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ABSTRACT

Federated learning is a popular distributed learning paradigm in machine learning.
Meanwhile, composition optimization is an effective hierarchical learning model,
which appears in many machine learning applications such as meta learning and
robust learning. More recently, although a few federated composition optimiza-
tion algorithms have been proposed, they still suffer from high sample and com-
munication complexities. In the paper, thus, we propose a class of faster adaptive
federated compositional optimization algorithms (i.e., MFCGD and AdaMFCGD)
to solve the nonconvex distributed composition problems, which builds on the
momentum-based variance reduced and local-SGD techniques. In particular, our
adaptive algorithm (i.e., AdaMFCGD) uses a unified adaptive matrix to flexibly
incorporate various adaptive learning rates. Moreover, we provide a solid theo-
retical analysis for our algorithms under non-i.i.d. setting, and prove our algo-
rithms obtain a lower sample and communication complexities simultaneously
than the existing federated composition optimization algorithms. Specifically, our
algorithms obtain lower sample complexity of O(e~3) with lower communication

complexity of 0(6*2) in finding an e-stationary solution. We conduct numerical
experiments on robust federated learning and distributed meta learning tasks to
demonstrate the efficiency of our algorithms.

1 INTRODUCTION

Composition optimization is an effective hierarchical model in machine learning, which is widely
used to many applications such as reinforcement learning Wang et al] (2017H); Huo ef all (ZOTH),
meta learning Wang et al] (P021)), robust federated learning Huang et al] (Z0214) and deep AUC
maximization [Ynan ef all (Z027). In the paper, we study the following distributed composition
optimization problem:

min % Z Eem [fm (EC"" [gm(.%‘; Cm)] ; fm):| 7 (D

where F'(z) := ﬁzn]\le f™(x) and f(z) = Egm [fm (]Egm [g’”(a:;(m)};fm)} Here y™ =

g™ () = Eemasm [g™(2;¢™)] and f™(y™) = Eemopm [f™(y™;€™)] for any m € [M] denote
the inner and outer objective functions respectively in m-th client. Here £™ and (™ for any m €
[M] are independent random variables follow unknown distributions D™ and 8™ respectively. For
any m,j € [M] possibly D™ # DI, 8™ # S/ and D™ # S7. Applications of Problem ()
involve many machine learning problems with a compositional structure, which include model-
agnostic meta learning Mufunov ef all (Z020); Chenef all (Z020R); Wang et al] (Z021), reinforcement
learning Wang et all (P(1T7R); Huo ef-all (20TX) and sparse additive models Wang et all (Z0T74). In
the following, we give two specific applications that can be formulated as the distributed composition
Problem (I).

1). Task-Distributed Meta Learning. Meta learning is to learn some properties in the optimal
model to improve model performances with more experiences, i.e., learning to learn Andrychowicz
efall (ZOT6). Model-Agnostic Meta Learning (MAML) Finn“efall (200177) is a class of popular meta
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Table 1: Sample and Communication complexities comparison of the representative federated
compositional optimization algorithms in finding an e-stationary point of the distributed composi-
tion optimization problem (W), i.e., E| VF(z)|| < € or its equivalent variants. ALR denotes adaptive
learning rate.

Algorithm Reference Sample Complexity | Communication Complexity | ALR
ComPFedL Huang et al| (Z0214) 0(e9) O(e )
Local-MOML Wang et al] (2021) O(e7) O(e73)
FEDNEST Tarzanagh et al] (2022) O(e™) O(e™%)
Local-SCGDM Gao et all (2027) O(e™ %) O(e73)
MFECGD Ours O(e™?) O(e7?)
AdaMFCGD Ours O(e79) O(e7?) v

learning methods, which is to find a common initialization that can adapt to a desired model for
a set of new tasks after taking several gradient descent steps. In the paper, we consider a class of
task-distributed MAMLS, where a set of tasks {7, }}/_, are drawn from a certain task distribution
and each task is assigned in each client. Specifically, we solve the following task-distributed MAML
problem:

1

M
min - S (@ = nVm(), 2
m=1

where [ (z) = Eemopm[f(x;€™)], and random variable {™ follows the unknown distribution
D™, and i) > 0 is a learning rate. Let f™(y™) = f™ (¢ (x)) and y™ = g™ (z) = x —nV f"(x),
the above problem (D) is a special case of the above composition problem ().

2). Distributionally Robust Federated Learning. Federated learning (FL) McMahan ef all (2017);
Kaironz_ef all (P01Y9); Ci_ef-all (P02T4) is a distributed and privacy preserving machine learning
method to learn a global model collaboratively from decentralized data distributed over a network of
devices. To tackle the data heterogeneity from different devices, some robust FL algorithms Maohri
ef_all (201Y9); Reisizadehef all (P020); Deng_et all (Z020R) have been studied. In the paper, as in
Huang et al] (Z02Ta), we consider solving the following distributed composition problem to reach
distributionally robust FL, defined as

. 1 - M. M
iy 57 3 (Bl @

where g™ (z) = E[g™ (z;£™)] denotes the loss function in the m-th client, and f(-) is a monotoni-
cally increasing function. Clearly, the problem (B) is a special case of the above problem ([I).

Although recently many compositional gradient algorithms have been proposed to solve the com-
position problems, few distributed algorithms focus on solving the distributed composition opti-
mization problems. More recently, Huang et al] (20214); Wang et all (2021)); Gao_ef all (2022);
larzanagh et al] (Z022) proposed some federated compositional gradient algorithms for the distribut-
ed stochastic composition problems. However, few adaptive algorithm focuses on the composition
optimization problems under the distributed setting. Meanwhile, these existing federated compo-
sition optimization methods suffer from large sample and communication complexities (Please see
Table M). Then there exists a natural question:

Could we develop faster and adaptive federated learning methods to solve the dis-
tributed composition optimization problem () ?

In the paper, we provide an affirmative answer to the above question and propose a class of
faster momentum-based federated compositional gradient descent algorithms (i.e., MFCGD and
AdaMFCGD) to solve Problem (), which build on the local Stochastic Gradient Descent (SGD)
and momentum-based variance reduced techniques to obtain lower sample and communication com-
plexities simultaneously. Our main contributions are as follows:

(1) We propose a class of faster adaptive momentum-based federated compositional gradient
descent algorithms (i.e., MFCGD and AdaMFCGD) to solve the nonconvex distributed
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composition problems, which build on the momentum-based variance reduced and local-
SGD techniques. In particular, our adaptive algorithm (i.e., AdaMFCGD) uses a unified
adaptive matrix to flexibly incorporate various adaptive learning rates.

(2) We provide a solid convergence analysis framework for our algorithms under non-i.i.d.
setting, and prove that our algorithms obtain simultaneously lower sample complexity of
O(e~3) and lower communication complexity of O(e~2) than the existing federated com-
position methods for finding an e-stationary solution (Please see Table ).

(3) Experimental results demonstrate efficiency of our algorithms on the task-distributed meta
learning and robust federated learning tasks.

2 RELATED WORKS

In this section, we overview some representative composition optimization, federated optimization
and adaptive optimization methods, respectively.

2.1  COMPOSITION OPTIMIZATION

Composition optimization has been widely applied to many applications such as reinforcement
learning Wang_ et al] (P0T7H), model-agnostic meta Learning Mufunov_ef-all (02(]) and risk man-
agement Huo“ef all (ZOIX). Recently, many compositional gradient-based methods have recently
been proposed to solve these composition optimization problems. For example, stochastic com-
positional gradient methods Wang et all (20T74;R); (Ghadimi“efall (2020) have been proposed to
solve these problems. Subsequently, some variance-reduced compositional algorithms Huo ef-all
(POTR); Cin“ef-all (POTX); Zhang & Xiao (2019) have been proposed for composition optimization.
lufunov_ef all (2020); Chen ef all (ZO20R) presented a class of momentum-based compositional
gradient methods for stochastic composition optimization. More recently, Jiang et all (2027) pro-
posed a class of efficient momentum-based variance reduced methods for non-convex stochastic
composition optimization. Huang & Gad (2027) studied the stochastic composition optimization on
Riemannian manifolds.

For the distributed setting, Huang et al] (2021a) firstly studied federated learning algorithm for the
general distributed composition optimization. Meanwhile, Wang_et al] (Z021) studied personal-
ized federated learning algorithm based on the composition optimization. Subsequently, Gao efal
(P0027); [Tarzanagh et al] (2027) proposed some accelerated federated learning algorithms for the
distributed composition optimization.

2.2 FEDERATED LEARNING

Federated Learning (FL) McMahan ef all (2017); Liefall (Z02T14); Zhang et al] (Z027) is a promising
distributed machine learning framework for collaboratively training the global model without shar-
ing the local data to obtain the privacy-preserving learning solutions, and is widely used in many
applications such as healthcare informatics Xu efall (2021)) and automatic diagnosis of COVID-19
Yang et al] (2021). McMahan et all (20T7) first studied FL and proposed the FedAvg algorith-
m for FL based on local-SGD algorithms Sfich (2019), where each client conducts multiple steps
of SGD with its local data and then sends the learned model to the server for averaging. Sub-
sequently, Ci—ef-all (2019); Karimireddy et all (2019); Deng & Mahdavi (2021) have studied the
convergence properties of the local-SGD and FedAvg algorithms or their variations. To acceler-
ate the vanilla local-SGD and FedAvg algorithms, various accelerated FL algorithms Mian & Ma
(2020); Karimireddy et al] (2020); Khandurief all (2021)); Chen"ef all (20204) have been develope-
d and studied. For example, Karimireddy et al] (Z020) proposed a stochastic controlled averaging
algorithm for FL by adopting the variance-reduced technique of SARAH Nguyen et al] (20177)/SPI-
DER Fang et all (2018). Subsequently, Khandurief all (Z02T) proposed a faster federated algorithm
based on momentum-based variance reduced technique of STORM [Cutkosky & Orabong (P0119) and
ProxHSGD [ran-Dinh-ef all (2027), which obtains lower sample and communication complexities
simultaneously.

