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Abstract001

NLP benchmarks rely on standardized datasets002
for training and evaluating models and are003
crucial for advancing the field. Traditionally,004
expert annotations ensure high-quality labels;005
however, the cost of expert annotation does not006
scale well with the growing demand for larger007
datasets required by modern models. While008
crowd-sourcing provides a more scalable solu-009
tion, it often comes at the expense of annota-010
tion precision and consistency. Recent advance-011
ments in large language models (LLMs) offer012
new opportunities to enhance the annotation013
process, particularly for detecting label errors014
in existing datasets. In this work, we consider015
the recent approach of LLM-as-a-judge, lever-016
aging an ensemble of LLMs to flag potentially017
mislabeled examples. Through a case study018
of four datasets from the TRUE benchmark,019
covering different tasks, we empirically ana-020
lyze the labeling quality of existing datasets021
and compare expert, crowd-sourced, and LLM-022
based annotations in terms of the agreement,023
label quality, and efficiency, demonstrating the024
strengths and limitations of each annotation025
method. Our findings reveal a substantial num-026
ber of label errors, which, when corrected,027
induce a significant upward shift in reported028
model performance. This suggests that many029
of the LLMs’ so-called mistakes are due to la-030
bel errors rather than genuine model failures.031
Additionally, we discuss the implications of032
mislabeled data and propose methods to miti-033
gate them in training to improve performance.034

1 Introduction035

Natural Language Processing (NLP) benchmarks036

have long served as a cornerstone for advancing the037

field, providing standardized datasets for training038

and evaluating methods and models (Wang et al.,039

2019; Hendrycks et al., 2021; Srivastava et al.,040

2023; Calderon et al., 2024). These datasets have041

been developed over the years for various tasks and042

scales, annotated using different schemes. Gold043

labels represent the “true” or ground truth anno- 044

tations, which are typically established through 045

expensive rigorous processes, including expert con- 046

sensus and extensive quality control. However, as 047

models have increased in size (Devlin et al., 2019; 048

Brown et al., 2020), the demand for larger datasets 049

has also grown (Kaplan et al., 2020). Since expert 050

annotation is cost-prohibitive, it does not scale well 051

to meet these demands. The demand for large quan- 052

tities of annotated data quickly and cost-effectively 053

has led researchers to adopt crowd-sourcing, often 054

sacrificing expertise for scale. 055

That way or another, constructing datasets heav- 056

ily involves making compromises in annotation, 057

trading off between scale, efficiency and expertise. 058

Even when annotated by experts, datasets can nat- 059

urally contain labeling errors, arising from factors 060

such as task subjectivity, annotator fatigue, inat- 061

tention, insufficient guidelines, and more (Rogers 062

et al., 2013; Reiss et al., 2020; Sylolypavan et al., 063

2023). Mislabeled data is even more pronounced 064

when non-expert annotators are involved (Kennedy 065

et al., 2020; Chong et al., 2022a). Widespread 066

mislabeled data is particularly concerning because 067

both the research community and the industry rely 068

heavily on benchmarks. In training data, label er- 069

rors harm model quality and hinder generalization, 070

while in test sets, they lead to flawed comparisons, 071

false conclusions, and prevent progress. 072

Recent advancements in large language mod- 073

els (LLMs) (Ouyang et al., 2022; Chiang and Lee, 074

2023; Li et al., 2023; Gat et al., 2024) present new 075

opportunities to improve the annotation process, 076

specifically in detecting label errors within existing 077

datasets. Rather than re-annotating entire datasets 078

(e.g., through experts or crowd-workers), we con- 079

sider the LLM-as-a-judge approach (Zheng et al., 080

2023), and propose a simple yet effective method 081

by leveraging an ensemble of LLMs to flag a set of 082

potentially mislabeled examples. These can then 083

be sent to experts for re-annotation and correction, 084
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Figure 1: An illustration of our approach for detecting and addressing mislabeled data: (1) Re-label examples from
existing datasets using an ensemble of LLMs. (2) Identify strong disagreements between the LLM’s predictions
and the original labels (i.e., high confidence in a different label), flagging examples based on confidence levels.
Our findings show that LLMs detect between 6% and 21% of label errors, and higher LLM confidence is strongly
associated with improved precision in error detection. (3) In the training set, we either filter or flip flagged examples,
leading to an increase of up to 4%. For the test set, flagged examples are re-annotated by experts to make sure the
evaluation is accurate. Under accurate evaluation, the performance of LLMs is up to 15% higher.

or even get filtered during training.085

Specifically, we construct an ensemble model us-086

ing multiple LLMs with diverse prompts, gathering087

both their predicted labels and corresponding confi-088

dence scores. These predictions are contrasted with089

the original labels, and instances where the LLMs090

strongly disagree with the original label (i.e., show091

high confidence in a different label) are flagged as092

potential mislabeling cases. Additionally, we not093

only explore the role of LLMs in detecting errors094

but also evaluate their performance as annotators,095

comparing them with expert and crowd-sourced096

annotations. We assess these approaches in terms097

of agreement, label quality, and efficiency, high-098

lighting their strengths and limitations.099

We aim to answer the following questions100

through a comprehensive end-to-end study: (1) Do101

current benchmarks include mislabeled data? (2)102

Can LLMs detect label errors? (3) How do ex-103

pert, crowd-sourced, and LLM-based annotations104

compare in quality and efficiency? and (4) What105

are the implications of mislabeled data on model106

performance and can we mitigate their impact?107

To this end, we choose the TRUE benchmark108

(Honovich et al., 2022) – A collection consolidat-109

ing 11 existing datasets annotated for factual con-110

sistency in a unified format – as a case-study and111

empirically investigate its labeling quality. Specif-112

ically, we analyze four datasets from TRUE with113

binary factual consistency annotation originating114

from different tasks. To support our claims and115

results in other setups, we conduct similar experi-116

ments on an additional dataset, SummEval (Fabbri 117

et al., 2021), which evaluates generated summaries 118

in four dimensions on a scale of 1 to 5. 119

Our paper presents both methodological and em- 120

pirical contributions. We propose a straightforward 121

approach for detecting potential mislabeled exam- 122

ples (as illustrated in Figure 1), revealing a substan- 123

tial number of label errors in existing datasets, rang- 124

ing from 6% to 21%. Additionally, we demonstrate 125

that the precision of LLMs in identifying errors 126

improves with their confidence in an incorrect la- 127

bel; when their confidence exceeds 95%, over two- 128

thirds of those labels are human errors. Moreover, 129

we show that LLM-based annotations not only ex- 130

cel in error detection but also perform similarly to, 131

or better than, traditional annotation methods, of- 132

fering better trade-offs between quality, scale, and 133

efficiency. Finally, we empirically illustrate the 134

negative impact of mislabeled data on model train- 135

ing and evaluation. We propose a simple automated 136

method for addressing label errors, improving the 137

performance of fine-tuned models by up to 4%. In 138

evaluation, we found that mislabeled data can sig- 139

nificantly distort reported performance; LLMs may 140

perform up to 15% better. This indicates that many 141

so-called prediction errors are not genuine errors 142

but are instead human annotation mistakes. 143

2 Related Work 144

Traditional Human Annotation Approaches 145

Crowdsourcing is widely used for annotating 146

large-scale NLP datasets (Rajpurkar et al., 2016; 147
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Williams et al., 2018; Wang et al., 2022), offering148

