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ABSTRACT

Neural networks are known to be vulnerable to adversarial attacks - small, imper-
ceptible perturbations that cause the network to misclassify an input. A recent line
of work attempts to explain this behavior by positing the existence of non-robust
features - well-generalizing but brittle features present in the data distribution that
are learned by the network and can be perturbed to cause misclassification.

In this paper, we look at the dynamics of neural network training through the
perspective of robust and non-robust features. We find that there are two very
distinct “pathways” that neural network training can follow, depending on the hy-
perparameters used. In the first pathway, the network initially learns only predic-
tive, robust features and weakly predictive non-robust features, and subsequently
learns predictive, non-robust features. On the other hand, a network trained via
the second pathway eschews predictive non-robust features altogether, and rapidly
overfits the training data. We provide strong empirical evidence to corroborate this
hypothesis, as well as theoretical analysis in a simplified setting. Key to our anal-
ysis is a better understanding of the relationship between predictive non-robust
features and adversarial transferability. We present our findings in light of other
recent results on the evolution of inductive biases learned by neural networks over
the course of training.

Finally, we digress to show that rather than being “quirks” of the data distribution,
predictive non-robust features might actually occur across datasets with different
distributions drawn from independent sources, indicating that they perhaps pos-
sess some meaning in terms of human semantics.

1 INTRODUCTION

Neural networks have achieved state of the art performance on tasks spanning an array of domains
like computer vision, translation, speech recognition, robotics, and playing board games (Krizhevsky
et al.| (2012); |[Vaswani et al.| (2017); |Graves et al.| (2013)); Silver et al.| (2016)). However in recent
years, their vulnerability to adversarial attacks - small, targeted input perturbations, has come under
sharp focus (Szegedy et al.| (2013); [Papernot et al.| (2017); |Carlin1 & Wagner (2017); |Athalye et al.
(2018)); [Schmudt et al.| (2018))).

Ilyas et al.| (2019) propose that neural network vulnerability is at least partly due to neural networks
learning well-generalizing but brittle features that are properties of the data distribution. From this
point of view, an adversarial example would be constructed by modifying an input of one class
slightly such that it takes on the non-robust features of another class.

They provide empirical evidence for their theory by training a model on adversarially perturbed
examples labeled as the farget class, and showing that this model generalizes well to the original,
unperturbed distribution.

Another unrelated line of work (Brutzkus et al.| (2018); Ji & Telgarsky|(2019); [Li & Liang (2018))
aims to study the properties of the functions learned by gradient descent over the course of training.
Nakkiran et al.|(2019) and|Mangalam & Prabhu(2019) independently showed that Stochastic Gradi-
ent Descent (SGD) learns simple, almost linear functions to start out, but then learns more complex
functions as training progresses. [Li et al.|(2019) showed that models trained with a low learning rate
learn easy-to-generalize but hard-to-fit features first, and thus perform poorly on easy-to-fit patterns.
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Figure 1: (Best viewed in color). Neural network training follows two very different pathways based
on the choices of hyperparameters. These are training graphs of two ResnetS0 models trained on
relabeled CIFAR-10 adversarial examples. See SectionE| for more details.

In this paper, we study gradient descent on neural networks from the perspective of robust and non-
robust features. Our main thesis is that based on choices of hyperparameters, neural network training
follows one of two pathways, :

¢ Pathway 1 (Informal) : The neural network first learns predictive robust features and
weakly predictive non-robust features. As training progresses, it learns predictive non-
robust features, and having learned both robust and non-robust predictive features, achieves
good performance on held-out data. This is the pathway that |Ilyas et al.| (2019) used to
prove their theory.

¢ Pathway 2 (Informal) : The neural network learns predictive robust features and weakly
predictive non-robust features (as in Pathway 1). But thereafter, it begins to fit the noise
in the training set, and quickly achieves zero training error. In this scenario, the network
learns only the robust predictive features and shows modest generalization on held-out data.

Through a series of experiments, we validate our two-pathway hypothesis, investigate the specific
circumstances under which Pathway 1 and Pathway 2 occur, and analyze some properties of the
two pathways. We will also develop a closer understanding of the relationship between adversarial
transfer and predictive non-robust features, which will aid our analysis of the two pathways.

The rest of this paper is organized as follows. Section 2 sets up the notation and definitions we use.
In Section 3, we investigate the link between adversarial features and transferability. In Section 4
we provide empirical evidence for the two-pathway hypothesis and analyze some characteristics of
each pathway. Section 5 presents a theoretical analysis of gradient descent on a toy linear model. We
show that for different choices of initial parameters, the linear model exhibits properties of the first
and second pathways. We digress to explore whether non-robust features can occur across datasets
in Section 6, and discuss future research directions in Section 7.

