANNING

To make long-horizon planning tractable, we first aggregate MDP states into abstract states called
features, under the assumption that variations in these features capture high-level state changes.
With this abstraction, each skill is annotated with feature-based preconditions and effects. These
annotations allow a planning algorithm to efficiently search for a valid sequence of actions.

Definition 2.1 (Feature). We define the feature f € R™ as a vector to characterize the key attributes
of the environment. These attributes can either be the object entities, such as position, color,
shape, or be the information of tasks such as reached goal, is pressed. nisthe predefined
dimension of the feature vector. We define F as the set of features f. We denote the aggregation
functionas Ty : § — F.

We formally defined the mathematical form of the skill based on previous work (Kokel et al., 2021).
We group similar operations, forming a skill to address similar tasks. The skill exhibits three key
attributes: (1) it serves as the fundamental operational unit for planning, representing a series of
actions to achieve a specific goal; (2) it is endowed with a logical structure comprising preconditions
and effects; and (3) it demonstrates adaptability by generating specific control actions based on
varying input states.

Definition 2.2 (Skill). We define the skill as a tuple [= (args, 7, pre, eff). Arguments args C Aisa
set of types, specifying the object types to which the skill is applicable. Precondition pre : F x O —
{0, 1} is a function that evaluates whether the skill / can be executed on an object o given the current
feature f. Specifically, pre(f, o) = 1 if all conditions are satisfied; otherwise, pre(f, o) = 0. Effect
eff : F x O — F is a function that computes the updated feature f’ after applying skill / to object o.
The goal-conditioned policy 7 : § x § x O — A maps the current state s, a goal g, and an object o
to an action a.

We define the ground skill, denoted as [(0), by substituting the specific object into the policy,
preconditions, and effects of the skill. For instance, consider a skill make_stick with args =
{Aworkbench - indicating that it is applicable only to objects of workbench type. By grounding
this skill to a specific workbench workbench;, we obtain make_stick(workbench,), where the
preconditions and effects are defined as pre = AtWorkbench(workbenchy) A (fuwood > 1) and
eff = {fwood — 1, fstick + 1}. Here, fuooa and Fsticr, are elements of the feature f, representing
the quantities of wood and sticks, respectively. Arguments args and precondition pre can be empty.

For a given goal-augmented MDP, whose initial state is so and the goal state is g, its features
can be written as fy = T(so) and f, = T(g) respectively. Then, we can form a ground skill

l l ln—
planTl = fo % f; & ... —5 f4 using search algorithms. Finally, we can obtain the trace

A(n—-1)xt

T =50 =% s 2 . % g by executing each skill’s policy 7 in the ground skill plan II.

3 METHOD

Our goal is to design a framework that can automatically discover and learn atomic skills and form a
symbolic plan composed of these skills for complex tasks. The overall structure of our framework is
depicted in Figure[I] It mainly consists of two parts: Neuro-Symbolic Skill Training and End-to-End
Plan Inference and Execution. We will elaborate on these components below.

3.1 FEATURE EXTRACTION

The feature extraction module is the basic component of our framework. It aims to extract compact
and disentangled features from raw image states, capturing most of the essential information. Our
feature extraction module consists of two layers, which are denoted as T, and T'. The first layer T,
transforms the input images into object-centric entities, and the second layer T’ further aggregates
these entities to form features.

Object-Centric Representation. Given a raw image state s, we first process it with layer 7,
implemented by a pre-trained Deep Latent Particles (DLP) (Daniel & Tamar, 2022). T, extracts the
object-centric representation e = T,(s) € R™** where m is the number of objects that appeared
in the image, k is the number of object entities, such as position, color, shape. With the

Under review as a conference paper at ICLR 2026

(a) Neuro-Symbolic Skill Training (b) End-to-End Plan Inference and Execution

1. Policy Learning 1L Symbolic Inductive Learning 1. Extraction of Features
. Complex Environment
1. Data Generation

pre;, & pre, & prey, & -
Simple Environment f 1 t t .
Feature | —> RESESS fo
* Extraction . Tfrandom Learning Precondition via e Feature
§ a Boolean Symbolic Regression - - ECxtraction
o — fq
I T T Skills with 4
2. Trace Segment Categorization Symbolic o

Interpretation
X 9 A P i >
Feature 7 Y Check 2. Plan Inference
changes Clustering v - - - Precondition by
g : 1 2 n
B ? H (v v er
. -
H X i
e Y | | | v by Jg
<[<> 7 v Policy m; L
Learning Effect via l fo
lic R i
3. Training Trace SR eeior Update -
l l l Effect by Seo
Feature et effu® off | i
F, IG' T, m Policy 3. Skill Execution
—_— Feature
Feature
DRL H ! Extraction So> ™, > F-> m, g
skl Image s— | T, — Feature f
E, T, 0 Frozen 1,1 1 m

5 aj af,ay, ..., apn

Trainable

,a}, ..., ak

Figure 1: Overview of the ReSIP Framework. (a) Neuro-Symbolic Skill Training: First, policies
for skills are learned by collecting traces from random policies, dividing these traces into segments
based on feature changes, and clustering these segments into distinct sets to train corresponding poli-
cies. Next, symbolic regression is applied to these set-policy pairs to derive symbolic interpretations
of each skill, explicitly learning their preconditions and effects. (b) End-to-End Plan Inference
and Execution: Given initial and goal state images, the framework extracts corresponding features,
then leverages MCTS to infer a valid plan of skills by satisfying symbolic preconditions and effects.
Eventually, this symbolic plan guides action execution, enabling successful goal completion.

object-centric representation, We can decompose the representation e into several sub-representation
{e*}" | based on the i-th object. The sub-representation is used when the skill tries to achieve a

subgoal. Details of DLP pretraining are in Appendix

Feature Representation. Inspired by the entity-centric architecture (Haramati et al., [2024), we
develop an aggregation transformer as the second layer Ty to aggregate entities into features for
planning. The aggregation transformer comprises self-attention (SA) and cross-attention (CA) as
its core components. SA is intended to extract important attributes from the observation more
effectively, while CA is designed to capture the temporal difference between current state entities.
The set of entities {e, } 527:1 are processed by a sequence of Transformer (Vaswani, |2017) blocks:
SA — CA — SA, followed by a MLP (Murtagh| [1991)). A detailed architecture is depicted in Figure
[l The aggregation transformer is trained to minimize the mean square loss:

N
Lar(f) :% ST(fi-£) 0]
i=1

where N is the total number of training data. f} is the ground truth feature value.

When training the feature extraction module, we randomly initialize various parameters in the
environment, such as the number and shapes of objects. Once these parameters are set, the system
generates an image corresponding to the configured environment. We treat these randomly initialized
parameters as ground truth f; and use Equationto train the feature extractor. We have the flexibility
to define a large number of features that we expect to be useful when describing the task.

3.2 SKILL LEARNING

Given a composite task, we aim to tackle it with a combination of simple skills. Our model is capable
to learn the atomic skills I = (args, m;, pre;(f,0), eff ;(f,0)) from scratch, which relies on using
the collected trace, composed of the original state, as training data. The key idea is that we first collect
play data from interaction with the simple environment, and then we segment the data, which is the
trace of the agent’s movements, into trace segments and categorize these trace segments according to
the feature change. Finally, we train the agent to learn the skill policy for each set of trace segments.

Data Generation. We first collect a significant amount of play data following previous work (Lynch
et al.,|2020; Rosete-Beas et al., 2023). Instead of struggling with the complex environments where

Under review as a conference paper at ICLR 2026

our agent should work during evaluation, we collect these traces from variant and simple training
environments, such as environments with a single object in IsaacGym. Details are in Appendix [B.2]

Trace Segment Categorization. After data generation, we divide and categorize the trace segments
into different sets by their feature, getting the offline dataset based on different feature changes.
Firstly, we divide the trace into trace segments of length /. Then, we retain only those trace segments
where feature changes are observed. Finally, we employ a K-means clustering algorithm (Ahmed
et al.| 2020) to gather trace segments with similar feature changes, with the objective function:

K
. 1
argmin | |7i| Y lm =7l 2)
T =1 v T1,72€T:
where 7 = [Tf(e1), ..., T¢(en)] is the concatenation of trace segments in feature representation,

T; C T is each classified cluster, and K is the total number of clusters.