rapid and scalable data collection. However, quality149

control remains a challenge, with labeling inconsis-150

tencies increasing as dataset complexity grows (Lu151

et al., 2020; Allahbakhsh et al., 2013). Moreover,152

as LLMs approach near-human performance (Chi-153

ang and Lee, 2023; Chen and Ding, 2023), crowd154

workers increasingly rely on these models for as-155

sistance, further complicating annotation quality156

(Veselovsky et al., 2023b,a). Expert annotation pro-157

vides more reliable labels for domain-specific and158

cognitively demanding tasks (e.g., medical or legal159

domains) but is significantly slower and costlier160

than crowdsourcing (Snow et al., 2008; Chau et al.,161

2020). Ensuring inter-annotator agreement among162

experts adds further complexity and expense (Bale-163

dent et al., 2022). Hybrid approaches that com-164

bine expert and crowd-sourced annotations help165

balance cost and quality, though expert oversight166

remains crucial for high-quality labels (Nguyen167

et al., 2015). Our study compares expert, crowd-168

sourced, and LLM-based annotation approaches in169

terms of quality and efficiency.170

LLMs in the Annotation Loop LLMs have171

been increasingly utilized as annotators in various172

NLP tasks, offering potential benefits in efficiency173

and scalability. Several studies have demonstrated174

that LLMs can effectively generate annotations175

from scratch, sometimes outperforming human an-176

notators or crowd workers (He et al., 2023; Gi-177

lardi et al., 2023; Törnberg, 2023; Calderon and178

Reichart, 2024). However, LLMs are not flaw-179

less and cannot be considered gold-standard an-180

notators when used alone. They may produce in-181

correct annotations, especially in complex (Chen182

et al., 2024), social (Ventura et al., 2023; Felkner183

et al., 2024), emotional (Lissak et al., 2024), or low-184

resource (Bhat and Varma, 2023) contexts. These185

studies showed that LLMs can exhibit poor per-186

formance and biases, highlighting the necessity187

of human oversight to ensure quality or fairness.188

To address this issue, several approaches for col-189

laborative (Kim et al., 2024; Li et al., 2023) or190

active learning (Zhang et al., 2023; Kholodna et al.,191

2024) were suggested, where LLMs and humans192

are both part of the annotation procedure. While193

most research focuses on annotation from scratch,194

our work employs an ensemble of LLMs to flag po-195

tentially mislabeled data points in existing datasets.196

Handling Label Errors Label errors (also re-197

ferred to as label noise) in training and evaluation198

datasets can significantly impair NLP model per- 199

formance and reliability (Frénay and Verleysen, 200

2014). Previous work mainly focuses on fine-tuned 201

models and typically identifies mislabeled exam- 202

ples based on the model’s low confidence or high 203

training loss (Chong et al., 2022b; Hao et al., 2020; 204

Pleiss et al., 2020; Northcutt et al., 2019). For ex- 205

ample, Chong et al. (2022b) showed that ranking 206

data points based on the training loss can help de- 207

tect errors. Once these high-loss or low-confidence 208

examples are flagged, they are typically filtered out 209

(Nguyen et al., 2019; Northcutt et al., 2019), cor- 210

rected automatically (Pleiss et al., 2020; Hao et al., 211

2020), or re-labeled by human annotators (North- 212

cutt et al., 2021) to verify and improve dataset qual- 213

ity. Unlike previous works, we use an ensemble 214

of LLMs to flag only high-confidence false predic- 215

tions. Our results demonstrate that low-confidence 216

examples weakly correlates with errors, but high- 217

confidence in the false predictions strongly do. 218

3 LLM as an Annotator and Detector 219

This study aims to evaluate the potential of LLMs 220

in detecting mislabeled examples and compare 221

three annotation approaches: experts, crowdsourc- 222

ing, and LLMs. To this end, we use an ensem- 223

ble model that combines multiple LLMs with var- 224

ied prompts. The motivation for this ensemble is 225

twofold: first, we demonstrate that it enhances error 226

detection and aligns more closely with expert anno- 227

tations while also decreases the variance; second, 228

it offers a simple approach that avoids the need for 229

complex model selection or extensive prompt engi- 230

neering, relying instead on the collective strength. 231

Prediction and Confidence To make a predic- 232

tion using the ensemble, we first extract class prob- 233

abilities of each LLM and prompt from the logits 234

of the representing class tokens (e.g., 0 or 1 for the 235

binary TRUE datasets, and 1 to 5 for the ordinal 236

SummEval). The probabilities are then normalized 237

to sum to 1. Next, we compute the average probabil- 238

ity for each class across the ensemble and select the 239

class with the highest probability (argmax) as the 240

final prediction. The confidence in the prediction is 241

defined as the corresponding ensemble probability. 242

If the token probabilities are not accessible, they 243

can be approximated via sampling. 244

Errors Detection We re-label the dataset us- 245

ing the ensemble, keeping both the prediction and 246

confidence for each example. We then flag poten- 247

tially mislabeled examples where there is strong 248
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disagreement between the ensemble prediction and249

the original label, specifically when the model ex-250

hibits high confidence in a false prediction. In the251

binary case, we examine only examples where the252

ensemble prediction differs from the original label.253

In the ordinal case, we examine examples where254

the difference between the original label and the en-255

semble prediction is strictly greater than 1 (e.g., 3256

vs. 5, 1 vs. 5, 4 vs. 2, etc.). After examining these257

examples, only those with confidence exceeding a258

predefined threshold are flagged as potentially mis-259

labeled. Our experiments show that as confidence260

in an incorrect prediction increases, the likelihood261

of the example being mislabeled also rises.262

For test sets, flagged examples can be re-263

examined by human experts to verify their true264

labels. For training sets, the same approach can be265

applied, but we also propose an automated method266

to improve model training: flagged examples can267

either be removed from the dataset or have their268

labels corrected based on the ensemble prediction.269

4 Experimental Setup270

4.1 Data271

As a case-study, we choose to explore the exten-272

sive and widely used TRUE benchmark (Honovich273

et al., 2022), which is typically used as an evalua-274

tion set (Steen et al., 2023; Gekhman et al., 2023;275

Wang et al., 2024; Zha et al., 2023). It consists of276

11 datasets from various NLP tasks such as summa-277

rization and knowledge-grounded dialogue. This278

benchmark is unique in its approach of bringing279

multiple datasets and tasks into a unified schema280

of binary factual consistency labels. Each dataset281

is transformed from its original structure (e.g., a282

source document and a summary) into two input283

texts, Grounding and Generated Text, and a bi-284

nary label indicating whether the generated text is285

factually consistent w.r.t the grounding. This en-286

ables us to examine multiple tasks and domains287

under the same umbrella at once while maintain-288

ing a unified binary-label schema. Specifically, we289

focus on four TRUE datasets, one from each task:290

MNBM – summarization evaluation (Maynez et al.,291

2020); BEGIN – grounded dialogue evaluation292

(Dziri et al., 2022); VitaminC – fact verification293

(Schuster et al., 2021); and PAWS – paraphrasing294

evaluation (Zhang et al., 2019). See Appendix E295

for additional details on these datasets.296

For each of the four datasets, we randomly sam-297

pled 1000 examples (or the whole dataset if the298

number of examples is smaller than 1000). These 299

examples are annotated by LLMs. We set an evalu- 300

ation (i.e., test set) based on 160 randomly sampled 301

examples from each dataset (a total of 640), while 302

the rest remain for training and validation (they 303

will be relevant for subsection 7.1). In addition 304

to the LLM annotations, the evaluation set is also 305

re-annotated by two experts three crowd worker. 306

SummEval In addition to the TRUE bench- 307

mark, we replicate some of the experiments on the 308

full SummEval benchmark (Fabbri et al., 2021). 309

This benchmark includes 1600 generated sum- 310

maries evaluated on four dimensions (relevance, 311

fluency, coherence, consistency) by crowd-workers 312

and experts. The SummEval benchmark is widely 313

used for benchmarking reference-free automatic 314

evaluation methods such as LLM-as-a-judge. In 315

contrast to TRUE, the labeling scheme is ordinal 316

on a scale of 1 to 5. For further information on 317

the SummEval data and experimental setting, see 318

Appendix A. Noteworthy, when researchers em- 319

ploy the SummEval benchmark, they use solely the 320

expert annotations. Accordingly, the focus of our 321

experiments conducted on SummEval is (1) to sim- 322

ulate a setup where the original labels are obtained 323

through crowd-sourcing while relying on expert an- 324

notations as the gold standard; and (2) to compare 325

the three annotation approaches (crowd-sourcing, 326

experts, and LLMs). 327

4.2 Annotation Procedure 328

This subsection outlines the annotation procedures 329

for the various approaches. Refer to Appendix D 330

for additional implementation and technical details 331

not covered here, or Appendix A for the SummEval 332

LLM annotation details. 333

LLMs We re-annotate the data with four LLMs: 334

GPT-4, (OpenAI, 2023), PaLM2 (Anil et al., 2023), 335

Mistral (7B) (Jiang et al., 2023), Llama 3 (8B) 336

(Dubey et al., 2024), and GPT-4o and Gemini-1.5- 337

Flash for SummEval. Our ensemble model lever- 338

ages four different prompts which control the vari- 339

ance caused by task descriptions. The prompts are 340

designed as a zero-shot classification task, e.g., for 341

TRUE the requested output is a single token, either 342

’0’ for factual inconsistency or ’1’ for factual 343

consistency (as described in Figure 12). 344

Crowd-sourcing Generally, crowd-sourced an- 345

notators span a spectrum– from untrained, "com- 346

mon" crowd-workers to carefully selected and 347

trained annotators. Our paper focuses on the lower 348
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end of this spectrum. We utilize the platform349

of Amazon Mechanical Turk (MTurk) to recruit350

crowd-workers for annotating 100 examples from351

each TRUE dataset (a total of 400), and to de-352

sign the interface layout. Examples were randomly353

assigned to annotators. Each annotated example354

was manually reviewed. Rejected examples were355

returned to the pool and re-annotated until each356

example was annotated by three different anno-357

tators. To prevent LLM use, we disabled right-358

click and Ctrl+c in the platform (as suggested359

by Veselovsky et al., 2023a). To obtain a single360

label per example, we consider two different ag-361

gregations: (1) Majority - by majority vote, and362

(2) Strict - if any annotator marks it inconsistent,363

that becomes the label. For SummEval, we use364

the crowd-sourced annotations provided by Fabbri365

et al. (2021), aggregated by their median.366

Experts All TRUE examples where the predic-367

tion differed from the original label, regardless of368

confidence, were annotated by human experts. The369

experts are two of the paper’s authors, who are fully370

familiar with the guidelines and task characteris-371

tics. Each example was independently annotated372

by both experts on a scale from 0 (inconsistent) to373

1 (consistent). The examples were shuffled and pre-374

sented in no specific order, with neither the original375

nor LLM labels shown. For cases where the experts376

disagreed, a reconciliation phase followed, during377

which they discussed and attempted to resolve their378

differences. For more details on the procedure and379

annotation platform, see Appendix D.2. After re-380

annotating all conflicted examples, we define the381

gold label as the original label, if the LLM predic-382

tion agrees with it, or the expert resolution, if there383

was a disagreement. For SummEval, we use the384

expert annotations provided by Fabbri et al. (2021),385

aggregated by their median.386

5 Label Errors: Analysis and Detection387

5.1 Do current benchmarks include388

mislabeled data?389

To address the first research question, we anno-390

tate the test-set of TRUE (as described in section 4391

using LLMs. We then contrast these annotations392

with the original labels, to find disagreements. As393

shown in Table 2, the disagreement rate is signif-394

icant and can be up to ∼ 40% of the examples.395

An example of such disagreement is presented in396

Table 1. While this would typically suggest that397

the LLMs performed poorly, we chose to further398

Dataset: BEGIN
Grounding: Hillary Clinton, the nominee of the
Democratic Party for president of the United States
in 2016, has taken positions on political issues
while serving as First Lady of Arkansas (1979–81;
1983–92), First Lady of the United States (1993–2001);
Generated Text: She is the nominee in 2016.