2 DEFINITIONS AND PRELIMINARIES

Consider the binary classification setting, where D is a joint distribution over the input space X and
the labels {—1,1}|'} In this setting, [Ilyas et al. (2019) define a feature as any function f : X — R,
scaled such that E(, ,)ep[f(z)] = 0 and E, ,\ep[f(2)?] = 1. A feature is said to be p-useful if

Eyeply - f(x)] > p 0
for some p > 0, and y-robust if

Been |l v e +0)| > )

"This framework can easily be adapted to the multi-class setting
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for some v > 0 and some family of perturbations A. For brevity, we sometimes refer to a p-useful,
~-robust feature (p,y > 0) simply as a robust feature. Let pp(f) be the largest p for which f is
p-useful. A feature f is said to be (highly) predictive or weakly predictive if pp(f) is high or low
respectively.

A useful, non-robust feature as defined by [llyas et al.|(2019) is one that is p-useful for some p > 0,
but is not y-robust for any v > 0. They propose the following experiment to demonstrate the
existence of these features.

Let C be a classifier trained with Empirical Risk Minimization (ERM) on an empirical distribution
D. We operate under the following assumption.

Assumption 1. If a distribution D contains a useful feature, then a classifier C' trained with ERM

on an empirical distribution D drawn from D will learn this feature, provided that we avoid finite
sample overfitting through appropriate measures such as regularization and cross-validation.

Let Leo(x,t) denote the loss of C on input x, for a target label ¢. Construct adversarial examples by
solving the following optimization problem :
Tady = argmin Lo(2',t) 3)

|z—az'||<e

In particular, construct a distribution called Ddet comprised of (zadu, t) pairs by using Equation

I with ¢ chosen deterministically according to y for each (z,y) € D. In the binary classification
setting, ¢ must be —y, so

E o t)eBae [t - f(zqdv)] > 0, if f is non-robustly useful under D 4)
E(Wadv7t)€6dct[_t - f(®adv)] > 0, if f is robustly useful under D (5)

It is observed that a neural network trained on ﬁdet achieves non-trivial generalization to the original
test set, that is D. From this, we can conclude that non-robust features exist and are useful for
classification in the normal setting.

Remark : |Goh! (2019b)) showed that the ﬁmnd dataset constructed by choosing ¢ randomly in the
above procedure, suffers from a sort of “robust feature leakage”. PGD introduces faint robust cues
in the generated adversarial example that can be learned by the model. But on the Dg.; dataset, the
robust features are correlated with a deterministic label which is different from ¢. Hence we use the
D e+ dataset in preference to the D,.,,,4 for all our experiments.

Two kinds of non-robust features : |Goh|(2019a) points out a subtle flaw with the above definition
of a non-robust feature - highly predictive non-robust features can arise from “contamination” of a
robust feature with a non-robust feature, instead of something meaningful. To see how this can hap-
pen, consider a highly predictive robust feature fr and a weakly predictive non-robust feature fyg.
Let fo be a “contaminated” feature that is a simple sum of fr and fx g (appropriately normalized).
Then it is possible to construct a scenario in which

Ely - fr(z)] >0 E| inf y-fr(z+0)| >0 (6)
_6€A(w) ]
Ely- fnr(®)] 20 E| inf y-fyr(z+4d)| <0 @)
dEA(z)
Ely - fe(z)] >0 E| inf y- fc($+5) <0 ®)
|0€EA(x)

fc is thus a highly predictive non-robust feature. Now when you train a model on (z + d, —y)
pairs, fc = fr + fnr is still correlated with —y. But for = —fr + fn g is more correlated, so
the model will learn this combination in preference to fc- and will not generalize on the original
distribution. In fact, thanks to learning — f, it will generalize to the distribution with flipped labels,
i.e.,y — —y. In our analysis and experiments, when we refer to non-robust features, we will exclude
such contaminated features.

Illustrative Example : Consider a dataset of dog and cat images, where most dog images have
snouts and most cats do not have snouts. Most cats have slightly lighter eyes than dogs, and making
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Name Feature Type of Feature
f Snout — 1, otherwise —1 Predictive Robust
fo Dark Eyes = 1, otherwise —1 Predictive Non-Robust

f3 First pixel is an odd number = 1, otherwise —1 | Weakly Predictive Non-Robust
Ja fi+ fs Contaminated Robust

Table 1: An example illustrating the different kinds of features. Dogs and cats are labeled +1 and
—1 respectively. Most dogs have dark eyes and snouts. A small majority of dog images start with
an odd numbered pixel value.

the eyes slightly darker or lighter is part of the set of valid adversarial perturbations. Suppose that a
very small majority of the dog images start with a pixel that has an odd numbered value. Then the
different types of features in this dataset are enumerated in Table[I]

For fo, (x 4+ §, —y) pairs would be dogs with lighter eyes, labeled as cats. The network trained on
these examples will learn Snout = Cat, Light Eyes = Cat.