Training. It is worth noting that the training algorithm for goal-conditioned policy 7; is agnostic of
the planning framework. As we categorize offline datasets into /C clusters of trace segments, we adopt
the goal-conditioned behavior cloning (GCBC) algorithm (Lynch et al.| 2020) to learn a skill policy
for each cluster. The network of the policy is also composed of transformer blocks. The outline of
the policy network is a composed structure of SA and CA, which can model the relationship between
the current state and the goal. We apply the GCBC loss to train each policy 7; that can achieve the
best performance. With the trace segments {s1, ..., s7} and the object o, the loss is as following:

T
1
Leepe = -7 ; log(mi(at|st, s, 0)), 3)
During skill learning, some trivial skills might be learned. However, these skills do not affect the
selection of the planning algorithm. Details can be referred to in Section [3.4]

3.3 SYMBOLIC INDUCTIVE LEARNING

To construct a plan using atomic skills, we derive symbolic interpretation for each skill, enabling
compositional reasoning and task decomposition. These interpretations define the preconditions
and effects of skills through mathematical formulas: preconditions are expressed as constraints,
and effects are expressed as transformations, both using the operation set {+, —, X, +, >} to form
polynomial expressions.

Symbolic Regression. Given a skill /, the induction module proceeds to search for the effect eff (£, 0)
and precondition pre; (f, o) for this skill policy. Since precondition and effect are functions of two
classes of variables, f and o, where f and o may be discrete, using symbolic regression becomes
the most ideal method to find preconditions and effects. As Definition [2.2] states, the effect might
change as the input state changes. Then we have f}maz = eff ;(finit, 0), which can be formulated as
a symbolic regression problem.

For symbolic regression, we use the PySR (Cranmer;, 2023)), which is a multi-population evolutionary
algorithm. PySR is capable of performing feature selection, identifying the most significant element
within the feature vector f. Moreover, it also supports customizing the operator and the loss function.

Precondition Rule. Since the features in the environment might be complicated, determining whether
a skill can be applied in the current stage is challenging. Here the Symbolic Regression module PySR
outputs a boolean result using operators {>, =}. We train the symbolic regression module with a
batch of collected features. We design a loss function for training:

N
‘ng}; = ZHb;Jred - bzvéarget”?’)
i=1

where b;re o is the predicted value and b, get 18 the ground truth value.

Effect. For the effect of a skill eff;(f,0), we mainly use constants and the binary operators
{+, —, X, =} to form the effect function. We design an element-wise loss function:

‘Cg]?; = ||fpred - .ftargetHQ + Complemity, (5)

Under review as a conference paper at ICLR 2026

where fp,.cq is the prediction result and fiqr.ge¢ is the ground truth. We employ the normalization term
complexity (Cranmer, [2023) to prioritize the effect function using a simple mathematical format.

3.4 END-TO-END PLAN INFERENCE AND EXECUTION

In this section, we introduce the overall process of end-to-end pixel-based planning given an initial
image and a goal image. Figure[I[b) shows the complete process.

Extraction of Features. Given images of the initial state sy and goal state g, the feature extraction
module introduced in Section@converts them into features fo and f,.

Plan Inference. This part focuses on adopting Monte Carlo Tree Search (MCTS) (Kocsis &
Szepesvaril, 20006)) to generate a ground skill plan II that fits the input feature fj and the goal feature
f4- We apply the Upper Confidence Bound applied to Trees (UCT) (Kocsis & Szepesvari, |20006):

N(f7la0)succ lnN(f)
NG o) T\ NFilo)

where N (f, 1, 0)succ represents the success times of selecting ground skill /(o) under feature f, C'is
a hyperparameter to balance the exploration and exploitation, N (f) is the number of times feature f
has been visited in previous iterations, and N (f,[) is the number of times skill [has been sampled in
in feature f.

UCT(l,0) = (6)

(i, O;) = arg max UCT(l;, 05) * pre;, (f, 05). @)
iy Oj

As shown in Eq we select the next skill for the node with the max UCT(l;, 0;), meanwhile ensuring
the skill’s precondition is true. Otherwise, we meet a terminal node. Then, we expand this skill if
there are untried skills. Finally, we simulate some steps and update the f,, of each node according to

the reward, the number of visits, and UCT. After many rounds, we obtain the ground skill plan II.

Skill Execution. For each ground skill I(0), we have an input image s, which represents the current
state, and goal image g°. And we set the policy time horizon as ¢. A skill can execute for consecutive
t timesteps before switching to the next one. During the execution, the policy output an action
m(als?, g%, 0). Thus, we find an approach to accomplish the whole task.

4 EXPERIMENTS

To evaluate the performance of ReSIP, we select two different types of environments. One is the
Minecraft environment, which verifies a series of long-horizon compositional tasks. The other is Isaac-
Gym, a robotic arm simulation environment employed to assess the performance of compositional
generalization tasks. ReSIP trains atomic skills from single-object demonstrations and composes
them to solve tasks in complex multi-object environments, demonstrating strong generalization
capabilities in both long-horizon sequential tasks and object manipulation.

Environments. Minecraft is an n x n grid world environment. It is inspired by the computer
game Minecraft and is similar to the environment in previous works (Brooks et al.| [2021; Hasan+
beig et al., |2021; [Kokel et al 2021} [Liu et al.| |2024). An agent can move along four directions
{up, down, left, right } and interact with objects with learned skills. Different from the previous
environment, our inputs are image maps with different objects in the map. We evaluate ReSIP on a
suite of tasks with increasing complexity. Make—Stick serves as a basic task, requiring the agent
to produce a single stick. Make—-Mass—Sticks extends this by demanding repeated execution of
the same skill to produce multiple sticks, testing skill reuse. Pickup—-Iron introduces tool depen-
dencies, requiring the agent to craft several tools before completing the goal. Multiple-Goals
involves collecting four items in a predefined order, emphasizing multi-step sequencing. Finally,
Make-Enhance-Table presents the most challenging long-horizon scenario, where the agent
must orchestrate many interdependent skills to construct an enhanced table.

IsaacGym (Makoviychuk et al.,2021])) is a simulated tabletop robotic object manipulation environment.
The environment includes a robotic arm set in front of a table with various cubes and buttons in
different colors. The agent observes the system’s state through visual input and performs actions in the
form of deltas in the end effector coordinates a = (Ax, Ay, Az, Ag), where Ag indicates whether

Under review as a conference paper at ICLR 2026

the gripper is open or closed. At the beginning of each episode, both the current cube positions and
the goal positions are randomly initialized on the table. The tasks are as follows: Push requires the
agent to push cubes with randomized numbers and color to the goal location. Push-Grab-Lift
needs the agent to manipulate cubes of randomized numbers and color to their goal positions by
pushing and lifting operation. In Ordered-Press, the agent should press different buttons in a
particular order.

(a) Minecraft (b) Push (c) Push-Grab-Lift ~ (d) Ordered-Press t =100

Figure 2: The environments used for experi- Figure 3: A sample trace of an agent in object ma-
ments in this work. nipulation Push.