To solve the data heterogeneity in FL, Mohri_ef all (Z(0T9); Deng et al] (2020R) proposed some ef-
fective robust FL algorithms by learning the worst-case loss based on the minimax optimization
problems. To further incorporate personalization in FL, some personalized federated learning mod-
els Fallah“ef"all (2(020)); Deng et al] (2020a); ICirefall (PZ0721H) have been developed and studied. For
example, Liefall (ZO2TH) proposed an effective and efficient personalized FL algorithm (i.e., Ditto)
by learning a regularized local model for each client.

3
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2.3  ADAPTIVE OPTIMIZATION METHODS

Adaptive optimization methods Duchi_ef"all (P0T1)); Kingma & Ba (207T4) are a class of efficient
optimization methods due to using adaptive learning rates in machine learning, and they have been
widely studied in machine learning community. For example, AdaGrad [Duchiefall (Z01T) is the first
adaptive gradient method. Adam Kingma & B4 (Z(014) is a popular variation of AdaGrad algorithm
based on the momentum technique, which is the default optimization algorithm for training large-
scale machine learning models. Meanwhile, some variants of Adam algorithm Reddi_ef-all (2019);
Chen"ef all (0TY9) have been proposed to obtain a convergence guarantee under the nonconvex
setting. To further improve the performance of Adam algorithm, recently some new its variants
such as AdamW LCoshchilov & Huffer (Z01IR) have been developed. More recently, some accelerated
adaptive gradient methods Cutkosky & Orabona (?001Y); Huang et all (Z02TH) have been proposed
based on the momentum-based variance reduced techniques. In parallel, some adaptive gradient
methods Reddi“ef-all (2020]); Chen ef all (2020c) are proposed for distributed optimization. For
example, Reddief all (2020) proposed a class of adaptive federated algorithms for FL by using
adaptive learning rates at the server side.

NOTATIONS

Let [M] denote the set {1,2,--- , M}. || - || denotes the £5 norm for vectors and Frobenius norm for
matrices. (x,y) denotes the inner product of two vectors x and y. For vectors x and y, " (r > 0)
denotes the element-wise power operation, x/y denotes the element-wise division and max(z, y)
denotes the element-wise maximum. [I; denotes a d-dimensional identity matrix. A > 0 denotes
that A is a positive definite matrix. a; = O(b;) denotes that a; < cb; for some constant ¢ > 0. The
notation O(-) hides logarithmic terms. Il [z] = arg min||, <c ||z — w||? denote a projection onto
the ball with radius C' > 0.

3 FEDERATED COMPOSITIONAL GRADIENT DESCENT ALGORITHMS

In this section, we propose a class of faster momentum-based federated compositional gradient de-
scent algorithms (i.e., MFCGD and AdaMFCGD) to solve the problem (), which builds on the
local-SGD and momentum-based variance reduced techniques. Specifically, the local-SGD tech-
nique reduce the communication complexity and the momentum-based variance reduced technique
reduce the sample complexity without relying on large batches. Meanwhile, our AdaMFCGD al-
gorithm uses the unified adaptive matrix to flexibly incorporate various adaptive learning rates in
updating variables. Specifically, Algorithm [ provides a procedure framework of our MFCGD and
AdaMFCGD algorithms.

In Algorithm 0, when mod(¢,q) = 0 (i.e., synchronization step), the server receives the local
variables {z"}M_, and local gradients {w!™}¥_, from the clients, and then averages them to obtain
the averaged variables {Z;} and averaged gradients {w; }. Based on these averaged gradients {w; },
we can generate some adaptive matrices {A;};>1 (i.e., adaptive learning rates). Note that for our
non-adaptive MFCGD algorithm, we only set A; = I for all ¢ > 1 in Algorithm [. Besides one
example given at the line 6 of Algorithm [, we can also generate many other adaptive matrices. For

example, we can generate adaptive matrix A; as the norm-type of Adam, defined as
ar = Va1 + (1 = 9y)||wef|, A¢ = diag(as + p), “)
where 0 < 1J; < 1. Note that we can directly choose o, B; or g; instead of ¥J; to reduce the number

of tuning parameters in our algorithm. Next, based on these adaptive matrices, we can update the
variable z in the server, then sent it to each client.

When mod(t, g) # 0 (i.e., asynchronization step), the clients receive the updated variables {Z;11 }
and the generated adaptive matrices { A; } from the server. Then the clients use the momentum-based
variance reduced technique of STORM [Cutkosky & Orabond (P01Y) and ProxHSGD [ran-Dinh
ef all (2027) to update the stochastic gradients based on local data: for m € [M]

hity = g™ (@} Ci) + (U= apgr) (R — g™ (2 (1))
uﬁ-l = Hcg {ng(x?-ls-ﬁ Cﬁl) +(1— 5t+1)(u3sn — Vg™ (x"; Cﬁl))}

Uﬁ& = Hcf [me(hﬁﬁ 5211) +(1— Qt+1)(”ln - Vf(h;n; fﬁl))}v
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Algorithm 1 MFCGD and AdaMFCGD Algorithms

1: Input: T, ¢, tuning parameters {7, 7, ay, B¢, 0¢ } and initial input z; € R%;
2: initialize: Set 27" = x, for m € [M], and draw 2q independent samples {{{";}9_; and
{¢1}9=1, and then compute hi* = = 327 g™ (a7 (%), uf* = ¢ 205, Vg™ (27" ({?;) and

ot = ¢ 305, V(R €77 for all m € [M]; Generate adaptive matrix A, € R

3: fort =1to 7T do
4: if mod (¢,q) = 0 then
3 W = 37 Zn]\le wy" and Ty = 7 E%:l Ty
6: Generate the adaptive matrix A; € Raxd,
One example of A; by using update rule (ap = 0,0 < 9 < 1, p > 0.)
Compute a; = Jraz—1 + (1 — 94)wi, Ay = diag(\/ar + p);
7: T = Typ = argmingega {(x,w,ﬁ + ﬁ(w — i‘t)TAt (z — it)}; (Sent them to
Clients)
8: else
9: for each client m € [M] (in parallel) do
10: wit = (u)Tom;
3 m m T m .
11: x;’j_lzargmmwew{@,wt >+ﬁ(xfxt ) Az — )},
12: At+1 = At9
13: end for
14:  end if
15:  for each client m € [M] (in parallel) do
16: Draw two independent samples £;7} ; and ¢/} 1;
17: T = g™ (@ () + (U= ) (B — g™ (2% ()5
18wl =To, Vo™ (i (i) + (1= Bu) (uf = Vg™(ars i) |
19: oty = o, [V (A €0%) + (1= o) (0" = VIR €) ]
20: wity = (u ) oy
21:  end for
22: end for

23: Output: Chosen uniformly random from {Z;}{_,, where Z, = 47 Zi\r{:l al.

where a1 € (0,1), Big1 € (0,1) and o441 € (0,1). Here the projection functions ¢, [ - | and
Il¢, [-] ensure that the estimated stochastic gradients u}" ; and v} are bounded, i.e., |u" || < Cy
and |[v}} || < Cy for any ¢ > 1. Based on the estimated stochastic gradients and adaptive matrices,
the clients update the variables {z!"}M_,  defined as
1 T
™ =2 — A A7 M = ar min{xwm —— (o —2]") Az — 2 }, 5
t+1 = T — YMAy Wy g i (z, t>+2nt,}/( 7 A i) ®)

where v > 0 and 7; > 0. In our algorithms, all clients use the same adaptive matrix generated
from the server as in Chen_ef-all (2020d). Note that the existing adaptive FL algorithms such as
local-AMSGrad Chen”ef-all (20200d) only builds on some specific adaptive learning rates such as
AMSGrad Reddiefall (201T9). However, our algorithms can use the unified adaptive matrix to
flexibly incorporate various adaptive learning rates.

4 CONVERGENCE ANALYSIS

In this section, we study the convergence properties of our MFCGD and AdaMFCGD algorithms
under some mild assumptions. All related proofs are provided in the Appendix Bl. We first review
some useful lemmas and assumptions.

Assumption 1. (Lipschitz Gradients) For any m € [M], there exist constants Ly and L, for
V™ (y; €M), Vg™ (x; (™) respectively satisfying

Vg™ (21,¢™) = Vg™ (@2, ™) < Lyller — wall, Var, 22 € RY,

IV (y1:€™) = V™ (y2; 8" < Lyllys — wall, Yy, 42 € RP.
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Assumption 2. (Bounded Gradients) For any m € [M), gradient Vg™ (x; (") and Jacobian matrix
V ™ (y; ™) have the upper bounds Cy and C'y respectively, i.e.,

Vg™ (;¢™)| < Cg IVF™(y: €™ < Cy, Vo € R, y € RV
Assumption 3. (Bounded Variances) For any m € [M], functions f™(y;&™) and g™ (xz;¢™)
and its gradients are unbiased and the bounded variances, i.e., we have E[g™ (x; (™)] = ¢™(x),
E[Vg™ (z;¢™)] = Vg™ (x), E[Vf™(y; €™)] = V™ (y) and

Ellg™ (z;¢™) = g™ (2)|* < 0®, E[Vg™ (2;¢™) = Vg™ (2)]* < o®,

V" (y:6") = V" W)|* <o? VreR? yeR?
where o > 0.
Assumption 4. F(x) has a lower bound, i.e., F* = inf ,cga F(z).
Assumption 5. In our algorithms, the adaptive matrix Ay for all t > 1 satisfies Ay = ply, where
p > 0 is an appropriate positive number.
Assumption 6. For any m,j € [M], z € R% and y € RP, we have |V f™(y) — Vfi(y)| < 4y,
IVg™(z) — Vg (z)|| < 04 and ||g™ (z) — g7 (z)|| < &4, where §; > 0 and 6, > 0 are constants.

