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Abstract— Non-cooperative spacecraft pose estimation plays a
crucial role in on-orbit servicing. However, existing pose estimation
methods often assume CAD models of target objects as prior
information, used for offline training or online template matching.
This limits the generalization of pose estimation methods.

To explore a generic solution, this work proposes a pose
estimation method for unknown spacecraft. Our method is not
only independent of prior models or image priors of the tar-
get but also synchronously outputs pose parameters and aligned
target texture models. Specifically, we employ three modules in
parallel: pose tracking, neural object reconstruction, and target
reference frame (TRF) estimation. Firstly, leveraging the knowledge
of temporal data, we optimize the pose graph to provide stable
tracking performance. Then, we use neural implicit representation
to reconstruct the target texture model, with pose parameters jointly
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optimized during the reconstruction process. Finally, we propose
TRFE-Net for online estimation of the TRF. The obtained TRF
is used to correct the sensor reference frame (SRF), transforming
the pose tracking and reconstruction problem from scene-centric
to Spacecraft-centric.

Additionally, the PEU dataset was constructed specifically for
pose estimation of unknown spacecraft. Comprehensive experiments
show that although the proposed method reduces the need for prior
information, it still achieves good performance across multiple ob-
jects and effectively handles large-scale motions, specular highlights,
thin structures, and symmetric structures. Project page: PEU .

Index Terms— Deep learning, satellite pose estimation, neural
implicit reconstruction, model alignment, without prior information

I. INTRODUCTION

With the rapid advancement of aerospace technology,
numerous on-orbit spacecraft missions have emerged,
encompassing tasks such as rendezvous and docking,
formation flying [1], active debris removal (ADR) [2, 3],
and on-orbit servicing (OOS) [4, 5]. Within these mis-
sions, the precise determination of the spatial orientation
information of space targets is instrumental for deploying
automated vision-based systems in orbit. This provision
of supplementary information is crucial for close-range
relative navigation, playing a pivotal role in ensuring the
successful execution of the missions.

Due to the lack of cooperative markers on non-
cooperative spacecraft, existing works typically obtain
the target’s texture model or simplified wireframe model
offline and define a reference frame as a prior (Fig.
1). Traditional methods align this reference model or
image with the collected data frames during testing to
solve for the pose [6–9]. Deep learning-based approaches
first generate images or point clouds using this reference
model for training and then use the trained neural network
to estimate the pose[10–21].

The described approach is suboptimal in several ways.
First, the approach cannot be generalized to targets with-
out prior knowledge due to its reliance on available
prior information. Second, spaceborne data are scarce,
precious, and pose significant privacy concerns. The types
and numbers of non-cooperative space objects are exten-
sive, making it impractical and cumbersome to obtain a
priori models for each non-cooperative object. Finally,
even with prior knowledge of the target’s model, due
to prolonged exposure to the space environment, certain
space objects may undergo physical collisions and surface
optical degradation, leading to appearances that differ
from expectations[22].

To tackle the above problems, we propose a hybrid
pipeline for pose estimation and neural implicit recon-
struction targeting non-cooperative Spacecraft without
prior information. This pipeline redefines the technical
pathway compared to previous methods, as illustrated in
Fig. 1.

The framework we proposed consists of three parallel
modules: pose tracking, neural object reconstruction, and
target reference frame estimation (TRFE). First, we track
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Fig. 1: Top: Existing methods require offline acquisition
of prior knowledge. Bottom: The proposed method does
not require prior knowledge of the target and simultane-
ously outputs the aligned texture model.

the spacecraft’s pose in the SRF. Specifically, we optimize
the pose graph using temporal context information, signif-
icantly reducing tracking drift. Second, we employ neural
implicit representation to reconstruct the target texture
model. Particularly, this neural reconstruction operates
online, with pose parameters being jointly optimized
during the reconstruction process. Finally, we propose
TRFE-Net for online estimation of the TRF. The obtained
TRF is used to correct the SRF, transforming the pose
tracking and reconstruction problem from scene-centric
to Spacecraft-centric.

The key to our method lies in online prediction of the
target reference frame and neural implicit representation,
which compensates for the lack of prior information.
During execution, it only requires capturing a small
number of data frames online for initialization, enabling
efficient output of pose parameters and aligned texture 3D
models of objects. This approach also effectively avoids
mismatches between offline reference models and real-
space objects. Experimental results show that our method
exhibits robustness in handling symmetrical structures,
large-scale displacements, and specular highlights caused
by sunlight reflection on spacecraft surfaces. In summary,
our contributions could be summarized as follows:

1) We revisit spacecraft pose estimation from the
perspective of reference coordinate systems. By
leveraging online neural reconstruction and ref-
erence frame estimation, we remove the reliance
on offline prior information and further explore
a general solution for non-cooperative spacecraft
pose estimation.

2) We leverage the knowledge of temporal data to op-
timize pose estimation, resulting in low-drift track-
ing performance and robust handling of spacecraft
symmetrical structures, specular reflections, and
large-scale displacements.

3) A two-stage reference frame estimation method is
proposed. By decoupling the regression heads and
expanding the solution space, the TRFE-Net could
effectively predict TRF within the same category.

4) A spacecraft pose tracking dataset named PEU is
proposed for evaluating our method. Comprehen-
sive experiments show that although the proposed
method reduces the need for prior information, it
still achieves good performance across multiple
objects. To the best of our knowledge, PEU is the
first multimodal dataset that includes masks, depth,
point clouds, and multi-object pose trajectories.

II. RELATED WORK

A. Non-cooperative Target Pose Estimation

The estimation of spatial non-cooperative target poses
represents a specialized scenario within the broader con-
text of six degrees of freedom (6-DoF) target pose es-
timation in spatial environments. The primary objective
is to infer the three-dimensional translation and rotation
of the target relative to its coordinate system from the
data frames collected by sensors. Previous research [23]
has proposed a pose graph optimization-based SLAM
framework for the model reconstruction and pose estima-
tion of spatially unknown non-cooperative rotating targets.
This approach utilizes the sensor coordinate system as the
reference frame, resulting in sensor-centric pose tracking.