Baselines. We compare our framework with various DRL algorithms with pixel-based decision
transformers (ECRL, SMORL) learning from rewards, imitation learning methods (GAIL) learning
from demonstration, and methods that combine planning and DRL (Deepsynth, DiRL). SMORL
(Zadaianchuk et al., [2020) adopts object-centric representations with goal-conditioned attention
policies to discover and learn useful skills. ECRL (Haramati et al 2024) uses object-centric
representations with the entity-interaction transformer to discover and learn useful skills. GAIL
(Ho & Ermon| [2016)) mimics expert behaviors via learning a generative adversarial network whose
generator is a policy. DeepSynth (Hasanbeig et al.,[2021)) uses an automaton to find the substructure
of tasks and execute the subtasks using the low-level controller. DiRL (Jothimurugan et al.| 2021)
uses a predefined logical specification to decompose tasks into subtasks then solve them by DRL
controllers.

4.1 LONG-HORIZON SEQUENTIAL TASK

We evaluate the different methods in the Minecraft Environment to test the performance in some
long-horizon tasks. Results are presented in Table [T} For long-horizon planning tasks, ECRL,
SMORL achieve a low success rate because they cannot handle temporal logic tasks. Deepsynth uses
an automaton-based high-level structure for task decomposition, so it has a relatively high success
rate in simple tasks. However, as the tasks become complex, their performance drops sharply since
the search space for the automaton is too big for the algorithm to cover. Figure 4] demonstrate an
example of end-to-end pixel-based planning of Make-Stick.

. .
| 9|
® ® move(workbench,) a
g - . ®
S < . t=13 Leftx 1
make_stick(Upx3
A workbench| ° Pickup X 1
pickup(wood)) * Rigitx6
Down x 1
E | 7 | Make x 1
(a) Initial State (b) Goal State (c) Plan Generation (d) Execution

Figure 4: End-to-end pixel-based planning of Make-Stick.

4.2 OBJECT MANIPULATION

We evaluate different methods in the IsaacGym and present results in Table 2] Here, we mainly report
the overall success rate. For Push, we observe that most of the structured baselines ECRL, SMORL
can achieve a high success rate. In contrast, conventional behavior cloning GAIL performs poorly as
the number of cubes increases due to its poor compositional generalizability. Deepsynth and DiRL
use the idea of task decomposition, however, the decompositional logic is simple and relies on expert
knowledge. Thus, they also perform poorly as the number of cubes increases. Push-Grab-Lift
and Ordered-Press have some logical dependency on their subtasks. The performance of ECRL,

Under review as a conference paper at ICLR 2026

Task Make-Stick Make-Mass-Sticks ~ Pickup-Iron ~ Multiple-Goals ~ Make-Enhance-Table
SMORL 51.1+0.5 374410 33.2+1.2 28.1+0.9 11.2411
ECRL 46.240.7 35.841.2 371412 29.741.0 18.741.2
GAIL 51.340.5 46.910.9 41.541.1 30.241.1 16.441.0
DiRL 86.7+0.5 86.3+0.5 79.440.7 71.940.7 58.140.9
DeepSynth 90.140.3 85.3+0.5 82.1+0.5 69.3+0.8 55.7+1.0
Ours 95.810.4 93.8410.4 91.7405 88.7+0.8 75.010.8

Table 1: Success rates for long-horizon sequential tasks in Minecraft.

Cubes 1 2 3 4 5
SMORL 99.040.0 83.840.4 50.941.0 43.841.2 30.241.2
ECRL 97.310.5 96.340.5 83.8+0.4 72.310.6 57.041.0
Push GAIL 95.540.5 75.040.4 478412 43.841.1 39.641.1
DiRL 93.5+0.5 87.3+0.6 T4.140.5 61.240.9 50.541.2
DeepSynth 91.940.3 86.140.3 80.340.5 63.540.5 49.340.6
Ours 100+0.0 1004100 87.54105 75.0404 ©68.810.7
SMORL 25.040.6 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Push- ECRL 25.0+0.8 0.0+0.0 0.0+0.0 0.0+0.0 0.040.0
Grab- GAIL 48.8i()‘9 34.8i12 10.1i0A9 3~1i0A8 1-0i0A6
Lift DiRL 52.1+1.0 35.541.1 23.5+1.1 6.5+1.1 2.540.9
DeepSynth ~ 50.24¢.7 33.0x10 187113 8.3+0.9 0.040.0
Ours 62.510.7 50.0+08 50.0109 15.6105 12.510.7
SMORL 98.040.4 68.6+0.8 51.3+11.1 372411 15.841.2
ECRL 100.0+0.0 62.540358 42,7411 35.441.0 27. 7415
Ordered- GAIL 97.140.3 86.2+40.4 69.710.8 53.541.1 32.841.2
Press DiRL 98.240.4 93.1+0.5 84.140.5 70.3+0.5 66.2+1.0
DeepSynth 92.5i0A5 90.8i()‘6 80.3i0A5 65.5io_7 53.5i1,0
Ours 99.0+0.4 93.8104 8754106 813105 81.3i0s6

Table 2: Success rates for object manipulation tasks in IsaacGym.

SMORL is much poorer than our model because these two models have no awareness of the temporal
attributes of sub-tasks, which shows the superiority of our skills with symbolic interpretation. Figure
[3]shows the sample trace of Push. Other detailed results are in Appendix [D.3]

2 move(workbench,)

AtWorkbench([] a AtWorkbench(
workbench, workbench,

)=0)=1

t

{

1 pickup() 3 make_stick(workbench,)
AtWorkbench(AtWorkbench(
workbench, workbench, fstick +1
e =0 =il g
L)) ®
A .
fwaod+1 = fwood =1 fwaad_l

Figure 5: Skill relation based on symbolic interpretation in Make—-St ick. Expressions in the blue
box represent the precondition, and orange denotes the effect.

Under review as a conference paper at ICLR 2026

4.3 SYMBOLIC INTERPRETATION

Symbolic interpretation is an essential feature of our skills, which enables the searching algorithm to
find a feasible plan for a complex task. We have shown the symbolic interpretation of IsaacGym in
Table [5|and Minecraft in Table d] where the preconditions are the boolean formula and the effects are
in the format of a function. Figure [5|demonstrates the symbolic interpretation in Make-Stick.

Taking Make-Stick as an example, the agent first compares the initial images and goal images
demonstrating its task and is aware that it should make a stick at the workbench as shown in Figure
The preconditions of the last action make(stick) are wood > 1 and at_workbench = 1, which
means the agent should move to the workbench with a wood. The effect of move(workbench)
is at_workbench = 1, thus we have move(workbench) < make(stick). Similarly, the effect for
pickup(wood) is wood + 1, thus we have pickup(wood) < make(stick). We can get this relation
from the dependency graph in Figure[§] In plan generation, the agent induces a symbolic plan by
MCTS, forming a sequence: pickup(wood) — move(workbench) — make(stick), which satisfies
the aforementioned partial order relation and can accomplish the task, thus forming our final plan.

5 RELATED WORK

Object-Centric RL. Many recent works employed the structured representation in model-free and
model-based RL (Colas et al., 2019} [Zadaianchuk et al., [2022; Mambelli et al.| 2022} |[Zhao et al.|
2022} Zhou et al., 2022} Ferraro et al.l [2023; Feng & Magliacanel [2024). Among them, methods
such as SMORL (Zadaianchuk et al.,[2020) and ECRL (Haramati et al., 2024) leverage object-centric
representations (Jiang et al.,2019; [Francesco et al., 2020; |Daniel & Tamar}[2022) in combination with
goal-conditioned attention policies to discover and learn useful skills from raw image data. However,
they cannot segment learned skills into atomic units and reform them to solve novel and complex
tasks. In this work, we integrate RL into symbolic inductive planning, thus giving our method the
ability to learn atomic skills and understand how to compose them in long-horizon tasks.