Assumptions [ ensures the smoothness of functions f™(y; &™), g™ (x; (™) for any m € [M],
Assumption @ ensures the bounded gradients (or Jacobian matrix) of functions f™(y;£™) and
g™ (x; (™) for any m € [M]. Assumption B ensures the bounded variances of stochastic gradi-
ent or value of functions f™(y; &™) and g™ (x; (™) for any m € [M]. Assumption B guarantees
the feasibility of the problem (). Assumptions -8 have been commonly used in the convergence
analysis of the stochastic composition algorithms Wang_ et al] (Z017a;H). Assumption B has been
commonly used in the existing adaptive methods Huang et al] (P02TH). Assumption B is the stan-
dard condition constrained the data heterogeneity in non-i.i.d FL setting Li_ef-all (Z01Y). In fact,
we can obtain the part results of Assumption B based on Assumptions I-D. For example, we have
V™ (y) — Vfi(y)|| < 20 + 2C}, where the last inequality holds by Assumptions I-2. Similarly,
we have | Vg™ (y) — Vg’ (y)| < 20 + 2C, based on Assumptions [I-2.

4.1 CONVERGENCE PROPERTIES OF ADAMFCGD ALGORITHM

In this subsection, we provide the convergence properties of our AdaMFCGD algorithm.

Theorem 1. Assume the sequence {Z;}1_, be generated from AdaMFCGD algorithm. Under the
above Assumptions, and let n; = Wfor allt > 0, apy1 = C177t2, Biy1 = 0277?, Ot+1 = 0377t2,

n > max (2, k%, (c1k)?, (c2k)?, (c3k)?, %) k>0 ¢ >3 +B > 55+ 50?,

(29)*¢*+*L},C5, 2 p(cl—%—cg)l/4 . 3pqLs,Cy, n/3p
9p7 . €3 > 35 +5C7, T2vBqLs,Cpy = ) < Tin 1(C21L2+2L2C7) 2Lk )’

22712 22712
272 cCy Ly ©p>(ci+c3) _ 272 c5C Ly 0>
B> 2OCQLf + 2163 L% C3, + 30¢271C%, L3, C2 0= 5Cng + 864¢3y3L% C7 ) (24)2L3,C3, +

A+ <

B02 2
C§+L§+2L?C§) and@—l— W S 5p we have

S 7
6qLsyCyrq 48

2Gn/° V2G| 1L
- - 2
ZEHVF < (Spre + s )\ 7 2 B ©
where C%, = max(C},C3), L3, = L3CE + L2, G = WG 4 12 g (i o
C2 62 C:2 0'2 <
7(3;;218)]% ) In(n + T) and 6* = 2¢; L30* + c30° + 4c367 + 4c3 L7307 + c50° + 3¢50,

Remark 1. Under the above Assumption B, we have || >t (Vg™ (z ))Tme(gm(;it))H <
CyCy. When the adaptive matrix A, be generated from the llne 6 of Algorithm W, we have

\V E Zthl E|| A2 < 2(C?C§+p). Without loss of generality, let k = O(1), p = O(1), ¢; = O(1),
co =0(1), c3 = O(1) and n = O(¢?), we have and G = O(1). Let ¢ = T'/ and

1 <& ~ V4 1 </ 1
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then we have T = 0(6_3). Since our AdaMFCGD algorithm requires 2 samples at each itera-
tion expect for the first iteration requires 2q samples, it has a sample complexity of 2q + 21" =
O(e™3). Thus, our AdaMFCGD algorithm requires O(e=2) sample (or gradient) complexity and
L_12/3= O(e 2) communication complexity to find an e-stationary point of the Problem ().

Remark 2. From Theorem W, our AdaMFCGD algorithm simultaneously have lower sample and
communication complexities than the existing federated compositional optimization algorithms
(Please see Table ). Moreover, our AdaMFCGD algorithm simultaneously have lower sample
and communication complexities than the existing adaptive single-level FL algorithms such as the
local-AMSGrad Chen_et-all (?020d) algorithm that needs sample complexity of O(e~*) and com-
munication complexity of O(e3) for finding an e-stationary point of the distributed single-level
optimization problem, i.e., the above problem (W) with g™ (x) = x for all m € [M].

4.2 CONVERGENCE PROPERTIES OF MFCGD ALGORITHM

In this subsection, we provide the convergence properties of our non-adaptive MFCGD algorithm,
ie.,set Ay = I forallt > 1.

Theorem 2. Assume the sequence {Z;}1_, be generated from MFCGD algorithm ie, Ay = 1, for
allt > 1in Algorithm 0. Under the above Assumptions, and let 1, = Wfor allt >0, g1 =
c1n?, Bry1 = can?, 0i41 = c3m?, m > max (2, k3, (c1k)3, (c2k)?, (csk)3, (24kvqL1,Cly) ), k>
01> 2o+ B, ey > 22 +5C2 3+ < PV LG

c 2, 2\1/4
g~ fg _2_ 2 _(ei4e3) /"
Cc3 Z 3k3 +50 s 12\/@Lfgcfg S Y S
: 3qL4Cfqg n!/3 272 4 3CoLY O(ci+c3) _ 272
mm ( A(C2+L2+2L2C2)" 2Lk )’ B 22005 L% + 5153 w‘L?JC;g + 304271C3, 12 C2’ O = (5CFL; +
CZLZ BC
c3 ) 1 + i <02+L2+2L202> and@—O—W S i’ we have

86443 73L§90;J (207L7,C7, " 6aL;,Cyg

T
1 ~ 2GnYS  \/2G
= Y E|VF(@,)| <

- T1/2 T1/3” (8)

T F nl/ o’ A2
where 3, = max(C},C2), L3, = L3C3 + L2, G = ALEIT0  ampe? 4 g2 (8 o
52 62 C2 U2 Q
%) In(n + T) and 6* = 2¢; L30* + c30° + 4¢307 + 4c3L30; + c50° + 3¢50
Remark 3. The proof of Theorem O can totally follow the proofs of the above Theorem I with the
parameter p = 1. Without loss of generality, let k = O(1), c1 = O(1), c2 = O(1), 3 = O(1) and

n = O(q?), we have and G = O(1). Let ¢ = T"/3 and

—ZEHVF <0(\{T+Tf/3):0~(T}/3)<e, ©)

then we have T' = 0(6_3). Since our MFCGD algorithm requires 2 samples at each iteration expect
for the first iteration requires 2q samples, it has a sample complexity of 2q + 2T = O( —3). As
the above AdaMFCGD algorithm, our MFCGD algorithm also obtain lower sample complexity of
O(e~3) and communication complexity of O(e~2) in finding an e-stationary solution of the Problem

().

5 NUMERICAL EXPERIMENTS

In this section, we apply some numerical experiments to demonstrate efficiency of our MFCGD and
AdaMFCGD algorithms on the robust federated learning and distributed meta learning tasks. Note
that the experiment on distributed meta learning task is given in the Appendix Bl. In the experiments,
we compare our algorithms with the existing federated composition optimization algorithms in Table
[ for solving distributed composition optimization problems.
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Figure 1: The performances of various FCO methods are evaluated on a synthetic imbalanced dataset
based on MNIST, with a focus on addressing the distributed problem (). The results are visualized
using four plots: the first two show the accuracy(%) and loss on the training set, while the last two
show the accuracy(%) and loss on the test set. These plots provide insights into how the FL methods
perform on imbalanced data and their effectiveness in improving model performance while ensuring
fairness across different clients.

5.1 ROBUST FEDERATED LEARNING

In this subsection, we evaluate the efficacy of our algorithms by performing a distributionally robust
federated learning task defined in (B). Specifically, this robust federated learning problem can be
rewritten as into a distributed composition optimization problem as in Huang et al] (20213),

M
1
in — "(2)/2) 10
gﬁ@gM;f(g (@)/X), (10)
where f(-) = exp(-/\) and A > 0 is a regularization parameter. In fact, we can also use some other
monotonically increasing functions instead of f(-).

In the experiments, we tackle a multi-class classification problem on the MNISTLeCun ef-all (20T()
dataset with a 3-layer Convolutional Neural Network (CNN) which is widely used in this task. The
experiments are conducted on a network comprising 10 clients and 1 server. To introduce data im-
balance across clients, we randomly select one client to have a larger dataset of 5000 images, while
the remaining clients have a significantly smaller dataset of only 20 images. This unequal distri-
bution of data aims to create a challenging scenario where the algorithm must focus on the hardest
and most important task, namely the client with the dominant number of images, to achieve good
performance. In this way, we can test the algorithm’s adaptability and ability to handle this highly
imbalanced dataset. In these experiments, we performed a grid search to identify the optimal hy-
perparameters for each method, which we discussed in detail in subsection BZ1. We set the learning
rate to 0.01 for all methods and used in our Algorithm [ for adaptive matrix generation. We fixed
the total number of training steps to 500 and set the asynchronization step q to 5 if not specified.

From Figure [, we can find that our MFCGD and AdaMFCGD algorithms have a faster convergence
rate and more stable optimization processes compared to the other composition federated optimiza-
tion algorithms, partly contributes to momentum-based variance reduced strategy. Specifically, the
experimental results show that our algorithms outperformed the existing composition federated op-
timization approaches, such as ComFedL Huang et all (20214), FEDNEST [[arzanagh et al] (2022),
and Local-SCGDM [Gao“ef-all (2027), in terms of both accuracy rates and cross-entropy losses.
Moreover, the comparison between MFCGD and AdaMFCGD methods highlighted the advantage of
the unified adaptive matrix, which flexibly incorporates various adaptive learning rates. Meanwhile,
Figure @ demonstrates the robustness of our AdaMFCGD algorithm by varying the asynchronization
step q. It is worth noting that our AdaMFCGD achieves its optimal performance when ¢ = 1, as
this implies that an adaptive matrix is calculated in each iteration, allowing the momentum-based
variance reduction technique to fully showcase its potential.