Original Label: 0 LLM p: 0.98 Gold Label: 1

Explanation: She (Hillary Clinton) is indeed the nomi-
nee in 2016 as specifically stated in the grounding.

Table 1: Example of an annotation error in the original
datasets, discovered by LLMs and corrected by experts.
In Appendix Table 6 we provide additional examples.

Dataset Task % pos % LLM
disagree

% error

MNBM Summarization 10.6 39.4 16.9 (11.6)

BEGIN Dialogue 38.7 34.4 21.2 (15.8)

VitaminC Fact Verification 52.5 17.5 8.1 (4.4)

PAWS Paraphrasing 44.3 22.5 6.2 (3.0)

Table 2: Summary of LLM disagreement and label error
rates across different datasets. %pos is the percentage of
positive (i.e., the consistent class) examples in the data.
% LLM disagree refers to the percentage of examples
where the LLM label differs from the original one. %
error indicates the error rate in the sampled test set,
while the number in parentheses denotes the estimated
lower bound of the error rate for the entire dataset.

investigate these cases and resolve the disagree- 399

ments. To this end, we asked human experts to 400

re-annotate the examples, allowing us to determine 401

which is more accurate: the original label or the 402

LLMs’ prediction. 403

Our findings show a considerable number of la- 404

bel errors for all examined datasets (see the %error 405

column in Table 2). Based on the experts gold la- 406

bel and the sample sizes, we also estimate a lower 407

bound for the total percentage of label errors in the 408

full datasets. We employed the Clopper-Pearson 409

exact method (Clopper and Pearson, 1934) to con- 410

struct a 95% confidence interval for the binomial 411

proportion, adjusted by a finite population correc- 412

tion (FPC) (see more details in Appendix G.1). We 413

provide the lower bound of these confidence inter- 414

vals in parentheses in Table 2, under the %error 415

column. The lower bounds range from 3% in the 416

PAWS dataset to 15.8% in the BEGIN dataset. 417

5.2 Can LLMs Detect Label Errors? 418

As described in subsection 5.1, we utilize LLMs to 419

flag candidates for mislabeling, and indeed find la- 420

bel errors. In this subsection, we focus on the LLM 421

viewpoint, exploring the effect of LLM confidence, 422
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Figure 2: When LLMs disagree with original labels -
who is correct? (Top) TRUE (Bottom) SummEval. As
the LLM’s confidence grows, so does the precision of
identifying an error in the original labels.

and the power of ensemble.423

Confidence LLM annotations are valuable for424

flagging mislabeled data, offering more than just425

hard labels. By considering LLM confidence scores426

alongside their predictions, we can improve the427

precision of automatic error detection. Leverag-428

ing confidence can reduce re-annotation efforts by429

flagging only cases exceeding a predefined thresh-430

old. The rationale is that not all flagged examples431

should be treated equally. Instances flagged with432

low confidence indicate that the LLM recognizes a433

potential issue, however, when the LLM is highly434

confident in a label that contradicts the original one,435

it provides a stronger signal of a possible error.436

Figure 2 shows the rate of the experts’ agree-437

ment with the LLMs compared to the agreement438

with original labels, divided into confidence-based439

bins. Bins are balanced by size, and defined by a440

confidence interval of 95% based on bootstrap sam-441

pling (see Appendix G.2 for further details). The442

bins reflect increasing levels of LLM confidence443

in its predicted label (i.e., a stronger disagreement444

between LLMs and the original labels).445

From the top of Figure 2, we observe a clear446

trend: as LLM confidence increases, so does its447

precision in detecting label errors in the original448

dataset. In the highest confidence bin, LLM annota-449

tions surpass the original labels in agreement with450

expert re-labeling, and this difference is statistically 451

significant. This indicates that when the LLM is 452

highly confident in its disagreement with the orig- 453

inal label, the labeled example serves as a strong 454

candidate for a labeling error. Note that even in 455

cases where the expert agreement with LLMs was 456

below 50%, mislabeled data was still discovered. 457

We replicated this analysis on the SummEval 458

dataset (bottom of Figure 2) and observed a similar 459

trend: higher confidence increases the likelihood 460

that the LLM prediction is closer to the expert an- 461

notation than the original label. In the SummEval 462

case, we consider the crowd-sourced labels as the 463

original labels. For more details see Appendix A. 464

Ensemble By varying the size of the LLM en- 465

semble, we examine two key aspects: predictive 466

power (how well predictions align with gold labels, 467

measured by ROC AUC for TRUE and average cor- 468

relation for SummEval), and error detection power 469

(measured by F1-score, averaging the recall of er- 470

rors and the precision of correctly identifying a 471

candidate as a true error). The ensemble power 472

analysis is presented in Figure 3, with additional 473

details in Appendix B. Our findings show that 474

incorporating multiple LLMs and prompts in an en- 475

semble is valuable. As the ensemble size increases, 476

both label quality and error detection improve. 477
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Figure 3: The power of ensemble. (Top) TRUE (Bot-
tom) SummEval.As the ensemble size increases (x-
axis), its performance against gold labels (Left), and its
ability to detect label errors (Right) improves.

6 Comparing Annotation Approaches 478

Our paper discusses three annotation approaches, 479

each with its own benefits and drawbacks, differ- 480

ing in how they balance label quality, scalability, 481

and cost. Due to space limitations, we provide a 482
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Figure 4: Annotation approaches comparison.

concise summary of our key findings here, with483

the full analysis available in Appendix C. Figure 4484

highlights the main insights.485

LLMs exhibit strong agreement with experts486

and among themselves. Inter-annotator agreement487

(IAA) among LLMs, as well as their alignment488

with expert annotations, are significantly higher489

than that of crowd workers. In contrast, crowd-490

sourced annotations exhibit larger variability and491

lower agreement with experts, making them less492

reliable without additional verification.493

Crowd worker quality improves with experience494

but remains inconsistent. Our analysis shows that495

experienced crowd workers produce higher-quality496

annotations. However, even among them, anno-497

tation quality and consistency remain lower than498

LLM-based annotation, which is more reliable.499

LLMs provide fast, scalable, and cost-efficient500

annotation. Compared to expert and crowd-501

sourced annotation, LLMs require less time and are502

much more cost-effective per annotation, making503

them a viable alternative for large-scale annotation504

while effectively balancing the trade-off.505

7 Implications of Mislabeled Data506

7.1 Training on Mislabeled Data507

Training on mislabeled data can harm model perfor-508

mance and stability, as learning from errors makes509

it harder to identify consistent patterns. The impact510

depends on various factors, such as the fraction511

of mislabeled data and the training procedure. In512

this subsection, we show that addressing this is-513

sue, even heuristically, significantly improves the514

model’s performance on a test set.515

Handling Label Errors In order to handle label516

errors in the training set, and reduce its effect on517

model performance, we propose two manipulations.518

For both manipulations, we flag examples where519

the model strongly disagrees with the original la-520

bel(i.e., with confidence above a certain threshold).521

0.5 (0.74) 0.75 (0.83) 0.85 (0.87) 0.95 (0.91)
confidence (fraction)

0.90

0.91

0.92

0.93

0.94

RO
C 

AU
C

Impact of Label Error Handling on Fine-Tuning Performance
Starting from: NLI model

flip-by-confidence
flip-by-random
no-transformation

filter-by-confidence
filter-by-random

Figure 5: Fine-tuning a model on a transformed dataset.
The gray bar is the original dataset - without any
changes. The green bars present results for label flip-
ping for a subset of examples, determined by LLMs-
confidence (plain), or at random (dotted). The blue bars
represent filtering of these examples.