State-of-the-art methods typically necessitate offline
training using object CAD models or online template
matching [12–16, 19, 24]. Although recent advancements
have enhanced the generalization performance of models
in new environments through domain adaptation tech-
niques [25–29], these methods remain inadequate for
application to new, unknown non-cooperative objects.
Some studies [26] leverage temporal information to track
the pose of non-cooperative objects. However, these ap-
proaches make various assumptions, such as training and
testing on the same objects.

The fundamental challenge in estimating the pose
of an unknown target lies in the indeterminacy of the
reference frame. Our work advances this field by ad-
dressing this specific challenge. In our approach, we
perform online neural implicit reconstruction of the target
and predict its reference frame, thereby eliminating the
reliance on model priors. By jointly optimizing pose
tracking and reconstruction through neural representation,
we achieve not only more robust pose estimation but also
more refined 3D shape outputs.

B. Object Reconstruction

The reconstruction of the pose and shape of orbiting
objects based on a sequence of images is a crucial compo-
nent of several conceptual tasks that have emerged in the
past decade. It serves as prior knowledge for tasks such
as active debris removal, rendezvous, capture (or attach-
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ment), and off-nominal trajectory missions. Traditional
reconstruction methods employ discrete elements, such as
point clouds, meshes, or voxels, to explicitly represent the
scene[30–32]. These methods typically generate sparse
point cloud structures first, followed by densification of
the point cloud, and finally, surface mesh and texture
reconstruction. While these methods yield realistic results,
they come with high computational costs and often exhibit
limited capability in capturing fine details.

Since the introduction of Neural Radiance Fields
(NeRF)[33], implicit scene representations have gained
attention in spatial object perception tasks[34–36]. Pre-
liminary studies by the European Space Agency (ESA)
compared the quality of models reconstructed using NeRF
and Generative Radiance Fields(GRAF) [37] on space-
craft. Mahendrakar et al. [36] explored the quality of
spacecraft model reconstruction accelerated by Instant
Neural Graphics Primitives in NeRF. However, they as-
sumed known camera poses or relied on precomputed
camera poses obtained through Structure from Motion
(SfM)[38] offline. Contrarily, we do not assume known
camera poses. Instead, we provide initial pose values
through online pose graph optimization, obtaining an
accurate 3D model representation.

C. Target Reference Frame Determined

In the task of pose estimation, knowledge of the
target’s reference frame is essential for initializing the
estimator, akin to the initialization of the initial pose in
tracking tasks. The estimation of the target’s reference
coordinate system undoubtedly stands out as the most
challenging aspect throughout the entire process. Opro-
molla et al. [22] employed an online template matching
algorithm based on three-dimensional Principal Compo-
nent Analysis (PCA) to estimate the reference frame
of the target. Initially, it estimates the relative position
vectorusing the centroid method. Subsequently, it con-
firms the direction of the main axis by identifying the
eigenvector corresponding to the maximum eigenvalue
of the covariance matrix of the measured point cloud.
However, these methods necessitate the offline storage
of a template database containing geometric information
about the target, which is not assumed in oursetting.

While recent research has explored using neural net-
works to estimate object upright orientation[39, 40], our
approach tackles a more challenging scenario involving
space objects. Unlike terrestrial objects with supporting
bases influenced by gravity, space objects lack such
support, posing greater difficulty. Additionally, existing
methods typically focus on estimating vertical orientation
only, whereas our method addresses the complete spatial
orientation in the SO(3) space.

III. METHOD

In this section, we first introduce the memory pool
design in the pose tracking pipeline and the online pose

graph optimization framework (Section 3.A), focusing on
how to leverage temporal data knowledge and strategies
for handling symmetrical targets. Secondly, we describe
the target neural representation method and training de-
tails (Section 3.B). Finally, we provide details of the
TRFE pipeline (Section 3.C). The overview of our method
is shown in Fig. 2.

A. Pose Tracking

1. Memory Pool
Considering the continuous and incremental motion

of spacecraft in space, we leverage temporal contextual
information to perform online pose graph optimization
by exploiting the relationships between multiple frames.
Inspired by [41, 42], we introduce a memory pool M that
stores historical observation frames with the maximum
variance across multiple views. To build the memory pool,
the first frame F0 is automatically added, thus setting
the canonical coordinate system for the novel unknown
object. For each new frame, its coarse pose ξ′t is updated
to a refined pose ξt by aligning it with existing frames in
the memory pool. When the viewpoint of the new frame
is deemed sufficient to enrich the multi-view diversity in
the pool while keeping the pool compact,

To be more precise, we compare the pose ξt of
the current frame with that of the last keyframe. If the
rotational geodesic distance or the relative displacement
of the sensor with respect to the previous keyframe
exceeds the predefined thresholds, the current frame is
selected as a new keyframe. Given the dynamic nature of
spatial movement, the relative motion of spatial objects
can change rapidly (e.g., during the approach phase)
or slowly (e.g., during formation flying and docking
phases). Therefore, relative metrics provide higher robust-
ness compared to absolute metrics. Additionally, unlike
previous work [41], we do not employ a time-interval-
based keyframe insertion method. This is because, in
dynamic scenarios, relying on time intervals to insert
keyframes is inefficient, often failing to capture enough
keyframes while generating redundant ones.

2. Online Pose Graph Optimization
We use the first frame F0 added to the memory

pool as the initial frame for pose tracking, with its pose
parameters ξ0 serving as the initial pose. The initial pose’s
rotation and translation parameters are set to the identity
rotation and the distance from the sensor to the centroid of
the acquired point cloud, respectively. In our framework,
the coordinate system of this initial pose is defined as the
SRF. Subsequently, by executing the TRFE thread, the
pose tracking coordinate system is corrected to the TRF.
For detailed annotations on SRF and TRF, refer to Fig. 2
and Fig. 5.

The Iterative Closest Point (ICP) algorithm is com-
monly employed for point cloud registration and pose esti-
mation. In typical scenarios, it iteratively finds an optimal
rotation and translation transformation using nonlinear
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Fig. 2: The pipline of our approach. 1⃝ PT serves as the main pipeline and communicates with NOR and TRFE
concurrently through the memory pool M. 2⃝ NOR utilizes memory frame neural reconstruction and optimizes poses
ξt. It then updates the optimized poses ξtnerf to the memory pool and outputs the texture model O. 3⃝ TRFE uses
the merged memory frame point cloud to predict the TRF, which is used to correct the reference frame of the PT
pipeline.

optimization, aiming to maximize the alignment between
the source point cloud {ps} and the target point cloud
{pt}. The general expression of ICP is represented as:

R∗, t∗ = argmin
R,t

1

I

I∑
i=1

∥∥pit − (
R · pis + t

)∥∥2

2
(1)

where pis and pit denote the i-th matched points from the
source point cloud and the target point cloud. R and t
represent the rotation and translation parts of the pose to
be optimized.