Figure D shows the robustness of our AdaMFCGD algorithm by varying the regularization parameter
A. The results indicate that our AdaMFCGD algorithm achieves good test accuracy and low test loss
with different \. Moreover, when decreasing A, our AdaMFCGD algorithm converges much faster,
especially when running multiple local epochs. As in Huang et all (20213d), A is a penalty parameter
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Figure 2: Comparing the accuracy(%) (left) and cross-entropy loss (right) on different synchroniza-
tion step ¢ and different regularization parameter A, respectively, on our AdaMFCGD algorithm

in distributionally robust FL that penalizes divergence between r = (rq,---,7p) and 1/M =
(1/M,--- ,1/M), where r,,, € (0,1) for any m € [M] denotes the proportion of m-th client in the
entire mode. A larger A means places more emphasis on bringing the original proportion parameter
r.m closer to the average weight 1/M. Since the optimal weights in our dataset are far from 1/M,
we should select A relatively small. The results in Figure I also confirm that our AdaMFCGD
algorithm converges much faster with smaller A. Specifically, our AdaMFCGD algorithm converges
much faster, when choosing A = 0.2 or A = 0.5 compared to that A = 2 in terms of both accuracy
rate, cross-entropy loss on true labels and convergence speed.

6 CONCLUSION

In the paper, we proposed a class of faster adaptive momentum-based federated compositional gra-
dient descent methods to solve the nonconvex distributed composition problems based on the local-
SGD and momentum-based variance reduced techniques. In particular, our adaptive algorithm (i.e.,
AdaMFCGD) uses a unified adaptive matrix to flexibly incorporate various adaptive learning rates
further accelerate algorithm. Moreover, we established a solid convergence analysis framework for
our methods, and proved that they obtain lower sample and communication complexities simultane-
ously than the existing federated composition optimization methods.
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A CONVERGENCE ANALYSIS

In this section, we provide the detailed convergence analysis of our algorithms.

. . ~ M _ M
We first introduce some useful notations: @y = 57 > g Wi Tt = 37 Domet T

1 X 1 U T
Fla)= =3 Mg @), VE@) =32 3 (Vg™ (@) V7 (g (@),

Next, we review and provide some useful lemmas.
Lemma 1. Given M vectors {u™}M_,, the following inequalities satisfy: |[u™ + v/||?> < (1 +

i M M
)™ + (1 + [ || for any ¢ > 0, and || 3=, w™||* < M 32, [Ju™]]

Lemma 2. Given a finite sequence {u™}M_,, and u = 3; Z%:l u™, the following inequality

. M _ M
satisfies Yy, lu™ —al|* < S0 [Jlu™|*

Given a p-strongly convex function ¢(x), we define a prox-function (Bregman distance) Censor &
Cenf (T981); Censor & Zenios (T997) associated with (z) as follows:

D(z,7) = ¢(2) = [p(z) + (Vo(2), 2 — z)]. oy
Then we define a generalized projection problem as in Ghadimief all (ZO16):
1
2t = argmin {(z,w) + =D(z,2) + h(z) }, (12)
zeEX ol
where X C R?, w € R4 and ~ > 0. In the paper, we consider h(z) = 0. Meanwhile, we also define
a generalized projected gradient (a.k.a., gradient mapping):
z—xt
Y

Lemma 3. (Lemma 1 in Ghadimi_et-al) (?(16)) Let x+ be given in (I2). Then, for any v € X,
w € R% and v > 0, we have

Gx(z,w,v) = (13)

1
(w, Gx(a,w,7)) = pllGa (z, w, )| + p [A(z™) = h(z)], (14)
where p > 0 depends on p-strongly convex function p(z).

When h(z) = 0, in the above lemma B, we have

(w,gx(x,w,'y» Zp||gx(x,w,'y)||2 (15)

Lemma 4. (Restatement of Lemma 1) Given the above Assumptions 0-D, the function F(x) is L-
smooth, i.e., for any 1,5 € R?, we have

IVF(21) = VF(z2)[|* < L?|Ja1 — 22|, (16)

where L = /QC]%LEJ + QC'gL?.

Proof. Based on Assumptions I-2, the deterministic functions f™(y) = E[f™(y;¢™)] g™ (z) =
IE[ fm(z; Cm)} and its gradients also satisfy the Lipschitz gradients and bounded gradients. For
example, for any y;,y2 € R"”

V™ (1) = V™ )| = |E[VS™(w1:6™) = V(€M)
<E(|Vf™y;€™) = V™ ys )| < Lyllys —vell, (A7)

where the first inequality holds by Jensen’s inequality, and the last inequality holds by Assumption
m.

13
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Since F(z) = 4 M| f™(g™(x)), we have

IVEF (1) = VF ()]

ZV=1
= 37 2 (T ) 9" @) — (967 02) T )+ (97 2) O )
—(wm( 2) V" (g™ ()|
M ) 1 M )
Z?OfHVg 1) = Vg™ (z2)| +MZ2O§||me<gm<x1>)—me<gm<x2>>||
m=1
<QCfL2||$1 —1‘2“2—1-204[/ Hl‘l —l‘2H2 (20fL2+204L2)Hl‘1 —.1?2” (18)

where the second last and the last inequalities hold by Assumptions [-D.

O

Lemma 5. (Restatement of Lemma 2) Assume the gradient estimator {w; }1_, generated from Al-
gorithm [, where wy; = M Z _, wi, we have

M
1 _ m m m m =
I = VP @O < 57 3 (2C§Hur—ng<xt>||2+4c§|\vt = VIR + ACZLE R — g™ @) ).
19)
Proof. Since 0y = - M (u*) v, we have
lw: — VF(z)|”
1 M M
=77 > " Z )TV (" @)
m=1 m=1
M M 1 M M
=l O (" Z @) o+ S (V@) o - S (V@) TV ) P
m=1 1=1 m=1 m:
1 M
< 37 2 200 = Vo @l + ch?n o=V g @)
202 M 202
A -V az>||2+—-"2||vt = VIR VL) = T (g @)
m=1
2 M 2 M M
onut z)[1* + ﬁgz A GOl —g" @),
) . (20)

where the first inequality is due to Assumptions - and the above Lemma [II.
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Lemma 6. Suppose that the sequence {Et}tT:I be generated from Algorithm M, where T, =
& ap Let 0 <y < 3L, then we have

M 2 2
B - 1 2Cmey o 40Ty | ———
F(Ee) < (@) + 37 D (05 it = Vg™ @) + =25 = V)
m=1
40T Liney
F R = g @I ) = 5 = @

Proof. According to the above Lemma B, the function F'(z) is L-smooth. Thus we have
- _ s - L _ -
F((Et+1) S F(.Tt) + <VF((E15), Ti41 — (Et> + §||$t+1 — iUtHQ (22)

_ o _ _ o _ L, _
= F(Z¢) + (W4, Ty1 — Tt) + (VEF(Ty) — Wp, Tyy1 — Tt) +§H5€t+1 —Z*.

=T =T

According to Assumption B, i.e., A; > pl, for any ¢t > 1, the mirror function ¢;(z) = %xTAtx is
p-strongly convex, then we can define a Bregman distance as in Ghadimiefall (2016),

Dile,70) = @ula) = [pulen) + (Ve o 2] = 50— 20T Ao — 7). @3)

When t = s, = q[t/qJ + 1, according to the line 7 of Algorithm [, we have ;41 =
argmin, cpa { (0, z) + m(x —7;)" Ay(x — ;) }. By using Lemma 1 in Ghadimi_ef all (707T6)
to the problem 7,4, = arg min,ega { (@, ) + 5, (z — &))" A¢(x — ) |, we can obtain

1 1
(wy, m(ft = Typ1)) > P\\m(ft — Z)|I”- (24)

When t € (s;,5; + q), according to the line 11 of Algorithm 0, we have z}}, =
arg min,ega { (wf", z) + 5, (v — 2")" A (z — 2}") }. Similarly, we have

1
wyt, —(z]" — x > pl|l— —x 2 (25)
(wy rm( ¢ ) an( HEpl
Then we have
M
1 1
R <w7TL’ (:I:TYL _ TYL > pi || H2
Mm:1 t 77t’Y t t+1 § : t+1
1 M 1
>p ™ — 2™ )% = pll— (& — Ter) |2 (26)
||mMm:1< P I = ol (@ = Fe)
Thus we have
1 1
wh, — (% — & > ol|l— (7 — T 2, (27)
(wy nw( t = Te41)) PHUW( t — Tyt

Since w; = ﬁ Zn]\le wy", averaging the above inequality (27) from m = 1 to M, we can obtain

1 l 1
(y, ntV(xt —Tty1)) = i Z wy" Jee — (&t — Ty11))
M
1 1 1
> ps — (T — Ze1)||* = pll— (& — Ter) I 28
=i 2 ||77w($t Zi)|I” = o nw(ﬁﬂt Tiy1)]| (28)
Then we have for any t € [s¢, s¢ + q),
Ty = (W, Tpg1 — Ty) < —HLH@JA - ft||2~ (29)
t
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Since s; = q|t/q| + 1 and all t € [s, s¢ + q), clearly, we have, forall ¢ > 1
[ - P = = 112
Ty = (W4, Try1 — &) < *nTHl"tH — T [|" (30)

Next, consider the bound of the term 75, we have

(VE(Zy) — Wy, Tp1 — Ty)
IVE (%) — | - | Teg1 — T
ey

[ V)
IA

| /\

CIVE@) @l g we - GD)

where the first inequality is due to the Cauchy-Schwarz inequality and the last is due to Young’s
inequality. By combining the above inequalities (), (BO) with (&), we obtain

L
F(Zey1) < F (%) + (VF(Z¢) — Wi, Tp1 — Tg) + (Wg, Trp1 — Tp) + *||5€t+1 —z?

L
< F(z:) + ’7”||VF< 0) — || + mnmm — | —mnxm — @l + Sl —
_ nw _ _ _ P L., _ _
= F (%) + ||VF( t) — wt||2 - m”ﬂﬁtﬂ - It||2 - (m - §)||17t+1 - l’t||2
< F(#) + m||VF< e e e

<@+ L3 ( f; Ju* = V" @) + =2 o = V1 )
m=1

4C Ly
F R = g @) = 5w =l (2)

where the second last inequality is due to 0 < v < ﬁ, and the last inequality holds by Lemma B.