Neuro-Symbolic RL. Several works explore utilizing symbolic methods in DRL to deal with robotic
tasks (Belta et al., 2007 Blaes et al.l [2019; [llanes et al., [2020; [Kokel et al., 2021} [Sehgal et al.,
2023; Silver et al., 2023} |/Acharya et al.| 2024)), including planning domain definition language (Mao
et al., [2023), automata (Hasanbeig et al., 2021}, Spectr]l (Jothimurugan et al., [2021; Zikelié¢ et al.,
2024)). These methods require either predefined symbolic structures or predefined skills, limiting
their compositional generalizability to complex object manipulation. In contrast, our framework
can automatically discover skills from multiple single-object environments and utilize symbolic
interpretation to reform these skills for novel and complex tasks in multi-object environments.

6 CONCLUSION

We present a model combining a planning framework with DRL to solve pixel-based control chal-
lenges. Our model can autonomously acquire atomic skills through interaction with the environment,
minimizing the need for expert knowledge. Moreover, by providing symbolic interpretations for
skills, we can form a ground skill plan for long-horizon tasks through search algorithms such as
MCTS. Additionally, our model leverages composable skills and a transformer-based action policy,
which provides compositional generalizability to tasks that share similar features. Our model has
shown great performance on long-horizon, pixel-based control problems based on this superiority.

Limitation. Our model requires a pre-trained image segmentation model. While basic image
segmentation models have achieved promising results in our experiments, more complex tasks
may require further advancements and refinements in image semantic segmentation techniques.
Additionally, the approach using discrete features as an interface may induce some inaccuracy and
inflexibility. Some states with slight differences may share the same feature representation.

Future Work. For future work, one interesting direction is to explore more advanced ways for
automatic skills generation. Currently, the skill generation relies on classifying the collected traces.
We can further improve it with reward-based or entropy-based methods in the future. Another possible
direction is to employ generative models, such as diffusion models, to replace the current image
segmentation approach to generate sub-goal images.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation were involved. All environments used, including the IsaacGym and Minecraft, were
sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have
taken care to avoid any biases or discriminatory outcomes in our research process. No personally
identifiable information was used, and no experiments were conducted that could raise privacy or
security concerns. We are committed to maintaining transparency and integrity throughout the
research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper. We have also provided a full description of our ReSIP
framework to assist others in reproducing our experiments. We believe these measures will enable
other researchers to reproduce our work and further advance the field.

REFERENCES

Laith Abualigah, Mohamed Abd Elaziz, Abdelazim G Hussien, Bisan Alsalibi, Seyed Mohammad Ja-
far Jalali, and Amir H Gandomi. Lightning search algorithm: a comprehensive survey. Applied
Intelligence, 51:2353-2376, 2021.

Kamal Acharya, Waleed Raza, Carlos Dourado, Alvaro Velasquez, and Houbing Herbert Song.
Neurosymbolic reinforcement learning and planning: A survey. IEEE Transactions on Artificial
Intelligence, 5(5):1939-1953, 2024. doi: 10.1109/TAI1.2023.3311428.

Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm: A
comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

Milad Taleby Ahvanooey, Qianmu Li, Ming Wu, and Shuo Wang. A survey of genetic programming
and its applications. KSII Transactions on Internet and Information Systems (TIIS), 13(4):1765—
1794, 2019.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In International conference on machine learning, pp. 166—-175. PMLR, 2017.

Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George J. Pappas.
Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE Robotics &
Automation Magazine, 14(1):61-70, 2007. doi: 10.1109/MRA.2007.339624.

Sebastian Blaes, Marin Vlastelica Pogancic, Jiajie Zhu, and Georg Martius. Control what you can:
Intrinsically motivated task-planning agent. Advances in Neural Information Processing Systems,
32,2019.

Ethan Brooks, Janarthanan Rajendran, Richard L Lewis, and Satinder Singh. Reinforcement learning
of implicit and explicit control flow instructions. In International Conference on Machine Learning,
pp- 1082-1091. PMLR, 2021.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer.
Curious: intrinsically motivated modular multi-goal reinforcement learning. In International
conference on machine learning, pp. 1331-1340. PMLR, 2019.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Tal Daniel and Aviv Tamar. Unsupervised image representation learning with deep latent particles.
arXiv preprint arXiv:2205.15821, 2022.

10

Under review as a conference paper at ICLR 2026

Fan Feng and Sara Magliacane. Learning dynamic attribute-factored world models for efficient
multi-object reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024.

Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, and Bart Dhoedt. Focus: Object-centric world
models for robotics manipulation. arXiv preprint arXiv:2307.02427, 2023.

Locatello Francesco, Weissenborn Dirk, Unterthiner Thomas, Mahendran Aravindh, Heigold Georg,
Uszkoreit Jakob, Dosovitskiy Alexey, and Kipf Thomas. Object-centric learning with slot attention.
Advances in Neural Information Processing Systems, 33:11525-11538, 2020.

Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manipu-
lation from pixels. arXiv preprint arXiv:2404.01220, 2024.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and
Daniel Kroening. Deepsynth: Automata synthesis for automatic task segmentation in deep rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7647-7656, 2021.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Le6n Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A Mcllraith. Symbolic plans as high-level in-
structions for reinforcement learning. In Proceedings of the international conference on automated

planning and scheduling, volume 30, pp. 540-550, 2020.

Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative world
models with scalable object representations. arXiv preprint arXiv:1910.02384, 2019.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems, 34:

10026-10039, 2021.
Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Jens Kober,] Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013.

Levente Kocsis and Csaba Szepesvdri. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282-293. Springer, 2006.

Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran, and Prasad Tadepalli.
Reprel: Integrating relational planning and reinforcement learning for effective abstraction. In
Proceedings of the International Conference on Automated Planning and Scheduling, volume 31,
pp- 533-541, 2021.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Baihan Lin, Djallel Bouneffouf, and Irina Rish. A survey on compositional generalization in
applications. arXiv preprint arXiv:2302.01067, 2023.

Jung-Chun Liu, Chi-Hsien Chang, Shao-Hua Sun, and Tian-Li Yu. Integrating planning and deep
reinforcement learning via automatic induction of task substructures. In The Twelfth International
Conference on Learning Representations, 2024.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Problems
and solutions. arXiv preprint arXiv:2201.08299, 2022.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp. 1113-1132.
PMLR, 2020.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

11

Under review as a conference paper at ICLR 2026

Davide Mambelli, Frederik Trauble, Stefan Bauer, Bernhard Scholkopf, and Francesco Locatello.
Compositional multi-object reinforcement learning with linear relation networks. arXiv preprint
arXiv:2201.13388, 2022.

Jiayuan Mao, Tomds Lozano-Pérez, Joshua B Tenenbaum, and Leslie Pack Kaelbling. Pdsketch:
Integrated planning domain programming and learning. arXiv preprint arXiv:2303.05501, 2023.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

V Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6):
183-197, 1991.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pp.
1838-1849. PMLR, 2023.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. arXiv preprint arXiv:1704.02532, 2017.

Atharva Sehgal, Arya Grayeli, Jennifer J Sun, and Swarat Chaudhuri. Neurosymbolic grounding for
compositional world models. arXiv preprint arXiv:2310.12690, 2023.

Tom Silver, Ashay Athalye, Joshua B Tenenbaum, Tomas Lozano-Pérez, and Leslie Pack Kaelbling.
Learning neuro-symbolic skills for bilevel planning. In Conference on Robot Learning, pp.
701-714. PMLR, 2023.

Shao-Hua Sun, Te-Lin Wu, and Joseph J Lim. Program guided agent. In International Conference on
Learning Representations, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforcement
learning with object-centric representations. arXiv preprint arXiv:2011.14381, 2020.

Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
independently controllable subgoals. In Conference on Robot Learning, pp. 384-394. PMLR,
2022.

Linfeng Zhao, Lingzhi Kong, Robin Walters, and Lawson LS Wong. Toward compositional general-
ization in object-oriented world modeling. In International Conference on Machine Learning, pp.
26841-26864. PMLR, 2022.

Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for compo-
sitional generalization in control. arXiv preprint arXiv:2203.05960, 2022.