Since the eye-color is predictive of the true label, the second feature will ensure that the neural
network has non-trivial performance on the original distribution. This is what |Ilyas et al.| (2019)
observed in their experiments. f5 is thus a true non-robust feature.

For f4, (x+ 9, —y) pairs would be dog images with the first pixel value converted to an even number,
labeled as cats. The network trained on these examples will learn Snout = Cat, Dark Eyes —
Cat, and Even Pixel — Cat.

None of these will be particularly helpful on the true distribution, but the first two will be useful
on the flipped distribution, i.e., where dogs are relabeled as cats. f4 is thus a contaminated robust
feature, and not a non-robust feature.

Remark : A network that learns only robust features but with contaminants can still be very vulner-
able to adversarial attacks, as the above example shows. The weakly predictive non-robust feature
f3 can be manipulated to consistently cause misclassification on out-of-distribution inputs.

3 NON-ROBUST FEATURES AND TRANSFERABILITY

The phenomenon of adversarial transferability (Papernot et al., |2016), where a non-trivial fraction
of the adversarial examples generated for one neural network are still adversarial to other neural
networks trained independently on the same data, can be readily explained in terms of non-robust
features.

By Assumption [I} different neural networks trained using ERM on a distribution would learn the
predictive non-robust features (like Dark Eyes = Dog) present in the distribution. One would
then construct an adversarial example by modifying an input such that the predictive non-robust
features flip (modify all dog images to have lighter eyes). Then this adversarial example would
transfer to all the different networks that have learned to rely on the non-robust features.

A natural question to ask is, does all adversarial transferability arise from predictive non-robust
features? |Nakkiran (2019) showed that by explicitly penalizing transferability during PGD, one
can construct adversarial examples that do not transfer, and from which it is not possible to learn a
generalizing model. This establishes that adversarial examples that do not transfer, do not contain
predictive non-robust features.

Here we provide a simpler experiment that constructs non-transferable adversarial examples without
explicitly penalizing transferability. This experiment also establishes a stronger claim, that adver-
sarial examples transfer if and only if they exploit predictive non-robust features.

Let the CIFAR-10 dataset form the data distribution D. Train two Resnet50 models (He et al., [2016)

on D and ensure by Assumptlonthat both networks have learned the predictive non-robust features
of the distribution by using regularization and cross-validation across a grid of hyperparameters.
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Construct a ﬁdet dataset for the first network using Equation 3| where ¢ is chosen deterministically
according to y using the transformation ¢t = (y 4 1)%10. We use Projected Gradient Descent (PGD)
(Madry et al.l 2018) to solve the optimization problem in Equation[3] Split the adversarial examples
into two categories - those that transfer to the second network with their target labels, and those that
do not. Relabel all adversarial examples x,4, With their target label ¢, and train a Resnet50 model
on (Z a4y, t) pairs from each category.

As Equations (4] and [5| suggest, for (z4dy,t) ~ stet, the
non-robust features of D are predictive of ¢, but the robust
features of D are predictive of (t — 1)%10. So if a neural 100
I Accuracy on D

network trained on a subset of D.; learns predictive non- Accuracy on Denie
robust features, it will generalize to D, and if it learns 80
predictive robust features, it will generalize to the shifted
distribution D,y r¢

Dsnift = {(z, (y + 1)%10) : (z,y) ~D} (9)

Figure [2] shows the performance of these two networks 20
on D and D,y We can see that the network trained

on the examples that transfer generalizes well to D, but ONon-transferable (34%) _All examples (100%)
the network trained on the examples that do not transfer

generalizes to Dgp,;r¢. The configuration in the figure is

as a result of a thorough grid search over hyperparameters Figure 2: Clean accuracy of a Resnet50

with the metric for success being performance on D. model tr'ained on subsets of relabeled
adversarial examples

60

40

Accuracy (%)

Along with Assumption [I| our experiment establishes
that the examples that transfer contain predictive non-robust features, and the examples that don’t
transfer don’t contain predictive non-robust features. In particular, we claim the following :

Claim 1. Train two networks Ny and No on a common dataset such that both networks learn the
predictive non-robust features present in the dataset. Then an adversarial example generated for Ny
transfers to the second network if and only if this example contains predictive non-robust features.

