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ABSTRACT

Deep Reinforcement Learning (DRL) has struggled with pixel-based controlling
tasks that have long sequences and logical dependencies. Methods using struc-
tured representations have shown promise in generalizing to different objects in
manipulation tasks. However, they lack the ability to segment and reuse atomic
skills. Neuro-symbolic RL excels in handling long sequential decomposable tasks
yet heavily relies on expert-designed predicates. To address these challenges, we
propose ReSIP, a novel framework for pixel-based control that combines Reinforce-
ment Learning with Symbolic Inductive Planning. Our approach first automatically
discovers and learns atomic skills through experiences in simple environments
without human intervention. Then, we employ a genetic algorithm to enhance
these atomic skills with symbolic interpretations. Therefore, we convert the com-
plex controlling problem into a planning problem. Taking advantage of symbolic
planning and object-centric skills, our model is inherently interpretable and pro-
vides compositional generalizability. The results of the experiments show that our
method demonstrates superior performance in long-horizon sequential tasks and
complex object manipulation.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has been successfully applied to various fields, including video
games (Mnih, 2013), autonomous driving (Sallab et al., 2017), and robotics (Kober et al., 2013).
However, building flexible and adaptive robotic agents that can accomplish a diverse set of tasks
in novel and complex environments remains a significant challenge in DRL. Such tasks typically
demand the agent to formulate long-term plans for logically dependent goals, requiring it to combine
diverse skills in complex scenarios involving multiple objects. A significant challenge of these
tasks is the need for compositional generalization. We can assess it in terms of two distinct factors:
(1) different attributes of objects than in training, and (2) different compositions of goals and their
corresponding skills, including variations in logical order (Lin et al., 2023).

To address the above challenge, several methods (Zadaianchuk et al., 2020; 2022; Mambelli et al.,
2022; Haramati et al., 2024) incorporate structured representations into the DRL algorithms of
decision transformers through object-centric representations (OCR). With a powerfully structured
representation, they show certain generalizability on the types and numbers of objects in object
manipulation tasks. However, they cannot simultaneously learn diverse skills due to the catastrophic
forgetting problem (McCloskey & Cohen, 1989), where the new information can distort the previously
learned knowledge. Besides, they cannot segment the learned integrated policy into diverse atomic
units and reform them to achieve new objectives.

On the other hand, some researchers suggest neuro-symbolic approaches that combine planning and
DRL. These approaches aim to handle the combinatorial explosion of possible action sequences by
providing high-level abstraction and compositing learned skills. Many existing methods (Illanes et al.,
2020; Sun et al., 2020; Zhuo et al., 2021; Mao et al., 2023; Silver et al., 2023) employ a top-down
structure by specifying symbolic representation for high-level action models and using them to guide
the learning of low-level policies. However, these methods can only work with fully observable
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environment states and carefully hand-engineered predicates. These predefined predicates hinder the
agent’s flexibility, thereby restricting its applicability to complex tasks such as object manipulation.

In this paper, we propose ReSIP, a novel framework for pixel-based control that combines the idea
of Reinforcement Learning with Symbolic Inductive Planning.1 ReSIP is capable of forming a plan
that is composed of skills for complex tasks. It enables the agent to learn atomic skills from scratch
by exploring simple environments through DRL algorithms (Li, 2017) without relying much on
expert knowledge. Furthermore, ReSIP uses genetic programming (Ahvanooey et al., 2019) to induce
symbolic interpretation for agents’ learned skills, including their preconditions and effects. These
interpretations provide the agent with a series of fundamental understandings of its learned skills,
which are critical for effective planning. During the inference, given a novel and composite task, our
agent decomposes the task based on its understanding of the task and atomic skills, formulating a
ground skill plan by search algorithms (Abualigah et al., 2021). Then, the agent executes this plan
and uses its skills to generate specific actions to achieve the final goal. We experimentally verify
the efficiency and effectiveness of ReSIP in two domains: Minecraft, a 2D grid-world environment
(Andreas et al., 2017) that focuses on long-horizon planning, and IsaacGym (Makoviychuk et al.,
2021), a simulated tabletop robotic environment that evaluates the agent’s capacity to manage complex
3D object manipulation. Experimental results show that ReSIP can schedule the sequence of skills in
an appropriate order with symbolic interpretation. Moreover, the flexible combination of skills allows
our approach to handle environments with varying object attributes.

We summarize our key contributions below:
• Automatic Skill Discovery. Compared to previous work, our approach can automatically discover
and learn basic skills from the environment without any guidance of designed high-level symbolic
representations in advance, reducing the dependency on expert knowledge.

• Symbolic Interpretation. We assign symbolic meanings to the learned skills by performing
symbolic regression on features. Based on each skill’s preconditions and effects, our model can
infer the specific task of each skill, thus having a comprehensive understanding of the planning and
alleviating the curse of dimensionality. Additionally, this approach is inherently interpretable by
planning with a sequential symbolic plan composed of learned skills.

• End-to-End Pixel-Based Controlling Pipeline. We propose an end-to-end pixel-based planning
framework that can learn skills from scratch and form plans with skill combinations. The final plan
we generate is also interpretable.

2 PROBLEM FORMULATION

To enable robotic agents to achieve novel, long-horizon goals in multi-object environments, we
leverage demonstrations collected in simpler single-object settings and transfer knowledge across
tasks via symbolic abstraction. We formalize this setting as a Goal-Augmented Markov Decision
Process (GAMDP), where each state is paired with an explicit goal specification. While deep
reinforcement learning (DRL) can operate within this framework, it struggles with sparse rewards
over long horizons. In contrast, symbolic planners excel in such settings due to temporal abstraction.
To bridge these paradigms, we introduce the concept of skill: a neural policy annotated with symbolic
preconditions and effects, enabling seamless integration of GAMDP-based learning and planning.

2.1 GOAL-AUGMENTED MDP

We start from a goal-augmented MDP ⟨S,G,A,P,R, γ⟩ (Liu et al., 2022), where S is the set of state
s, G is the set of goal specification g, A is the set of actions a that the agent executes to interact with
the environment, P is the environmental transition model P : S × A → S, R is defined as the set
of reward r(st,at), and γ ∈ (0, 1] is the discount factor for future rewards. Since the task involves
manipulating multiple objects, it is natural to decompose the task into separate goals for each object.
An object o ∈ O has a type, denoted λo ∈ Λ.

1Code address: https://anonymous.4open.science/r/neurips-fstp-E50B
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2.2 FROM MDP TO PLANNING

To make long-horizon planning tractable, we first aggregate MDP states into abstract states called
features, under the assumption that variations in these features capture high-level state changes.
With this abstraction, each skill is annotated with feature-based preconditions and effects. These
annotations allow a planning algorithm to efficiently search for a valid sequence of actions.
Definition 2.1 (Feature). We define the feature f ∈ Rn as a vector to characterize the key attributes
of the environment. These attributes can either be the object entities, such as position, color,
shape, or be the information of tasks such as reached goal, is pressed. n is the predefined
dimension of the feature vector. We define F as the set of features f . We denote the aggregation
function as Tf : S → F .

