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Abstract

While generative models continue to evolve, the field of evaluation metrics has1

largely remained stagnant. Despite the annual publication of metric papers, the2

majority of these metrics share a common characteristic: they measure distributional3

distance using pre-trained embeddings without considering the interpretability of4

the underlying information. This limits their usefulness and makes it difficult to gain5

a comprehensive understanding of the data. To address this issue, we propose using6

a new type of interpretable embedding. We demonstrate how we can transform7

deeply encoded embeddings into interpretable embeddings by measuring their8

correspondence with text attributes. With this new type of embedding, we introduce9

two novel metrics that measure and explain the diversity of the generator: the first10

metric compares the frequency of appearance of the training set and the attribute,11

and the second metric evaluates whether the relationships between attributes in the12

training set are preserved. By introducing these new metrics, we hope to enhance13

the interpretability and usefulness of evaluation metrics in the field of generative14

models.15

1 Introduction16

Significant advancements have been achieved in the image generation field, from the pioneering17

introduction of generative adversarial networks (GANs) to the more recent emergence of diffusion18

models (DMs). [5, 10, 27] In recent years, generated images are hardly distinguishable from real19

images. In this context, evaluating the generated images for a given training dataset has played a20

critical role in the development.21

Envision an evaluation scenario where the outputs of two generative models are compared against22

a common training dataset. What would be the underlying factors for judging a set as superior to23

another set? As the goal of generative models is mimicking the real data distribution, various metrics24

have been designed to assess the similarity between the generated images and the training dataset, e.g.,25

Fréchet Inception Distance (FID)[9], Precision and Recall[25][17], and Density and Coverage[22].26

Most of these evaluation metrics capture the disparity between the training data distribution and the27

distribution of generated images by examining the differences in feature representations within the28

embedding space of a pre-trained network[26, 28]. FID is a widely used metric that quantifies the29

dissimilarity in visual features to assess the quality and diversity of the generated images. Specifically,30

it measures the distance between the real and fake distributions in the embedding space of Inception-31

V3[28].32

An important question arises regarding the suitability of the embedding space employed for evaluating33

generated images. The embedding space of the pre-trained model may vary depending on the dataset34

and task it was trained on. For instance, Inception V3 was trained for image classification on35
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Training dataset Model 1 Model 2

(b) proposed metric(a) existing metrics

Model 1 Model 2

Figure 1: Conceptual illustration of our method. We design the scenario, Model 2 lacks diversity.
(a) Although existing metrics distinguish the inferiority of Model 2, they provide no explanation
about judgment. (b) Our attribute-based proposed metric has interpretation; Model 2 is biased with
‘long hair’ and ‘makeup’.

ImageNet[3], suggesting that its embedding space is designed to compress image information and36

discern essential patterns for classification. Consequently, the appropriateness of employing this37

embedding space for evaluating generated images remains an open question.38

Returning to the fundamental question at hand, Figure 1 makes an evaluation scenario a little bit more39

specific. Suppose there are realistic generated images from two distinct models. As shown in the40

example images, it is evident that Model 2 generates biased images, i.e., there are only women, while41

Model 1 successfully generates various images that are close to training data. Fortunately, although42

there remains an open question about embedding space, the values of various metrics in Figure 1 (b)43

align reasonably well with our interpretation; Model 1 is perceived as superior.44

However, what are the underlying factors that contribute to such judgment? Although the results45

are consistent with a person’s conclusion, it far fails to provide a comprehensive explanation. The46

interpretation of distances within the embedding space from a pre-trained classification model remains47

elusive, posing challenges in evaluation. On the contrary, humans readily discern certain factors for48

judgment; individuals easily recognize the bias of Model 2. These factors suggest more information49

and a direction beyond simple ranking. In this paper, we propose an evaluation metric that aims to50

interpret the underlying factors behind such judgments.51

To address this objective, we begin by examining attribute comparison methods in human judgment.52