Further, if a neural network C' has learned predictive non-robust features, then PGD will construct
some adversarial examples with predictive non-robust features (see Equation [4), and vice-versa.
This allows us to infer the following property, which we will use in our analysis in the next section :

Claim 2. If a neural network Ny has learned the predictive non-robust features in a dataset, then
adversarial examples generated for another network Ny using PGD will transfer to N if and only
if N1 has also learned predictive non-robust features.

4 THE TwO PATHWAY HYPOTHESIS

4.1 EXPERIMENTAL SETUP

We use the CIFAR-10 training set as our empirical distribution D, and train a neural network Ny
using ERM on D with cross-validation and regularization such that it learns non-robust features
by Assumption |1} Construct the Dy, dataset according to the procedure described in Section
where the reference model C' is V7 and the adversarial target ¢ is chosen deterministically as ¢ =
(y + 1)%10. Split Dy into training and validation sets and train a new neural network No on the
training set.

As we discussed in Section@ if N5 is able to generalize to D, then [N, must have learned the predic-
tive non-robust features of D, and if Ny is able to generalize to Dy, s, then Ny must have learned
the predictive robust features of D. This is depicted in Figure |3|in the context of our illustrative
example from Section 2]

We use the accuracy on D (respectively, Dp;5¢) as a proxy for how much of the model’s perfor-
mance can be attributed to its learning predictive non-robust (respectively, robust) features. We refer
to these as “non-robust feature accuracy” and “robust feature accuracy”.

Finally, the accuracies on the training and validation splits of Dy, tell us how well the model has
fit the training data, and whether the model is overfitting. We train the network N5 using SGD for
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Figure 3: Train a model on dogs with light eyes labeled as cats, and cats with dark eyes labeled as
dogs. If the model classifies a clean dog image as a cat, then it must have learned the predictive
robust feature (snout), and if it classifies a dog as a dog, it must have learned the predictive non-
robust feature (dark eyes).

120 epochs using different combinations of learning rate and regularization, and plot the evolution
of these four metrics over the course of training.

4.2 RESULTS AND DISCUSSION

We observe that training follows two very distinct regimes or pathways depending on the choice of
hyperparameters.

The first pathway, illustrated in Figure [Ta] occurs when the model is trained with regularization of
some sort - either in the form of a high initial learning rate (LR), L, weight decay, or data augmenta-
tion. The model starts out by learning only predictive robust features (possibly with contaminants),
but at some point switches to learning a combination of robust and non-robust predictive features.
Training and validation accuracy steadily increase, and the model ends with both training and vali-
dation accuracy close to 100%.

The second pathway, illustrated in Figure [Tb] occurs when the model is trained with a low starting
learning rate, little or no Lo weight decay and no data augmentation. The model starts out similar to
the first pathway, but then starts overfitting the training data before it can learn non-robust predictive
features. At this point, validation accuracy stagnates. The model finishes with a training accuracy of
100% but a validation accuracy of 81%. Nearly all the performance of the model can be attributed
to its learning predictive robust features.

Hyperparameters : In Section [C| of the Appendix, we present a study of the effect of different

hyperparameters for a Resnet-18 model trained on Dg.;. We observe that the model makes a sharp
transition from Pathway 1 to 2 in the space of hyperparameters, with a narrow “middle ground”.

On clean data : Training on the ﬁdet dataset allows us to decompose the accuracy into robust and
non-robust, but a similar decomposition doesn’t exist for a model trained on D. Instead we utilize
Claim 2| and use adversarial transferability as a proxy for whether or not the model has learned
non-robust features.

Train two models ./\/151) and Mél) with different random initializations on the unaltered CIFAR-
10 dataset, with both data augmentation and some weight decay. Train two more models MEQ)
and Mé” with neither weight augmentation nor weight decay. We plot the training and validation
accuracies over the course of training for /\/lgl) and M?) in Figure@ and Figure

Simultaneously, we also plot the targeted adversarial attack success, as well as the transfer accuracy
to Mgl) and ./\/1(22). We observe that targeted adversarial attack success is high for both models.
However, while adversarial examples generated for Mgl) transfer to Mél) with reasonable success,
adversarial examples generated for M?) fail to transfer to either Mgl) or M§2>.
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Figure 4: (Best viewed in color). Training and validation accuracy of M(ll) and M§2> along with
accuracy of targeted adversarial attacks and adversarial transfer accuracy to M(Ql) and M?).

We conclude that Mgl) learns predictive non-robust features as training progresses, and Mgl) does

not. Thus, M?’ follows Pathway 1 and M§2) follows Pathway 2. We observe that learning pre-
dictive non-robust features seems to be essential for good generalization on the validation set, and
robust features alone do not suffice.