We formally defined the mathematical form of the skill based on previous work (Kokel et al., 2021).
We group similar operations, forming a skill to address similar tasks. The skill exhibits three key
attributes: (1) it serves as the fundamental operational unit for planning, representing a series of
actions to achieve a specific goal; (2) it is endowed with a logical structure comprising preconditions
and effects; and (3) it demonstrates adaptability by generating specific control actions based on
varying input states.
Definition 2.2 (Skill). We define the skill as a tuple l = ⟨args, π, pre, eff ⟩. Arguments args ⊆ Λ is a
set of types, specifying the object types to which the skill is applicable. Precondition pre : F ×O →
{0, 1} is a function that evaluates whether the skill l can be executed on an object o given the current
feature f . Specifically, pre(f , o) = 1 if all conditions are satisfied; otherwise, pre(f , o) = 0. Effect
eff : F ×O → F is a function that computes the updated feature f ′ after applying skill l to object o.
The goal-conditioned policy π : S × S ×O → A maps the current state s, a goal g, and an object o
to an action a.

We define the ground skill, denoted as l(o), by substituting the specific object into the policy,
preconditions, and effects of the skill. For instance, consider a skill make stick with args =
{λworkbench}, indicating that it is applicable only to objects of workbench type. By grounding
this skill to a specific workbench workbench1, we obtain make stick(workbench1), where the
preconditions and effects are defined as pre = AtWorkbench(workbench1) ∧ (fwood > 1) and
eff = {fwood − 1,fstick + 1}. Here, fwood and fstick are elements of the feature f , representing
the quantities of wood and sticks, respectively. Arguments args and precondition pre can be empty.

For a given goal-augmented MDP, whose initial state is s0 and the goal state is g, its features
can be written as f0 = Tf (s0) and fg = Tf (g) respectively. Then, we can form a ground skill

plan Π = f0
l0−→ f1

l1−→ . . .
ln−1−−−→ fg using search algorithms. Finally, we can obtain the trace

τ = s0
a0−→ s1

a1−→ . . .
a(n−1)×t−−−−−−→ g by executing each skill’s policy π in the ground skill plan Π.

3 METHOD

Our goal is to design a framework that can automatically discover and learn atomic skills and form a
symbolic plan composed of these skills for complex tasks. The overall structure of our framework is
depicted in Figure 1. It mainly consists of two parts: Neuro-Symbolic Skill Training and End-to-End
Plan Inference and Execution. We will elaborate on these components below.

3.1 FEATURE EXTRACTION

The feature extraction module is the basic component of our framework. It aims to extract compact
and disentangled features from raw image states, capturing most of the essential information. Our
feature extraction module consists of two layers, which are denoted as Te and Tf . The first layer Te

transforms the input images into object-centric entities, and the second layer Tf further aggregates
these entities to form features.

Object-Centric Representation. Given a raw image state s, we first process it with layer Te,
implemented by a pre-trained Deep Latent Particles (DLP) (Daniel & Tamar, 2022). Te extracts the
object-centric representation e = Te(s) ∈ Rm×k, where m is the number of objects that appeared
in the image, k is the number of object entities, such as position, color, shape. With the
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Figure 1: Overview of the ReSIP Framework. (a) Neuro-Symbolic Skill Training: First, policies
for skills are learned by collecting traces from random policies, dividing these traces into segments
based on feature changes, and clustering these segments into distinct sets to train corresponding poli-
cies. Next, symbolic regression is applied to these set-policy pairs to derive symbolic interpretations
of each skill, explicitly learning their preconditions and effects. (b) End-to-End Plan Inference
and Execution: Given initial and goal state images, the framework extracts corresponding features,
then leverages MCTS to infer a valid plan of skills by satisfying symbolic preconditions and effects.
Eventually, this symbolic plan guides action execution, enabling successful goal completion.

object-centric representation, We can decompose the representation e into several sub-representation
{ei}mi=1 based on the i-th object. The sub-representation is used when the skill tries to achieve a
subgoal. Details of DLP pretraining are in Appendix B.1.

Feature Representation. Inspired by the entity-centric architecture (Haramati et al., 2024), we
develop an aggregation transformer as the second layer Tf to aggregate entities into features for
planning. The aggregation transformer comprises self-attention (SA) and cross-attention (CA) as
its core components. SA is intended to extract important attributes from the observation more
effectively, while CA is designed to capture the temporal difference between current state entities.
The set of entities {en}Nn=1 are processed by a sequence of Transformer (Vaswani, 2017) blocks:
SA→ CA→ SA, followed by a MLP (Murtagh, 1991). A detailed architecture is depicted in Figure
6. The aggregation transformer is trained to minimize the mean square loss:

LAT (f̂) =
1

N

N∑
i=1

(
fi − f̂i

)2
, (1)

where N is the total number of training data. f̂i is the ground truth feature value.

When training the feature extraction module, we randomly initialize various parameters in the
environment, such as the number and shapes of objects. Once these parameters are set, the system
generates an image corresponding to the configured environment. We treat these randomly initialized
parameters as ground truth f̂i and use Equation 1 to train the feature extractor. We have the flexibility
to define a large number of features that we expect to be useful when describing the task.

3.2 SKILL LEARNING

Given a composite task, we aim to tackle it with a combination of simple skills. Our model is capable
to learn the atomic skills l = ⟨args, πl, prel(f , o), eff l(f , o)⟩ from scratch, which relies on using
the collected trace, composed of the original state, as training data. The key idea is that we first collect
play data from interaction with the simple environment, and then we segment the data, which is the
trace of the agent’s movements, into trace segments and categorize these trace segments according to
the feature change. Finally, we train the agent to learn the skill policy for each set of trace segments.

Data Generation. We first collect a significant amount of play data following previous work (Lynch
et al., 2020; Rosete-Beas et al., 2023). Instead of struggling with the complex environments where
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our agent should work during evaluation, we collect these traces from variant and simple training
environments, such as environments with a single object in IsaacGym. Details are in Appendix B.2.

Trace Segment Categorization. After data generation, we divide and categorize the trace segments
into different sets by their feature, getting the offline dataset based on different feature changes.
Firstly, we divide the trace into trace segments of length h. Then, we retain only those trace segments
where feature changes are observed. Finally, we employ a K-means clustering algorithm (Ahmed
et al., 2020) to gather trace segments with similar feature changes, with the objective function:

argmin
T

K∑
i=1

1

|Ti|
∑

τ1,τ2∈Ti

∥τ1 − τ2∥2 (2)

where τ = [Tf (e1), ..., Tf (eh)] is the concatenation of trace segments in feature representation,
Ti ⊆ T is each classified cluster, and K is the total number of clusters.

Training. It is worth noting that the training algorithm for goal-conditioned policy πl is agnostic of
the planning framework. As we categorize offline datasets into K clusters of trace segments, we adopt
the goal-conditioned behavior cloning (GCBC) algorithm (Lynch et al., 2020) to learn a skill policy
for each cluster. The network of the policy is also composed of transformer blocks. The outline of
the policy network is a composed structure of SA and CA, which can model the relationship between
the current state and the goal. We apply the GCBC loss to train each policy πl that can achieve the
best performance. With the trace segments {s1, ..., sT } and the object o, the loss is as following:

LGCBC = − 1

T

T∑
t=1

log(πl(at|st, sT , o)), (3)

During skill learning, some trivial skills might be learned. However, these skills do not affect the
selection of the planning algorithm. Details can be referred to in Section 3.4.