When evaluating two generated image distributions, humans compare the attributes present in the53

training dataset with those exhibited by the generated images. Key attributes under consideration54

include gender, facial representation, and age distribution. Ideally, with well-defined training data, we55

anticipate the attributes in the generated images to align with those in the training data. If the model56

lacks essential attributes (e.g., gender, age, glasses, or hats), it is insufficient to generate visually57

realistic images. Incorporating these attributes into the evaluation process may enable a more explicit58

and comprehensive assessment.59

This paper presents a novel approach for evaluating generative models by leveraging a newly proposed60

embedding space that incorporates attribute-specific information. Similar to human visual judgment,61

our metrics evaluate images in terms of various characteristic attributes. Figure 1 (b) illustrates the62

concept of our metric; it captures the distribution differences of attributes. We use pre-trained CLIP63

[24], a language-image model trained on a huge dataset, to define a new embedding space that can64

quantify images for multiple attributes.65

To facilitate our embedding space, we introduce the "Directional CLIPScore" (DCS), a method for66

quantifying each attribute based on the training data. Within our proposed embedding space, each67

channel comprises DCS values that explicitly indicate the relevance of an image to specific attributes.68

The use of a perceptible embedding space offers the advantage of interpretability.69
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We introduce two novel evaluation metrics to use the newly proposed embedding space. Firstly,70

the "Single attribute KL Divergence (SaKLD)" compares attribute distributions between training71

data and the generated images, providing a quantitative measure of the similarity between attribute72

distributions. It quantifies how closely the attributes of generated images align with the attribute73

distribution in training data. Secondly, we introduce the "Paired attribute KL divergence (PaKLD)"74

that considers correlations among multiple attributes. This metric accounts for the relationship75

between attributes, such as the presence of a beard in an image of a woman. PaKLD successfully76

evaluates the generated images while taking into consideration attribute relationships.77

We validate our metrics through a series of carefully designed experiments, demonstrating their78

effectiveness and interpretability. By employing our metric, we conduct a comprehensive analysis of79

prominent generation models currently considered state-of-the-art [11, 13, 12, 14, 23]. Interestingly,80

our findings reveal variations in performance across different datasets. For instance, diffusion models81

exhibit superior performance on datasets with a large number of samples, such as FFHQ. In contrast,82

GANs outperform diffusion models on datasets with relatively smaller sample size, such as MetFaces.83

In summary, this paper presents a novel approach for evaluating generative models using a new84

embedding space that incorporates attribute-specific information. Our proposed method, along with85

the introduced evaluation metrics, allows for a comprehensive assessment of generated images by86

considering attribute distributions and correlations. Our findings contribute to the research field by87

advancing the understanding and evaluation of generative models, offering insights into their strengths88

and limitations. Moreover, our work opens avenues for future research and potential improvements in89

the field of generative image synthesis by comprehensive evaluation metrics.90

2 Related Work91

Fréchet Inception Distance Fréchet Inception Distance (FID) [9] measures the distance between92

the estimated Gaussian distributions of two datasets by passing them through a pre-trained Inception-93

v3[28] model. However, Kynkäänniemi et al. [18] revealed that when generated images are far from94

training data, the embeddings may incorrectly highlight irrelevant parts of images. To address this95

issue, the researchers proposed using the CLIP [24] image encoder instead of Inception-v3 to calculate96

the 2-Wasserstein distance, which provides reliable results regardless of the dataset being measured.97

Fidelity and diversity Sajjadi et al. [25] introduced precision and recall for evaluating generative98

model, and subsequent studies by Kynkäänniemi et al. [17] and Naeem et al. [22] have further refined99

this approach. Most of these methods use a pre-trained network to examine whether the embedding100

of generated images falls within the boundary of real image embedding (precision) and whether101

the embedding of real images falls within the boundary of generated image embedding (recall) for102

assessing fidelity and diversity.103

Rarity score Han et al. [6] proposed a metric for measuring the rarity of generated images. They104

quantified how rare the generated images are within a k-NN sphere to assess their rarity. The key105

difference between the rarity score and diversity in precision and recall is that the rarity score106

considers only the generated samples that fall within the manifold of real samples. In other words, it107

focuses on how well the generated images fit within the distribution of real images in terms of rarity,108

rather than capturing the overall diversity of generated samples.109

However, we note that the concept of using raw embeddings from a pre-trained classifier remains110