Remark : Although Figure [Ta] suggests that the model eventually generalizes better to the non-
robust feature mapping than the robust, this is not a generally applicable rule over different datasets,
architectures and combinations of hyperparameters. Table[5]in the Appendix illustrates this point.

4.3 RELATION TO OTHER RESULTS ABOUT NEURAL NETWORK TRAINING

Low and high learning rates : The regularizing effect of a high initial learning rate has been
studied in detail by [Li et al.| (2019). They construct a dataset with two types of patterns - those
that are hard-to-fit but easy-to-generalize (i.e., low in variation), and those that are easy-fo-fit but
hard-to-generalize (i.e., noisy).

They show that a neural network trained with small learning rate first focuses on the hard-to-fit
patterns, and because of the low noise in them, quickly overfits to the training set. As a result, it is
not able to learn easy-to-fit pattern effectively later on. In contrast, a model that starts out with a high
learning rate learns easy-to-fit pattern first, and since these are noisy, doesn’t overfit the training set.
Later on, once the learning rate is annealed, the model is able to effectively learn the harder-to-fit
patterns.

These two cases can be crudely mapped onto our two pathways. The model in Pathway 2, trained
with a low LR, learns only robust features to start out, indicating that these features are hard-to-fit. It
overfits the training set and thereafter is unable to learn the non-robust features, which are easy-to-fit.

The model in Pathway 1, trained with a high LR, quickly begins to learn the non-robust features
which are easy-to-fit. However, it learns the robust features too alongside, indicating that this map-
ping from the low and high LR scenarios to our two pathway theory is not perfect.

Complexity of learned functions : Another perspective on the training of neural networks is given
by [Nakkiran et al.| (2019). They define a performance correlation metric between two models that
captures how much of the performance of one model can be explained by the other, and show that
as training progresses, the peformance correlation between the current model and the best simple
model decreases. This indicates that the functions learned by a neural network become increasingly
complex as training progresses.

Although their metric is defined for a binary classification setting, we adapt it for the multi-class
setting, and use a multi-class logistic regression classifier as the “best simple classifier”. We measure
the performance correlation between the model trained on Dge; and the simple classifier as training
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progresses. The performance correlation, scaled by 100 and smoothed, is shown in Figure [I] along
with the training curves.

We observe in Figure [Ta] that the point at which the performance correlation plateaus corresponds
with when the robust accuracy decreases sharply. Similarly in Figure [Tb] the correlation levels off
along with the robust accuracy. We conjecture that the initial robust features learned by the model
are simple, linear functions, and the non-robust features are more complex and non-linear. This is in
line with the findings of [Tramer et al.|(2017) that transferable adversarial examples occur in a space
of high dimensionality.

5 THEORETICAL ANALYSIS

In this section, we present some results for gradient descent on a toy linear model on a distribution
with robust and non-robust predictive features. We get results that mirror our two pathways, for dif-
ferent choices of initial conditions. The setting we use is an adaptation of the one used by Nakkiran
et al|(2019). For proofs of these theorems, refer to Section[A]of the Appendix.

Define a data distribution P over R% x {—1, 1} as follows :

u.a.” u.a.”

y ~ {-1,1}, ¢ ~ {3,...,d}
A1 ~ Bernoulli(p) over {£1}, Ay ~ Bernoulli(p/k) over {£1}, p € (0,1/2), k>1

T =yAie1 + eylses + €4
where € < 1 is some small positive constant, and e; denotes the i natural basis vector. Now sample
a “training set” (X1,Y1), ..., (X,,Y;,) from this distribution. Let A = [X{;..; XI] € R"*< and
B = [Y1,...,Y,]T € R". Consider training a linear classifier using gradient descent with a learning
rate of 1) to find w € R? that minimizes the squared loss :

1
L(w) = %HB — Aw||§, w € R?

We operate in the overparameterized setting, where n < d. So with high probability, the coordinates
{3, ..., d} of the training data are orthogonal for all the training points.

The idea is that the data consists of a “robust” feature given by the first coordinate, a “non-robust”
feature (one that can become anti-correlated with a perturbation of 2¢) given by the second coor-
dinate, and a noisy component that comprises the rest of the coordinates, making it possible for a
model to fit the data exactly. The robust component is predictive of the true label with probability
1 — p, and the non-robust component is predictive of the true label with probability 1 — (p/k). For
simplicity, assume that the initial weight vector wy = 0, and that n is sufficiently large.