3.3 SYMBOLIC INDUCTIVE LEARNING

To construct a plan using atomic skills, we derive symbolic interpretation for each skill, enabling
compositional reasoning and task decomposition. These interpretations define the preconditions
and effects of skills through mathematical formulas: preconditions are expressed as constraints,
and effects are expressed as transformations, both using the operation set {+,−,×,÷, >} to form
polynomial expressions.

Symbolic Regression. Given a skill l, the induction module proceeds to search for the effect eff l(f , o)
and precondition prel(f , o) for this skill policy. Since precondition and effect are functions of two
classes of variables, f and o, where f and o may be discrete, using symbolic regression becomes
the most ideal method to find preconditions and effects. As Definition 2.2 states, the effect might
change as the input state changes. Then we have f ′

final = eff l(finit, o), which can be formulated as
a symbolic regression problem.

For symbolic regression, we use the PySR (Cranmer, 2023), which is a multi-population evolutionary
algorithm. PySR is capable of performing feature selection, identifying the most significant element
within the feature vector f . Moreover, it also supports customizing the operator and the loss function.

Precondition Rule. Since the features in the environment might be complicated, determining whether
a skill can be applied in the current stage is challenging. Here the Symbolic Regression module PySR
outputs a boolean result using operators {>,=}. We train the symbolic regression module with a
batch of collected features. We design a loss function for training:

Lpre
SR =

N∑
i=1

∥bipred − bitarget∥2, (4)

where bipred is the predicted value and bitarget is the ground truth value.

Effect. For the effect of a skill eff l(f , o), we mainly use constants and the binary operators
{+,−,×,÷} to form the effect function. We design an element-wise loss function:

Leff
SR = ∥fpred − ftarget∥2 + complexity , (5)
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where fpred is the prediction result and ftarget is the ground truth. We employ the normalization term
complexity (Cranmer, 2023) to prioritize the effect function using a simple mathematical format.

3.4 END-TO-END PLAN INFERENCE AND EXECUTION

In this section, we introduce the overall process of end-to-end pixel-based planning given an initial
image and a goal image. Figure 1(b) shows the complete process.

Extraction of Features. Given images of the initial state s0 and goal state g, the feature extraction
module introduced in Section 3.1 converts them into features f0 and fg .

Plan Inference. This part focuses on adopting Monte Carlo Tree Search (MCTS) (Kocsis &
Szepesvári, 2006) to generate a ground skill plan Π that fits the input feature f0 and the goal feature
fg . We apply the Upper Confidence Bound applied to Trees (UCT) (Kocsis & Szepesvári, 2006):

UCT(l, o) =
N(f , l, o)succ
N(f , l, o)

+ C

√
lnN(f)

N(f , l, o)
, (6)

where N(f , l, o)succ represents the success times of selecting ground skill l(o) under feature f , C is
a hyperparameter to balance the exploration and exploitation, N(f) is the number of times feature f
has been visited in previous iterations, and N(f , l) is the number of times skill l has been sampled in
in feature f .

(l∗i , o
∗
j ) = argmax

li, oj
UCT (li, oj) ∗ preli(f , oj). (7)

As shown in Eq 7, we select the next skill for the node with the max UCT(li, oj), meanwhile ensuring
the skill’s precondition is true. Otherwise, we meet a terminal node. Then, we expand this skill if
there are untried skills. Finally, we simulate some steps and update the fp of each node according to
the reward, the number of visits, and UCT. After many rounds, we obtain the ground skill plan Π.

Skill Execution. For each ground skill l(o), we have an input image si, which represents the current
state, and goal image gi. And we set the policy time horizon as t. A skill can execute for consecutive
t timesteps before switching to the next one. During the execution, the policy output an action
πl(a|si, gi, o). Thus, we find an approach to accomplish the whole task.

4 EXPERIMENTS

To evaluate the performance of ReSIP, we select two different types of environments. One is the
Minecraft environment, which verifies a series of long-horizon compositional tasks. The other is Isaac-
Gym, a robotic arm simulation environment employed to assess the performance of compositional
generalization tasks. ReSIP trains atomic skills from single-object demonstrations and composes
them to solve tasks in complex multi-object environments, demonstrating strong generalization
capabilities in both long-horizon sequential tasks and object manipulation.

Environments. Minecraft is an n × n grid world environment. It is inspired by the computer
game Minecraft and is similar to the environment in previous works (Brooks et al., 2021; Hasan-
beig et al., 2021; Kokel et al., 2021; Liu et al., 2024). An agent can move along four directions
{up, down, left, right} and interact with objects with learned skills. Different from the previous
environment, our inputs are image maps with different objects in the map. We evaluate ReSIP on a
suite of tasks with increasing complexity. Make-Stick serves as a basic task, requiring the agent
to produce a single stick. Make-Mass-Sticks extends this by demanding repeated execution of
the same skill to produce multiple sticks, testing skill reuse. Pickup-Iron introduces tool depen-
dencies, requiring the agent to craft several tools before completing the goal. Multiple-Goals
involves collecting four items in a predefined order, emphasizing multi-step sequencing. Finally,
Make-Enhance-Table presents the most challenging long-horizon scenario, where the agent
must orchestrate many interdependent skills to construct an enhanced table.

IsaacGym (Makoviychuk et al., 2021) is a simulated tabletop robotic object manipulation environment.
The environment includes a robotic arm set in front of a table with various cubes and buttons in
different colors. The agent observes the system’s state through visual input and performs actions in the
form of deltas in the end effector coordinates a = (∆x,∆y,∆z,∆g), where ∆g indicates whether
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the gripper is open or closed. At the beginning of each episode, both the current cube positions and
the goal positions are randomly initialized on the table. The tasks are as follows: Push requires the
agent to push cubes with randomized numbers and color to the goal location. Push-Grab-Lift
needs the agent to manipulate cubes of randomized numbers and color to their goal positions by
pushing and lifting operation. In Ordered-Press, the agent should press different buttons in a
particular order.

Figure 2: The environments used for experi-
ments in this work.

Figure 3: A sample trace of an agent in object ma-
nipulation Push.

Baselines. We compare our framework with various DRL algorithms with pixel-based decision
transformers (ECRL, SMORL) learning from rewards, imitation learning methods (GAIL) learning
from demonstration, and methods that combine planning and DRL (Deepsynth, DiRL). SMORL
(Zadaianchuk et al., 2020) adopts object-centric representations with goal-conditioned attention
policies to discover and learn useful skills. ECRL (Haramati et al., 2024) uses object-centric
representations with the entity-interaction transformer to discover and learn useful skills. GAIL
(Ho & Ermon, 2016) mimics expert behaviors via learning a generative adversarial network whose
generator is a policy. DeepSynth (Hasanbeig et al., 2021) uses an automaton to find the substructure
of tasks and execute the subtasks using the low-level controller.DiRL (Jothimurugan et al., 2021)
uses a predefined logical specification to decompose tasks into subtasks then solve them by DRL
controllers.