consistent among all these metrics.111

A call for explainable evaluation Existing evaluation metrics in the field of generative models lack112

the ability to provide detailed insights into the diversity of generated images. As shown in Figure 1,113

even though metrics like FID, Precision and Recall indicate poor performance for a biased generator114

towards specific attributes (e.g., "makeup" and "long hair"), they do not provide an explanation115

for judgment factors. Therefore, researchers manually identified the underlying factors by visual116

inspection but it becomes increasingly challenging with larger sample sizes. To address this issue,117

we propose novel explainable evaluation metrics that provide in-depth analysis and insights into the118

diverse generation abilities of models.119
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Figure 2: Difference between CS and DCS. (a) CLIPScore[8] exhibits similar values, making it
difficult to discern. (b) Directional CLIPScore has an intuitive value based on zero. We design a new
embedding space; each channel represents the intensity of a specific attribute by DCS, informing
explanations about the single image.

3 Attribute-Driven Embedding120

Existing metrics for evaluating generated images commonly utilize embeddings before FCN, from121

Inception-V3 or CLIP image encoder[7, 4]. However, these approaches lack interpretability as the122

meaning of each channel in the embedding. Additionally, Kynkäänniemi et al. [18] have shown the123

FID scores improve significantly when the classification distribution matches that of the training124

set, irrespective of the quality, highlighting another limitation of the existing embedding. To address125

these issues and develop an explainable evaluation metric, we design each embedding of images to126

possess an ’interpretation’. Section 3.1 presents the process of generating explainable embedding for127

individual images using the CLIP encoder, and Section 3.2 introduces the Directional CLIPScore, a128

novel embedding approach that enhances interpretability and accuracy.129

3.1 Attribute-driven embeddings for better representations130

To achieve an interpretable embedding, we utilized each channel of the embedding as a measure of131

the attribute’s prominence in the image. A straightforward approach to quantify attribute strength is132

by employing CLIPScore;133

CLIPScore(x, a) = 100 ∗ sim(EI(x),ET(a)), (1)

where x is a single image, a is a given text of attribute, sim(∗, ∗) is cosine similarity, and EI and ET134

are CLIP image encoder and text encoder respectively. We selected multiple attributes that effectively135

represent image characteristics as textual descriptions and measured CLIPScore with individual136

images and selected attributes. The way to select attributes will refer to Section 3.3. By assigning137

these CLIPScores as the values for each channel in the embedding, we obtained an interpretable138

representation. However, relying solely on CLIPScore has challenges as the cosine similarity values139

tend to be similar, making it difficult to discern the relative differences between attribute strengths.140

Intuitively, selected human-related attributes tend to cluster closely in the CLIP embedding, resulting141

in smaller variations in cosine similarity. To address this limitation, subsequent subsections introduce142

the Directional CLIPScore, which offers a more precise scoring approach.143

3.2 Directional CLIPScore144

As discussed, CLIPScore exhibits a narrow distribution of values, which can be attributed to measuring145

similarity between human-related attributes, resulting in their dense clustering on the CLIP embedding.146

Figure 3 (a) visualizes it. To address this issue, we propose Directional CLIPScore (DCS), which147

leverages the centers of training images and predefined attribute texts on the CLIP embedding.148

Given training data, denoted as {x1, x2, x3, ...} ∈ X , we define CX as the center of images and CT149

as another center of images for text attributes on the CLIP embedding, respectively. By using the150

image captioning model, BLIP[19], we define CT as the center of images in text respect;151

CX =
1

N

N∑
i=1

EI(xi), CT =
1

N

N∑
i=1

ET(BLIP(xi)). (2)
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(a) CLIPScore (b) Directional CLIPScore

ܵܥ ̶������̶ ൌ ͳͲͲ כ ��� ଵߠ ൌ ʹͻǤ͵
ܵܥ ̶��������̶ ൌ ͳͲͲ כ ��� ଶߠ ൌ ʹͳǤͳ

ܵܥܦ ̶������̶ ൌ ͳͲͲ כ ��� ଵߠ ൌ ͺǤʹ
ܵܥܦ ̶������̶ ൌ ͳͲͲ כ ��� ଵߠ ൌ െǤ𝐷𝐶𝑆 "makeup" = 100 ∗ cos 𝜃! = 8.2