The correspondence between RGB-D data is estab-
lished using a Transformer-based feature matching net-
work [43], which has been pre-trained on large-scale
internet photo collections and is well-suited for scenarios
with weak textures and suboptimal lighting conditions.
These identified correspondences undergo filtration us-
ing a RANSAC-based pose estimator coupled with least
squares. Subsequently, the pose hypothesis maximizing
the number of inliers is selected as the coarse pose
estimation ξ′t for the current frame. It is worth noting that
in the case of known correspondence, the least squares
problem actually admits an analytical solution, thereby
obviating the need for iteration.

We limit the number of memory frames involved in
pose graph optimization to no more than K for efficiency.
In the early stages of tracking, when the size of the
memory pool ≤ K, all frames in the memory pool
are utilized. When the memory pool size exceeds K, a
selection process is implemented to maximize the multi-
view consistency information. Specifically, for each frame
Fk in the memory pool, we compute the dot product
between its point normal map and the ray directions in

the camera view of the new frame Ft to test the visibility
of the memory frame from the current frame’s camera
viewpoint. If the visibility of the tracked object in the
new frame exceeds a threshold, we compute the rotation
geodesic distance between ξk and ξt to further measure
the viewpoint overlap with Ft. Finally, we select the K
memory frames with the maximum viewing overlap to
participate in the pose graph optimization with Ft. It
is worth noting that, in order to avoid tracking failures
caused by the inherent symmetry of spacecraft, we use
3D coordinate and normal distance to filter the matching
relationships obtained between frames. The experiments
in Section IV-D demonstrate that this approach effectively
handles mismatches caused by symmetry.

In the pose graph G = (V ,E), the vertices of the
graph consist of the poses of the selected K memory
frames and the current frame: V = ξ′t ∪ {ξpool}, where
pool ∈ [1,K]. The edges of the graph are formed by
pairwise matching point pairs between vertices: E =
{P(ij)

n } , where P denotes the matching relationships
between keypoints, ij denotes the index of vertex pairs
with matching relationships, and n denotes the index of
the matching relationship between vertex pairs ij. The
objective is to find the optimal pose that minimizes the
total loss of the pose graph.

Active tracking of spacecraft is a progressive pro-
cess from far to near, with a wide range of depth
variations[14]. The optimization approach of minimizing
reprojection error is suboptimal in handling such cases.
Therefore, we employ relative losses between 3D point-
to-point and plane-to-plane, rendering the method robust
to variations in target distance, As shown in Fig 3. We
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Fig. 3: The objective function for pose graph optimization
consists of two parts: distance error Lpoint between 3D
points and angle error Lplane between normal vectors.

take our point-to-point loss as:

Lpoint(i, j) =
1

N

N∑
n=1

H(∥ξjξ−1
i P(ij)

ni − P(ij)
nj ∥2) (2)

where i, j denotes the i-th and j-th frames in the vertex
set V , and H represents the Huble robust kernel function.
The loss measures the distance of the 3D feature corre-
spondences P(ij)

ni ,P(ij)
nj ∈ R3. We take our 3D plane-to-

plane loss as:

Lplane(i, j) =
1

N

N∑
n=1

λn

< N (P(ij)
ni ),N (P(ij)

nj ) >

π
(3)

where N represents the unit normal vector corresponding
to the point, with < ·, · >=< R3,R3 >∈ [0, π] computes
the calculation of the angle between two vectors, and
coefficient λn denotes the scalar factor, which was set
to ∥P(ij)

ni +P(ij)
nj

2 ∥2 in the experiments to maintain the same
order of magnitude as Lpoint. The loss measures the angle
between the normal vectors of the corresponding points’
planes.

From an optimization perspective, the point-to-point
loss is already a necessary and sufficient condition for this
problem. However, we find that incorporating the plane-
to-plane loss always leads to faster convergence of the
rotation component R ∈ SO(3) in the optimized pose,
and even achieves better results. The reason lies in the fact
that after adopting the plane-to-plane loss as an additional
term, the gradient of the rotation parameters towards these
normal vectors N becomes larger. Since the sensor data
already includes depth information, it can provide a good
initial displacement value. In the spatial non-cooperative
target pose estimation, the rotation component is more
important for the optimization process. Based on this
insight, we adopt the plane-to-plane loss as an additional
term, ultimately defining the overall graph loss as:

L =
∑

i∈V,j∈V,i̸=j

[Lpoint(i, j) + Lplane(i, j)] (4)

where i, j denotes the poses of the ith and jth frames in
the vertex set V .

B. Neural Object Reconstruction

1. Radiance Field Representation
A key to our approach is the concurrent operation of

neural radiance fields, which optimize the pose parameters
of the reference frame while learning the shape and ap-
pearance of the object, thus mitigating drift in subsequent
pose tracking.

Inspired by [42], we adopt the Signed Distance Func-
tion (SDF) as the final 3D representation due to its rapid
convergence. We adopt the same configuration as [42],
using the geometric function Φ and appearance function Ψ
to represent the object. The geometric function Φ : x → σ
takes the 3D point coordinates x ∈ R3 as input and
outputs the signed distance values σ ∈ R. The appearance
function Ψ : (Φ(x), n, d) → c takes the intermediate
feature vector Φ(x) ∈ R3 from the geometry network,
a point normal n ∈ R3 and a ray direction d ∈ R3 as
input and outputs the color c ∈ R3.

Before forward propagation, we perform multi-
resolution hashing encoding [44] on x to improve training
speed. Additionally, we embed n and d with a fixed set
of low-order spherical harmonic coefficients to prevent
potential overfitting that may hinder object pose updates,
especially rotations.We employ the hierarchical ray sam-
pling strategy proposed in the classic NeRF and utilize the
principles of classic volume rendering to render the color
of any ray traversing the scene. We recommend readers
refer to [33] and [44] for a more comprehensive survey
of neural object reconstruction.