The first manipulation is filtering flagged examples 522

out, which maintains a “cleaner” yet smaller train- 523

ing set. The second manipulation is label flipping 524

for flagged examples, which maintains the same 525

amount of data, but may also cause harm if flipping 526

too many correct labels. 527

Experimental Setup We set the training set to 528

be the additional data examples from the datasets 529

(i.e., MNBM, BEGIN, VitaminC, PAWS), which 530

are disjoint from the test set. Note that we posses 531

gold labels for the test set alone, while for the train- 532

ing set we only extract the confidence. The fine- 533

tuning procedure includes splitting the training set 534

into train and validation sets, and fine-tuning on the 535

train set. We report average results of five seeds. 536

As an ablation study, we also apply these ma- 537

nipulations on a random subset of examples rather 538

than the flagged examples. The ablation study aims 539

to maintain a consistent number of training exam- 540

ples, while the ablation for flipping aims to address 541

the claim that in some cases, a relatively small 542

fraction of label errors may be even considered as 543

a noise that improves model robustness (e.g., as 544

in label perturbation (Zhang et al., 2018) or label 545

smoothing (Szegedy et al., 2016)). 546

We conducted this experiment starting from two 547

base models: DeBERTa-v3, and a fine-tuned ver- 548

sion of it on classic NLI datasets, which we will 549

refer to as the NLI-base model. We chose the 550

NLI-base model as NLI tasks closely resemble 551

factual consistency evaluation (FCE), making it 552

7



Model Rank ROC AUC F1 Score Accuracy
Original Gold Original Gold Original Gold Original Gold

GPT-4 3 1 (+2) 0.81 0.93 (+15%) 0.73 0.83 (+14%) 0.73 0.83 (+14%)
NLI model 1 2 (–1) 0.93 0.91 (–2%) 0.87 0.87 (—) 0.87 0.87 (—)
PaLM2 6 3 (+3) 0.81 0.91 (+12%) 0.71 0.81 (+14%) 0.71 0.81 (+14%)
GPT-4o 4 4 (—) 0.81 0.91 (+12%) 0.74 0.83 (+12%) 0.74 0.83 (+12%)
GPT-4-mini 5 5 (—) 0.81 0.91 (+12%) 0.71 0.79 (+11%) 0.70 0.79 (+13%)
Llama3 7 6 (+1) 0.75 0.86 (+15%) 0.47 0.50 (+6%) 0.52 0.55 (+6%)
Mistral-v0.3 8 7 (+1) 0.75 0.85 (+13%) 0.61 0.68 (+11%) 0.62 0.68 (+10%)
DeBERTa-v3 2 8 (–6) 0.84 0.80 (–5%) 0.76 0.73 (–4%) 0.76 0.73 (–4%)
Mistral-v0.2 9 9 (—) 0.73 0.82 (+12%) 0.66 0.72 (+9%) 0.66 0.72 (+9%)

Table 3: Comparison of Model Performance on Original and Gold Labels. Ranking is defined over ROC AUC.

well-suited for this experiment. Given the similar553

trends, we present the results for the NLI model554

here. Additional experiments and implementation555

details can be found in Appendix F.1.556

Results Figure 5 shows the results of our ex-557

periments. In our confidence-based approaches,558

we clearly see the trend that as the confidence559

threshold—according to which our manipulations560

are applied—grows, our manipulation results in561

improved ROC AUC for both models. This trend562

eventually (i.e., for high enough LLM confidence)563

brings these approaches to significantly outperform564

the baseline. In contrast, when we applied our ma-565

nipulations on random subsets, we generally see a566

diminishing effect of manipulation, converging to567

the no-manipulation baseline.568

Comparing between the handling approaches, it569

appears that flipping is better than filtering for high570

confidence. We hypothesize that this stems from571

the amount of data that remains after flipping (i.e.,572

the same amount as before the flipping) compared573

to the filtering approach, combined with the high574

error rate in these datasets. Note that this is contrary575

to the random case where filtering is better than576

flipping, as flipping a subset with low error-rate577

brings more damage than value.578

7.2 Evaluating on Mislabeled Data579

In this subsection, we examine the impact of mis-580

labeled data in evaluation sets and its potential to581

distort results. Labeling errors can mislead the582

evaluation process, resulting in inaccurate perfor-583

mance metrics and, in some cases, flawed model584

comparisons that lead to incorrect conclusions.585

Experimental Setup To test this assumption, we586

evaluate the performance of nine models, mostly587

state-of-the-art LLMs, on the test datasets. We com-588

pare their performance between the original labels,589

and the gold labels. For LLMs, we used zero-shot590

prediction as described in section 3, and averaged591

over prompts. For DeBERTa-based models, we 592

used the fine-tuned models from subsection 7.1, 593

and averaged over seeds. 594

Results Prior to this work, an evaluation of these 595

models would induce the values and ranking as in 596

Table 3 under the Original sub-columns. However, 597

as shown before, these datasets include labeling 598

errors, and therefore do not support fair evaluation. 599

Considering the new gold labels, based on expert 600

intervention (as described in subsection 4.2), we 601

obtain different results, shown in the Gold sub- 602

columns. The first observed discrepancy is the 603

ranking of models. For example, DeBERTa-v3 has 604

shifted from being the second-best to the second- 605

worst. Beyond the change in ranking, all metrics’ 606

(i.e., ROC AUC, F1-score, and accuracy) range has 607

shifted upward, indicating that LLMs perform bet- 608

ter on this task than what was previously thought, 609

likely due to label errors. If this phenomenon ex- 610

tends to other tasks and datasets beyond those ex- 611

amined in this study, it could suggest that LLMs 612

are better than currently perceived. 613

8 Discussion 614

Labeling errors are a persistent issue in NLP 615

datasets, negatively affecting model fine-tuning and 616

evaluation. Our findings demonstrate that LLMs, 617

particularly when highly confident, can effectively 618

detect these errors, outperforming crowd workers 619

in accuracy, consistency, and cost-efficiency. As 620

LLM capabilities advance, their role in refining 621

data quality will become central to improving NLP 622

benchmarks. Future work could explore applying 623

LLM-based error detection to a broader range of 624

datasets and tasks, as well as refining methods for 625

optimizing label correction strategies. We encour- 626

age researchers to adopt our methods and critically 627

evaluate existing datasets to drive more robust, reli- 628

able results in the field. 629
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Limitations630

While our study provides valuable insights into the631

role of LLMs in identifying label errors and im-632

proving dataset quality, several limitations should633

be considered. First, crowd workers encompass a634

broad range of annotators with varying expertise635

and training. Our analysis, focuses on the “com-636

mon” crowd worker, typically an annotator selected637

with minimal qualifications, such as an approved638

task completion rate, and without specialized train-639

ing. However, some datasets implement additional640

measures, such as requiring prior experience or641

task-specific instruction, which can influence anno-642

tation quality. Importantly, we did not take crowd-643

worker annotations at face value; we applied filter-644

ing (based on the explanation crowd workers were645

asked to write for each example) to remove a sub-646

stantial number of low-quality assignments, such as647

clearly invalid responses, in addition to enforcing648

minimal qualification criteria.649

Second, our analysis does not account for po-650

tential data contamination, where LLMs may have651

been trained on the datasets we evaluate. However,652

since our analysis focuses on identifying and cor-653

recting label errors within these datasets, contami-654

nation would likely hinder rather than enhance our655

findings. If an LLM had memorized these datasets,656

it would be more likely to reproduce existing errors657

rather than detect and correct them, making con-658

tamination a potential limitation only for certain659

aspects of evaluation but not for our core claims.660

Third, LLM-based annotations can vary depend-661

ing on the choice of prompting strategies and en-662

semble methods. In this work, we use zero-shot663

prompting and simple averaging for ensembling.664

Still, alternative approaches – such as few-shot665

prompting, chain-of-thought reasoning (Wei et al.,666

2022), or self-refine (Madaan et al., 2023) – could667

improve annotation accuracy and consistency. Like-668

wise, for ensembling, more advanced methods—669

such as percentile-based aggregation (Sherratt et al.,670

2023), error-aware weighting (Freund and Schapire,671

1997), confidence-aware methods (Lee, 2010; Lu672

et al., 2024), or even LLM-based aggregation strate-673

gies like debate variants (Liang et al., 2023; Du674

et al., 2024) – may yield more reliable consensus675

labels. We leave the exploration of these strate-676

gies for future work and hope our study encourages677

such further research.678
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A Additional Experiments - SummEval1240