𝐷𝐶𝑆 "mustache" = 100 ∗ cos 𝜃" = −7.6
𝐶𝑆 "makeup" = 100 ∗ cos 𝜃! = 29.3
𝐶𝑆 "mustache" = 100 ∗ cos 𝜃" = 21.1

(b) Directional CLIPScore(a) CLIPScore

Figure 3: Illustration of CLIPScore and Directional CLIPScore. (a) CLIPScore measures the
similarity between vectors with coordinate origin. (b) Directional CLIPScore measures the similarity
between vectors with a defined mean of the images, CX , as the origin. In the figure, we illustrate CX
and CT as the same point for ease of clarity and comprehension.

Table 1: CLIPSCore and Directional CLIPScore’s mean accuracy on CelebA dataset.

All attributes Refined attributes
CLIPScore Directional CLIPScore CLIPScore DirectionalCLIPScore

mean accuracy 0.395 0.409 0.501 0.530

These centers serve as reference points in the embedding space and aid more accurate attribute152

scores. We define DCS as the measure of similarity between two directions, Vx and Va where a set153

of attributes defined as {a1, a2, a3, ...} ∈ A. The first direction spans from the center of the image154

to the image itself, and the second direction extends from the center of the attributes to the desired155

attribute.156

Vx = EI(x)− CX , Va = ET(a)− CT , (3)

157

DCS(x, a) = 100 ∗ sim(Vx, Va), (4)

where sim(∗, ∗) is cosine similarity. For extending DCS from a single sample to data we denote the158

probability density function (PDF) of DCS(xi, ai) for all xi ∈ X as DCSX (ai) for brevity.159

Figure 3 visually illustrates the distinction between DCS (Directional CLIPScore) and CS (CLIP-160

Score). Unlike CS, which lacks a clear reference point, DCS is based on the center, enabling the161

determination of attribute magnitudes relative to a zero point. Furthermore, DCS exhibits superior162

accuracy compared to CS, as demonstrated in Table 1. The table presents the accuracy results of CS163

and DCS for annotated attributes in CelebA[20]. By evaluating how well positive samples with the164

highest score align with positive samples for a given attribute, DCS consistently outperforms CS165

in accuracy. Notably, this trend remains consistent across refined attributes, which are removed for166

subjective attributes such as "Attractive" or "Blurry".167

3.3 attribute selection methodologies168

Our evaluation metric for measuring the performance of the generator is dependent on the attributes we169

choose to measure. To explore how to choose attributes that accurately reflect generator performance,170

we introduce three methods for attribute selection.171

BLIP extracted attribute We aim to identify and quantify the attributes present in the training172

data from image descriptions. We can determine which attributes are most commonly occurring in173

the training data by counting attributes that appear in the training data. We use the image captioning174

model, BLIP[19], to extract attribute-related words from training data. We use N attributes that175

appear frequently in the training data as a set of attributes A for our proposed metric.176

User annotation Another option for attribute selection is to use a set of human-annotated attributes.177

By explicitly assigning attributes for evaluating generative models, users can fairly compare the178
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impact of each attribute score or focus on specific attributes. Especially, the CelebA dataset provides179

40 binary attributes about the human face domain, which can be used to evaluate a wide range of180

(generated) human image sets.181

GPT attributes We leveraged the power of GPT-3[1] to extract attributes. Through repetitive182

questioning, such as ‘Give me 50 words of useful visual attributes for distinguishing faces in a183

photo’ and ‘Give me 50 words of useful visual attributes for discerning variations in facial features to184

identify people in images,’ we obtained a set of attributes, which frequently appeared in the responses185

across different datasets. The list of questions posed to GPT-3 can be found in the Appendix, and we186

followed the questioning methodology outlined in [21].187

4 Evaluation Metric with Interpretable Attribute-Driven Embedding188

In this section, by leveraging the knowledge of attribute intensities, we have developed two un-189

derstandable metrics. In Section 4.1, we present Single attribute KL Divergence (SaKLD), which190

measures the distance of attribute distributions between training data and generated images. In Section191