O

Lemma 7. Under the above assumptions, and assume the stochastic gradient estimators
{ht Jupt, vt }t | be generated from Algorithm I, we have, for any m € [M]

|}y — g™ (271 )]? < (1= awe) B[ — g™ (@]")I* + 2074107
+2CTE|z}}, — a; ||2, 33)

Elluiiy — Vg™ (@fi)II? < (1= Bern)E|uf® — Vg™ (@) + 257107
+2L7E ||z, — o |%. (34

Ellvft, — V™) < (1 — or1)ElJof" — V™ (R™)|? + ALFCIE| 2}y, — 27|
+207110° + 807 | LIE| R — g™ (27| + 8L}of 0%, (35)

Proof. Without loss of generality, we only prove the above inequality (B3), and it is similar to the
other inequalities. Since v}’ = Il¢, [me(ht_H, &)+ (1= ops1) (v = V™ (b ft’ﬁ_l))} , wWe
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have
Elofy — V™ (R
= E||te, [V (b1 600) + (1= o) (0] = V™ (R €81))] = e, [V ()] ||
SE[V (s &0) + (1= o) (0" = V™ (R €580)) = V™ (R
= E||(1 — 01) (0" — V(W) = 001 (V™ (B, — V™ (hy5€04))
+ (1= 011) (V™5 600) = VT (R €000) — V™ (W) + V™ (b)) H2
= (1 — 041)°E|jv)* — Vf™(h)")||* + EHQt+1(vfm(hﬁl> = V™ (hia5€51))
— (1= 001) (V™ (g €021) — V™ (s €00) — V™ (hy) + V£ (b)) ||
< (1= 0p41)°Eljof* = Vf™(RP)|* + 207, E ’me( 1) — VI( ﬂ-1§§ﬁ1)”2
+2(1 — 0012 VI (R 5 €0) — V™ (R ) — V™ (R ) + V™ ()|

m m m m m m m m m 2
<(1- Qt+1)2]E||Ut -Vf (ht )”2 + 29?+1‘72 +2(1 - Qt+1)2||vf ht+1§ ft+1) -Vf (ht §§t+1)H

< (1= 0er1) Ellof" = V™ ()P + 207 110° +2(1 — 0141)*LIE[ h%y — By,
where the third equality holds by the following fact:

(36)

Eep, [oer1 (V™ (h) = V™ (hi1:6750)) — (L= ) (V™ (W13 €50) — V™ (A5 €710)

= VfM(h) + VT (RT))] =0,

and the second last inequality holds by the inequality E||¢ — E[¢]||?> < E||¢||* and Assumption B;

the last inequality is due to Assumption .

Since bty = g™ (a1 G71) + (1 — @) (" — g™ (2773 G224)) . we have

El|hi4 —h{** =E[g™ (2515 Cha) — 9" (@5 G _at+1(hm — 9" (2" ¢) )H2
< 2E[lg™ (213 ¢) — 9™ (@ ¢ H2‘|‘20‘t+1E||hm g™ (@5 Ga)
< 20§||33t+1 — Ty H2 + 2at+1E||h;" —g"(x" 7Ct+1)||2
=207 |ty — 2|1 + 208 Elh — g™ (27" () + g™ (@) — g™ (2

I?

< 203”%11 — Ty H2 +40‘t+1E”hm g" (x4 )H2 +40¢?+1U2,
where the second inequality holds by Assumption , .
Combining the above inequalities (BA) with (B4), we have
Elvft, — V™ (h)1?
< (1= 0e41)*Ellof" = V™ (WP + 207 110° + 2(1 — 0111)*LIE| hf%, — BT
< (1= 04 )Ellvf" = V™ (h{)|? + 207 1107 + 4AL3C] |2y — 2|2
+ 8O‘t+1L?E”h? g™ (@ )”2 + 8Lfat+102
where the last inequality holds by 0<ory1 <1

O
Lemma 8. Based on the above Assumptions [I-0 and B, we have

M M

SRV Zwﬂ (h])|* < 8L3 S E|R - g™ (@) + 4AM6F + AML367,
m=1 m=1

M

> E| Ve () Z ? <61 Z Elz* — &> + 3M6}
m=1 J: m=1

M LM - M

Ellg™ ) — <= S g @) <602 3 Bl - wl? + 3053,

m=1 Jj=1 m=1
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( I
< 205 [l — 2|1 + Ao EllR — g™ (@f)|1? + Ao Ellg™ (27 ¢) + 9™ (@
(

(37

ol
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Proof. Consider the term Zm LE|Vm(he) - 5 Zj” L VF(h) H we have

M
ZEvam hm Zvj‘] h]
= ST E|VImB) - V(g7 (@) + VMG ——vaj ))+MZW](9 (z4))

1 M o | M o -
_M_va](gj(jt)”MZW](QJ(@))—MZVfJ(hg)H

M M
< X BV he) =9 @)l +Z4EHW’” m( —ﬁzww @)

m=1

M M
IS D RTITNES S LT ES L DRI UEVES DRl
» j=1
M

Z E||[hi* — g™ ( H2+4Z ZEIIW’” ™(Z4)) — V(g™ (z))]?

M M M
1 m (= | (7 2 1 m(~ m||2
+4L} Z 57 2 llgm @) =g @7+ 413 Y 57 DT Elle™ (@) - hy|
m=1 j=1 j=1 m=1
<8L} > E|hi" — g™ (z,)|* + 4M5F + AM L3657, (38)
m=1
where the last inequality holds by Assumption B.

Next, we have

M | M ,
Y E[Ven @) = 57 D Ve @)
m=1 j=1
M | M M | M -
= Y E||Vg" (&) = Vg™ (#:) + Vg™ (Z) — i Y VG (@) + > Ve (®) - i > Vgl (=)
m=1 j=1 j=1 j=1
M 1 & ; 2
< 3 5T - Vel + 3 38 - > Ve
m=1 m=1 Jj=1
M LMo LM
+ >0 3E| 5 YoV @) — 57 Y Ve )
m=1 j=1 j:l
M

M M

. 1 . o
E E|z™ — 24| + 3 E E E|Vg™(Z:) — Vg’ (z4)||* + 3 EIM ElHng(jt)ngJ(xi)Hz
— o jran

M
<6Ly Y Bl —z* + 3Md,

(39
m=1
where the last inequality is due to the above Assumption B.
Similarly, we can obtain
M M - M
> Ellg™ @) = 7 D¢ @D <607 Y Ella} - z|* + 3M6g. (40)
m=1 j=1 m=1
O

18
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Lemma 9. Suppose the iterates {x*}1_,, for all m € [M] generated from Algorithm 0 satisfy:

M
D Elap -z <
m=1

P m m o __
where Ty = 55 Zm gyt Ayt ==

m__m
Ty —Tyy

(qfl)i:v2

l=s¢

M
n Y Eld" - di)?,
m=1

T B
Land d; = ==L,

ey

Proof. According to the lines 7 and 11 of Algorithm [, we have

m __ ,..m -1, . m __ : m
Tt = o = A i = arg min {(w",z) + 5
_ _ -1 . _
Ty = Ty — YAy @ = arg min {(wy, z) +
xT

and then we define the gradient mappings as in the above (I3): d}* = G -

2y

2y

Jt:w:At_lwt:ﬁZf\led?foranyme [M]and ¢ > 1.

ney

From the line 7 of Algorithm 0, when ¢t = s; = ¢|t/q] + 1, we have z]* = Z; =

any m € [M], so the about inequality in the lemma holds trivially.

When t € (s, s¢ + q), we have

t—1

3;;”‘ = J;:': — Z ’y’l]ld;n7 and x; = Ts, — Z ’YT}lCZl-

l=s;

Thus we have

ZEH% & = \
= Z EH ( Z ymdy®

l=s¢

where the above inequality is due to ¢ — s,

Lemma 10. Ler C7, = max(C},C7), L}

( Z ymd* —

le

t—1
=Y i) H

l=s;

<g¢—1

g = L?C’g—i-Lg and n; <

l=s¢

t—1 2
> mdi) H

l=s¢

(41)

(z —z)" Ag(w — jt)}»

(¢—1) szmzzﬁlldm di||?,

l=s¢

O
P
3174L,,C5, forallt >

<

0. Further let ayyy = c1n?, Biy1 = can? and o141 = c3n?, c1,¢a,c3 > 0 and ¢ + c3

0t 1,
9p?

st+q—1 M

Z U Z]EHd;"—d}HQ

t=s¢ m=1
st+q—1 2/ 92 st+q—1
6M A P2 +c3)
< 5 Z neEllde]|* + 120q 2 402 Lfc 2 Z "t
t=s¢ 979 t=s,

2. Set sy =q|t/q| +1andt € [sy, s, + q — 1], we have

Z Ehy* — g™ (@) +

where 6% = 201L202 + 302 + 4035120 + 4C§L§c5§ + c30% 4 3c30%.