2. Training
In addition to the geometry and appearance networks,

the multi-resolution hash encoder and the pose refinement
of memory frames are also updated during training. At
the beginning of each training phase, the Neural Object
Field consumes the nearest portion of the memory pool
and begins learning. During the learning process, poses
are parameterized using Lie Algebra, with initial values
set to ξt. Upon convergence of the training, the optimized
poses are updated to ξt nerf to assist subsequent online
pose graph optimization. However, pose parameters do
not need to be updated in every training phase. For
frames that have already been updated to ξt nerf , their
pose parameters remain fixed and are used as such in
subsequent training processes.

Our final training loss is:

L = Ls + Ll + µLc (5)

Ls is defined as a unary loss function used to measure
the point-wise distance between the current frame and the
neural implicit shape:

Ls =
1

|F|
∑
P∈F

H(∥Φ(ξ−1
t (P))∥1) (6)

where H represents the Huble robust kernel function and
P denotes the the point cloud data observed in the current
frame.
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The Ll represents the L1 error between the predicted
Euclidean distance and the ground-truth distance to the
object surface at each query point:

Ll =
1

|X |
∑
x∈X

(∥Φ(x)− l̃∥1) (7)

where l̃ denotes the ground-truth distance labels. To
obtain the distance labels, we first merge the point clouds
extracted from the K memory frames using multi-view
stereo reconstruction. We then voxelize the merged point
cloud at a resolution of 5mm to discretize the implicit
surface representation. The distance value stored at each
voxel location corresponds to the actual signed distance
to the surface.

The Lc represents the L2 error between the predicted
RGB color and the labeled color at each query point:

Lc =
1

|R|
∑
r∈R

(∥Ψ(x, n(x), d(r))− c̃∥2) (8)

where c̃ denotes the ground-truth color labels. The color
labels are directly obtained from the corresponding image
coordinates of the query points projected onto the K
memory frames.

C. Target Reference Frame Estimation

From a high-level perspective, the main differences
between object pose estimation and pose tracking tasks
are as follows: the former is object-centric and involves
estimating pose parameters in a specific reference frame
(typically a predefined coordinate system in prior models).
In contrast, the latter is scene-centric and aims to track the
pose of the camera or sensor itself (e.g., in applications
such as autonomous driving, simultaneous localization
and mapping), often using the pose of the first camera
frame as the reference pose in the world coordinate
system.

Based on the insights outlined above, we propose the
Target Reference Frame Estimation Network (TRFE-Net),
which employs a data-driven approach to automatically
encode the Euclidean transformation Tts ∈ R3×4 from
the SRF to the TRF.

In this section, the network architecture is introduced
in Section III-C.2, the clustering strategy for spatial object
shape categories is elaborated in Section III-C.3, and the
loss functions are described in Section III-C.4.

1. system overview
The key challenge in determining the body coordinate

system of space objects is that each different type of space
target possesses unique geometric characteristics. This
diversity can introduce ambiguity to the model learning
process, leading to poor generalization ability. Therefore,
relying solely on a single network encoding for diverse
types of spacecraft is fragile.

Based on our observations, the geometric characteris-
tics of spacecraft result from a combination of physical
laws, functionality, and design knowledge. This leads to

Fig. 4: Divide-and-conquer strategy. The merged point
cloud of spacecraft is first classified and then regressed to
the corresponding expert model for estimating the TRF.

spacecraft of the same category typically sharing common
semantic preferences and design structures, such as the
number and distribution of solar panels, as well as the
orientation of instruments like telescopes, radars, and
docking rings, among others.

Following the above assumptions, our system employs
a divide-and-conquer approach where the data from each
non-cooperative spacecraft is first classified by the net-
work. The data is then input into the corresponding expert
direction regression network for the predicted category,
as shown in Fig 4. This two-stage pipeline leverages
category-specific regression experts for improved pose
estimation accuracy.

2. Network Architecture
Experimental findings in [45] demonstrate that both

point cloud classification and pose regression tasks benefit
from the model’s understanding and learning of global
features. Therefore, we combine both local and global
features for feature encoding of point clouds. To meet
these requirements, we utilize the strategy of farthest point
sampling and grouping proposed by PointNet++ [46],
enhancing the capability of local feature extraction. Then,
global features are encoded using stacked attention layers.
Different decoder architectures are employed for classifi-
cation and orientation regression tasks. The architecture
of TRFE-Net is depicted in Fig 5.

The TRFE pipeline is driven by a memory pool. When
the perspective of the memory pool is deemed sufficient to
cover the target object, the input point cloud C ∈ RN×d is
obtained by merging point clouds from all memory frames
and uniformly downsampling. It is worth noting that at
this stage, the reference frame of C remains uncorrected
sensor reference frame. Specifically, the point cloud C
consists of 2048 points, each point’s 6D representation
includes its 3D coordinates and 3D normal vector. A MLP
is applied to learn the de-dimensional embedding features
Fe ∈ RN×de from the input point features. Specifically,
the MLP performs a 1×1 convolution on each point’s
feature vector, followed by batch normalization [47] and
a ReLU activation.

MLP(x) = ReLU(BN(conv1×1(x))) (9)

In the local feature encoding module, we employ the
farthest point sampling algorithm to downsample N to
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Fig. 5: The overall architecture of TRFE-Net. Our TRFE-Net predicts the target body reference frame based on the
geometric features of the spacecraft. The classifier and regressor utilize the same encoder structure and different
decoders. The output of the regressor is decoupled into direction vectors X representing the forward orientation and
Y representing the upright orientation.

Ns. Then, for each sampled point p in Cs, we utilize
the KNN algorithm to identify its k nearest neighbors
in C, forming a group of k nearest neighbors. Finally,
we apply MLP and max pooling operations to obtain the
output local feature Flocal ∈ RNs×do . For point cloud
classification and orientations regression, we only need
to predict a global class for all points. Therefore, the size
of the Ns is reduced to 512 and 256 points in the two
local feature extraction layers.

The local features Flocal are then fed into 4 stacked
attention modules to learn semantically rich and discrimi-
native representations for each point, followed by a linear
layer to generate the output features. Overall, the encoder
of TRFE-Net follows nearly the same design principles as
the original Transformer, with the exception of positional
embeddings being discarded since the coordinates of
points already contain this information. More specifically,
we first obtain the query matrix Q, the key matrix K,
and the value matrix V respectively via three independent
MLP Layers as follows:

QKV = MLP(F) ∈ RN×D (10)

Specifically, during the first attention operation, F =
Flocal, N = Ns, D = do. Then, we compute the dot
products of Q and the transposed K, dividing it by

√
D ,

and apply a Softmax function over the result to obtain
a weight matrix W indicating the interdependence of
pairwise point features.