In addition to the datasets from the TRUE bench-1241

mark, we replicate our experiments on another1242

dataset with a different objective and a different1243

labeling scheme, to strengthen our results and con-1244

clusions.1245

A.1 Data1246

SummEval (Fabbri et al., 2021) is an exten-1247

sive and commonly used summarization bench-1248

mark, evaluating the quality of multiple model-1249

generated summarization outputs compared to a1250

source CNN/DailyMail sources on four dimen-1251

sions: coherence, relevance, consistency, and flu-1252

ency. Each summarization is labeled on each di-1253

mension with five crowd-workers and three experts,1254

enabling us to replicate some of the experiments 1255

without additional crowd-worker or expert anno- 1256

tation costs. The labeling schema is ordinal on 1257

a scale of 1 to 5 (higher is better). Note that this 1258

dataset does not have a singular gold-standard label 1259

per summarization, but rather a collection of an- 1260

notations from experts and crowd-workers. There- 1261

fore, we will not claim to find label errors in this 1262

benchmark, but rather showcase our methodology 1263

as if the crowd-sourced annotations are the origi- 1264

nal labels for the dataset, and we have access to 1265

experts’ annotations for gold-standard reference, to 1266

determine if the LLM was correct when flagging 1267

examples. 1268

A.2 Definitions 1269

To apply our methods for error detection via LLMs 1270

ensemble, we first define the following: 1271

Labels We aggregate crowd-sourced annota- 1272

tions by their median, to construct a single original 1273

label on a scale of 1 to 5. Similarly, we take the 1274

median of the experts’ annotations to be a single 1275

gold-standard label. 1276

A disagreement We say that the LLM annota- 1277

tion disagrees with the original label if there is a 1278

difference of more than 1 between the scores. The 1279

idea is that we can confidently say the LLM and the 1280

original label "disagree", as if the difference is 1 or 1281

less, this is a weak disagreement we will probably 1282

not flag for. 1283

A.3 Experimental Setting 1284

Similar to the description in subsection 4.2, we 1285

utilize two LLMs– GPT-4o (gpt-4o-2024- 1286

11-20) and Gemini 1.5 Flash (gemini-1.5- 1287

flash-002). We constructed four prompts, dif- 1288

fering by phrasing and compatible with the four 1289

prompt template structures used for the TRUE 1290

benchmark experiments. The answer to each query 1291

was a JSON format with ’Relevance’, ’Coherence’, 1292

’Consistency’, and ’Fluency’ as its keys. The scores 1293

are integers on a scale of 1 to 5, as are the ratings 1294

in the SummEval dataset. We extract the proba- 1295

bility of each score possible through the log-probs 1296

for each score token. Finally, we average all mod- 1297

els’ probabilities, to obtain an ensemble of LLMs, 1298

with p being the distribution over the five possible 1299

scores. 1300
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A.4 Experiments and Results1301

A.4.1 Can LLMs Detect Label Errors?1302

We replicate the experiment described in subsec-1303

tion 5.2 with the appropriate adjustment for the1304

SummEval dataset, based on the definitions above.1305

The result is shown in Figure 2 (bottom). The plot1306

presents the subset of examples where there was a1307

disagreement between the crowd-sourced annota-1308

tion and the LLMs’ annotation. Each bin represents1309

the confidence of the LLMs in their predicted label.1310

As there are five ordinal categories, even if there1311

was a disagreement between two annotations, they1312

both might be "wrong", where the expert’s answer1313

is a third option. Therefore, to show clearer results,1314

we do not resolve by experts "who is correct", but1315

rather "who is more correct?". For completeness,1316

we also provide the "both equally correct" option,1317

for the case the expert’s label is exactly in the mid-1318

dle, and none is "more correct" than the other. The1319

bins are relatively balanced in terms of the amount1320

of examples per bin. Note that in contrast to the1321

TRUE binary labeling scheme, where confidence1322

0.5 is the minimal threshold for an answer, here we1323

start from 0.2.1324

From the results, we see a clear dominance of1325

the LLM over the crowd-sourced annotations, for1326

all confidence bins. This suggests that the LLMs1327

not only detect error by flagging possibly misla-1328

beled data points, but also provide better answers,1329

which can account for error correction. Similar1330

to the result on the TRUE benchmark, we observe1331

a trend where as the LLMs’ confidence increases,1332

they are more correct, indicating that they find la-1333

bel errors with higher precision. However, in this1334

dataset, the difference from the original labels (in1335

this case, the MTurk labels) is even more apparent,1336

and the LLMs are correct even when with lower1337

confidence.1338

A.4.2 The Power of Ensemble1339

We analyze the importance of utilizing more than1340

a single model and a single prompt on two dimen-1341

sions - performance compared to the gold labels1342

(the quality of the annotations we utilize), and error1343

detection (the ability to identify errors more accu-1344

rately). For performance evaluation on the ordinal1345

labels, we report Pearson correlation; for error de-1346

tection evaluation, we report the F1-score based on1347

binary error/not-error classification. See results in1348

Figure 3 and discussion in Appendix B.1349

A.4.3 Annotation Approaches Comparison 1350

In Appendix C, we thoroughly discuss the compar- 1351

ison between the different annotation approaches. 1352

For SummEval, experts and crowd-sourced anno- 1353

tations are provided. Together with our LLM- 1354

ensemble annotations (as described in subsec- 1355

tion A.3), we analyze and compare the annotation 1356

approaches in terms of quality (see Figure 6 (bot- 1357

tom)) and consistency (see Table 5). To account for 1358

ordinal labels, we measure IAA via Krippendorff’s 1359

α (Krippendorff, 1970). 1360

B The Power of Ensemble 1361

As mentioned in subsection 4.2, we treat the LLM 1362

annotations as an ensemble of 2 models combined 1363

with 4 different prompts, in order to ensure greater 1364

stability in the results. Where one LLM may suc- 1365

ceed, the other may fail, and averaging all their 1366

probabilities enables us to have more confidence 1367

in the final answer. In this subsection, we further 1368

analyzed the performance of LLMs by varying the 1369

size of the LLM ensemble, examining how this 1370

affects the model performance. We evaluate two 1371

aspects of model performance. First, we assess 1372

how closely the ensemble’s annotations match the 1373

gold labels– essentially, how much we can trust 1374

the LLM annotations. We measure this aspect of 1375

label quality using the ROC AUC compared to the 1376

gold labels. The second aspect is the ensemble’s 1377

ability to detect label errors. For this, we compute 1378

the F1-score by averaging the recall of errors and 1379

the precision of correctly identifying a candidate 1380

as a true error. 1381

Results are shown in Figure 3 (top). For both as- 1382

pects, we see a clear trend. As we increase the num- 1383

ber of models in the ensemble, the performance in- 1384

creases. In terms of ROC AUC w.r.t the gold labels 1385

(left plot), this suggests better annotation quality, 1386

while the right plot, a higher F1 score indicates 1387

a stronger error detector, either by recalling more 1388

errors or improving precision, or through a balance 1389

of both. Additionally, for both measures, the vari- 1390

ance decreases as the ensemble size grows, which 1391

indicates more stable and consistent annotations 1392

and error detections. Similarly, Figure 3 (bottom) 1393

shows the power of LLM ensemble on the same 1394

aspects on the SummEval datasets, aggregated over 1395

four summarization dimensions (see experiment 1396

details on Appendix A.4.2). Trends of diminish- 1397

ing variance and increased performance and error 1398

detection are observed here as well. 1399
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Although not yet discussed in the context of error1400

detection with LLMs, these results align with pre-1401

vious work showing the power of ensemble (Diet-1402

terich, 2007). These observations justify our choice1403

to use an ensemble of models rather than a single1404

one.1405

C Comparing Annotation Approaches1406

Our paper discusses three annotation approaches,1407

each with its own benefits and drawbacks. These1408

approaches differ in how they manage the trade-1409

offs between label quality, scalability, and cost. In1410

the following section, we discuss and compare their1411

characteristics. A summary of this comparison is1412

given in Figure 4.1413

C.1 Annotation Quality1414

When annotating or validating a dataset, one of1415

our main concerns is the quality of the labels, or1416

in other words, establishing a reliable gold stan-1417

dard. However, each annotation approach produces1418

different labels. To estimate the quality of these1419

approaches, we measure the agreement between1420

different annotations using the weighted F1-score1421

(which accounts for both classes). Note that this1422

metric is not symmetric, meaning that treating one1423

annotation as the true label and the other as the1424

prediction, or vice versa, can result in different1425

scores.1426

Figure 6 (top) presents the F1-score between1427

each pair of annotation approaches. As the figure1428

shows, LLMs have disagreements with the original1429

labels (0.72). Yet, as discussed in subsection 5.1,1430

the original labels themselves contain mistakes,1431

so this disagreement does not necessarily indicate1432

poor performance of the LLMs. When considering1433

the Gold as the true label, LLM performance in-1434

creases to 0.83. This suggests that LLMs, despite1435

their discrepancies with the original labels, per-1436

form closer to the truth than initially reported. The1437

Gold label, obtained by experts, has high agreement1438

with both the Original and LLM labels. On the1439

other hand, the MTurk-Majority approach performs1440

poorly, with near-random F1-scores compared to1441

both the original and gold labels, and even when1442

compared to its stricter variant, MTurk-Strict. The1443

results indicate that basic crowd-sourcing, with-1444

out additional training to enhance crowd-workers1445

into specialized sub-experts, performs significantly1446

worse compared to other approaches, including1447

LLM-based methods. On the SummEval dataset1448

Original LLM-binary
MTurk -

Strict
MTurk -
Majority Gold

Original

LLM-binary

MTurk -
Strict

MTurk -
Majority

Gold

1 0.72 0.63 0.5 0.87

0.71 1 0.58 0.61 0.82

0.63 0.6 1 0.59 0.65

0.54 0.66 0.62 1 0.59

0.87 0.83 0.64 0.53 1

0.0

0.2

0.4

0.6

0.8

1.0

Experts LLMs MTurk

Experts

LLMs

MTurk

1 0.57 0.04

0.57 1 0.03

0.04 0.03 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: Comparison between all annotation meth-
ods: (Top) on the TRUE benchmark, measured by the
weighted-F1-score. Rows represent the "true" label and
columns represent the "prediction". For instance, the
score of LLMs compared to the Original label is 0.72.
(Bottom) Comparison on the SummEval benchmark,
measured by Pearson correlation (results are averaged
over all dimensions).