4.1 LONG-HORIZON SEQUENTIAL TASK

We evaluate the different methods in the Minecraft Environment to test the performance in some
long-horizon tasks. Results are presented in Table 1. For long-horizon planning tasks, ECRL,
SMORL achieve a low success rate because they cannot handle temporal logic tasks. Deepsynth uses
an automaton-based high-level structure for task decomposition, so it has a relatively high success
rate in simple tasks. However, as the tasks become complex, their performance drops sharply since
the search space for the automaton is too big for the algorithm to cover. Figure 4 demonstrate an
example of end-to-end pixel-based planning of Make-Stick.

(a) Initial State (b) Goal State (c) Plan Generation (d) Execution

Figure 4: End-to-end pixel-based planning of Make-Stick.

4.2 OBJECT MANIPULATION

We evaluate different methods in the IsaacGym and present results in Table 2. Here, we mainly report
the overall success rate. For Push, we observe that most of the structured baselines ECRL, SMORL
can achieve a high success rate. In contrast, conventional behavior cloning GAIL performs poorly as
the number of cubes increases due to its poor compositional generalizability. Deepsynth and DiRL
use the idea of task decomposition, however, the decompositional logic is simple and relies on expert
knowledge. Thus, they also perform poorly as the number of cubes increases. Push-Grab-Lift
and Ordered-Press have some logical dependency on their subtasks. The performance of ECRL,
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Task Make-Stick Make-Mass-Sticks Pickup-Iron Multiple-Goals Make-Enhance-Table

SMORL 51.1±0.5 37.4±1.0 33.2±1.2 28.1±0.9 11.2±1.1

ECRL 46.2±0.7 35.8±1.2 37.1±1.2 29.7±1.0 18.7±1.2

GAIL 51.3±0.5 46.9±0.9 41.5±1.1 30.2±1.1 16.4±1.2

DiRL 86.7±0.5 86.3±0.5 79.4±0.7 71.9±0.7 58.1±0.9

DeepSynth 90.1±0.3 85.3±0.5 82.1±0.5 69.3±0.8 55.7±1.0

Ours 95.8±0.4 93.8±0.4 91.7±0.5 88.7±0.8 75.0±0.8

Table 1: Success rates for long-horizon sequential tasks in Minecraft.

Cubes 1 2 3 4 5

Push

SMORL 99.0±0.0 83.8±0.4 50.9±1.0 43.8±1.2 30.2±1.2

ECRL 97.3±0.5 96.3±0.5 83.8±0.4 72.3±0.6 57.0±1.0

GAIL 95.5±0.5 75.0±0.4 47.8±1.2 43.8±1.1 39.6±1.1

DiRL 93.5±0.5 87.3±0.6 74.1±0.5 61.2±0.9 50.5±1.2

DeepSynth 91.9±0.3 86.1±0.3 80.3±0.5 63.5±0.5 49.3±0.6

Ours 100±0.0 100±0.0 87.5±0.5 75.0±0.4 68.8±0.7

Push-
Grab-
Lift

SMORL 25.0±0.6 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

ECRL 25.0±0.8 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

GAIL 48.8±0.9 34.8±1.2 10.1±0.9 3.1±0.8 1.0±0.6

DiRL 52.1±1.0 35.5±1.1 23.5±1.1 6.5±1.1 2.5±0.9

DeepSynth 50.2±0.7 33.0±1.0 18.7±1.3 8.3±0.9 0.0±0.0

Ours 62.5±0.7 50.0±0.8 50.0±0.9 15.6±0.5 12.5±0.7

Ordered-
Press

SMORL 98.0±0.4 68.6±0.8 51.3±1.1 37.2±1.1 15.8±1.2

ECRL 100.0±0.0 62.5±0.8 42.7±1.1 35.4±1.0 27.7±1.5

GAIL 97.1±0.3 86.2±0.4 69.7±0.8 53.5±1.1 32.8±1.2

DiRL 98.2±0.4 93.1±0.5 84.1±0.5 70.3±0.5 66.2±1.0

DeepSynth 92.5±0.5 90.8±0.6 80.3±0.5 65.5±0.7 53.5±1.0

Ours 99.0±0.4 93.8±0.4 87.5±0.6 81.3±0.5 81.3±0.6

Table 2: Success rates for object manipulation tasks in IsaacGym.

SMORL is much poorer than our model because these two models have no awareness of the temporal
attributes of sub-tasks, which shows the superiority of our skills with symbolic interpretation. Figure
3 shows the sample trace of Push. Other detailed results are in Appendix D.3.

Figure 5: Skill relation based on symbolic interpretation in Make-Stick. Expressions in the blue
box represent the precondition, and orange denotes the effect.

8
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4.3 SYMBOLIC INTERPRETATION

Symbolic interpretation is an essential feature of our skills, which enables the searching algorithm to
find a feasible plan for a complex task. We have shown the symbolic interpretation of IsaacGym in
Table 5 and Minecraft in Table 4, where the preconditions are the boolean formula and the effects are
in the format of a function. Figure 5 demonstrates the symbolic interpretation in Make-Stick.

Taking Make-Stick as an example, the agent first compares the initial images and goal images
demonstrating its task and is aware that it should make a stick at the workbench as shown in Figure
5. The preconditions of the last action make(stick) are wood ≥ 1 and at workbench = 1, which
means the agent should move to the workbench with a wood. The effect of move(workbench)
is at workbench = 1, thus we have move(workbench) ≺ make(stick). Similarly, the effect for
pickup(wood) is wood + 1, thus we have pickup(wood) ≺ make(stick). We can get this relation
from the dependency graph in Figure 8. In plan generation, the agent induces a symbolic plan by
MCTS, forming a sequence: pickup(wood)→ move(workbench)→ make(stick), which satisfies
the aforementioned partial order relation and can accomplish the task, thus forming our final plan.

5 RELATED WORK

Object-Centric RL. Many recent works employed the structured representation in model-free and
model-based RL (Colas et al., 2019; Zadaianchuk et al., 2022; Mambelli et al., 2022; Zhao et al.,
2022; Zhou et al., 2022; Ferraro et al., 2023; Feng & Magliacane, 2024). Among them, methods
such as SMORL (Zadaianchuk et al., 2020) and ECRL (Haramati et al., 2024) leverage object-centric
representations (Jiang et al., 2019; Francesco et al., 2020; Daniel & Tamar, 2022) in combination with
goal-conditioned attention policies to discover and learn useful skills from raw image data. However,
they cannot segment learned skills into atomic units and reform them to solve novel and complex
tasks. In this work, we integrate RL into symbolic inductive planning, thus giving our method the
ability to learn atomic skills and understand how to compose them in long-horizon tasks.

Neuro-Symbolic RL. Several works explore utilizing symbolic methods in DRL to deal with robotic
tasks (Belta et al., 2007; Blaes et al., 2019; Illanes et al., 2020; Kokel et al., 2021; Sehgal et al.,
2023; Silver et al., 2023; Acharya et al., 2024), including planning domain definition language (Mao
et al., 2023), automata (Hasanbeig et al., 2021), Spectrl (Jothimurugan et al., 2021; Žikelić et al.,
2024). These methods require either predefined symbolic structures or predefined skills, limiting
their compositional generalizability to complex object manipulation. In contrast, our framework
can automatically discover skills from multiple single-object environments and utilize symbolic
interpretation to reform these skills for novel and complex tasks in multi-object environments.