Proof. According to the lines 7 and 11 of Algorithm [, we have

m 3 m
x}%, = arg min {(w

t+1 ¢

+ z€R4 ’

Ze+1 = arg min {(wt, ) +
xr

T) + —
) 2ny

2my

19
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and then we define the gradient mappings as in the above (3): d" = mzn;;iﬂl = A; 1w{” and

dy = it;t# = A7 wy = 2 Z , di* forany m € [M] and t > 1. Then we have

M M
Bl —di]* = Y ElA;  (wpt — @) < Z E|lwj" — | (43)
m=1 m=1 m=1
1 M 1 M
= 5 D BT = @) o+ ) o= @) o+ ()" Z Ty
m=1 =1
_1y (3CZENo — vl + BCIE]up" — > + 3] (a0 LS T
~ p? m=1 ' ' 4 ! ! YT M z ¢

=1

where the first inequality holds by Assumption B, i.e., A; = pI, for all t > 1, and the last inequality
holds by [uf"||* < CZ and [|5¢||* < C’]%. Consider the term ||(;) 70, — 25 Z%ZI(UT)TWZ”HQ, we
have

1 M 1 M
(@) o, — i D () o1 = (@) o — i (u) o)
m=1 1 ; m=1
< o7 2 @) 5 = () o
m=1
1 M
= 37 2 @) 5 = @) "o + (@) "o = () o
1 li
<> <2C§||vt — 5?4 203w — e ) (44)
m=1

By combining the above inequalities (B3) and (B4), we have

2 M

9C? c? M
Z Elldy* — il < =5 3 Elloy" =il + J Z Eflu — %, (45)

m=1

Lett = s; = q|t/q|+1. Whent = st, we have v} = ¥, and u}* = 4, for any m € [M], so we have
SM_E|or — 5,2 = 0and XM Eflu — @2 = 0. According to the above inequality (&3),

when ¢t = s;, we have Zm:l E|ld™ — d¢||?> = 0. Clearly, the about inequality (&2) in the lemma
holds trivially.
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When t € (s¢, st + q), we first consider the term Z LElop — v, H as follows:

M

> Efley — || (46)
m=1
M 9
Hvt ~ 3 Z o
m:l

M

M
El|Te, [V (75 €7) + (1= 00 (o — V™ (L 6)] — 22 D Tho, [V (567

(1= o) (0", — V(s 6)] |

Mi + iMi HM

1 M
B[V (067 + (1= 00) (v = V™ (s M) = 22 > (Vs )

m:l

3
&

(1= o) (v = V(s 6m) ) |1

M M
1
< +v)(1=0) DBl — o)+ (14 2) D B[V (R €7
m=1 m=1
1 M M
SV — (1 0 (V) — 2 S V)
m=1 m=1
Then, we consider the last term of (E8):
Z E(|V ™ (hy"; &) Z VIR Em) — (1= 00) (V™ (B 11 &) Z VM)
M
m m m m m 1 m m m m m
:ZEHW (5" = V™ (W &) = 57 D (VI (B €)= V™ (45 67)
m=1 m:l
M
JFQt(Vf (R 1;6") Z (g5 & )H
M m M
<2 E[|VIM(ATER) — VI H2+2@tZE||me hy &) Z ol
m=1 m=1 m=1
M M
s2L§ZEHh?—h:'LlH2+2QtZEHWm h 1 67) — Z "Ry, @D
m=1 m=1

where the second last inequality is due to Young inequality and the above Lemma D.
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Consider the term Z%zl V(R &™) — 37 Z%zl Vi (hP 1 6M) ®, we have
M
S v e o v
m=1 m=
M LM
= DIV g = Vi) = 57 D (VF (") = V™ (R))
m=1 m=1
M M
<23 (IO — VIO — 7 3 (VI = V)|
m=1 m=1

+22vam tl szfm

1 M
<o 3 VI )~ VA 2 S ) - = > V)|
m=1

m=1 m=1
M
<2Mo® +16L3 Y E|hi", — g™ (Ze—1)|* + 8M} + 8M L35, (48)
m=1

where the last inequality holds by the above Lemma B.
Since A" = g™ (@} () + (1 — au) (A — g™ (27" 11 (7). we have

E|[Ry" — b4 |

=Ellg™ (2" ¢") — g™ (@ 13 ¢") — o (b — g™ (2 ¢) P

< 2E|g™ (x5 G™) — g™ (@) o5 CZ”)II2 + 207 E[hi%y — g™ (2 15 ¢
<207 ||} — x4 |1 + 207 B[ A — g™ (2 ¢ )HQ

=207 |2} — i || + 207 E[[ Ay, — m(wt 56T g (@) — g™ ()|
<2C2th -zl 1||2+404 E[[R{"y — g™ (" )||2+4a EHQ CHEHEDE (wl’ll)llz
<20 ||x — 24 |1* + 4afBlA — g™ (22| + 4afo?

=207 |x" — a1 ||* + 4afE[| Ry — g™ (Te—1) + g™ (T-1) — g™ (22 1) || + dafo?
§2C§H$t —xt—1||2+80‘t]E||ht 1= 9" (Te-1)

where the second inequality holds by Assumption 3.

22

Ty ||2+8at02||xt L — ™|+ 4a20?,  (49)
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By combining the above inequalities (B6), (&1), (BX) and (B9), we have

M

> Ef — v (50)
M 1 M

<(14v)(1-0)° Z Ellv"y — 1) [? + (1 + ;) Z E||V ™ (hi*; &)
m=1 m=1

M:

M
) — (- o) (VI () — 22 D0 VI ) |
m=1

m =~ 1 m m
<(1+v)(1- o)’ Z Ellvf”, — Ut—1)||2 +(1+ ;) (4[‘?‘092 Z Ellz;* — xt71||2

m=1 m=1
M M
+16a7L% Y B[R — g™ (@e-1)|? + 1607 L3C2 > B[z — 2", |* + 8MLjajo”
m=1 m=1

M
+4Mofo® + 320717 > Kl — g™ (Z-1)||” + 16M 767 + 16MLfgt52>
m=1

M M
m = 1 m 7
<@U+v)1-0)® S Elofty - on)|? + (1 + V)(8L202m 7 S B —

m=1 m=1
M M
8L2C2n?  ~? El|d;_1||* + 16 )L7C2a7 E||d™ — d;||? + 8M L%a2%5?
+8LC m 1y Z |di—1]]" +16(q — Z’y Z lld] oll* + oo
m=1 l=s; m=1

M
+4Mofo® +32(0f + o)L} Y E[h"y — g™ (Zi—1)|* + 16M o767 + 16M L} 253)

m=1

M 2 4
. ~ 1, [ 72L3C 77t 172
<401 = ) 3 Efy —m)P + (1 V)( S Bt — ol

m=1 m=1

7202020202 v X _
+—1L fp; ST E|upty — ||+ 8L3C2E 42 Z]Endt_lnz
P

m=1

t—1 CQ M C‘? M
+16(g — 1)L}CZa? Y 727712( * DBl a5 3l - )
l=s¢ m=1
M
+32(07 + 07) L7 > B[, — g™ (Z-1)||* + 8M Laio® + 4Mojo® + 16M 0767 + 16ML§Q$5§>

m=1

(D

where the second last inequality holds by the above Lemma B and the above inequality (E5), and the
last inequality holds by dj* | = i wt L and the above inequality (E3).
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Next, we consider the term Z EHut — Uy H as follows:

- 2

D E[u (52)
m=1

M

Hum _ % Z u;nH2

M
Z
i " |

= Y B, [Vg™ (s ¢ + (1= B (s = Vo™ (2713 ¢)] = 72 3 He, [Vg™ (@] ™)
m=1 m=1

+ (1= B) (= Vg™ (@ ;)] )

M 1 M

Z ]EHVQ (x5 ¢") + (1 —5t)(“ﬁ1 = Vg™ (zit; ")) — Z ( (z¢"; G")

m=1 m:l

+(1—Bt)(ul’ll—vg (w15 ¢ ))H

M
1
< (L+v)(1-6y)? ZEllut = ) [P (1 + ZEHVQ (" ¢
m=1
M Z Vg™ (" ¢") — (1_5t)(Vg (x4 G") — Z M G )H . (53)
m=1 m=1
Then, we consider the last term of (B2):
M | M L XM )
D B[V @M = 57 Do Ve e G = (1= B) (Ve (@ ¢ = 57 D Vo s ¢) |
m=1 m=1 m=1
= Z EHVQ (x5 ¢") — Vg™ (@15 ¢) Z (2 G = Ve (@ G ))
m=1 m:l
1 M 2
+ B (Vg™ (a1 () = 57 D Ve M) |
m=1
- m(,.m, m 2 1 - m/,..m my |2
<2 ZEHVSJ (x5 ¢") = Vg (@5 ¢ +25 ZEHVQ (¢ — M Z Vg™ (@15 ¢ )H
m=1 m=1
M M M
<203 Y Elap — a2 |* + 267 Y E[| Ve (a5 ¢) Z "’ 64
m=1 m=1 m=1

where the second last inequality is due to Young inequality and the above Lemma D.
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Consider the term Zx[:l Vg™ (a1;¢m) — 55 Z%Zl Vg™ (x5 ¢M) |2, we have
Z Vg™ (215 ™) ZW” el N
1 M
— Z va'm x;nl; ’H'L) ng ‘Tt 1 Z 952”19 ) vgnb(xt 1))
m:l
+ Vg™ (zi ) — i Z Vg (xtfl)H
m=1

M 1 M
<2 Z Vo™ (@il G = Vo™ (@) = 77 Z (Vg™ (@i (") — Vg™ (afhy)) ||

+22||Vg (1) ZVg xfl

m=1

M M
1
<2 Z HVQ (x5 ¢") — Vg™ (zﬁl)H +2 Z Hng(l"?h) M Z ng(mftn—l)HQ
m=1 m=1
M
<2Mo” + 1217 Y Ellaf® ) — 21| + 6M5, (55)
m=1

where the last inequality holds by the above Lemma .
By combining the above inequalities (B2), (B4) and (B5), we have

M

m - 12
> B[y (56)
m=1
M 1 M
<+ =B)* D Eluyy —a1)|* + 1+ -) > E|Vem (@)
m=1 m=1
1 Y M 2
M Zng($;n§<t7n)_(I—Bt)(ng(x:n—ﬁQ - Z It 156 ))H
m=1 m=1
M
<(+ Z Bl — )P+ (14 2) (222 3 Ellaf — a2
m=1
22 2 02 m = 2 2 2
+4Mo® B2 + 24125 Z Ella™, — 1| + 12M696t>
m=1
M M B
<(L+w)(1=B8)* Y Elugy —a )| + (1+ - ( i Z El\diy — dia | +4L5n7 17" Y Elldealf?
m=1 m=1

t—2 M
+AMa?B] +24(q — DL2BEY " A0 Y Elldy — dil|* + 12M5§5§>

l=sy m=1
M 2
m — 360 L nt l'y
< (@A) D B a7+ (1) <p Zlﬂﬂnvt i
360 2n2 42 M _

+ +“ Z Ellu® y — -1 |* +4L2n7 7> Y Elldis||* + 4Mo® 57 + 12M 5, 57
m=1 m=1
t—2 2 M 902 M

+24(q — 1)L3ﬂt2 Z v} ( Z E|lv™ — a2 + 2f Z E|lu — ul||2)>, (57)
=5 m=1 m=1
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where the last inequality holds by the above inequality (ES).