(bottom of Figure 6 bottom) we observe similar 1449

results, where the LLMs are more correlated with 1450

the Experts rather than the crowd-workers, which 1451

in turn have almost-no-correlation with LLMs or 1452

experts’ annotations– this implies poor quality of 1453

the annotations obtained from crowd-source. 1454

Crowd-sourcing For crowd-sourcing, the re- 1455

ported F1-score does not provide the complete pic- 1456

ture. When we focus on individual annotators, we 1457

see that those who annotate more examples gen- 1458

erally deliver higher-quality annotations, achiev- 1459

ing greater accuracy when compared to both the 1460

original and gold labels (see Figure 7). This phe- 1461

nomenon can be explained by two hypotheses: (1) a 1462

learning process– as the annotators see more exam- 1463

ples, they improve at the task, or (2) users who dedi- 1464

cate time to annotating multiple examples are likely 1465

those who either read the guidelines carefully and 1466

strive to perform the task to the best of their ability, 1467

or are naturally proficient at the task and therefore 1468

continue annotating. Even though annotators who 1469

label more instances tend to provide higher-quality 1470
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Figure 7: (x-axis) at list x annotations per annotator.
(Right y-axis) The number of annotators with at least x
annotations (bins). (Left y-axis) the average F1-score
or accuracy for all user annotations with at least x anno-
tations.

annotations, they are less common—most annota-1471

tors tend to stop after only a few examples. This dis-1472

tribution of annotators results in overall insufficient1473

annotation quality. Pre-qualification tests are of-1474

ten used to shift this distribution from the "average1475

worker" towards more experienced or dedicated1476

annotators; however, this requires a significantly1477

larger budget and greater micro-management in-1478

volvement from the researcher.1479

C.2 Consistency1480

Usually, when annotating a dataset, more than1481

one annotator is involved. This applies to crowd-1482

workers, experts, and even LLMs— in this study,1483

we use an ensemble of different LLMs and prompts.1484

The use of multiple annotators, similar to an en-1485

semble, is meant to overcome the variance between1486

individuals, which can arise from the subjective1487

nature of NLP tasks, different interpretations of1488

instructions, lack of experience, task difficulty, and1489

cognitive bias (Uma et al., 2021).1490

As such, a common practice in the NLP commu-1491

nity is to report Inter Annotator Agreement (IAA)—1492

a set of statistical measures used to evaluate the1493

agreement between individuals. Typically, IAA1494

can be viewed as an adjustment of the proportion1495

of pairwise agreements, where 0.0 indicates ran-1496

dom agreement. We focus on Fleiss’s κ (Fleiss,1497

1971), as it accounts for label imbalance and mul-1498

tiple (> 2) annotators. High IAA, or low variance1499

between independent annotators, is considered an1500

indicator of high-quality annotation. In Table Ta-1501

ble 4, we report the agreement between annotators1502

across different approaches. For LLMs, we report1503

two variants: (1) same model, different prompts; 1504

and (2) different models, where each model’s result 1505

is the aggregation across prompts. For reference, 1506

we also include the IAA from the original annota- 1507

tions, as reported in the original papers: MNBM 1508

reported an average Fleiss’s κ of 0.696 for the hal- 1509

lucination annotation task; BEGIN reported Krip- 1510

pendorff’s α (a generalization of Fleiss’s κ) of 0.7; 1511

VitaminC reported Fleiss’s κ of 0.7065 on a sample 1512

of 2,000 examples; and PAWS reported a 94.7% 1513

agreement between a single annotator’s label and 1514

the majority vote on the Wikipedia subset used in 1515

TRUE. 1516

Experts While it’s true that reconciliation natu- 1517

rally leads to increased agreement, the significant 1518

improvement in IAA we observed highlights its 1519

importance. Though this phase is less common in 1520

practice, it is crucial not only for increasing agree- 1521

ment but also for improving the overall quality of 1522

annotations and ensuring more reliable outcomes. 1523

Interestingly, label changes in this phase were not 1524

symmetric, as most changes (69.3%) were in the 1525

direction of consistent → inconsistent, where one 1526

annotator found an inconsistency that the other did 1527

not (see all change details in Figure 11). It is impor- 1528

tant to note that the κ obtained by the experts (both 1529

before and after reconciliation) was calculated on 1530

a more challenging subset, where the original label 1531

differed from the LLM prediction, and should be 1532

interpreted with this context in mind. This is re- 1533

flected in the decrease in κ observed for all other 1534

annotator groups on this subset. 1535

LLMs GPT-4 and PaLM2, the better-performing 1536

LLMs on this task, show high IAA, with κ = 0.706 1537

and κ = 0.75, respectively, which is similar to the 1538

experts’ reported κ. This suggests a comparable 1539

level of variance and quality in annotation, pro- 1540

viding further empirical evidence for considering 1541

LLMs as annotators. This property adds to previ- 1542

ous studies showing LLMs’ quality as surrogates 1543

for human preferences (Zheng et al., 2023) or eval- 1544

uations (Chiang and Lee, 2023). 1545

Crowd-Sourcing. Crowd workers showed near- 1546

random agreement, indicating relatively poor- 1547

*Multiple MTurk workers have participated in annotation,
yet exactly 3 annotations per example were obtained. Annota-
tors independence assumption was made to calculate Fleiss’s
κ as with 3 annotators.

†These MTurk annotators were chosen with stricter pre-
qualification criteria than those in the TRUE dataset and do
not correspond to the MTurk line in the TRUE table.
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Annotator group Fleiss’s κ %agreement #examples Fleiss’s κ
(disagree. sub-
set)

#annotators

Experts 222 2
Before reconciliation 0.486 75.7 0.486
After reconciliation 0.851 93.2 0.851

MTurk 0.074 60.5 400 -0.004 3*

LLM (different prompts) 640 4
GPT-4 0.706 85.3 0.571
PaLM2 0.750 87.7 0.696
LLaMA3 0.219 71.7 0.078
Mistral 0.459 73.2 0.314

LLMs (different models) 0.521 77.5 640 0.389 4

Table 4: Inter-Annotator Agreement in different annotator groups. %agreement is the proportion of pairwise
annotator comparison. Fleiss’s κ (disagree. subset) refers to the κ over the subset of disagreement between LLM
and the original label.

Annotator group Krippendorff’s α %agreement #annotators

Experts 0.584 60.4 3

MTurk† 0.496 65.6 5

LLM (different prompts) 4
GPT-4o 0.760 63.6
Gemini 1.5 Flash 0.733 79.7

LLMs (different models) 0.576 62.9 2

Table 5: Inter-Annotator Agreement in different annotator groups on the SummEval benchmark. %agreement is the
proportion of pairwise annotator comparisons.

4.5%

19.8%

39.5%

36.3%

Mix
All

inconsistent

consistent

Figure 8: Distribution of crowd-source annotators. Each
example was annotated by 3 workers. Plain segments
are unanimous annotation, while dotted segments indi-
cate examples where some annotators labeled as incon-
sistent, and other as consistent. For example, 19.8% of
the examples had two inconsistent annotation, and one
consistent annotation.

quality annotations. Figure 8 describes the dis-1548

tribution of annotations by MTurk workers. Only1549

40.8% of the examples were labeled unanimously,1550

whereas the rest included annotations from both1551

classes. In addition, if aggregating by majority1552

vote, we get that 75.8% of the examples are labeled1553

as consistent, which is far from the original distribu-1554

tion of classes. As mentioned before, even experts 1555

may miss a small inconsistency nuance, and finding 1556

it requires attention. Even from the subset of ex- 1557

amples unanimously labeled as consistent, 37.9% 1558

have a label of inconsistent in both original and 1559

gold labels, which points to a lack of attention and 1560

thoroughness. 1561

SummEval. Table 5 shows the IAA analysis on 1562

the SummEval benchmark. We report Krippen- 1563

dorff’s α (Krippendorff, 1970), a generalization of 1564

κ to account for ordinal labeling. LLMs exhibit 1565

high IAA (compared to experts’ IAA) of α = 0.57 1566

and 62.9% agreement between models, with high 1567

consistency across prompts for the same model. 1568

Crowd-workers obtain decent results (maybe due 1569

to stricter pre-qualification criteria of 10,000 ap- 1570

proved HITs), yet they still fall short compared to 1571

experts or LLMs. 1572

C.3 Cost and Scalability 1573

In MTurk platform, a total of 400× 3 = 1200 an- 1574

notations cost 572$, including 2 small pilot experi- 1575

ments. All annotations were prepared within a few 1576

hours. However, it demanded an additional and sig- 1577

nificant time for review, after which rejected exam- 1578
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ples returned to the pool. This annotation-review1579