6 CONCLUSION

We present a model combining a planning framework with DRL to solve pixel-based control chal-
lenges. Our model can autonomously acquire atomic skills through interaction with the environment,
minimizing the need for expert knowledge. Moreover, by providing symbolic interpretations for
skills, we can form a ground skill plan for long-horizon tasks through search algorithms such as
MCTS. Additionally, our model leverages composable skills and a transformer-based action policy,
which provides compositional generalizability to tasks that share similar features. Our model has
shown great performance on long-horizon, pixel-based control problems based on this superiority.

Limitation. Our model requires a pre-trained image segmentation model. While basic image
segmentation models have achieved promising results in our experiments, more complex tasks
may require further advancements and refinements in image semantic segmentation techniques.
Additionally, the approach using discrete features as an interface may induce some inaccuracy and
inflexibility. Some states with slight differences may share the same feature representation.

Future Work. For future work, one interesting direction is to explore more advanced ways for
automatic skills generation. Currently, the skill generation relies on classifying the collected traces.
We can further improve it with reward-based or entropy-based methods in the future. Another possible
direction is to employ generative models, such as diffusion models, to replace the current image
segmentation approach to generate sub-goal images.

9
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation were involved. All environments used, including the IsaacGym and Minecraft, were
sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have
taken care to avoid any biases or discriminatory outcomes in our research process. No personally
identifiable information was used, and no experiments were conducted that could raise privacy or
security concerns. We are committed to maintaining transparency and integrity throughout the
research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper. We have also provided a full description of our ReSIP
framework to assist others in reproducing our experiments. We believe these measures will enable
other researchers to reproduce our work and further advance the field.
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A ALGORITHM

We outline the algorithm of our end-to-end pixel-based framework below. Lines 2 to 15 detail the
preprocessing of traces, involving categorizing them into distinct groups for subsequent training.
Lines 16 to 24 describe the process of skill formation through symbolic interpretation of the traces.
Lines 25 to the end encompass the planning and execution of different tasks.
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Algorithm 1 The whole training and evaluation of the framework.

Input: The total trace collecting step N . The evaluation task Teval.
Randomly initialize some simple environment ei
for j ← 0 to N do

Interact with simple environment with random policy πrandom

Collect the trace τori
end for
for τori ∈ T do
p← 0, q ← 0
while Tf (Te(sp)) = Tf (Te(sq)) do

q++
end while
Segment the trace τori[p : q]
Insert the trace to a trace set Strace
p = q

end for
Classify the trace using cluster algorithm
for trace cluster Si ∈ Strace do

Randomly initialize policy πi

Training policy πi with GCBC algorithm
end for
for i← 0 to |Strace| do

Find the effect of πi through PySR
Find the precondition of πi through neural guidance algorithm
Form a skill with symbolic interpretation l(s) = ⟨s, o, πl, prel(s, f), eff l(s, f)⟩

end for
Get the initial state sinit and goal state g of Teval

Get the initial feature finit and goal feature fg
Using MCTS to find a path l1 → l2 → · · · → ln from finit to fg
for j ← 0 to n do

for t← 0 to volley do
Get the action a = πi(sj×volley+t)
Interact with the environment sj×volley+t+1 = Teval(a)

end for
end for
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B IMPLEMENTATION DETAILS

B.1 PRE-TRAINED MODELS

Object-Centric Representation. Our OCR algorithm is based on the DLP algorithm. DLP (Daniel
& Tamar, 2022) is an unsupervised object-centric model for images based on variational autoencoder
(VAE) (Kingma, 2013). It provides the latent representation for all the particles.

The foreground representation e = [ec, es, ed, et, ef ] ∈ R11 is a disentangled latent variable includ-
ing the following learned attributes: spatial coordinate ec ∈ R3, scale es ∈ R2, depth ed ∈ R,
transparency et ∈ R, and visual features ef ∈ R4. Here we set the number of entities as 24.

Aggregation Function. We design an aggregation transformer inspired by entity-centric architec-
ture (Haramati et al., 2024), which processes the OCR entities into features of the environment. An
architecture outline is presented in Figure 6. The aggregation transformer comprises self-attention
(SA) and cross-attention (CA) as its core components. The self-attention tries to grab the relation of
entities in a single object. It transforms the input vector, grouping all the entities of a single object. At
the CA layer, the transformer network tries to figure out the relation between different objects. After
passing the SA and CA network, we let the model pass another (SA) network again. This network
considers the result from the previous steps and forms these two steps together, placing self-attention
calculation on the overall computing result. Finally, we get the output result, which is the feature.

Figure 6: The architecture of the aggregation transformer.

B.2 SKILL LEARNING

It is worth mentioning that our framework is agnostic of the skill policy. We have tried several
RL algorithms and finally chose GCBC (Lynch et al., 2020) since it has the best performance. We
use GCBC to train the policy πl for the skill. This method extracts goal-conditioned policies using
self-supervision on top of raw, unlabeled data.

As mentioned in the section 3.2, we collect traces from interaction with the simple environment.
Taking the IsaacGym environment as an example, we set the object number to be one, the object type
to be a cube, and the object color to be red. The agent can operate its gripper to interact with the only
object that appeared on the table. Thus, it can collect a tremendous amount of data.

Figure 7 shows the learning curves of the skills, the y-axis is the success rate during the training
process. The names and functions of skills are not specified in advance. We name the skill according
to its effect.

B.3 EFFECTS OF SKILL

We use PySR (Cranmer, 2023) for the implementation of the symbolic regression part of the skills,
generating the mathematical form of the effect. In PySR, we can use specific parameters to control
the generation of the formula. The parameter settings for the regressor are in Table 3.

Here, we assume that all the effects of skills on features can be characterized by some polynomial
expression. Then, we use the binary operation and the constants to form such a relation. We treat the
initial feature and final feature of a sequence as the input and output of a function. Then we fit the
relationship between tuples of input and output.
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(a) Pickup in Minecraft (b) Push in IsaacGym

Figure 7: The curves of mean success rate during the skill learning process under 96 random goals in
IsaacGym and Minecraft environments. Notice that the names and functions of skills are not specified
in advance.

Parameters Value

Number of Iterations 40

Complexity 5

Binary Operators {+,−,×,÷}
Unary Operator {>}
fractionReplaced 0.1

shouldOptimizeConstants True

maxsize 20

procs 4

Table 3: The Parameter Setting of PySR

C ENVIRONMENT SETTING DETAILS

C.1 BASELINE REIMPLEMENTATION

SMORL. We reimplemented SMORL (Zadaianchuk et al., 2020), substituting its original visual
model SCALOR (Jiang et al., 2019) with DLP. Additionally, the low-level controller within the
SMORL framework was replaced with the same controller used in our proposed method.

ECRL. The original version of ECRL was used directly in our experiments.

GAIL. GAIL (Ho & Ermon, 2016) was reimplemented with several modifications. We integrated
DLP to process image input and replaced the actor with the same controller used in our framework.
Furthermore, the critic and discriminator networks within GAIL were updated to employ a transformer
architecture.