By summing the above inequalities (&) and (Bf), we have

S

37 (Bl — |+ Efoy - w.]) (58)

M 2712 2 M
m B 36C5 L 77 ~
s<1+u><1—ﬂt>2ZEHut_l—ut_l)2+<1+y>< =

— = Y Bl —
p m=1
3602L277t 17’

M
iz SO B, — el 4 AL 9t S Eldal? + AMa?6E 4 12018257

m=1 m=1

= 902 M 902 M
+ 200 = DL Yot (5 D Bl — P + =5 S Rl uln?))
m=1 m=1

l=s¢
M 24,2 2 M
m B ]_ 72L C 77t71'7 m _
+ (1 +0) (1= e)? D Elloy — o) [P+ (14 ) (J“/; > Ellvity = vl
m= m=1
72C?L?C§nt27172
+ 2

M M
SOEuy - |? +SLECHE 72 Y Elld |
m=1

2 M

902 M
+16(g — 1)L3C2a2 27 ( ZEHvl A 2f ZEnugn—ulH?)
m=1

let

+32(0? + a?) L2 ZEHht L= 9™ (@ ))? +8MLfat02+4Mg§(72+16Mg35§+16ML§gf52>

1.72C2(L2C?% 4+ L2)n?_~? 1.72C2(C?L2 4+ L2)n?_,~?
Smax((1+y)(1_ﬁt)2+(1+;) f( f gp2 g) t—1 ,(1+V)(1_Qt)2+(1+;) g( g fp2 g) t—1 )
M ) M
(Elay™y — g ||* +Eljo, — o1 ) + 81+ )(L202+L2 i ? Y Elldi—a|
m=1 m=1
1 t—1
+24(1 + ;)(q - 1)(L3C5a7 + L2 57) Z Vi ( Z Eljof* — w? + — Z Eflu™ — | )
l=s¢ m=1
M
1 - o 1
+32(1+ —)(0f + o) LF Y ElhL, — g™ (@) + (1+ ) (SMLfatUQ +4Mojo® +16M o7 o7
m=1
+ 16ML% 0?62 + 4Mo>B? + 12M5§ﬁ3). (59)

Let C}, = max(C},C}), L3, = L3C; + L3, v =  and 7 <
B¢ € (0,1) for all ¢ > 0, we have

< siyatoc;, forallt > 0. Since

1 720}(L§C§ + L2)n? 1y

2
1+v)1 -8 +(1+;) pe
1 T202(L2C? + [2?)~2 2
<1+4-+(1+q) f(fg o) Y et
q P VLT
1 1+4g¢q 5
- <14 — 60
qg 8¢ +4q (60)
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1\ 72C2(C2L5+L2)n] \v°

Similarly, since o; € (0,1) forall ¢ > 0, we have (1+v)(1—0¢)?+ (1+ ) e <
1+ 4%. Based on the above inequality (B8) and the parameters, then we have
&l 2 2
> Bl —wl|” + Efley” — u) (©61)
m=1
5\ 2
< (1+Z) > (Bllurty = dea||* + EfJoiy — 51 ]|”) + 8(a + 1D LE, 177 ZE”dt 1?
m=1
C3,L3,7? - i i
+216(¢> — 1)L S0 (oF + 52) anz(Envzn—vz||2+E||uz”—uz||2)
P l=s; m=1
M
+32(1+q)(ef + o) LT Y EIAy — g™ (@)
m=1
+4M(q+ 1)( L3a20” + 030” + 4020% + AL% 0207 + 07 B2 + 35253)
5 M 2 2 p?
Zq Z ]EHuim_liat_ln +E|‘Uﬁlil_}t_1“) 36 02 ZE”dt 1”
m=1 f9 m=1
3(c? —|—c m - m p*(c3 + 3 _
PAEED S S (Bl — ol + Bl —ul?) + g e s 32 7 1ZH<:||h g @)
l=s¢ m=1
+L( AL30? + c2o? —&—403(52+4C§L262+0302+30352>n§’ 1 (62)
3vLs,Cl, f f g g)'t—

where the first inequality holds by the above inequality (52) and v = é, and the last inequality holds

2

— 2 _ 2 _ 2 P .
by oy = C1Mi—1> Bt = CoMy_1, Ot = C3M;_1 and 1y < 247qL1,Crq = U, 2, S oz
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According to the above inequality (B1l), we have

M 2 2
> Bl ="+ Ellv” — o)
m=1

< Z (14 2y f E||d,
- 36q0?g = 4q — s
3(c? + 2 il o o
+(182)§ (1+ ) 22771 Z (EHvl = uil* + Ellj —uz||2)

l=s¢ m=1
p2(ct +c3) = t 1-s 2 B )
0¢y2C2 (2 (1+ ZEH 1= 9" (@)l

f979 s=s;
t—1
+&(20%L 0% 4 c2o? +4ci? +4C§L252+0302—|—3c§62) Z (1+£)t_1_s 3
37L1gCrg ! ! e 9] £ 4 s
s=s¢
— 2, 01+02 . mo_ 2 m_ =12
qu2 SRILA INDS (Bl = ll® + Ellu" — @)
f9 s=s; m=1 S§=s¢ l=s¢ m=1
4p(c2 + c3) 5
E||h™ Zo
M e Ne Z Z Ihgy = g™ (@)
4Mp 2 262 27262 | 2 2 202\ N, 8
+m(2 Lfo' + c30? +4c305 + 4Ly, + ch0 —|—3025g)§ns
M p? =1 p*(c? +c3) M m m
< a0z, 2 Bl + 24*16; qL; = Sy (Bllor = o2 + Eflu* - a1?)
fg s= St fg s= St m=1
4p (Cl +C3 _ 2
PG T E||h™ "
i 9q720?903 = Z H ol
+ﬂ( AlLic +c302+4c§52+4c§L252+c302+3c§52) > i, (63)
37L1gCrg ! ! oo ¥ )

s=5¢

where the second inequality holds by (1+ %)t_l_s

< (1+ f—q)q < €%/* < 4 and the last inequality
holds by 7, < W forall ¢t > 0.

By multiplying both sides of (B3) by 7, and summing over ¢t = s; to s; + ¢

— 1, we have
st+q—1
> ﬂtZ (Bl — a|* + Ello o)
t=s¢
St —1 st+q—1
Mp? " 12 plE+) )
< acz, ; nE|de| + 5 1671 O, tZ mZ (Bl = wll® + Elluy" — @)
4/.2 st+q—1
pt(c +c3) m_ gm )
+ 7 E|r{" —
24 % 5427 C}, L2 _C? tz tz I )|
Mp2 st+q—1
+71872L2 2 (261Lf0' +630 +4C§5?+4C§L§-5§+C§g2+3035§) Z 77?, (64)
fa~fg t=s¢
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4 2 474 4, 2 2
Given ¢? + c3 < w we have 93 <1 — W, we have
st+q—1
2. mZ (B = + Efley” - o]|")
t=s
sedard 40,2 se+q—1
2Mp? 7112 pt(ct +c3) 9
< > mEd® + > mZEIIhm m(z,)|
2 104 72 (2
1507, A~ 1080¢%41C, 17,03 2
M p? st+q—1
+W(2QLW +c30” +4C§5}‘L+4c§L§c6§+c§a?+3c§5§) > onl. (63
R =

According to the above inequality (&3) and C7, = max(C7, C7), we have
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Thus we have
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Theorem 3. (Restatement of Theorem 1) Assume the sequence {T.}l_ 1 be generated from
AdaMFCGD algorithm. Under the above Assumptions, and let ny = )1 5175 forall t > 0,

(n+t
24k~qL 4,C
Qi1 = C1nf, By = Canfs 0141 = c3nf, n > max (2, k3, (c1k)?, (c2k)?, (csk)?, %),
4 2 474 4 1/4
k>0y Cl = 3k‘3 +B C2_ 3k3+5c’f, Cl <%, 03> 3k3 +502,%§
g g
' 3paLsqC Y 272 305 L Op*(ci+c3)
v < min (et e, St ). B > 0023 + isiator + msi e © =
2724 __¢© CiLy 2 P 2,72 2 12 CZ a9 507
(5Cng 864(1327311?90?5,)(24)2L§q0?q+6qungg Cg+Lg+2Lng and@—km < 78
we have
2GnYS V2G| 1 «
t=1

where C%, = max(C%,C7), L3, = L3C7 + L7, G = F(g,i;)w ) 4 12(;};2/2” —|—4k:2( 222 +

citestcesz o A~
%) In(n +T) and 6 = ZC%LfcoQ + 302 + 4035]20 + 4C§Lfc5§ + 302 + 30263.

Proof. Since n; = W on t is decreasing and n > k3, we have n, < g = nlk/g < 1 and
1/3
v < mle < 2L/Jno < 2Ln for any t > 0. Since n; < W for all ¢ > 0, we have
9 9
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24kyqL;,Crq)2
nf/g =n < n < m, then we have n > %. Dueto 0 < 1 < 1 and
n > (c1k)3, we have a1 = c1n? < ey < ;11—/"; < 1. Similarly, due to n > (c2k)? and

n > (czk)?, we have B¢ 1 < Land gr41 < 1.

According to Lemma [, for any m € [M], we have
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where the second equality is due to g; 11 = con?.
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where the first inequality holds by the concavity of function f(z) = z/3, ie., (xz 4+ y)'/? <
xt/3 4 349735 the second inequality is due to n > 2, and the last inequality is due to 0 < n; < 1.
Letc; > 3% + B, for any m € [M], we have
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Let c3 > 525 + 5C%, for any m € [M], we have
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where the last inequality holds by Assumption , a;41 = con? and 7; < m forallt > 0.