Hankz Hankui Zhuo, Shuting Deng, Mu Jin, Zhihao Ma, Kebing Jin, Chen Chen, and Chao Yu.
Creativity of ai: Hierarchical planning model learning for facilitating deep reinforcement learning.
arXiv preprint arXiv:2112.09836, 2021.

Dorde Zikeli¢, Mathias Lechner, Abhinav Verma, Krishnendu Chatterjee, and Thomas Henzinger.
Compositional policy learning in stochastic control systems with formal guarantees. Advances in
Neural Information Processing Systems, 36, 2024.

A ALGORITHM

We outline the algorithm of our end-to-end pixel-based framework below. Lines 2 to 15 detail the
preprocessing of traces, involving categorizing them into distinct groups for subsequent training.
Lines 16 to 24 describe the process of skill formation through symbolic interpretation of the traces.
Lines 25 to the end encompass the planning and execution of different tasks.

12

Under review as a conference paper at ICLR 2026

Algorithm 1 The whole training and evaluation of the framework.

Input: The total trace collecting step N. The evaluation task T ,q;-
Randomly initialize some simple environment e;
for j < 0 to N do
Interact with simple environment with random policy 7,qndom
Collect the trace 7,
end for
for 7,,.; € Tdo
p+0,g<0
while T (T.(sp)) = T¢(Te(sq)) do
q++
end while
Segment the trace 7,.;[p : ¢]
Insert the trace to a trace set Syyqce
P=4q
end for
Classify the trace using cluster algorithm
for trace cluster S; € Spqce do
Randomly initialize policy m;
Training policy m; with GCBC algorithm
end for
for i < 0 to |Strqace| do
Find the effect of m; through PySR
Find the precondition of 7; through neural guidance algorithm
Form a skill with symbolic interpretation [(s) = (s, 0, m, pre;(s, f), eff (s, f))
end for
Get the initial state s;,,;; and goal state g of T¢,q;
Get the initial feature f;,;; and goal feature f,
Using MCTS to find a path [y — lp — --- = [,, from fjp,;; to fy
for j < Otondo
for ¢t <+ 0 to volley do
Get the action a@ = (S xvoliey+t)
Interact with the environment S, xyoliey+t+1 = Leval (@)
end for
end for

13

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

B.1 PRE-TRAINED MODELS

Object-Centric Representation. Our OCR algorithm is based on the DLP algorithm. DLP (Daniel
& Tamar, [2022) is an unsupervised object-centric model for images based on variational autoencoder
(VAE) (Kingma, [2013). It provides the latent representation for all the particles.

The foreground representation e = [e., €5, €4, €4, €] € R!! is a disentangled latent variable includ-
ing the following learned attributes: spatial coordinate e, € R3, scale e, € R?, depth ey € R,
transparency e; € R, and visual features e; € R*. Here we set the number of entities as 24.

Aggregation Function. We design an aggregation transformer inspired by entity-centric architec-
ture (Haramati et al.,2024]), which processes the OCR entities into features of the environment. An
architecture outline is presented in Figure[6] The aggregation transformer comprises self-attention
(SA) and cross-attention (CA) as its core components. The self-attention tries to grab the relation of
entities in a single object. It transforms the input vector, grouping all the entities of a single object. At
the CA layer, the transformer network tries to figure out the relation between different objects. After
passing the SA and CA network, we let the model pass another (SA) network again. This network
considers the result from the previous steps and forms these two steps together, placing self-attention
calculation on the overall computing result. Finally, we get the output result, which is the feature.

Self-Attention (SA) Cross-Attention (CA) Self-Attention (SA)
Output
Input
Entities \/ L L i L i Featzres
o=
» =2 -n » = -n 2 - o 3
AN - HIREF; - HIEEF; S5 o
23 g2 . 52 2 2z §2 =2 "=g
S s S8 a S8 a g < :
% e 2 $% :

Figure 6: The architecture of the aggregation transformer.

B.2 SKILL LEARNING

It is worth mentioning that our framework is agnostic of the skill policy. We have tried several
RL algorithms and finally chose GCBC (Lynch et al., 2020) since it has the best performance. We
use GCBC to train the policy m; for the skill. This method extracts goal-conditioned policies using
self-supervision on top of raw, unlabeled data.

As mentioned in the section [3.2] we collect traces from interaction with the simple environment.
Taking the IsaacGym environment as an example, we set the object number to be one, the object type
to be a cube, and the object color to be red. The agent can operate its gripper to interact with the only
object that appeared on the table. Thus, it can collect a tremendous amount of data.

Figure [7| shows the learning curves of the skills, the y-axis is the success rate during the training
process. The names and functions of skills are not specified in advance. We name the skill according

to its effect.

B.3 EFFECTS OF SKILL

We use PySR (Cranmer, 2023)) for the implementation of the symbolic regression part of the skills,
generating the mathematical form of the effect. In PySR, we can use specific parameters to control
the generation of the formula. The parameter settings for the regressor are in Table [3]

Here, we assume that all the effects of skills on features can be characterized by some polynomial
expression. Then, we use the binary operation and the constants to form such a relation. We treat the
initial feature and final feature of a sequence as the input and output of a function. Then we fit the
relationship between tuples of input and output.

14

Under review as a conference paper at ICLR 2026

80
0.8

60

40

Mean Success Rate
Mean Success Rate

0.4 20

0

o 1000 2000 3000 4000 0 5000 10000 15000 20000 25000 30000
Step Step

(a) Pickup in Minecraft (b) Push in IsaacGym

Figure 7: The curves of mean success rate during the skill learning process under 96 random goals in
IsaacGym and Minecraft environments. Notice that the names and functions of skills are not specified
in advance.

Parameters Value
Number of Iterations 40
Complexity 5

Binary Operators {+,—,x,+}
Unary Operator {>}
fractionReplaced 0.1
shouldOptimizeConstants True
maxsize 20

procs 4

Table 3: The Parameter Setting of PySR

C ENVIRONMENT SETTING DETAILS

C.1 BASELINE REIMPLEMENTATION

SMORL. We reimplemented SMORL (Zadaianchuk et al.| 2020), substituting its original visual
model SCALOR (Jiang et al., [2019) with DLP. Additionally, the low-level controller within the
SMORL framework was replaced with the same controller used in our proposed method.

ECRL. The original version of ECRL was used directly in our experiments.

GAIL. GAIL (Ho & Ermon, |2016) was reimplemented with several modifications. We integrated
DLP to process image input and replaced the actor with the same controller used in our framework.
Furthermore, the critic and discriminator networks within GAIL were updated to employ a transformer
architecture.

DeepSynth. We reimplement DeepSynth (Hasanbeig et al.l [2021]), with the original image segmen-
tation algorithm replaced by DLP. We directly implement the automaton synthesis algorithm based
on the DLP result. For the low-level controller in DeepSynth, we also use the same controller as our
framework to substitute the controller in DeepSynth to ensure a fair comparison.

15

Under review as a conference paper at ICLR 2026

DiRL. DiRL (Jothimurugan et al.,|2021) was reimplemented as a baseline model, incorporating
domain-specific knowledge. Rules such as “’pick after push” and “’pick up wood before going to
the craft table” were established to provide high-level guidance for the low-level policy. The policy
within DiRL was also replaced with the same controller used in our framework for a more credible
comparison.

C.2 MINECRAFT
We design the features to extract as follows:

» at_-wood: A boolean variable representing whether the agent’s position is at wood.

* at_stone: A boolean variable representing whether the agent’s position is at stone.

* at_iron: A boolean variable representing whether the agent’s position is at iron.

» at_gem: A boolean variable representing whether the agent’s position is at gem.

* at_sheep: A boolean variable representing whether the agent’s position is at sheep block.

» at_-workbench: A boolean variable representing whether the agent’s position is at the
workbench.

* at_toolshed: A boolean variable representing whether the agent’s position is at the toolshed.
* wood: The number of wood in the agent’s bag.