DeepSynth. We reimplement DeepSynth (Hasanbeig et al., 2021), with the original image segmen-
tation algorithm replaced by DLP. We directly implement the automaton synthesis algorithm based
on the DLP result. For the low-level controller in DeepSynth, we also use the same controller as our
framework to substitute the controller in DeepSynth to ensure a fair comparison.
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DiRL. DiRL (Jothimurugan et al., 2021) was reimplemented as a baseline model, incorporating
domain-specific knowledge. Rules such as ”pick after push” and ”pick up wood before going to
the craft table” were established to provide high-level guidance for the low-level policy. The policy
within DiRL was also replaced with the same controller used in our framework for a more credible
comparison.

C.2 MINECRAFT

We design the features to extract as follows:

• at wood: A boolean variable representing whether the agent’s position is at wood.
• at stone: A boolean variable representing whether the agent’s position is at stone.
• at iron: A boolean variable representing whether the agent’s position is at iron.
• at gem: A boolean variable representing whether the agent’s position is at gem.
• at sheep: A boolean variable representing whether the agent’s position is at sheep block.
• at workbench: A boolean variable representing whether the agent’s position is at the

workbench.
• at toolshed: A boolean variable representing whether the agent’s position is at the toolshed.
• wood: The number of wood in the agent’s bag.
• stone: The number of stones in the agent’s bag.
• iron: The number of iron in the agent’s bag.
• gem: The number of gems in the agent’s bag.
• stick: The number of sticks in the agent’s bag.
• stone pickaxe: The number of stone pickaxes in the agent’s bag.
• iron pickaxe: The number of iron pickaxes in the agent’s bag.
• scissors: The number of scissors in the agent’s bag.
• paper: The number of paper in the agent’s bag.
• wool: The number of wool in the agent’s bag.
• enhance table: The number of enhanced tables in the agent’s bag.
• bed: The number of beds in the agent’s bag.
• jukebox: The number of jukeboxes in the agent’s bag.

As we have form skills with symbolic interpretation, we can use a graph to describe the dependency
relation between different skills. A detailed dependency graph of all the skills in Minecraft is shown
in Figure 8.

C.3 ISAACGYM

We design the features of IsaacGym to extract as follows:

• num objects: The number of objects on the table captured by cameras that provide front
view and side view.

• xy goal: The number of objects reaching their goals on the table.
• z goal: The number of objects reaching their goals in the air lifted by the gripper.
• is grab: A boolean variable representing whether the gripper grabs the object.
• color 1, . . . , color 5: A boolean variable representing whether a color exists. It can record

at most five colors.
• next color: It is an integer that stands for the next color that should be controlled. It

guarantees the ordered operation of objects following the color sequence, which is red,
green, blue, yellow, and purple in our case.
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Figure 8: Dependency graph of Minecraft.

C.4 EVALUATION METRICS

We mainly evaluate the performance of different methods based on the success rate and success
fraction. Apart from these two results, we also record more detailed information in the experiment,
including color success, color success fraction, action success, and action success fraction.

• Success Rate. The success rate describes the final success rate of the whole task.

• Success Fraction. The success fraction is the portion of accomplished subtasks, so this
metric is usually higher than the success.

• Color Success. The color success gives out each color’s success rate.

• Color Success Fraction. The color success fraction indicates the percentage of completed
subtasks in each color.

• Action Success. The action success reflects the success rate of each action.

• Action Success Fraction. The action success fraction represents the percentage of accom-
plished subtasks in each action.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY

In this section, we examine how certain key components of the model affect its performance.

D.1.1 INFLUENCE OF THE NUMBER OF CLUSTERS

We investigate how the number of clusters K affects the result of the whole task. We take the object
manipulation task as an example. In this task, the number of skills is 4. We set the K from 3 to
7 and investigate the success rate of the whole task. The tests are conducted on the environment
Push-Grab-Lift which needs multiple skills. When the cluster number is set to 3, the task has an
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Skill Object Preconditions Effects

move
workbench AtWorkbench(λworkbench) = 0

fat wood = 0,fat stone = 0,
fat iron = 0,fat gem = 0,
fat wool = 0,fat workbench = 1,
fat toolshed = 0

toolshed AtToolshed(λtoolshed) = 0

fat wood = 0,fat stone = 0,
fat iron = 0,fat gem = 0,
fat wool = 0,fat workbench = 0,
fat toolshed = 1

pickup

wood AtMaterial(λmaterial) = 1 fwood + 1
stone AtMaterial(λmaterial) = 1 fstone + 1
grass AtMaterial(λmaterial) = 1 fgrass + 1
bamboo AtMaterial(λmaterial) = 1 fbamboo + 1
iron AtMaterial(λmaterial) = 1 ∧ fstone pickaxe ≥ 1 firon + 1
gem AtMaterial(λmaterial) = 1 ∧ firon pickaxe ≥ 1 fgem + 1
wool AtMaterial(λmaterial) = 1 ∧ fscissors ≥ 1 fwool + 1

make stick workbench AtWorkbench(λworkbench) = 0 ∧ fwood ≥ 1 fstick + 1,fwood − 1

make grass stack workbench AtWorkbench(λworkbench) = 0 ∧ fgrass ≥ 1 fgrass stack + 1,fgrass − 1

make bamboo fence workbench AtWorkbench(λworkbench) = 0 ∧ fbamboo ≥ 1 fbamboo fence + 1,fbamboo − 1

make stone pickaxe toolshed
AtToolshed(λtoolshed) = 0∧
fstick ≥ 2 ∧ fstone ≥ 3

fstone pickaxe + 1,
fstick − 2,fstone − 3

make iron pickaxe toolshed
AtToolshed(λtoolshed) = 0∧
fstick ≥ 2 ∧ firon ≥ 3

firon pickaxe + 1,
fstick − 2,firon − 3

make scissors workbench AtWorkbench(λworkbench) = 0 ∧ firon ≥ 2 fscissors + 1,firon − 2

make paper workbench
AtWorkbench(λworkbench) = 0∧
fscissors ≥ 1 ∧ fwood ≥ 1

fpaper + 1,fwood − 1

make bed toolshed
AtToolshed(λtoolshed) = 0∧
fwood ≥ 3 ∧ fwool ≥ 3

fbed + 1,
fwood − 3,fwool − 3

make jukebox workbench
AtWorkbench(λworkbench) = 0∧
fwood ≥ 3 ∧ fgem ≥ 1

fjukebox + 1,fwood − 3,
fgem − 1

make enhance table workbench
AtWorkbench(λworkbench) = 0 ∧ fstone ≥ 1∧
fpaper ≥ 2 ∧ fgem ≥ 1

fenhance table + 1,fstone − 1,
fpaper − 2 ∧ fgem − 1

Table 4: Learned skills of the Minecraft environment.

Skill Object Preconditions Effects

push cube fxy goal + 1

approach cube fis grab = 0 fis grab = 1

lift cube fis grab = 1 fxy goal + 1,fz goal + 1

press button fnext color < fnum objects fnext color+1

Table 5: Learned skills of the IsaacGym environment.

extremely low success rate because the actual number of skills exceeds the cluster number, thus some
skills are not learned. The detailed result is shown in Table 6.

D.1.2 THE EFFECTIVENESS OF SYMBOLIC REGRESSION.