4.2, we introduce Paired attribute KL divergence (PaKLD), a metric that assesses the relationship of192

attributes.193

4.1 Single attribute KL Divergence (SaKLD)194

We design SaKLD to distinguish a good generative model which produces the same quantity of each195

attribute present in the training data. For example, if 50,000 training data contains 3,000 images with196

eyeglasses, the model should generate exactly 3,000 images with eyeglasses. Any deviation from this197

ideal distribution is considered undesirable. We introduce a new metric that quantifies density of each198

attribute in dataset by utilizing interpretable embedding. Our metric, SaKLD, quantifies the difference199

in density for each attribute between the training dataset (X ) and the set of generated images (Y).200

We define SaKLD as201

SaKLD(X ,Y) =
1

N

N∑
i

KL(DCSX (ai),DCSY(ai)), (5)

where i denotes an index for each attribute, N is the number of attributes, KL(*) is Kullback-Leibler202

Divergence, and note that we denote the PDF of DCS(xi, ai) for all xi ∈ X as DCSX (ai).203

We compare the PDFs of Directional CLIPScore for each attribute in X and Y . The DCS PDF for204

each attribute in X and Y represent the distribution of the amount of that attribute in the respective205

sets. If the distribution of the amount of a specific attribute in X and Y is similar, the DCS distri-206

bution will also be similar, and the PDFs of the two sets will be close. We used Kullback-Leibler207

Divergence(KLD) to compare the each Directional CLIPScore PDFs for their attribute in X and Y, to208

quantify the extent to which the generator has created too few or too many instances of a specific209

attribute. We then calculate the average KLD value between the PDFs of each attribute in X and Y to210

obtain the final value of SaKLD.211

4.2 Paired attribute KL Divergence (PaKLD)212

We design another metric, PaKLD for examining that generated images preserve the attribute re-213

lationships present in training data. The model should generate images that adhere to the attribute214

relationships observed in the training data. For instance, if all 50,000 male images in the training data215

wear glasses, then all generated male images should also wear glasses. To evaluate the preservation216

of attribute relationships, we compare the difference in the joint probability density distribution217

of attribute pairs between training data. Our proposed metric, Pairwise Attribute KL Divergence218

(PaKLD), is defined with joint probability density functions as follows:219

PaKLD(X ,Y) =
1

M

M∑
(i,j)

KL(DCSX (ai,j),DCSY(ai,j)), (6)

where M = nP2, (i, j) denotes an index pair of attributes, and the pair of attributes’ joint PDF is220

denoted as DCSX (ai,j).221

6



Table 2: Validation of metrics by including correlated images. The first row shows metric scores
between two distinct subsets of the FFHQ dataset (30,000 images each). The rest rows show the
correlated-sample-injected-scores where only one of the subsets contains an additional 300 or 600
edited images. We examine the metric performance on ("man"-"makeup") and ("man"-"bangs")
correlated images. All results are average values for five random subset pairs.

include edited images SaKLD↓ PaKLD↓ FID↓ FIDCLIP↓
to one subset BLIP USER GPT BLIP USER GPT

not included 0.904 0.920 1.095 3.357 3.924 4.438 1.275 0.115
("man"-"makeup") 300 0.985 1.048 1.115 3.676 4.205 4.453 1.282 0.132
("man"-"makeup") 600 1.079 1.368 1.286 3.910 4.819 4.710 1.306 0.162

("man"-"bangs") 300 0.991 1.102 1.171 3.679 4.297 4.496 1.278 0.122
("man"-"bangs") 600 1.201 1.521 1.314 4.031 5.064 4.718 1.288 0.140

PaKLD analyzes the performance of the model more comprehensively. For example, if the generator’s222

probability density function for the attribute pair ("makeup", "long hair") significantly differs from223

that of the training data, we can infer that the generator does not preserve the ("makeup", "long hair")224

relationship. PaKLD allows to quantify the degree of preservation of attribute relationships and225

measure quantitative entanglements between attributes that have not been considered in previous226

researches.227

5 Experiments228

Experimental details To estimate the probability density function (PDF) of Directional CLIPScore229