Theorem 1 (Robust before Non-robust). If ¢ < /(1 —2p)/(1 — 2p/k), then at the end of the
first step, with high probability, the model will rely on the robust feature for classification,, i.e.,

wgl) > Ew§2), and will have a population accuracy of 1 — p.
Theorem 2 (Two Pathways). Define
2p(1 + ne?) — 2p(1 —¢)
ky =
2p(1 +ne?) — (1 —¢)
Then ifn < 2/(1 + €2 + (1/n)), as the number of gradient steps goes to infinity,

 if k > ki, sample accuracy approaches 1 and population accuracy approaches 1 — (p/k)
with high probability.

e if k < ky, sample accuracy approaches 1 and population accuracy approaches 1 — p with
high probability.

Discussion : The two cases of Theorem [2] very roughly correspond to Pathways 1 and 2. Since this
is a strongly convex problem, gradient descent with a small enough learning rate will converge to
a fixed solution, so we cannot mimic the setting where different training hyperparameters lead to
Pathway 1 or 2. But we can see that if the non-robust feature is predictive enough, the model learns
the non-robust feature, otherwise it learns the robust feature.

2Caveat : here, d is both the input dimensionality and the number of parameters. Although deep learning
models are overparameterized, it is uncommon for datasets to have more dimensions than data points.
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Trained On On CIFAR-minus-Flickr | On CINIC-10
CIFAR-minus-Flickr 93.4 65.7
CINIC-10 82.1 84.6
CIFAR-minus-Flickr D ¢ 33.7 20.5
CINIC-10 Dyt 19.6 30.1

Table 2: Accuracy of Resnet50 models on the CIFAR-minus-Flickr and CINIC-10 test sets. The two
numbers in bold are the ones to focus on.

6 DIGRESSION : CROSS-DATASET TRANSFER

One view of non-robust features is that they are peculiarities or quirks in the data distribution. We
provide evidence that allows us to tentatively refute this assumption by showing that one can con-
struct two datasets from completely independent sources, and a model that learns only the predictive
non-robust features of one dataset can achieve non-trivial generalization on the other dataset.

The CINIC-10 dataset|Darlow et al.|(2018]) is a distribution-shifted version of CIFAR-10 constructed
by sampling from the ImageNet synsets corresponding to each of the CIFAR-10 classes. Although it
may seem like CIFAR-10 and CINIC-10 could be candidates for two datasets drawn from indepen-
dent sources, ImageNet is constructed by querying Flickr, and Flickr is also one of the seven sources
for the 80 million TinyImages dataset (Torralba et al.| (2008))) that was used to construct CIFAR-10
(Krizhevsky et al.|(2009)). So roughly one in seven CIFAR-10 images is from Flickr.

To be even more certain that there are no spurious correlations creeping in because of a common
source, we construct the CIFAR-minus-Flickr dataset that consists of those CIFAR-10 images that
haven’t been sourced from Flickr. This comprises 52,172 out of the 60,000 CIFAR-10 images.

We construct Dy, datasets as described in Section [] for CIFAR-minus-Flickr and CINIC-10, and
train Resnet50 models on them. These models can only learn non-robust features to help them
generalize to the original unperturbed datasets, because the robust features are correlated with the
shifted labels.

The results are shown in Table E} Both Dy trained models achieve an accuracy of close to 20% on
the other dataset, which is a long way from the expected 10% accuracy of a random model.

7 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we’ve shown that from the perspective of predictive robust and non-robust features,
neural network training follows two very different pathways, corresponding to the training and
overfitting regimes. In both regimes, the model starts out by learning predictive robust features first.

This decomposition into two distinct pathways has several interesting implications. For instance,
adversarial transferability means that even an adversary with no access to a model can mount a
successful attack by constructing adversarial examples for a proxy model. But a model trained via
Pathway 2 learns no predictive non-robust features, and adversarial examples generated for another
model will in general not transfer to this model. Thus an adversary cannot perform a successful
attack on this model without at least the ability to query the model and observe its outputs for a large
number of inputs.

A line of enquiry that arises naturally from our work is understanding precisely why this behavior
occurs in neural networks. What characterstics do predictive non-robust features have that ensure
that they are learned only subsequent to predictive robust features? We pose finding a more pre-
cise definition of non-robust features that will allow us to theoretically analyze and explain these
properties as an important direction for future work.