W (Q,K) = Softmax(
QK⊤
√
D

) ∈ RN×N (11)

With this weight matrix, we compute the weighted
feature matrix as:

F̃ = Linear(W ·V) ∈ RN×D (12)

Finally, the fused feature is computed using the
following formula, where [,] denotes concatenation of
feature tensors along the channel dimension.

Attention(F) = MLP([Floacl, F̃1, F̃2, F̃3, F̃4]) (13)

For the classification and orientation regression tasks,
we employ different decoder architectures. For the clas-
sification head, we use the same configuration as [48].
Specifically, we decouple the output rotation representa-
tion into the frontal direction vector X ∈ R3 and the
upright direction vector Y ∈ R3, rather than quaternions
or rotation matrices. Then, we use Gram-Schmidt or-
thogonalization as a mapping function to transform this
representation into SO(3).

This approach has two advantages. First, for three-
dimensional rotations, all representations in Euclidean
spaces of four dimensions or less are discontinuous,
they present continuous representations in more suitable
5D and 6D spaces. This was proven in experiments
in [49]. Second, directly regressing the precise rotation
angles of specific objects is a challenging task prone to
overfitting. By decoupling into separate regressions for
two directional vectors, it encourages the network to learn
features on intra-class directional vectors rather than the
entire point cloud. These features contain similar design
knowledge and semantic preferences, enabling the model
to better induce and generalize.
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Fig. 6: A subset of shape category clustering. We combine geometric and symmetry properties to cluster spacecraft
and define their forward and upright directions. Different categories of spacecraft use different loss functions to regress
orientation.

3. The setting of the solution space
We primarily define categories and the frontal direc-

tion of spatial objects based on their geometric symmetry
and similarity, as illustrated in Fig 6. In addition to solar
panels, the main structure of satellites is typically rigid
and equipped with effective payloads such as radar and
docking rings. Therefore, the orientation can be estimated
based on the arrangement of effective payloads on the
main structure. Solar panels are usually positioned on the
side of the main structure, which can be used to define
the vertical direction.

Although different shape categories exhibit distinct
features, some categories may be handled by similar
strategy to find their frontal orientations and upright
orientations. Those categories can be clustered together
and processed with the same regression network. As a
result, redundant networks can be removed and then the
memory cost could be reduced.

We cluster categories by increasing the freedom of
direction labels. Specifically, following the principle of
symmetry, we allow the network to predict vertical or
completely opposite directions as candidate answers. The
insight here is that for pose estimation tasks, regardless

of whether the positive direction of the target body
reference frame points towards the positive or negative
direction of effective payloads, the geometric properties
and semantic information it encompasses remain signif-
icant, thus making it an effective pose reference frame.
Moreover,by expanding the solution space, ambiguities
in the network learning process are reduced, resulting in
faster convergence of the model.

4. Loss Function
For the classification task, the standard multi-class

cross-entropy[50] is used as the loss function. We elabo-
rate on the design of the loss function for the orientation
regression task. To maintain gradient stability and robust-
ness to outliers, we utilize the angle error (in radians)
between vectors as the loss value. The loss functions for
2-dof and 4-dof could be expressed uniformly as follows:

Lself = 2 · arccos(< v · ṽ >) (14)
where v and ṽ respectively denote the network output
direction vector and the ground truth. Note that for
different degrees of freedom in the solution space, a
segmented training loss strategy is employed, using the
minimum error value among all solutions as the loss.
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For cases where the solution space manifests as a
plane, such as category 3 in Fig 6, the solution set
for the vertical direction is always constrained within a
plane perpendicular to the positive direction. Therefore,
we employ sine loss for supervised training:

Lcross(vy, ṽx) = 1− sin(vy, ṽx) (15)

The final regression loss for each category is defined
as follows:

Lreg =


Lself (X , X̃ ) + Lself (Y, Ỹ) category = 1

Lself (X , X̃ ) + Lself (Y, Ỹ) category = 2

Lself (X , X̃ ) + wLcross(Y, X̃ ) category = 3
(16)

where w is hyper-parameter, seting as 0.1 empirically.

IV. EXPERIMENTS

In this section, we first introduced the PEU dataset and
evaluation metrics. Next, we evaluated the performance
of our framework on unknown space satellite without
prior information using the PEU dataset. Both quantita-
tive and qualitative results demonstrate that despite not
requiring CAD models or images from the target, our
method achieves comparable or even higher performance
compared to methods that rely on priors.

A. PEU Dataset

We introduce a dataset named PEU (Pose Estimation
for unknown spacecraft) with the aim to foster research
on both the unknown target and temporal information pro-
cessing for spacecraft pose estimation. The PEU dataset
includes the pose tracking dataset PEU-track and the
large-scale point cloud dataset PEU-cloud. The dataset
and source files are publicly available at Projectpage.

1. PEU-track
To construct PEU-track, we utilized realistic satellite

models, accounting for the influence of celestial back-
grounds, the Sun, and global illumination. To create
the 3D models of the target satellites, we conducted
detailed modeling of each mechanical component based
on the original CAD files available on the NASA website.
This included components such as solar panels, antennas,
screws, and labels. The material parameters for each
component were assigned according to the visual char-
acteristics of real satellite metal materials.

The satellite models were placed at their actual orbital
altitudes, and their motion was modeled using real orbital
velocities. In the experiments, the HST orbits approx-
imately 340 miles above the Earth’s surface, moving
at a velocity of 5 miles per second, with random spin
set to simulate failure conditions. We simulated relative
distances according to the scenarios of space rendezvous,
with the distance between the tracking satellite and the
target satellite restricted to within 100 meters. The chaser
was placed in a slightly higher orbit than the target
satellite and transferred to the target orbit through two

(a) Settings for physical rendering of PEU-track.

(b) A subset of PEU-track.