* stone: The number of stones in the agent’s bag.

* iron: The number of iron in the agent’s bag.

* gem: The number of gems in the agent’s bag.

* stick: The number of sticks in the agent’s bag.

* stone_pickaxe: The number of stone pickaxes in the agent’s bag.
* iron_pickaxe: The number of iron pickaxes in the agent’s bag.

* scissors: The number of scissors in the agent’s bag.

 paper: The number of paper in the agent’s bag.

* wool: The number of wool in the agent’s bag.

* enhance_table: The number of enhanced tables in the agent’s bag.
* bed: The number of beds in the agent’s bag.

¢ jukebox: The number of jukeboxes in the agent’s bag.

As we have form skills with symbolic interpretation, we can use a graph to describe the dependency
relation between different skills. A detailed dependency graph of all the skills in Minecraft is shown

in Figure
C.3 IsaAacGyMm
We design the features of IsaacGym to extract as follows:

* num-objects: The number of objects on the table captured by cameras that provide front
view and side view.

» xy_goal: The number of objects reaching their goals on the table.
» z_goal: The number of objects reaching their goals in the air lifted by the gripper.
* is_grab: A boolean variable representing whether the gripper grabs the object.

* color_1, ..., color_5: A boolean variable representing whether a color exists. It can record
at most five colors.

* next_color: It is an integer that stands for the next color that should be controlled. It
guarantees the ordered operation of objects following the color sequence, which is red,
green, blue, yellow, and purple in our case.

16

Under review as a conference paper at ICLR 2026

Figure 8: Dependency graph of Minecraft.

C.4 EVALUATION METRICS

We mainly evaluate the performance of different methods based on the success rate and success
fraction. Apart from these two results, we also record more detailed information in the experiment,
including color success, color success fraction, action success, and action success fraction.

¢ Success Rate. The success rate describes the final success rate of the whole task.

* Success Fraction. The success fraction is the portion of accomplished subtasks, so this
metric is usually higher than the success.

* Color Success. The color success gives out each color’s success rate.

* Color Success Fraction. The color success fraction indicates the percentage of completed
subtasks in each color.

* Action Success. The action success reflects the success rate of each action.

* Action Success Fraction. The action success fraction represents the percentage of accom-
plished subtasks in each action.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY

In this section, we examine how certain key components of the model affect its performance.

D.1.1 INFLUENCE OF THE NUMBER OF CLUSTERS

We investigate how the number of clusters K affects the result of the whole task. We take the object
manipulation task as an example. In this task, the number of skills is 4. We set the K from 3 to
7 and investigate the success rate of the whole task. The tests are conducted on the environment
Push-Grab-Lift which needs multiple skills. When the cluster number is set to 3, the task has an

17

Under review as a conference paper at ICLR 2026

Skill Object Preconditions Effects
fu.t,wood = 0, fat,stone = 07
. fat,iron = 07 fat,gem - 07
move workbench AtWorkbench(Aworkbencn) = 0 Foron = 0. Fut workbenen = 1,
fat,toolshed =0
fu.t,wood = 07 fat,stone = 07
a,iron:07 a,em:()y
toolshed AtToolshed(Aoolshed) = 0 ;ﬂ;wooz _ 0,§attj7ujorkbench _0,
.fat,toolshed =1
wood AtMaterial(Amaterial) = 1 Sfwood +1
stone AtMaterial(Amaterial) = 1 Fstone + 1
grass AtMaterial(Amaterial) = 1 forass +1
pickup bamboo AtMaterial(Amaterial) = 1 Soamboo 1+ 1
iron AtMaterial(material) =1A fstone,pickaze >1 f’iron +1
gem AtMaterial(materlal) =1A firon,picka:):e 2 1 fgem + 1
wool AtMaterial(Amaterlal) =1A fscisso'rs >1 fwool +1
make_stick workbench AtWorkbench(Aworkbench) = 0 A Fuooa > 1 Fstick + 1, fwooa — 1
make_grass_stack workbench ~ AtWorkbench(Aworkbench) = 0 A fgrass > 1 Forassstack + 1, Fgrass — 1
make_bamboo_fence workbench AtWorkbench(Aworkbench) = 0 A foamboo > 1 Foamboo_fence + 1, foamboo — 1
. AtTOOlShed(/\toolshed) OA fstone,pickaace +1,
make_stone_pickaxe toolshed Fotier > 2 A Fotone >3 Fotich — 2, Fotone — 3
. . AtTOOlShed()\toolshed) =0A fi'ron,pickaze + 1;
make,lron,plckaxe toolshed .fstick 2 2N .firon 2 3 .fstick - 27 firon -3
make_scissors workbench ~ AtWorkbench(Aworkbench) = 0 A firon > 2 Fscissors + 1, firon — 2
AtWorkbench(Aworkbench) = 0A
make_paper workbench Fovissors > 1A Fuvon > 1 Spaper + 1, Fuwooa — 1
AtToolshed (Agoolshed) = OA Soea + 1,
make_bed toolshed fwood 2 3N .fwool Z 3 .f’wood - 37 fwool -3
. AtworkbenCh()\workbench) = 0/\ fjukeboz + 1, fwood - 37
make_jukebox workbench Fuwood > 3N Foem > 1 Foem — 1
make,enhance,table Workbench AtworkbenCh()\workbcnch) =0A fstone 2 1IN fenhance,table + 17 fstone - 17

fpaper 2 2/\fgem 2 1

SFraper — 2N fgem — 1

Table 4: Learned skills of the Minecraft environment.

Skill Object Preconditions Effects

push cube oy goar +1

approach cube fisgrab =10 Sisgrab =1

lift cube Sisgrab =1 Sy goal + 1, fz goar +1
press button frest cotor < Fnum-objects Fnewt_cotor+1

Table 5: Learned skills of the IsaacGym environment.

extremely low success rate because the actual number of skills exceeds the cluster number, thus some
skills are not learned. The detailed result is shown in Table

D.1.2 THE EFFECTIVENESS OF SYMBOLIC REGRESSION.

To show the effectiveness of our symbolic regression module with PySR, we replace the PySR module
with neural network module. We added a rounding layer after the output layer of the neural network.
The result of 3-cube tasks is in Table [71

18

Under review as a conference paper at ICLR 2026

Number of Cluster C 3 4 5 6 7
Push-Grab-Lift-1-Cube 0.001 0.625 0.633 0.642 0.611
Push-Grab-Lift-2-Cube 0.002 0.500 0.512 0.493 0.499
Push-Grab-Lift-3-Cube 0.002 0.500 0.487 0.493 0.507

Table 6: Success rate of object manipulation of different skill cluster number.

Cubes 1 2 3 4 5
Push PySR 1.000 1.000 0.875 0.750 0.688

Neural Network 1.000 0.670 0.613 0.535 0417
Push-Grab- PySR 0.625 0.500 0.500 0.156 0.125
Lift Neural Network 0.502 0.373 0.367 0.008 0.003
Ordered- PySR 0990 0938 0.875 0.813 0.813
Press Neural Network 0.681 0.602 0.586 0.443 0.411

Table 7: Success rate of object manipulation using PySR and neural network.