cycle was conducted for ∼ 5 iterations. Infer-1580

ence via OpenAI’s API on GPT-4 cost ∼ 4.5$ per1581

prompt. Inference via VertexAI’s API on PaLM21582

cost ∼ 0.15$ per prompt. Both took ∼ 8 minutes1583

per prompt. Inference on Mistral and Llama31584

was via the HuggingFace API, and its cost is esti-1585

mated by the cost of using a suitable Virtual Ma-1586

chine (VM) on Google Cloud Platform (GCP) for1587

the time of inference (1 minute per model)- ∼ 0.1$1588

per prompt.1589

LLM-based annotation is significantly cheaper1590

and faster than crowd-sourcing platforms like1591

MTurk, especially when considering the additional1592

time required for human review cycles. It is esti-1593

mated to be 100 to 1,000 times more cost-effective1594

than using human annotators, including experts.1595

This scalability and speed make LLMs a highly ef-1596

ficient alternative for large-scale annotation tasks.1597

D Annotation1598

D.1 Crowd-source1599

Each example was annotated by three annotators,1600

who in addition to the binary label were requested1601

to provide their confidence in their answer, and also1602

write a short explanation for why they chose this la-1603

bel. Pre-qualifications included 50+ approved HITs1604

and 97%+ approval rate, which are at standard scale1605

for the MTurk platform (Kazai et al., 2013; Hauser1606

et al., 2021; Chmielewski and Kucker, 2019). Also,1607

locations were limited to [USA, UK, Australia],1608

which are all English-speaker countries. We dis-1609

abled the possibility of right-click and Ctrl+c in1610

the platform (as suggested by (Veselovsky et al.,1611

2023a)), to prevent (as much as possible) the case1612

where generative-AI (e.g., ChatGPT) will be ap-1613

plied to solve the task instead of humans solv-1614

ing it themselves (as shown by (Veselovsky et al.,1615

2023b)). The maximum time allowed per HIT was1616

6 minutes, while the actual average execution time1617

was 2:20 minutes for all assignments, and 3 min-1618

utes for approved assignments. The guidelines pro-1619

vided to annotators and the annotation platform1620

layout are presented in Figure 9.1621

Each annotation was manually reviewed and was1622

rejected if the answers were not in line with the in-1623

structions, or if it was obvious that the task was not1624

done honestly. Overall, this task suffered from a1625

high rejection rate of 49.2% (1163 rejected, 12001626

approved). The main rejection reasons were: lack1627

of meaningful explanation, obvious copy-paste an-1628

notations across different examples, explanations 1629

contradicting the label annotation, and cases where 1630

the explanation was a copy-paste of either the 1631

grounding or the statement. 1632
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Figure 9: Platform for crowd-sourcing annotation in Amazon Mechanical Turk (MTurk). (Top) Guidelines for the
task and definitions. (Bottom) Annotation layout for a single instance.
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Figure 10: Annotation platform on Label-Studio for experts

D.2 Experts1633

Experts annotation was using the platform of Label1634

Studio. 1 Layout design is presented in Figure 10.1635

Examples were presented in random order, and1636

neither the LLM prediction nor the original label1637

were presented during the annotation. In the first1638

stage, each example was annotated independently1639

by both experts. Afterward, the human experts1640

began in a second phase of a reconciliation, where a1641

discussion was made over examples they disagreed1642

over. This reconciliation phase ended up with a1643

much higher agreement and higher-quality labels.1644

In the reconciliation phase, we observed that1645

most changes (69.3%) were from label 1 to label1646

0, indicating that contradictions might be hard to1647

find, and not all annotators catch them at first. For1648

the full distribution of label change in the reconcil-1649

iation phase, see Figure 11.1650

12.8%

17.9%

46.2%

23.1%0  1
1  0
Annotator #1
Annotator #2

Figure 11: How experts’ annotations have changed after
the reconciliation phase. Most changes occur from 1
(consistent) to 0 (inconsistent).

1https://labelstud.io/

D.3 LLMs 1651

To annotate a total of 160 × 4 = 640 exam- 1652

ples from four different datasets, we used four 1653

LLMs: GPT-4 (gpt-4-1106-preview) (Ope- 1654

nAI, 2023), PaLM2 (text-bison@002) (Anil 1655

et al., 2023), Mistral (7B)2 (Jiang et al., 2023) and 1656

Llama 3 (8B)3 (Dubey et al., 2024). 1657

Each model was run with four different prompts 1658

(see full prompts in Figure 12). We used a variety 1659

of terminology, as this task appears to have differ- 1660

ent framings in different studies. For example, the 1661

premise-hypothesis terminology from classic NLI 1662

(MacCartney and Manning, 2009), or document- 1663

statement used in (Tam et al., 2023). 1664

For API models (GPT-4, PaLM2), we set tem- 1665

perature=0.0 and extracted the logit of the 1666

generated token (functionality provided by both 1667

APIs), if the generated token was either ’0’ or 1668

’1’ as expected. This logit was then transformed 1669

into a probability pt = P (y = t|x) via exponent 1670

corresponding the generated token t, and 1− pt for 1671

the other label. To address the case where the first 1672

generated token was an unrelated token such as ’ 1673

’, ’\n’, we set max_tokens=2 and took the 1674

first appearance of either ’0’ or ’1’. For all mod- 1675

els, prompts and examples, ’0’ or ’1’ were in 1676

the first two generated tokens. Rest of parameters 1677

were set according to their default values. 1678

For models available through the HuggingFace 1679

API (e.g., Mistral, Llama 3), we can load the model 1680

2https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

3https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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parameters and make inference locally. In that case,1681

we get access to logits for all tokens, instead of1682

just for the generated ones. Therefore, we applied1683

a similar procedure, where we seek for the first1684

appearance of either ’0’ or ’1’ to be the most1685

probable token to be generated, and then directly1686

extracted the logits of the ’0’ and ’1’ tokens.1687

These logits were transformed into probabilities1688

(P (y = 0|x), P (y = 1|x)) via a softmax function.1689

E Data1690

For our main experiments, we used the TRUE1691

benchmark for factual consistency. Specifically,1692

we focus on four TRUE datasets, one from each1693

task (summarization, dialogue, fact verification,1694

paraphrasing):1695

MNBM (Maynez et al., 2020): Summarization.1696

This dataset provides annotations for hallucinations1697

in generated summaries from the XSum dataset1698

(Narayan et al., 2018). Grounding refers to the1699

source document that the summary is based on,1700

while Generated Text consists of model-generated1701

summaries, which may include hallucinated infor-1702

mation not present in the source. Three human1703

annotators, trained for the task through two pilot1704

studies, annotated the dataset for the existence of1705

hallucinations. In TRUE, the binary annotations1706

were determined by majority vote.1707

BEGIN (Dziri et al., 2022): Dialogue. This1708

dataset evaluates groundedness in knowledge-1709

grounded dialogue systems, where responses are1710

expected to align with an external Grounding1711

source, typically a span from Wikipedia. Gener-1712

ated Text refers to model-generated dialogue re-1713

sponses that were fine-tuned on datasets like Wiz-1714

ard of Wikipedia (Dinan et al., 2019). Data was1715

annotated into entailment/neutral/contradiction la-1716

bels, by three human annotators, trained for the task1717

through two pilot studies, aggregated by majority1718

vote. In TRUE, binary annotations were then deter-1719

mined by the entailment/not-entailment partition.1720

VitaminC (Schuster et al., 2021): Fact Verifica-1721

tion. This dataset is based on factual revisions of1722

Wikipedia. The evidence, or Grounding, consists1723

of Wikipedia sentences, either before or after these1724

revisions. Most human involvement came from1725

creating Generated Text rather than the annotation1726

process, with annotators writing claim/evidence1727

pairs derived from Wikipedia revisions, inherently1728

generating labeled data for fact verification. Syn- 1729

thetic examples from the FEVER dataset (Thorne 1730

et al., 2018) were also included. Additionally, three 1731

annotators reviewed 2,000 examples, presumably 1732

to ensure data quality. 1733

PAWS (Zhang et al., 2019): Paraphrasing. 1734

This dataset consists of paraphrase and non- 1735

paraphrase pairs. Grounding refers to source 1736

sentences drawn from Quora and Wikipedia, 1737

while Generated Text was automatically gener- 1738

ated through controlled word swapping and back- 1739

translation. Five human annotators annotated the 1740

dataset with binary labels w.r.t paraphrasing cor- 1741

rectness. The dataset includes both high- and low- 1742

agreement annotations. 1743
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prompt1 

Here are two texts: 

TEXT 1. <..PREMISE..>. 

TEXT 2. <..HYPOTHESIS..>. 

 

Is TEXT 2 contradictory or is it factually inconsistent with TEXT 1? If yes answer 0. 

Is TEXT 2 entailed or is it factually consistent with TEXT 1? If yes answer 1. 

Refer only to the two texts above, and not any other external knowledge or context. 

Answer only 0 or 1 

Answer only with one token: 0 or 1 

 

Answer:  

 

prompt2 

DOCUMENT: <..PREMISE..>. 

 

QUESTION: Is the following STATEMENT factually consistent with the above document? 

 

STATEMENT: <..HYPOTHESIS..>. 

 

ANSWER FORMAT: 0 for No, 1 for Yes 

 

Answer only with one token: 0 or 1 

 

Answer:  

 

prompt3 

You are given the two following texts: 

TEXT 1. <..PREMISE..>. 