According to Lemma B, we have
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Next, we define a potential function, for any ¢t > 1
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Then we have
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where the first inequality holds by the above inequalities ([3), (/4), (3) and (IZ8), and the last
inequality is due to Lemma B.
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Let sy = q[t/q]| + 1, summing the above inequality (Z8) over ¢t = s; to s; + ¢ — 1, we have
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_ 272 4 3CoLY 2 2 2 2 2
Set © = (SCng T 275L3 C3g) (24)22%0?9 + GqL;fngfg (Cg + Ly + 2Lng). Based on the

above Lemma [0, then we have

st+q—1

D> (21— )

t=s¢

St+q 1 02'7
<> W Z( o MEl* = Vg )~ nE|e” — V)

t=s¢
21272
v /B 272 20y Ly m_oms (|2
— (= —-4C’L% — ——————=— ) E|| A" —

p(2 9 f 864q3y3LfchJ§g)"t [hi" — g™ (Z)|

-1
S”i (2 ACeniY®  ALGuy? SL?CSHEW?’)EH il

- - - t
= 2 p p
20?2 2
302 50 L2 29 f ) 14

71, (BC +5CF " 861¢54313,C3, ) (2413, C3,

M51+q ' 7112 + PQ(C%JFCs o m_ gm( 2 304 o 3
(5 neEde” + 12042 402 12 (2 Z WtZ]E”h - )| +W Z Mt

t=s¢ f979 t=s, f9 i=sy

e (CQ 2 2 2)

—_— + L, +2L%C
MquLfngg

6M S I - p2(c2 +c2) st m . 3Mé2 St
'<5 Z mE|de])* + 12042 4102 I:O’? 2 Z 77’5z:]E||ht -9 (mt)HQ—i_W Z s

t=s; g9 t=s; m=1 g t=s¢

0_2 s¢+q—1
+ 7 (Pir242 3
12qungg( THatd) )

t=s¢

St+q 1 C2 2
’)/ m (= C,y m m m
<> 4 Z( Bl — V" @)~ Bl — VP

t=s¢
B 20212 Op2(c2 2
o l(z o 4C§L? B 864 32 3gLSfCB B 120 L Z(LCCIVQ+;§)CQ) tE”h:n _gm(i't)Hz
P T g% g Ty 7“4
S¢+qg—1
zq: (pvnt AC2m2y®  ALZny®  BL3CINY® 6y © BC2p? . )E”JHQ
- - - - - = t t
&\ 2 p p p 5p (24)2L3,C7%,
Bc2p2 352 s¢+q—1 o2 st+q—1
0 g ) 2 2, 2 3
+( +(24)2L2 2, ) 5712, ; o+ 12qL7,C1q (f+e3+65) ; e
S‘t+q 1 2712
m m/ - O v m/1m ’YC L m m( =
<> Z (—mﬂznut = Vg @I~ =~ mEl = V) = =By — g )P
t=s¢
1 Ellde]l” + 5 A+ —————( + G+ ) n, @D
= 16713, ~ 12qL;,Csq =
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where the second inequality holds by the above inequality (8d). Let G = 4(F(i1p)v_F*) + 12;,;12/;57 "+
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where the first inequality holds by Lemma B, and the last inequality holds by (BS).
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where the inequality () holds by ||A:|| > p for all ¢ > 1 due to Assumption B. Then we have
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B ADDITIONAL EXPERIMENTS

B.1 TASK-DISTRIBUTED META LEARNING

In this subsection, we evaluate the effectiveness of our proposed algorithms for personalized federat-
ed learning, which can be described a task-distributed meta learning Huang et all (Z02Ta). From the
above (0), the task-distributed meta learning problem can be rewritten as a distributed composition
optimization problem, defined as

min — Z exp (f’” anm(sc))/)\), (92)

zerd M
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Figure 3: We evaluated the test accuracy (%) of different FCO methods for solving the distributed
problem (22) under various settings using a heterogeneous CIFAR-10 dataset. We varied the hyper-
parameter X to control the percentage of samples from the dominant class, with values of 0.3, 0.5,
0.7, and 0.9 from left to right.
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Figure 4: We computed the cross entropy on the test sets of various FCO methods for solving the
distributed problem (82) using a heterogeneous CIFAR-10 dataset under different settings. The
results were obtained for y = 0.7 on the left and x = 0.9 on the right.

where A > 0 is a regularization parameter. The Problem (B2) is also a special case of the above
Problem ().

In the experiments, we consider a multi-class classification task over the CIFAR10 Krizhevsky et all
(P009) dataset, using a 7-layer CNN. We create a heterogeneous training (validation) dataset con-
sisting of 10 clients and 1 server, where each client has images from a dominant class and a small
percentage of images from other classes. Specifically, the m-th client owns y percentage of images
from the m-th class and (1 — x)/9 for the other classes. For x > 0.1, the images of each client
are dominated by a different class, which is referred to as the dominant class. In our experiments,
each client has a different dominant class, for example, one client has 60% samples from the air-
plane class and the remaining 40% samples from other classes. The hyper-parameter x controls the
percentage of samples from the dominant class over each client. The dominant class is different for
different clients.

In the experiments, we utilize a grid search approach to determine the optimal hyper-parameters for
all methods, and the search space is described in subsection BZ1. As each client’s data distribution
is constructed to be heterogeneous, tuning a personalized model for each client can offer additional
benefits. For selecting the learning rate, we typically set the learning rate to 0.05 at inner loops and
the learning rate to 0.1 at outer loops. Additionally, we randomly select five clients to participate in
training per epoch, and we set the asynchronization step ¢ to 5 if it is not specified. The total number
of training iteration steps is set to 600.
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From Figures B and B, it is apparent that the convergence difficulty increases as the hyperparame-
ter y increases. Among all of the heterogeneous ratios, our MFGCD and AdaMFGCD algorithms
outperform other baselines, particularly when the data distribution is significantly heterogeneous.
The other composition federated optimization methods such as FEDNEST [larzanagh et all (2022),
Local-MOML Wang et al] (2021), and Local-SCGDM Gaa efall (20272) exhibit inferior performance
in both test accuracy and loss under these circumstances. Meanwhile, although ComFedL Huang
ef-all (Z02T4) obtains a better performance, the loss (accuracy) curve is quite noisy. Our MFCGD
and AdaMFCGD algorithms adaptively adjust the weight of clients based on their performance on
the task (training loss). In other words, if a client’s data distribution is challenging to learn (i.e.,
higher training loss), the algorithm increases its learning rate, while for clients with simpler distri-
butions, the learning rate is reduced. Overall, the results indicate that our MFCGD and AdaMFCGD
approaches can also enhance personalized FL.
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Figure 5: Comparing the accuracy(%) (left) and cross-entropy loss (right) on different regularization
parameter A on our AdaMFCGD algorithm

Figure B demonstrates the robustness of our AdaMFCGD algorithm by varying the regularization
parameter A. The results show that our AdaMFCGD algorithm achieves good test accuracy and
low test loss for different values of A. Additionally, decreasing A leads to faster convergence of
the algorithm, particularly when running multiple local epochs. Figure B illustrates the robustness
of our algorithm when varying the asynchronization step q. It is noteworthy that our AdaMFCGD
achieves its optimal performance when ¢ = 1, as it enables the momentum-based variance reduction
technique to fully demonstrate its potential by calculating an adaptive matrix in each iteration. In
comparison to varying ¢ in Robust FL, ¢ shows a less significant influence in Task-Distributed Meta
Learning due to the heterogeneity of the data, which can result in significant changes in the gradient
across iterations, further impacting the stability of the convergence curve. In Task-Distributed Meta
Learning, asynchronization step g also relatively controls the degree of heterogeneity.

Layer Type | Output Size | Kernel Size | Stride | Activation
Input 28x28x 1 - - -
Convolution | 24 x24x 6 5x5 1 ReLU
Max Pooling | 12x12x6 2x2 2 -
Convolution | 8§x8x 16 5x5 1 ReLU
Max Pooling | 4x4x 16 2x2 2 -
Convolution 120 5x5 1 ReLU
Dense 360 - - ReLU
Output 10 - - Softmax

Table 2: Structure of a 4-layer CNN for MNIST
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Figure 6: Comparing the accuracy(%) (left) and cross-entropy loss (right) on different synchroniza-
tion step ¢ on our AdaMFCGD algorithm.

Layer Type | Output Size | Kernel Size | Stride | Activation
Input 32x32x3 - - -
Convolution | 30 x 30 x 96 3x3 1 ReLU
Convolution | 14 x 14 X 96 3x3 2 ReLLU
Convolution | 14 x 14 x 196 1x1 1 RelLU
Convolution | 14 x 14 x 10 1x1 1 RelLU
Flatten 1,960 - - -
Dense 1000 - - RelLU
Dense 1000 - - RelLLU
Output 10 - - Softmax

Table 3: Structure of a 7-layer CNN for CIFAR-10

B.2 IMPLEMENTATION DETAILS

In this subsection, we provide the specific backbone networks of the above two tasks, which are
described in Table @ and Table B, respectively.

In the above Robust Federated Learning experiments, we conduct a search for the learning rate
within the range [0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1]. We observe that for most methods, a learning
rate greater than 0.5 caused divergence. In the case of ComFedL Huang et all (P02T4d), we conduct
a search for the regularization parameter within the range [0.1, 0.5, 1.5, 2] and 0.5 is the best.
For FEDNEST [larzanagh et al] (P027), we directly use the hyperparameters as it reports. We also
conduct a search for the hyperparameter of Local-SCGDM Gaoef-all (20727) within the range [0.1,
0.5, 1, 1.5, 2] and 1 is the best.

In the above Task-Distributed Meta Learning experiments: for the learning rate (both inner
and outer if two types of learning rates are needed), we search from [0.001, 0.01, 0.05, 0.1,
0.2, 0.5, 1]. For our method, we search the regularization parameter from [0.1, 0.5, 1, 5]; For
FEDNEST [larzanagh et al] (2027), we directly use the hyperparameters as it reports. We also con-
duct a search for the hyperparameter of Local-SCGDM Gaa ef-all (2022) within the range [0.1, 0.5,
1, 1.5, 2] and 0.5 is the best. For Local-MOML Wang et all (Z02T), we search its weight parameter
(£ within the range [0.1, 0.3, 0.5, 0.7, 0.9] with the fixed inner and outer learning rates for a fair
comparison and § = 0.7 is the best.
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