D.2 DETAILED RESULTS FOR MINECRAFT TASKS
The plans for different tasks generated by the MCTS algorithm are as follows:

* Pickup-Mass-Grass: move(workbench;) — pickup(grass;)
* Pickup-Mass-Banboo: move(workbench;) — pickup(bamboo;)

* Make-Grass-Stack: pickup(grass;) — move(toolshed;) — move(workbench;) —
make_grass_stack(workbench;)

1

* Make-Bamboo-Fence: pickup(bamboo) — move(toolshed)
move(workbench;) — make_bamboo_fence(workbench;)

* Make-Mass—-Sticks: move(workbenchy) — pickup(wood;)
move(workbench;) — makestick(workbench;) — pickup(woods)
pickup(woodz) — pickup(woody) — pickup(woods) — move(workbenchs)
make_stick(workbenchs) — pickup(woodg) — move(workbench;)
make_stick(workbench;) — make_stick(workbench;) — make_stick(workbench;)
pickup(wood7;) — move(workbenchy) — pickup(woodg) — pickup(woody)
move(workbench;) — make_stick(workbench;) — make_stick(workbench;)
make_stick(workbench;) — make_stick(workbench;) — pickup(woodig)
pickup(wood;) — pickup(wood;2) — move(workbenchs)
make_stick(workbenchs)

A A A

e Pickup-Iron: pickup(wood;) — move(workbench;) — pickup(woods)
pickup(woods) — move(toolshed;) — move(workbench;)
make_stick(workbench;) — make_stick(workbench;) — pickup(stone;)
pickup(stones) — pickup(stones) — pickup(stones) — move(toolshed;)
make_stone_pickaxe(toolshed;) — move(workbenchs) — pickup(iron;)

114l

* Multiple—Goals: pickup(stone;) — move(workbench;) — move(toolshed;)
pickup(stones) — pickup(wood;) — pickup(stones) — pickup(stoney)
pickup(stone;) — move(workbench;) — make_ stick(workbench;)
pickup(woods) — move(workbench;) — make_ stick(workbenchy)
pickup(stoneg) — move(toolshed;) — make_stone_pickaxe(toolshed;)
pickup(iron;) — pickup(irony) — pickup(woods) — move(workbenchs)
make_scissors(workbench;) — move(toolshed;) — pickup(wool;)

L1l lld

* Make-Enhance-Table: pickup(stoney) — pickup(wood;)
pickup(stones) — pickup(stones) — move(workbench;)
make_stick(workbenchy) — pickup(woods) — pickup(woods)

L4

19

Under review as a conference paper at ICLR 2026

move(workbench;) — makestick(workbench;) — move(toolshed;)
make_stone_pickaxe(toolshed;) — pickup(iron;) — pickup(ironz)
move(workbenchy) — make_scissors(workbenchy) — make_paper(workbenchs)
move(toolshed;) — pickup(wool;) — pickup(woods) — move(workbench;)
make_stick(workbench;) — pickup(stones) — pickup(woods) — pickup(wools)
pickup(wools) — pickup(woodg) — pickup(irons) — move(workbench;)
make_stick(workbench;) — make_paper(workbench;) — pickup(iron)
pickup(irons) — move(toolshed;) — make_iron_pickaxe(toolshed;)
pickup(gem;) — move(toolshed;) — make_enhance_table(toolshed;)

A

D.3 DETAILED RESULTS FOR ISAACGYM TASKS
The plans for different tasks generated by the MCTS algorithm are as follows:

* Push-n: push(obj;) — push(objz) — - -+ — push(objy,).
* Push-Grab-n: push(obj;) — push(objs) — - -+ — push(obj,) — grab(obj,).

* Push-Grab-Lift: push(obj;) — push(objs) — -+ — push(obj,) —
grab(obj,,) — lift(obj,).

s Ordered-Press: press(obj') — press(obj?) — - -+ — press(obj™).

The superscripts of Ordered-Press represent that press should follow the sequence.

We list some detailed results of the tasks in IsaacGym. Table[8] table] and table[T0]demonstrate the
detailed metrics of Push, Push-Grab-Lift, and Ordered-Press, respectively.

Additionally, we construct an experiment called Push-Grab. Its difficulty is between Push and
Push-Grab-Lift since we expect the agent to use two skills to complete the task. The agent is
required to push the cubes to their goal positions and grab one of the specified cubes. We show the
detailed results under different numbers of cubes in table [T}

Cub S Success Fraction Color Color Action Action
ubes uceess Success Fraction Success Success Fraction Success
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000, 1.000 1.000 1.000
3 0.875 0.958 0.958 0.938, 0.938, 0.958 0.875
1.000
1.000, 0.875,
4 0.750 0.922 0.922 0.938. 0.875 0.922 0.750
0.938, 0.875,
5 0.688 0.900 0.900 0.938, 0.938, 0.900 0.688
0.813

Table 8: Push. The sequence of color success fractions follows red, green, blue, yellow, and purple.

20

Under review as a conference paper at ICLR 2026

Cub S Success Fraction Color Color Action Action
ubes uceess Success Fraction Success Success Fraction Success
1 0.625 0.875 0.625 0.625 0.875 1.000, 0.9375,
0.688
2 0.500 0.828 0.719 0.500, 0.938 0.771 0.938, 0.875,
0.500
0.563, 0.938, 0.750, 0.938,
3 0.500 0.863 0.792 0.875 0.771 0.625
0.188, 0.938, 0.438, 0.625,
4 0.063 0.698 0.609 0.750. 0.563 0.479 0.375
0.3125, 0.5625,
5 0.125 0.643 0.575 0.5,0.75, 0.438 0.1875, 0.625,
075 0.5

Table 9: Push—-Grab-Lift. The sequence of color success follows red, green, blue, yellow, and
purple. The sequence of action success follows push, approach, and lift.

. Color Color Action Action
Cubes Success Success Fraction . .

Success Fraction Success Success Fraction Success

0.990 0.990 0.990 0.990 0.990 0.990

2 0.938 0.969 0.969 0.969, 0.969 0.938 0.938

3 0.875 0.958 0.958 0.938, 1.000, 0.875 0.875

0.938
0.875, 1.000,
4 0.813 0.953 0.975 1.000, 0.938 0.875 0.8125
0.875, 1.000, 1.000,
5 0.813 0.950 0.950 0.938, 0.938, 0.813 0.875

Table 10: Ordered-Press. The sequence of color success follows red, green, blue, yellow, and
purple.

D.4 CoOMPOSITIONAL GENERALIZATION

For the experiments measuring compositional generalization, we provide some demonstration results
in the main paper. Here, we list some of the additional results. The results are listed in Table [12]
and Table For the Minecraft environment, we introduce some new objects {grass, bamboo}
and the corresponding crafting tasks. For IsaacGym Environment we add some new type of objects
{cuboid, cylinder, star, T-block} in the environment. We can find that in most of the test cases,
our model can maintain the success rate without fine-tuning the model. Also, we provide another
demonstration of the experiment result in Figure[9] which is pushing the star and crafting the bamboo.

... r._... ,_.. ,_"
t=0 t=12 t=>58 t =90

Goal Reconstructed Goal Goal Reconstructed Goal

(a) Push three stars. (b) Pickup bamboo.

Figure 9: Compositional generalization in IsaacGym and Minecraft environments.

21

Under review as a conference paper at ICLR 2026

. Color Color Action Action
Cubes Success Success Fraction . .
Success Fraction Success Success Fraction Success
1 0.938 0.969 0.938 0.938 0.969 1.000, 0.9375
2 0.938 0.979 0.969 0.875, 1.000 0.969 0.938, 0.938
3 0.563 0.859 0.813 0.688, 0.875, 0.750 0.688, 0.813
0.875
0.688, 0.875,
4 0.438 0.838 0.828 0.875, 0.875 0.656 0.625, 0.688
0.688, 1.000,
5 0.250 0.792 0.763 0.688, 0.688, 0.531 0.3125,0.75
0.750
Table 11: Push—-Grab. The sequence of color success follows red, green, blue, yellow, and purple.
The sequence of action success fractions follows push and approach.
Shape Cuboid Cylinder Star T-Block
SMORL 0.021 4+ 0.009 /0.070 £ 0.008 0.011 £ 0.008 / 0.040 £+ 0.009 0.030 + 0.011/0.071 & 0.008 0.011 4+ 0.011 /0.025 4+ 0.008
ECRL 0.026 4+ 0.008 /0.101 £ 0.008 0.015 4+ 0.007 / 0.066 £ 0.017 0.051 £ 0.012/0.122 + 0.012 0.0134 0.009 /0.046 + 0.007
GAIL 0.000 4 0.000/0.003 4+ 0.005 0.011 +0.013/0.030 £ 0.008 0.077 £ 0.017/0.153 £ 0.010 0.000 = 0.000 /0.003 +£ 0.005
DiRL 0.012 +0.010/0.020 = 0.008 0.018 £ 0.007 / 0.040 £ 0.006 ~ 0.062 + 0.007 / 0.105 + 0.014 0.021 % 0.009 /0.055 £ 0.016
DeepSynth 0.113 +0.009/0.252 + 0.009 0.210 £ 0.012/0.432 £ 0.015 0.431 +0.016/0.629 % 0.005 0.1874 0.008/0.404 + 0.009
Ours 0.375 + 0.012 /0.750 £+ 0.005 0.250 £ 0.011/0.729 £ 0.005 0.625 + 0.009 / 0.833 + 0.006 0.250 + 0.011/0.667 + 0.009