To show the effectiveness of our symbolic regression module with PySR, we replace the PySR module
with neural network module. We added a rounding layer after the output layer of the neural network.
The result of 3-cube tasks is in Table 7.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Number of Cluster K 3 4 5 6 7

Push-Grab-Lift-1-Cube 0.001 0.625 0.633 0.642 0.611

Push-Grab-Lift-2-Cube 0.002 0.500 0.512 0.493 0.499

Push-Grab-Lift-3-Cube 0.002 0.500 0.487 0.493 0.507

Table 6: Success rate of object manipulation of different skill cluster number.

Cubes 1 2 3 4 5

Push PySR 1.000 1.000 0.875 0.750 0.688
Neural Network 1.000 0.670 0.613 0.535 0.417

Push-Grab-
Lift

PySR 0.625 0.500 0.500 0.156 0.125
Neural Network 0.502 0.373 0.367 0.008 0.003

Ordered-
Press

PySR 0.990 0.938 0.875 0.813 0.813
Neural Network 0.681 0.602 0.586 0.443 0.411

Table 7: Success rate of object manipulation using PySR and neural network.

D.2 DETAILED RESULTS FOR MINECRAFT TASKS

The plans for different tasks generated by the MCTS algorithm are as follows:

• Pickup-Mass-Grass: move(workbench1)→ pickup(grass1)

• Pickup-Mass-Banboo: move(workbench1)→ pickup(bamboo1)

• Make-Grass-Stack: pickup(grass1)→ move(toolshed1)→ move(workbench1)→
make grass stack(workbench1)

• Make-Bamboo-Fence: pickup(bamboo1) → move(toolshed1) →
move(workbench1)→ make bamboo fence(workbench1)

• Make-Mass-Sticks: move(workbench1) → pickup(wood1) →
move(workbench1) → make stick(workbench1) → pickup(wood2) →
pickup(wood3) → pickup(wood4) → pickup(wood5) → move(workbench2) →
make stick(workbench2) → pickup(wood6) → move(workbench1) →
make stick(workbench1) → make stick(workbench1) → make stick(workbench1) →
pickup(wood7) → move(workbench2) → pickup(wood8) → pickup(wood9) →
move(workbench1) → make stick(workbench1) → make stick(workbench1) →
make stick(workbench1) → make stick(workbench1) → pickup(wood10) →
pickup(wood11) → pickup(wood12) → move(workbench2) →
make stick(workbench2)

• Pickup-Iron: pickup(wood1) → move(workbench1) → pickup(wood2) →
pickup(wood3) → move(toolshed1) → move(workbench1) →
make stick(workbench1) → make stick(workbench1) → pickup(stone1) →
pickup(stone2) → pickup(stone3) → pickup(stone4) → move(toolshed1) →
make stone pickaxe(toolshed1)→ move(workbench2)→ pickup(iron1)

• Multiple-Goals: pickup(stone1) → move(workbench1) → move(toolshed1) →
pickup(stone2) → pickup(wood1) → pickup(stone3) → pickup(stone4) →
pickup(stone5) → move(workbench1) → make stick(workbench1) →
pickup(wood2) → move(workbench1) → make stick(workbench1) →
pickup(stone6) → move(toolshed1) → make stone pickaxe(toolshed1) →
pickup(iron1) → pickup(iron2) → pickup(wood3) → move(workbench2) →
make scissors(workbench1)→ move(toolshed1)→ pickup(wool1)

• Make-Enhance-Table: pickup(stone1) → pickup(wood1) →
pickup(stone2) → pickup(stone3) → move(workbench1) →
make stick(workbench1) → pickup(wood2) → pickup(wood3) →
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move(workbench1) → make stick(workbench1) → move(toolshed1) →
make stone pickaxe(toolshed1) → pickup(iron1) → pickup(iron2) →
move(workbench2) → make scissors(workbench2) → make paper(workbench2) →
move(toolshed1) → pickup(wool1) → pickup(wood4) → move(workbench1) →
make stick(workbench1) → pickup(stone4) → pickup(wood5) → pickup(wool2) →
pickup(wool3) → pickup(wood6) → pickup(iron3) → move(workbench1) →
make stick(workbench1) → make paper(workbench1) → pickup(iron) →
pickup(iron4) → move(toolshed1) → make iron pickaxe(toolshed1) →
pickup(gem1)→ move(toolshed1)→ make enhance table(toolshed1)

D.3 DETAILED RESULTS FOR ISAACGYM TASKS

The plans for different tasks generated by the MCTS algorithm are as follows:

• Push-n: push(obj1)→ push(obj2)→ · · · → push(objn).
• Push-Grab-n: push(obj1)→ push(obj2)→ · · · → push(objn)→ grab(objn).
• Push-Grab-Lift: push(obj1) → push(obj2) → · · · → push(objn) →
grab(objn)→ lift(objn).

• Ordered-Press: press(obj1)→ press(obj2)→ · · · → press(objn).

The superscripts of Ordered-Press represent that press should follow the sequence.

We list some detailed results of the tasks in IsaacGym. Table 8, table 9, and table 10 demonstrate the
detailed metrics of Push, Push-Grab-Lift, and Ordered-Press, respectively.

Additionally, we construct an experiment called Push-Grab. Its difficulty is between Push and
Push-Grab-Lift since we expect the agent to use two skills to complete the task. The agent is
required to push the cubes to their goal positions and grab one of the specified cubes. We show the
detailed results under different numbers of cubes in table 11.

Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000, 1.000 1.000 1.000

3 0.875 0.958 0.958 0.938, 0.938,
1.000 0.958 0.875

4 0.750 0.922 0.922 1.000, 0.875,
0.938, 0.875 0.922 0.750

5 0.688 0.900 0.900
0.938, 0.875,
0.938, 0.938,

0.813
0.900 0.688

Table 8: Push. The sequence of color success fractions follows red, green, blue, yellow, and purple.
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Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 0.625 0.875 0.625 0.625 0.875 1.000, 0.9375,
0.688

2 0.500 0.828 0.719 0.500, 0.938 0.771 0.938, 0.875,
0.500

3 0.500 0.863 0.792 0.563, 0.938,
0.875 0.771 0.750, 0.938,

0.625

4 0.063 0.698 0.609 0.188, 0.938,
0.750, 0.563 0.479 0.438, 0.625,

0.375

5 0.125 0.643 0.575
0.3125, 0.5625,

0.5, 0.75,
0.75

0.438 0.1875, 0.625,
0.5

Table 9: Push-Grab-Lift. The sequence of color success follows red, green, blue, yellow, and
purple. The sequence of action success follows push, approach, and lift.

Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 0.990 0.990 0.990 0.990 0.990 0.990

2 0.938 0.969 0.969 0.969, 0.969 0.938 0.938

3 0.875 0.958 0.958 0.938, 1.000,
0.938 0.875 0.875

4 0.813 0.953 0.975 0.875, 1.000,
1.000, 0.938 0.875 0.8125

5 0.813 0.950 0.950 0.875, 1.000, 1.000,
0.938, 0.938, 0.813 0.875

Table 10: Ordered-Press. The sequence of color success follows red, green, blue, yellow, and
purple.

D.4 COMPOSITIONAL GENERALIZATION

For the experiments measuring compositional generalization, we provide some demonstration results
in the main paper. Here, we list some of the additional results. The results are listed in Table 12
and Table 14. For the Minecraft environment, we introduce some new objects {grass, bamboo}
and the corresponding crafting tasks. For IsaacGym Environment we add some new type of objects
{cuboid, cylinder, star,T-block} in the environment. We can find that in most of the test cases,
our model can maintain the success rate without fine-tuning the model. Also, we provide another
demonstration of the experiment result in Figure 9, which is pushing the star and crafting the bamboo.