Fig. 7: PEU-track.

deceleration maneuvers, The scene setup is shown in Fig.
7(a). A virtual camera in the Blender engine was used
to capture image data, with camera intrinsics calibrated
using a standard checkerboard pattern. For close-range
scenarios (<10m), we set up two virtual cameras to
simulate stereo vision for acquiring 3D point cloud data.
For long-range scenarios (>10m), we directly output
the depth values from the images as point cloud data,
simulating the data produced by a Lidar system that has
been jointly calibrated and fused with the camera.

It is important to note that the focus of these simulated
scenarios is not on generating more precise and realistic
sensor data, but rather on how to utilize the acquired
images and point cloud data for pose estimation and
reconstruction of unknown space targets without model
priors. This includes handling various target objects and
different conditions such as large displacements, symme-
try, specular highlights, and incomplete observations.

The dataset consists of three objects: Hubble Space
Telescope, Gaofen-13, and CubeSat. For each target
satellite, 20 scenes were generated, each comprising a
sequence of 300 frames, resulting in a total of 18K RGB
images and depth maps. The resolution of each image is
1440x1080, some of which are shown in Fig 7(b). To the
best of our knowledge, this is the first spacecraft trajectory
dataset with depth information and multiple targets. Table
I summarizes the differences between PEU-track and
other datasets. Given that our pose estimation framework
targets unknown Spacecraft without prior information,
these images will be exclusively used for testing purposes.
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TABLE I: Overview of existing SSA datasets.

SPEED[11] SPEED+[51] URSO[16] SwissCube[14] Cube-CDT[26] SPARK2022[52] PEU-track
Images 15.3k 70k 15k 50k 22k 32.4k 18k

Object Classes 1 1 2 1 1 1 3
CAD Model × × × No Texture × × Texture
Trajectories × × × ✓ ✓ ✓ ✓

Image Resolution 1920 ×1200 1920 ×1200 1080×960 1024×1024 1440×1080 1440×1080 1440×1080

Color × × ✓ ✓ ✓ ✓ ✓
Depth × × × × × × ✓
Mask × × × ✓ × × ✓

Fig. 8: A subset of PEU-cloud.

2. PEU-cloud
One of the key aspects of our approach is to lever-

age historical spacecraft knowledge to predict future un-
known spacecraft. Therefore, we constructed a point cloud
dataset named PEU-cloud to train TRFE-Net, enabling it
to learn a universal geometric representation of spacecraft
from large-scale spacecraft data. PEU-cloud comprises
100 aligned point cloud models of spacecraft. Specifi-
cally, these models were obtained from the NASA public
website, manually aligned using Blender, and finally,
4000 points were uniformly sampled on the surfaces
to generate point clouds. Inspired by point cloud self-
supervised learning, each object is randomly rotated K
times (set at 2000) in SO(3) space to generate new data.
These rotated point clouds are then split in a ratio of 7:2:1
for training, testing, and validation sets, respectively. This
results in 140,000 point clouds for training, 40,000 for
testing, and 20,000 for validation. A subset of the PEU-
cloud data is illustrated in Fig 8.

B. Metrics

We adopt the evaluation criteria proposed in the
Kelvin’s Pose Estimation Challenge (KPEC) [11] as the
pose evaluation metric. The pose error EP is based on
the combination of the translation error ET and rotation
error ER. Let tgt and t denote the ground truth and
estimated translation vectors of an image. The translation
error of image j is defined as the Euclidean distance
between the estimated translation vector and the ground
truth translation vector, normalized by the magnitude of
the ground truth position vector:

Ej
T =

∥t− tgt∥2
∥tgt∥2

(17)

Let qgt and q denote the rotation quaternion ground truth
of an image and its estimation. The rotation error Ej

R of
image j is defined as the angle (in radians) required to
align the estimated quaternion orientation with the ground
truth quaternion orientation:

Ej
R = 2 · arccos (| < q, qgt > |) (18)

The total error EP is the average of the sum of rotation
and translation errors for the J images in the test set:

EP =
1

J

J∑
j=1

(Ej
R + Ej

T ) (19)

For 3D shape reconstruction, we use the chamfer
distance between the reconstructed mesh and the ground
truth mesh, The variable x represents sampling in the
model O at 5mm intervals.

EM =
1

2O1

∑
x1∈O1

min
x2∈O2

∥x1 − x2∥2+

1

2O2

∑
x2∈O2

min
x1∈O1

∥x1 − x2∥2
(20)

C. Effect of TRFE

1. Implementation and Training Details
We adopt a transfer learning strategy to enable the

model’s encoder to learn generic features from a large-
scale dataset. Fortunately, the ModelNet40 dataset [53]
provides objects already aligned in a canonical coordinate
system, where the +x-axis points toward the positive
orientation and the +y-axis points toward the upright
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Fig. 9: The qualitative results of TRFE-Net. Left: Point cloud visualization. The green color represents the ground
truth of the TRF, while the blue color represents the estimate value. Right: Coordinate system Visualization. The red
and green arrows represent the positive X and Y directions, respectively, while the blue arrow represents the positive
Z direction generated through the right-hand coordinate system.

TABLE II: Ablation study of our design choices on TRFE-Net.
Metrics w/o Two-Stage w/o Decoupled Regression w/o Expand the solution space TRFE-Net
ER(°) 7.469 5.998 5.613 5.172

direction. The ModelNet40 dataset comprises 40 object
categories totaling 12,311 shapes. To obtain a dataset cov-
ering various potential poses, each model in ModelNet40
was randomly rotated 100 times at uniformly sampled
angles, generating a new orientation.

We employ classification as an auxiliary task to pre-
train the TRFE-Net model on the ModelNet40 dataset .
Subsequently, we utilize the pre-trained encoder and dis-
card the decoder for fine-tuning. Specifically, TRFE-Net
is fine-tuned on our proposed PEU-Cloud dataset, where
the classifier learns from all data while the regressors only
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(a) Results of the single label. (b) Results of the multiple labels.

Fig. 10: The green color represents the ground truth of
the TRF, while the blue color represents the estimate
from TRFE-Net. In some angles where the learning is not
sufficient, the approach of expanding the solution space
can enhance the robustness of TRFE-Net.

learn from corresponding category data. Ultimately, we
obtain a classifier and N regressors for our divide-and-
conquer approach.

Pre-training and [54] with a learning rate of 10−3,
weight decay regularization of 0.0001, a batch size of
512, and set the pre-training and fine-tuning epochs to
400 and 100, respectively. These hyperparameters were
selected based on validation performance.