Table 12: Success rates and success fractions of Push tasks on three objects with different
shapes. To evaluate the impact of object shape on task performance, we scaled the objects by a factor
of 3 along the x-axis and 1.5 along the y-axis.

D.5 VISUALIZATION OF DLP RESULTS

We demonstrate the object reconstruction visualization of DLP in the IsaacGym and Minecraft
environments.

Figure[I0|and figure[TT]| present lists of 32 images reconstructed by DLP respectively. In the IsaacGym
environment, We find that DLP focuses on objects with different colors and the gripper, while in
Minecraft, object blocks and agents are clearly shown in the grid.

Tasks Pickup-Mass-Grass Pickup-Mass-Bamboo Make-Grass-Stack Make-Bamboo-Fence
SMORL 0.270 £ 0.011 0.231 +£0.012 0.183 + 0.011 0.175 £ 0.011
ECRL 0.287 £ 0.012 0.292 £ 0.011 0.186 = 0.013 0.179 £ 0.011
GAIL 0.369 £+ 0.011 0.277 £0.012 0.267 = 0.010 0.365 £ 0.011
DiRL 0.655 £ 0.009 0.563 £ 0.010 0.535 £0.011 0.570 +£ 0.010
DeepSynth 0.693 £ 0.008 0.615 £+ 0.009 0.651 + 0.009 0.591 £ 0.010
Ours 0.969 + 0.004 0.927+ 0.004 0.865 £ 0.008 0.791 + 0.007

Table 13: Success rates of Minecraft tasks on new materials. We replace wood with grass and
bamboo, transforming the P ickup-Wood task into collecting grass and bamboo. In analogy to the
Make-Stick task in Minecraft, the agent can then craft a grass stack using grass and construct a
bamboo fence using bamboo.

22

Under review as a conference paper at ICLR 2026

Tasks Pickup-Iron =~ Make-Enhance-Table
Task with Figure Distortion 0.893 + 0.006 0.731 £0.010
Original Task 0.917 £ 0.005 0.750 £ 0.008

Table 14: Comparison of success rates under visual distortion. To evaluate the robustness of our
pixel-based planning model, we introduce visual distortions to the material images in Minecraft and
compare the resulting success rates with those obtained using the original, undistorted images.

Figure[12]and figure[I3]present a comparative analysis of the original image with various transformed
versions. These include images with different key points, reconstructed images, extracted foregrounds
and backgrounds, and images with different types of bounding boxes. The first row depicts the
original image. Key points are marked on the original image in the second row. The third row
showcases the reconstructed images, which exhibit a high degree of similarity to the originals. In
the fourth row, predicted key points are superimposed on the original image, with many aligning
closely with objects. The fifth row highlights the top 10 key points that the agent prioritizes, which
are predominantly concentrated on meaningful objects rather than empty regions. The sixth and
last rows display the extracted foregrounds and backgrounds, respectively. The foreground images
effectively isolate individual objects, while the backgrounds are clean and devoid of objects. The
seventh and eighth rows demonstrate the application of bounding boxes to each object using two
different methods: non-maximum suppression alone and non-maximum suppression in conjunction
with transparency.

el q.'IF
l] 1'%

Figure 11: Object Reconstruction of DLP in Minecraft.

23

Under review as a conference paper

at ICLR 2026

L i L] *
® @
-
Original .
t Y g L3
® El . s
» . w ® L]
v
. €
Key Points 8
A i s
] E ?
s
w it ® ®
s @
.
Reconstruction B
»
€ ¢
L] s 2
o g i " ® b
RESRE H > @ o0
Predicted Key Points A
o#a ® e
L} i ’
T w 0"
-
. ®o @ .
Top-10 Key Points e

Bounding Box 1

H s
-
& -
Bounding Box 2 2.
3 s
o % e
Background
Figure 12

® ® s0w »
£ A st
’r ® » w 98
< ®
®
v v
a
« L]
® "]
® , @ A0w ’
e Py Ex]
<o » 9o ¢ ”, e
s © ® n
- ¥
L] L]
L »
L]
£ 3 ® st
’r ® » @ ¥
L] L
L
s v
A
w L]
® ’
® ® A0w ’
¢ A ge
@ 08 * oo ag o o
& ®
4] 4
; »
L] o
® A0w »
] i ce
¢ .i w e

: Visualization of DLP in IsaacGym.

24

*

Under review as a conference paper at ICLR 2026

e Y Y Y
i s i

I i i r"'\rwr-\r kit
O i s, 5 s

oo o o oo o o

O o i

o H.H.I"E‘
il ¥
Ll

— r;!‘ F <. w@am @'317 r:::‘
W Ea i ‘!ﬁgﬂrﬁrﬁﬁ B
B e s s

Figure 13: Visualization of DLP in Minecraft.

&

Bounding Box 2

E THE USE OF LARGE LANGUAGE MODELS

In the process of drafting this paper, we employed large language models (LLMs) as an auxiliary tool
to enhance the quality and clarity of our written English. The primary application was to identify
and correct grammatical inaccuracies, refine sentence structures, and polish academic expressions,
thereby improving the overall readability and professionalism of the manuscript.

Specifically, selected paragraphs or sentences from our initial drafts were input into an LLM (e.g.,
DeepSeek-v3.1 or a comparable model) with explicit instructions focused solely on language checking
and polishing. The prompts were designed to request grammatical corrections, suggestions for more
concise or academically appropriate phrasing, and improvements in logical flow, without altering the
core technical content or scientific meaning.

It is crucial to emphasize that the role of the LLM was strictly limited to that of a writing assistant. All
substantive intellectual contributions, including the core ideas, theoretical framework, experimental
design, data analysis, and result interpretation, remain entirely our own. The final decision to
adopt any suggestion provided by the LLM was always subject to our careful review and judgment.
We ensured that every change aligned with our intended meaning and adhered to the standards of
academic integrity.

This use of LLMs significantly streamlined the writing and revision process, allowing us to focus
more effectively on the scientific rigor and conceptual depth of our work.

25

	Introduction
	Problem Formulation
	Goal-Augmented MDP
	From MDP to Planning

	Method
	Feature Extraction
	Skill Learning
	Symbolic Inductive Learning
	End-to-End Plan Inference and Execution

	Experiments
	Long-Horizon Sequential Task
	Object Manipulation
	Symbolic Interpretation

	Related Work
	Conclusion
	Algorithm
	Implementation Details
	Pre-trained Models
	Skill Learning
	Effects of Skill

	Environment Setting Details
	Baseline Reimplementation
	Minecraft
	IsaacGym
	Evaluation Metrics

	Additional Experimental Results
	Ablation Study
	Influence of the Number of Clusters
	The Effectiveness of Symbolic Regression.

	Detailed Results for Minecraft Tasks
	Detailed Results for IsaacGym Tasks
	Compositional Generalization
	Visualization of DLP Results

	The Use of Large Language Models