Finally, as we show in Section [f] predictive non-robust features can occur across datasets sampled
from independent sources. Although this needs to be investigated more thoroughly, our results
challenge the view that non-robust features are pecularities of the data distribution. We speculate
that some of these features could have a meaning in terms of human semantics, like our illustrative
example where the eye color was a predictive non-robust feature.
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A PROOFS OF THEOREMS IN SECTION [3]

Consider using Gradient Descent with a learning rate of 7 to minimize the squared loss as described
in Section[3] Then,

1
Wit = Wy + E’I]AT(B — Awt)
Letting & = n/n, it can be proved by induction that

t—1

> (I —aAAT)E

k=0

w; = wg + aA” (B — Awy)

Let the largest eigenvalue of AAT be Mgz If |1 — aMpaz| < 1, then
wy = wy + AT (AAT) V[T — (I — aAAT)"] (B — Awy)

= wr = AT(AAT)_l(B — AUJ()) + wo (10)

for some very large number of steps 7. This achieves zero empirical training error, as we can verify
that A’UJT = B.
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Let the first and second column of A be s and 7 respectively. Since (with high probability) coordi-
nates 3 to d are orthogonal for all training points,

AAT =T+ s +rrT
Other than 1, the eigenvalues of this matrix are
(sTs+rTr) £/(sTs —rTr)2 + 4(sTr)2
2

r=ne. LetsTr=r

1+

T T

It’s easy to see that s7s = n, r s = nef. Then since € is small,

V(5T —rTr)2 4 4(sTr)2 = /(T — @) + d(cB)?
~n(l+ (282 —1))

Then the eigenvalues are

M =1+n(1+e6%, A=1+n(1+p6%

Theorem 1: Ife < /(1 —2p)/(1 — 2p/k), then at the end of the first step, with high probability,

the model will rely on the robust feature for classification,, i.e., wgl) > ewiz), and will have a

population accuracy of 1 — p.

Proof.
wgl) = wél) + asT(B — Awy)
wf) = w((f) + ar? (B — Awy)

w%l) > ew§2) = as'B > ear’ B

E ESTB} =(1-2p), E [ierTB] = ¢ (1 - 2}5’)

Since n is sufficiently large, these random variables are close to their mean with high probability.

So,
(1-2p)>¢ <1—2]f>

This is true by the assumed bound on e. O

It is easy to see that

Theorem 2 : Define
k= 2p(1 +ne?) — 2p(1 —¢€)
P 2p(1+ne?) — (1—e)
Then ifn < 2/(1+ €2 + (1/n)), as the number of gradient steps goes to infinity,

* if k > ki, sample accuracy approaches 1 and population accuracy approaches 1 — (p/k)
with high probability.

e if k < kg, sample accuracy approaches 1 and population accuracy approaches 1 — p with

high probability.

Proof. Gradient descent will converge if

2
)\ <2:> <
QAL = 7771_1_6262_’_

(1/n)
Using the fact that 8 < 1 gives us the bound on learning rate in the theorem statement.

Next, using Equation
wp = AT(I + ssT + rrT)"1(B — Aw) + wy

12
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(It 86T 4 prT)1 <I__o<+sTsxrrT>+-a<+rTrxssT>—(sTrXsrT)—(rTsﬂrsT))

(1+8Ts)(14+rTr)— (sTr)(rTs)

— wil) = T(I+ 557 + ") (B — Awg) + w]"
r (+n)(neB)rt + n(1l +ne?)s? — (n2eB)r’ — (n?e25?)s?
B {8 B (14 n)(1 4 ne?) —n2e2p2 } B
[ (1 +ne?)sT — (nep)rt } B
(1+n)(1 4 ne?) — n2e25?

'wg,?) =rT(I 488" +7rT) 1 (B — Awy) + wéz)
[ A+n)ne)r! + (1 +ne?)(nef)s” — (n?e?B)r’ — (n?e*p)s”
N [r B (14 n)(1+ ne?) —n2e2p2 ]
_{ (1+n)r” — (nep)s” }B
(A 4+ n)(1 + ne?) —n2e2p32

B

where we have used the fact that wy = 0. Now suppose we sample a new point (X,Y") from the
data distribution. Let ¢; denote the index of the noise coordinate of X; and let ¢ denote the index of
the noise coordinate of X. With high probability, ¢ # ¢; Vi. So,

XTwp = X(l)w(Tl) + X(2)w§~2) + X(q)wg?)
= X(l)wgpl) + X(Q)wgg) + w((Jq)
= X(l)wé}) +X(2)w§?)

We want to analyze the case when the first and second coordinate disagree. Let X(!) = —1 and
X @) = ¢. In this scenario if the model always predicts X Twy > 0, it will match the prediction of
the second coordinate and achieve a population accuracy of 1 — p/k. On the other hand if it always
predicts XTwy < 0, it will match the prediction of the first coordinate and achieve a population
accuracy of 1 — p.

XTwr >0 = ew(TQ) >w(T1)

(1+n)rT — (neB)sT (1 + ne?)sT — (nep)rt
[u+mu+m%—wéw}3>{u+mu+m%—M@w]B

With high probability, s B = n(1—2p), 7T B = ne(1—2p/k), and 8 = (1—p(k+1)/k+4p*/k).