(DCS) in the training data and generated images, we use Gaussian kernel density estimation. We230

sample 10,000 points from each PDF to obtain a discretized distribution and use it to calculate SaKLD231

and PaKLD. In all experiments, we use a set of N = 20 attributes.232

5.1 Correlated Image Injection Experiment: Validating the Effectiveness of Our Metric233

In this subsection, we provide a carefully designed experiment to compare the proposed metrics with234

FID; we first create two non-overlapping subsets of 30,000 images from FFHQ and consider them as235

training data X and generated images Y , respectively. We then compare the scores for all metrics236

after including the edited images in set Y . Specifically, we use DiffuseIT[16] to prepare two sets237

of edited images: ‘man’ with ‘makeup’ and ‘man’ with ‘bangs’. We use CelebA attributes for user238

annotation method (denoted by USER in Table 2).239

As shown in Table 2, our metrics and FID show consistent tendency: score increases when more240

edited images are included in imageset Y . Furthermore, thanks to the nature of focusing on the241

attributes of the image domain, our metrics show more obvious numerical differences compared to242

FID. These results demonstrate that SaKLD successfully captures the attribute distribution difference243

and PaKLD captures the joint distribution difference between attribute pairs. Basically, our three244

attribute selection scenarios have similar tendencies across the two proposed metrics, but there are245

several differences. See supplement material for more details.246

5.2 Necessity of PaKLD247

We conducted another toy experiment, a scenario in which the SaKLD metric fails to detect a particular248

attribute relationship, while PaKLD metric successfully identified it. We define the curated subsets249

of CelebA-HQ as training data and generated images with discrepancies in attribute relationship.250

Specifically, for training data, we collect 20,000 ‘smiling men’ images and 20,000 ‘non-smiling251

women’ images using ground truth labels of CelebA-HQ. Conversely, the generated images consist252

of 20,000 ‘non-smiling men’ and 20,000 ‘non-smiling women’. In this scenario, the PDFs of the253

‘man’, ‘woman’, and ‘smile’ attributes would not differ significantly between the two sets, and thus254

the SaKLD score would not capture it well. However, Paired attribute KL divergence would exhibit255

significant differences because the relationships between attributes within each set are completely256

different.257

Figure 4 clearly illustrates the disparities in the evaluation results. While SaKLD score remained258

relatively unchanged for noteworthy attributes such as ‘man’, ‘woman’, and ‘smile’, the Paired259
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Figure 4: Superiority of PaKLD. We define the curated subsets of CelebA-HQ as training data,
consisting of smiling men and non-smiling women, and generated images, consisting of non-smiling
men and smiling women. (a) The most influential attribute on SaKLD is not the attribute we manipu-
late. (b) The most influential attributes on PaKLD provides explicit insights into the contributions of
attribute pairs, such as (woman, smiling).

Table 3: Comparing the performance of generative models. We computed each generative model’s
performance on our metric with their official pretrained checkpoints. For FFHQ[11] and LSUN
Cat[29], we used 50,000 images for both GT and generated set, and we used 1,336 and 50,000 images
for GT and generated set for MetFaces[13]. We used BLIP-extracted attributes for this experiment.

SaKLD↓ PaKLD↓
FFHQ LSUN Cat MetFaces FFHQ LSUN Cat MetFaces

StyleGAN1[11] 9.902 74.626 - 19.431 119.456 -
StyleGAN2[13] 6.377 63.601 - 12.838 100.896 -

StyleGAN2-ADA[12] 14.118 - 40.769 21.930 - 87.118
StyleGAN3[14] 5.993 - 31.140 12.285 - 58.065

iDDPM [23] - 110.229 - - 136.579 -
iDDPM(P2) [2] 12.040 - 129.627 21.507 - 230.720

attribute KL divergence score showed significant variations. This can be attributed to the distinct260

probability density functions (PDFs) of the ‘woman ∩ smiling’. Note that we can easily understand261

the judgment factors; top attributes such as ‘woman ∩ smiling’ and ‘man ∩ smiling’ increase the262

score. These findings demonstrate the superior sensitivity and discernment of our proposed metrics,263

allowing for a more comprehensive evaluation of the generator’s generation ability.264