To enhance robustness during training, we apply the
following data augmentation techniques to the input point
clouds. Gaussian noise N (0, 0.02) is added to perturb
each point’s position . Random translations in the range
[-0.2, 0.2], anisotropic scaling in the range [0.67, 1.5], and
random point dropout with probability [0, 0.875] are also
applied. Furthermore, to simulate articulated motions of
space targets and structural damage caused by collisions,
we performed random articulation rotations and block
cropping on the solar panels in the training dataset. This
mimics incomplete observations that may occur during
long-term missions.

2. Result on PEU-cloud
The qualitative results of TRFE-Net are shown in

Fig 9. We investigated the effectiveness of the design
choices in TRFE-Net, including the two-stage strategy
of classification before regression, decoupled design of
regression heads, and expanding solution space. Tab II
records the results of our ablation experiments. The term
”w/o Two-Stage” denotes the strategy of eliminating the
two-stage process of classification followed by regression.
In this comparative experiment, we solely employ a single
regression network to predict the TRF, instead of using
multiple expert regression models.

As described in Section III-C, we decouple the output
rotation representation into the frontal direction vector
X ∈ R3 and the upright direction vector Y ∈ R3. Then,
we use Gram-Schmidt orthogonalization as a mapping
function to transform this representation into SO(3). The
term ”W/o Decoupled Regression” refers to the removal
of the decoupled regression setting, which led to a de-
crease in performance by directly outputting quaternion
representation for rotation using the regressor.

We attribute this to two main reasons: 1. Quaternion
representation of rotation is discrete, whereas our regres-
sion of a 6D vector is continuous in space, which is more
suitable for regression tasks. 2. Directly regressing the
rotation in the model tends to be more oriented towards
a task specific to a particular object, which leads to
a decrease in performance when dealing with multiple
objects. By decoupling the regression, we reduce the
learning complexity from directly regressing the entire
rotation to only learning the significant directional vectors
of the model, thus reducing the complexity of model
learning.

The term ”w/o Expand the solution space” denotes
using only a single direction of solution as the training
label, without considering the object’s symmetric prop-
erties. This setup reduces the accuracy of TRFE-Net,
possibly due to the ambiguity in learning caused by the
similarity of symmetric structures.

As illustrated in the second, fourth, and seventh rows
of Fig. 9, TRFE yielded completely opposite results on
Hubble, Gaofen 13, and Saturn V Rocket-Stage 2. This
outcome aligns with our explanation in Section III-C.3.
We adhere to the principle of symmetry, allowing the
network to predict either the vertical direction or its
exact opposite as candidate answers to avoid learning
ambiguities caused by symmetry. For pose estimation
tasks, regardless of whether the positive direction of
the target body’s reference frame points towards the
positive or negative direction of the effective payloads,
the geometric properties and semantic information it en-
compasses remain significant, thus it is still considered an
effective pose reference frame. Moreover, by expanding
the solution space, the ambiguities in the network learning
process are reduced, resulting in faster convergence of the
model.

Apart from that, due to the discrete nature of random
rotations used during training relative to the continuous
SO(3) space, model performance can falter at certain
angles not well-represented in the training data. As shown
in Fig 10. Our strategy of setting multiple candidate
correct directions provides more robust pose estimation
across various angles.

D. Effect of PT and NOR

In this section, we evaluate the effectiveness of the
pose tracking and Neural Object Reconstruction pipeline.
First of all, we selected a small subset of samples from the
PEU dataset characterized by large-scale displacements,
symmetrical structures, and specular highlights (Hub-
ble 0003, Hubble 0004, Cubesat 0001, Cubesat 0002,
Gaofen 0001, Gaofen 0006) for qualitative and quanti-
tative visualization analysis. The qualitative results of PT
and NOR are shown in Fig 11 and Fig 12, respectively.
Finally, we evaluate each condition on the test set of the
PEU dataset and report both pose estimation accuracy and
reconstruction quality metrics in Tab III. Furthermore, the
prediction results of TRFE-Net are used to rectify the SRF
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Fig. 11: 6-DoF pose tracking visualization. Our method demonstrates robust pose tracking performance across different
targets. Particularly, qualitative results confirm the effectiveness of our method in handling symmetrical objects, large-
scale displacements, and specular highlights.

Fig. 12: Qualitative results of online neural reconstruction for sample trajectories. Note that the viewpoints
of trajectories Hubble 0004 and Gaofen 0001 do not cover the entire spacecraft, resulting in unsampled and
unreconstructed gaps.
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TABLE III: Ablation study of our design choices on Pose Trcking. The EP metric includes the rotation error (ER)
and translation error (RT ). The EM metric is used to measure the loss of 3D reconstruction.

Object Metrics w/o Temporal Context w/o 3D Feature Match w/o NeRF Optimization Pose Tracking

Hubble
EP (-) ↓ 0.1657 0.0892 0.0685 0.0486
ER (°) ↓ 5.2972 3.2345 2.7189 2.2892
EM (cm) ↓ - 2.081 0.619 0.594

GaoFen
EP (-) ↓ 0.2324 0.1812 0.1549 0.1456
ER (°) ↓ 6.7296 5.7584 5.0107 4.7242
EM (cm) ↓ - 1.979 0.513 0.485

CubeSat
EP (-) ↓ 0.1953 0.2189 0.0910 0.0708
ER (°) ↓ 6.1566 6.9845 3.5497 3.0054
EM (cm) ↓ - 2.122 0.766 0.722

Average
EP (-) ↓ 0.1978 0.1631 0.1048 0.0883
ER (°) ↓ 6.0611 5.3258 3.7598 3.3396
EM (cm) ↓ - 2.061 0.633 0.603

Fig. 13: Quantitative results of the trajectory Hubble-0001 from the PEU-track dataset. The initial pose is with
respect to the SRF. After correcting the reference frame using TRFE-Net, the model transitions from scene-centric
pose tracking to object-centric pose estimation.

Fig. 14: Comparison of tracking performance on yaw
angle. The data is derived from the trajectory of Hub-
ble 0003 from PEU-track.