TEXT 2. <..HYPOTHESIS..>. 

 

TEXT 1 is a fact. TEXT 2 is a statement. Is TEXT 2 factually consistent with TEXT 1? 

Answer 0 for No, 1 for Yes. 

Answer only with one token: 0 or 1 

 

Answer:  

 

prompt4 

Given the following texts: 

<PREMISE> : <..PREMISE..>. 

<HYPOTHESIS> : <..HYPOTHESIS..>. 

 

Please assess the factual consistency of <HYPOTHESIS> with respect to <PREMISE>. 

If the content of <HYPOTHESIS> aligns with the information provided in <PREMISE>, assign a label of 1. 

If there are factual inconsistencies between <HYPOTHESIS> and <PREMISE>, assign a label of 0. 

 

Target Format: either 0 (for Factual Inconsistency) or 1 (for Factual Consistency). 

Answer only with one token: 0 or 1 

 

Answer:  

Figure 12: Four different prompt input templates to LLMs for obtaining binary labels
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Figure 13: Similar experiments to the one in Figure 5, with small alterations. (Left) Starting from a different base
model - pre-trained DeBERTa-v3-base. (Right) Dashed columns present results for when flipping or filtering
methods were applied only on the training set, but not the validation.

F Mislabeled Data Implications1744

F.1 Fine-tuning1745

Hardware. For the finetuning of DeBERTa mod-1746

els, both the base pre-trained model, and the NLI1747

model which is in the same size, in subsection 7.1,1748

we used 2 Quadro RTX6000 (24GB) GPUs.1749

Implementation. We finetuned starting from two1750

base models: DeBERTa-v3 4, and a fine-tuned ver-1751

sion of it on classic NLI datasets 5. We used Hug-1752

gingFace trainer with early stopping of 4 epochs.1753

The finetuning procedure includes splitting the1754

training set into train and validation sets (where1755

validation size is 25% and train 75%), fine-tuning1756

on the train set, and choosing the best checkpoint1757

based on the validation ROC AUC. We ran all ex-1758

periments on five different seeds, affecting also the1759

train-validation split and the random set chosen for1760

ablation. We fine-tuned all variants with the same1761

hyperparameters, determined by the best perform-1762

ing on the no-manipulation baseline. This includes1763

30 epochs at most, batch size of 16, learning rate1764

of 5e-5 and weight-decay of 0.03. The rest were1765

set as the trainer and model default.1766

Additional Experiments. The left plot in Fig-1767

ure 13 presents the same experiment discussed in1768

subsection 7.1, but starting from the pre-trained1769

DeBERTa-v3-base. Same trends applies here,1770

where our LLM-confidence-based manipulations1771

of either flipping or filtering flagged examples out-1772

performs the baselines.1773

4microsoft/deberta-v3-base
5MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli

The right plot in Figure 13 compares the per- 1774

formance of these methods (starting from the NLI 1775

model) when applied to both the training and val- 1776

idation sets (solid bars) or only the training set 1777

(dashed bars). The results are consistent, with no 1778

statistically significant differences between the two 1779

settings. Importantly, all variations outperform the 1780

baseline, underscoring the critical role of a well- 1781

curated training set in enhancing the model’s ability 1782

to generalize effectively. 1783

F.2 Model Evaluation 1784

In subsection 7.2 we evaluated the following 1785

models: GPT-4, PaLM2 (text-bison@002), 1786

Mistral-v0.2 (7B), and Llama3 (8B), which are 1787

covered in subsection 4.2; DeBERTa-v3 and NLI- 1788

model, which is a fine-tuned version of it on NLI 1789

datasets, as discussed in subsection 7.1; and GPT- 1790

4o, GPT-4o-mini, Mistral-v0.3,6 which share the 1791

same implementation as GPT-4 or Mistral-v0.2. 1792

G Statistical Analysis 1793

G.1 Clopper-Pearson 1794

As mentioned in subsection 5.1, we employed the 1795

Clopper-Pearson exact method (Clopper and Pear- 1796

son, 1934) to construct a 95% confidence interval 1797

for the binomial proportion, adjusted by a finite 1798

population correction (FPC). As we only have a 1799

subset of examples we re-annotated by LLMs or 1800

experts, we can not precisely determine what is 1801

the error rate in the full dataset, but only construct 1802

a confidence interval based on the re-annotated 1803

6https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3
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subset. The Clopper-Pearson method provides an1804

exact confidence interval for a binomial proportion,1805

which means it gives a reliable estimate even with1806

small sample sizes. By applying FPC, we adjust1807

the interval because our sample is drawn from a1808

limited population. This adjustment helps refine1809

the estimate by taking into account the size of the1810

overall dataset compared to the sample.1811

G.2 Bootstrap sampling1812

In subsection 5.1, we use bootstrap sampling to1813

provide confidence intervals for each bin. While1814

not necessarily the first to introduce it, (Xia et al.,1815

2012) explored bootstrap confidence intervals on1816

ROC AUC. Unlike the method in Appendix G.1,1817

we do not make claims about the entire dataset,1818

but rather focus on the re-annotated subset we pos-1819

sess. To achieve this, we perform 100 bootstrap1820

samples from the empirical distribution of each bin,1821

sampling with replacement. We then measure the1822

agreement between the experts’ resolutions and the1823

LLM annotations, compared to its agreement with1824

the original label.1825

H Label Errors1826

Table 6 demonstrates one example per dataset, in1827

which the original label is, in fact, an error, the1828

LLM prediction marked it as a candidate, and the1829

expert annotators determined the correct gold label.1830

1831

1832
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Dataset: VITC
Grounding: The British Government and NHS have set up a Coronavirus isolation facility at Arrowe Park Hospital in
The Wirral for British People coming back on a special flight from Wuhan. Evacuation of foreign diplomats and citizens
from Wuhan. Due to the effective lockdown of public transport in Wuhan and Hubei province , several countries have
started to evacuate their citizens and/or diplomatic staff from the area , primarily through chartered flights of the home
nation that have been provided clearance by Chinese authorities.

Generated Text: There is a Coronavirus isolation facility at Arrowe Park Hospital that was set up by the NHS and
the British Government

Original Label: 0 LLM p: 0.99 Gold Label: 1
Explanation: Rephrasing of the first sentence, without any contradiction.

Dataset: BEGIN
Grounding: Hillary Clinton, the nominee of the Democratic Party for president of the United States in 2016, has
taken positions on political issues while serving as First Lady of Arkansas (1979–81; 1983–92), First Lady of the United
States (1993–2001);

Generated Text: She is the nominee in 2016.

Original Label: 0 LLM p: 0.98 Gold Label: 1
Explanation: She (Hillary Clinton) is indeed the nominee in 2016 as specifically stated in the
grounding.

Dataset: PAWS
Grounding: David was born in Coventry on 21 September 1933 , with his twin Charles and Jessamine Robbins , the
eighth and ninth children of twelve by Robbins.

Generated Text: David was born on September 21 , 1933 in Coventry with his twin father Charles and Jessamine
Robbins , the eighth and ninth child of twelve of Robbins

Original Label: 1 LLM p: 0.04 Gold Label: 0
Explanation: The generated text incorrectly states "twin father" instead of "twin" which is not the
same, and does not even make much sense in English.

Dataset: MNBM
Grounding: The John Deere tractor was pulled over by officers in the village of Ripley and had two other males
on board. The vehicle had been seen in nearby Harrogate at about 05:00 GMT with no headlights on. Police said the
driver had no licence, was not insured and did not have permission from the tractor’s owner. The vehicle was seized,
with the three due to be interviewed by officers. Posting on Twitter, Insp Chris Galley said: "A strange end to a night
shift. 15-year-old lad driving a tractor as a taxi for his drunk mates."

Generated Text: a 15-year-old boy has been stopped by police after being seen driving a taxi on a night taxi.

Original Label: 1 LLM p: 0.19 Gold Label: 0
Explanation: The generated text claims that the 15-year-old boy was "driving a taxi on a night
taxi", contradicting the grounding in which it was claimed that the boy was driving a tractor as a
taxi

Table 6: Annotation errors in the original datasets, discovered by LLMs and corrected by experts.

27


	Introduction
	Related Work
	LLM as an Annotator and Detector
	Experimental Setup
	Data
	Annotation Procedure

	Label Errors: Analysis and Detection
	Do current benchmarks include mislabeled data?
	Can LLMs Detect Label Errors?

	Comparing Annotation Approaches
	Implications of Mislabeled Data
	Training on Mislabeled Data
	Evaluating on Mislabeled Data

	Discussion
	Appendix
	 Appendix
	Additional Experiments - SummEval
	Data
	Definitions
	Experimental Setting
	Experiments and Results
	Can LLMs Detect Label Errors?
	The Power of Ensemble
	Annotation Approaches Comparison


	The Power of Ensemble
	Comparing Annotation Approaches
	Annotation Quality
	Consistency
	Cost and Scalability

	Annotation
	Crowd-source
	Experts
	LLMs

	Data
	Mislabeled Data Implications
	Fine-tuning
	Model Evaluation

	Statistical Analysis
	Clopper-Pearson
	Bootstrap sampling

	Label Errors