5.3 Comparing generative models including GANs and diffusion models with our methods265

Leveraging the superior sensitivity and discernment of our proposed metrics, we compare the266

performance of GANs and Diffusion Models (DMs) in Tables 3. Interestingly, there are two attractions;267

1) StyleGAN2-ADA shows the worst performance and 2) despite the respectable generative capability268

of DMs, iDDPM showed worse performance than StyleGAN models in all datasets.269

The score of StyleGAN2-ADA implies that data augmentation for generative models may ruin270

attribute distribution in spite of FID’s superiority. Please refer to Appendix for an analysis. And we271

suppose that although there are many advantages of DMs, it is inferior to GANs in attribute-based272

analysis.273

To investigate the reason for the inferiority of DMs, we leverage the flexibility of constructing274

attributes to analyze the score changes according to the characteristics of attributes. We constructed275

attributes that focus only on color (e.g., ‘yellow fur’, ‘black fur’) and attributes that focus on shape276

(e.g., ‘pointy ears’, ‘long tail’) for LSUN Cat.277

Table 4 shows that iDDPM’s performance was particularly poor for color attributes. This is consistent278

with the assumption by Khrulkov et al. [15] that the encoder map of DMs coincides with the optimal279

transport map for common distributions; which means the pixel-based Euclidean distance corresponds280

to high–level texture and color–level similarity regardless of dataset and model. Therefore, the color281
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Table 4: Computing performance of models with different attributes for LSUN Cat. Analyzing
the weakness of iDDPM for specific attribute types, such as color or shape. We used BLIP-extracted
attributes for this experiment.

color attributes shape attrbutes
SaKLD↓ PaKLD↓ SaKLD↓ PaKLD↓

StyleGAN1[11] 36.614 75.884 33.214 72.454
StyleGAN2[13] 36.621 67.518 34.642 68.954

iDDPM [23] 111.302 121.877 72.181 80.511
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Figure 5: (a) The effect of sample size on our metric. Proposed metrics started to stabilize when
using more than 50,000 images. (b) The effect of the attribute counts on our metric. Although
depending on the characteristics of the additional attributes, the ranking of scores between models
can vary, the rank of the models mostly remained consistent regardless of the number of attributes.

of the output images only depends on the initial latent noise xT , and the Monge optimal transport282

map between training data and the standard normal distribution. We conclude that the distribution of283

color-related attributes is the inferiority of DMs.284

5.4 Impact of Sample Size and Attribute Count on Proposed Metric285

We provide ablation experiments to investigate the effect of a number of samples and attributes in286

Figure 5. We obtain generated images by StyleGAN3 from FFHQ with various random seeds. When287

the number of samples increases, SaKLD and PaKLD converge, especially more than 50,000 samples288

(Figure 5 (a)). We argue that the scores started to stabilize when using more than 50,000 images and289

note that we use 50,000 images for Tables 3 and 4. As for the number of attributes, we observe that290

the rank of the models mostly remained consistent regardless of the number of attributes. However,291

scores of DMs, purple line of Figure 5 (b), is increased as the number of attributes is increased292

because of color-related attributes. We argue that 20 attributes are sufficient, but more information293

can be obtained by using more diverse cases. Please see Appendix for an analysis of each score.294

6 Discussion and Conclusion295

In this paper, we introduce a novel metric that not only assesses the performance of the generator296

but also provides explicit explanations. Our proposed method, Directional CLIPScore, quantifies297

the attributes captured in an image and aligns them close to human judgment. Leveraging the298

interpretability of DCS, we propose two novel metrics, namely the SaKLD and PaKLD, which allow299

us to compare attribute appearance frequencies and examine attribute relationships, respectively.300

While our metrics offer comprehensive explanations, unreliable results may arise when the attributes301

present in the images are ambiguous. For instance, in complex modern artworks with intricate color302

patterns, extracting appropriate attributes becomes challenging or even impossible, rendering our303

metric ineffective. Additionally, if the generative model’s ability is significantly poor, the same304

limitation arises: measuring DCS from generated images becomes challenging.305

Despite these limitations, our research establishes a solid foundation for the development of explain-306

able evaluation metrics for generative models and contributes to the advancement of the field.307
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