Fig. 15: Instances of failed matching. Relying solely on
RGB-based matching leads to misalignment in symmetric
objects, causing tracking drift and failure.

to the TRF. We combine the PT and TRFE processes to
quantitatively analyze the angle tracking errors of the pose
before and after coordinate system correction, as shown
in Fig 13.

w/o Temporal Context removes the use of temporal
context information by omitting the pose graph opti-
mization step. Coarse pose estimation is performed only
between consecutive image frames without global refine-
ment. We demonstrate the importance of utilizing tempo-
ral information for more accurate predictions. As shown
in Fig 14, leveraging temporal information from longer
trajectories results in a smoother and more coherent pose
trajectory, alleviating the issue of tracking drift. This
is something that cannot be achieved with single-frame
estimation alone.

As described in Section III-A, we employ the distance
between the coordinates and normals of 3D points to
filter the correspondences obtained between frames for
handling symmetric objects. The setting w/o 3D feature
match disables this configuration, relying solely on RGB
feature matching. This results in an interesting scenario:
when an object rotates to the opposite symmetric plane
within the field of view, erroneous feature matching
causes the system to believe it has returned to the original
position, leading to the estimation of an opposite pose and
further impacting subsequent tracking. Fig D illustrates
the effectiveness of using 3D data for filtering matching
relations when dealing with symmetrical objects.

14 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2024

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2024.3479199

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on November 05,2024 at 08:07:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 16: Quantitative and qualitative results of the trajectory Hubble 0003 from PEU-track. This trajectory simulates
a scenario with large-scale displacements.

Fig. 17: Quantitative and qualitative results of the trajectory Gaofen 0006 from PEU-track. This trajectory simulates
a scenario with specular highlights.
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Fig. 18: Quantitative and qualitative results of the trajectory Cubesat 0002 from PEU-track. This trajectory simulates
a scenario with symmetrical structures.

Fig. 19: Quantitative and qualitative results of the trajectory Gaofen 0001 from PEU-track. This trajectory simulates
a scenario with incomplete observations.
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Fig. 20: The computation time required for pose estimation. (*) indicates that the process is executed once every
certain number of frames. ($) indicates that the process is executed only once throughout the entire duration.

The setting w/o 3D feature match struggles to handle
symmetric objects, resulting in inaccurate input pose
parameters for neural reconstruction, which further im-
pacts the overall reconstruction performance. w/o NeRF
Optimization: In this condition, the NeRF model is solely
used for view synthesis and reconstruction purposes.
The process of jointly optimizing poses through NeRF’s
differentiable rendering is ablated. Noted that when NeRF
optimization is removed, the pose error increases from
0.0883 to 0.1048. This result validates that utilizing
NeRF’s differentiable rendering for synchronized pose
refinement can enhance the accuracy of our pose tracking
pipeline.

E. Robustness testing

In space operations, several challenging conditions
could occur: Firstly, due to the rapid movement and
changes in the relative position of the spacecraft, large-
scale displacements can occur. This poses a challenge for
long-term pose tracking, as it may lead to tracking drift
and catastrophic forgetting. Secondly, specular highlights,
caused by reflections from the spacecraft’s surface, es-
pecially from metallic or reflective materials, complicate
visual tracking and pose estimation. Additionally, sym-
metrical structures can create ambiguities in determining
the spacecraft’s orientation and pose, as similar features
may appear identical from different angles. This is par-
ticularly detrimental to pose estimation methods relying
on single frames. Finally, occlusions occur when parts
of the spacecraft are obscured by other objects, or when
the camera’s field of view fails to fully cover the target,

making it difficult to obtain a complete view for accurate
pose estimation and reconstruction.

To address these challenges, we specifically simulated
these scenarios in the PEU-Track dataset. For instance,
we simulated large-scale displacements by introducing
significant movements and rotations in the trajectory
of Hubble 0003. Specular highlights were modeled by
incorporating reflective materials on the surface of the
Gaofen 13 spacecraft in rendering engine. Symmetrical
structures were simulated by selecting spacecraft with
inherently symmetrical designs, such as CubeSat. Lastly,
we simulated partial occlusions by capturing incomplete
camera views in the trajectory of Gaofen 0001. Further-
more, to increase the difficulty of pose estimation, we
introduced sudden changes in rotational acceleration to
simulate the natural evolution of an uncontrolled satellite.

We quantitatively analyzed the performance of our
method under these challenging scenarios. The rotational
components of the pose parameters were decoupled into
yaw, pitch, and roll Euler angles and visualized separately.
The experimental results demonstrate the effectiveness of
our method under these challenging conditions. As shown
in Fig. 16, our pose tracking and estimation algorithms
maintained robust performance under large-scale displace-
ments, without significant tracking drift or catastrophic
forgetting. In Fig. 17, our method accurately estimated
poses despite the presence of specular highlights, unaf-
fected by reflections. In Fig. 18, our method correctly
handled symmetrical structures by leveraging temporal
context information, thus avoiding pose ambiguities. Fi-
nally, as shown in Fig. 19, under conditions of incomplete
observations, our system maintains stable tracking by
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effectively utilizing partial observations, avoiding tracking
loss and significant oscillations.

F. Real-time analysis

Due to the utilization of GPU acceleration in the
feature matching, pose graph optimization, and NOR
stages of our method, our model was deployed on a
platform equipped with an Intel i5 10400F CPU and an
NVIDIA RTX 4070 GPU to measure the computation
time required for each module.

As shown in Fig. 20, the primary processes include
data preprocessing, PT, TRFE, and NOR threads. Data
preprocessing involves point cloud denoising and image
mask computation based on point cloud data. It is im-
portant to note that the NOR thread always runs in the
background, while TRFE is executed only once globally.
The PT thread processes frames at 10.269 Hz, while
NOR runs in the background, requiring an average of
6.83 seconds per training iteration. Ultimately, the entire
model operates at near real-time with a frequency of
approximately 7.415 Hz.

V. CONCLUSION

This paper discusses the non-cooperative satellite
pose estimation without prior information. The proposed
method effectively bridges the gap of missing reference
models through online target reference frame estimation
and neural reconstruction. Meanwhile, the online pose
graph optimization leverages temporal data knowledge
to achieve smoother and more robust pose tracking per-
formance. Experimental results demonstrate that our ap-
proach exhibits good performance on different spacecraft
and shows strong robustness in handling challenging cases
such as specular highlights, large-scale motions, thin
structures, and symmetrical configurations.
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