(a) Push three stars. (b) Pickup bamboo.

Figure 9: Compositional generalization in IsaacGym and Minecraft environments.
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Cubes Success Success Fraction Color
Success Fraction

Color
Success

Action
Success Fraction

Action
Success

1 0.938 0.969 0.938 0.938 0.969 1.000, 0.9375

2 0.938 0.979 0.969 0.875, 1.000 0.969 0.938, 0.938

3 0.563 0.859 0.813 0.688, 0.875,
0.875 0.750 0.688, 0.813

4 0.438 0.838 0.828 0.688, 0.875,
0.875, 0.875 0.656 0.625, 0.688

5 0.250 0.792 0.763
0.688, 1.000,
0.688, 0.688,

0.750
0.531 0.3125, 0.75

Table 11: Push-Grab. The sequence of color success follows red, green, blue, yellow, and purple.
The sequence of action success fractions follows push and approach.

Shape Cuboid Cylinder Star T-Block

SMORL 0.021 ± 0.009 / 0.070 ± 0.008 0.011 ± 0.008 / 0.040 ± 0.009 0.030 ± 0.011 / 0.071 ± 0.008 0.011 ± 0.011 /0.025 ± 0.008

ECRL 0.026 ± 0.008 / 0.101 ± 0.008 0.015 ± 0.007 / 0.066 ± 0.017 0.051 ± 0.012 / 0.122 ± 0.012 0.013± 0.009 /0.046 ± 0.007

GAIL 0.000 ± 0.000 / 0.003 ± 0.005 0.011 ± 0.013 / 0.030 ± 0.008 0.077 ± 0.017 / 0.153 ± 0.010 0.000 ± 0.000 /0.003 ± 0.005

DiRL 0.012 ± 0.010 / 0.020 ± 0.008 0.018 ± 0.007 / 0.040 ± 0.006 0.062 ± 0.007 / 0.105 ± 0.014 0.021 ± 0.009 /0.055 ± 0.016

DeepSynth 0.113 ± 0.009 / 0.252 ± 0.009 0.210 ± 0.012/ 0.432 ± 0.015 0.431 ± 0.016 / 0.629 ± 0.005 0.187± 0.008/0.404 ± 0.009

Ours 0.375 ± 0.012 / 0.750 ± 0.005 0.250 ± 0.011 / 0.729 ± 0.005 0.625 ± 0.009 / 0.833 ± 0.006 0.250 ± 0.011 / 0.667 ± 0.009

Table 12: Success rates and success fractions of Push tasks on three objects with different
shapes. To evaluate the impact of object shape on task performance, we scaled the objects by a factor
of 3 along the x-axis and 1.5 along the y-axis.

D.5 VISUALIZATION OF DLP RESULTS

We demonstrate the object reconstruction visualization of DLP in the IsaacGym and Minecraft
environments.

Figure 10 and figure 11 present lists of 32 images reconstructed by DLP respectively. In the IsaacGym
environment, We find that DLP focuses on objects with different colors and the gripper, while in
Minecraft, object blocks and agents are clearly shown in the grid.

Tasks Pickup-Mass-Grass Pickup-Mass-Bamboo Make-Grass-Stack Make-Bamboo-Fence

SMORL 0.270 ± 0.011 0.231 ± 0.012 0.183 ± 0.011 0.175 ± 0.011

ECRL 0.287 ± 0.012 0.292 ± 0.011 0.186 ± 0.013 0.179 ± 0.011

GAIL 0.369 ± 0.011 0.277 ± 0.012 0.267 ± 0.010 0.365 ± 0.011

DiRL 0.655 ± 0.009 0.563 ± 0.010 0.535 ± 0.011 0.570 ± 0.010

DeepSynth 0.693 ± 0.008 0.615 ± 0.009 0.651 ± 0.009 0.591 ± 0.010

Ours 0.969 ± 0.004 0.927± 0.004 0.865 ± 0.008 0.791 ± 0.007

Table 13: Success rates of Minecraft tasks on new materials. We replace wood with grass and
bamboo, transforming the Pickup-Wood task into collecting grass and bamboo. In analogy to the
Make-Stick task in Minecraft, the agent can then craft a grass stack using grass and construct a
bamboo fence using bamboo.
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Tasks Pickup-Iron Make-Enhance-Table

Task with Figure Distortion 0.893 ± 0.006 0.731 ± 0.010

Original Task 0.917 ± 0.005 0.750 ± 0.008

Table 14: Comparison of success rates under visual distortion. To evaluate the robustness of our
pixel-based planning model, we introduce visual distortions to the material images in Minecraft and
compare the resulting success rates with those obtained using the original, undistorted images.

Figure 12 and figure 13 present a comparative analysis of the original image with various transformed
versions. These include images with different key points, reconstructed images, extracted foregrounds
and backgrounds, and images with different types of bounding boxes. The first row depicts the
original image. Key points are marked on the original image in the second row. The third row
showcases the reconstructed images, which exhibit a high degree of similarity to the originals. In
the fourth row, predicted key points are superimposed on the original image, with many aligning
closely with objects. The fifth row highlights the top 10 key points that the agent prioritizes, which
are predominantly concentrated on meaningful objects rather than empty regions. The sixth and
last rows display the extracted foregrounds and backgrounds, respectively. The foreground images
effectively isolate individual objects, while the backgrounds are clean and devoid of objects. The
seventh and eighth rows demonstrate the application of bounding boxes to each object using two
different methods: non-maximum suppression alone and non-maximum suppression in conjunction
with transparency.

Figure 10: Object Reconstruction of DLP in IsaacGym.

Figure 11: Object Reconstruction of DLP in Minecraft.
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Figure 12: Visualization of DLP in IsaacGym.
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Figure 13: Visualization of DLP in Minecraft.

E THE USE OF LARGE LANGUAGE MODELS

In the process of drafting this paper, we employed large language models (LLMs) as an auxiliary tool
to enhance the quality and clarity of our written English. The primary application was to identify
and correct grammatical inaccuracies, refine sentence structures, and polish academic expressions,
thereby improving the overall readability and professionalism of the manuscript.

Specifically, selected paragraphs or sentences from our initial drafts were input into an LLM (e.g.,
DeepSeek-v3.1 or a comparable model) with explicit instructions focused solely on language checking
and polishing. The prompts were designed to request grammatical corrections, suggestions for more
concise or academically appropriate phrasing, and improvements in logical flow, without altering the
core technical content or scientific meaning.

It is crucial to emphasize that the role of the LLM was strictly limited to that of a writing assistant. All
substantive intellectual contributions, including the core ideas, theoretical framework, experimental
design, data analysis, and result interpretation, remain entirely our own. The final decision to
adopt any suggestion provided by the LLM was always subject to our careful review and judgment.
We ensured that every change aligned with our intended meaning and adhered to the standards of
academic integrity.

This use of LLMs significantly streamlined the writing and revision process, allowing us to focus
more effectively on the scientific rigor and conceptual depth of our work.
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