2 1
— n(e? — 1) +2pn (1 - 2) + 2pn?é? (1 - k> >0

2p(1 4+ ne?) — 2p(1 — ¢)
BRI e g
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B OTHER DATASETS AND ARCHITECTURES

In this section, we provide training graphs illustrating Pathway 1 and 2 for Resnet18 and Resnet50
models trained on the Dy, versions of the CIFAR-10 and CINIC-10 (Darlow et al.|(2018))) datasets.
Along with each graph, we mention the hyperparameters used.
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80 80
—— Training Acc —— Training Acc
~—— Validation Acc 60 ~—— Validation Acc
z o —— Non-robust Acc o —— Non-robust Acc
§ —— Robust Acc g —— Robust Acc
2 <
40 40
20 20
[ 0
0 20 40 60 80 100 120 [ 20 40 60 80 100 120
Epoch Epoch
(a) Pathway 1 (No aug, LR 0.1, L2 5e-4) (b) Pathway 2 (No aug, LR 0.01, L2 0)
Figure 5: Resnet50, CIFAR-10 D¢
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(a) Pathway 1 (No aug, LR 0.1, L2 5e-4) (b) Pathway 2 (No aug, LR 0.01, L2 0)
Figure 6: Resnet18, CIFAR-10 Dy
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Figure 7: Resnet50, CINIC-10 D¢,
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Figure 8: Resnet18, CINIC-10 D4,
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C HYPERPARAMETERS

In this section, we list the hyperparameters used in our experiments. We also take the case of a
Resnet18 trained on Dg.; CIFAR-10 and look at which hyperparameters lead to Pathway 1 and
which lead to Pathway 2. As we note in Section ] there is a sharp transition between the two
pathways in the space of hyperparameters.

Common Parameters :

Parameter Value

Batch Size 128
LR Annealing | x0.1 at Epoch 100

Optimizer SGD
Momentum 0.9
PGD norm Lo
PGD epsilon 0.5
PGD steps 100
Step size 0.1

Table 3: These parameters were used throughout all our experiments

Training on Non-transferable examples (Section 3)

We trained the model using 120 epochs of SGD, and did a grid search over the following combina-
tions of hyperparameters.

Parameter Values
Learning Rate {0.01,0.1}
Data Augmentation | {True, False}
L2 Weight Decay | {0, le-5, 5e-4}

Table 4: Hyperparameter grid for training on non-transferable adversarial examples

CIFAR D, (Figure[l) :

e Pathway 1 : LR 0.1, No data augmentation, L2 5e-4

e Pathway 2 : LR 0.01, No data augmentation, L2 0
CIFAR (Figure[d) :

e Pathway 1 : LR 0.01, Data augmentation, L2 5e-4

» Pathway 2 : LR 0.01, No data augmentation, L2 0

Which hyperparameters lead to Pathway 1 and Pathway 2? :

We pick one model (Resnetl18) and one dataset (CIFAR-10), and explore which hyperparameters
lead to Pathway 1 and which lead to Pathway 2. To re-iterate, Pathway 2 is characterized by the
model learning almost exclusively only the robust features. All models were trained with SGD for
120 epochs, and the reported accuracies are after the final epoch.
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Learning Rate

Data Aug | L2 decay 01 001

Yes 0 30.97/43.0 | 24.4/50.66
Se-4 | 383/262 | 30.9/43.0

0 29/718 | 2.6/80.7
les | 42/79.1 -

No 5e5 | 2.7/80.1 -
led | 2.6/79.7 -
2e-4 | 4.0/73.7 -

225¢-4 | 18.6/43.4 -

25e-4 | 13.5/49.3 -

2.75¢-4 | 30.4/24.7 -
3e-4 | 27.1/30.6 -
Se-4 | 359/18.6 | 20.9/43.7

Table 5: (Test/ Shifted Test) accuracy for a Resnet18 model trained on CIFAR-10 D ;. Corresponds
to (Non-robust Accuracy / Robust Accuracy). The higher of the two is bold, and the configurations

which follow Pathway 2 have been highlighted in ' green .

Remark : As we can see in the case with LR 0.1 and no data augmentation, the network exhibits a
sharp transition from Pathway 2 to Pathway 1 in the space of hyperparameters. There is a narrow

“middle ground” around L2 = 2.5¢e-4.

Cross-Dataset Transfer (Table[2) :

* CIFAR-minus-Flickr (clean) : Adam optimizer, LR 1e-3, L2 le-5, with data augmentation.

* CINIC-10 (clean) : LR 0.01, data augmentation, L2 Se-4.

e CIFAR-minus-Flickr Dg.; : LR 0.1, No data augmentation, L2 Se-4.

e CINIC-10 Dge: : LR 0.1, No data augmentation, L2 Se-4.
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