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ABSTRACT

We study language-guided object placement in real 3D scenes when contact is
deformable and frictional. Rather than guessing a rigid pose that “looks right,”
we cast placement as a drop-to-equilibrium problem: if the support, scale, and
a reasonable pre-drop pose are provided, physics should determine where the
object actually rests. Our pipeline, DCAP, couples language/vision priors with
simulation. An LLM extracts the intended support and a realistic size prior; a
minimal three-view VLM query returns a single rotation; and a sub-part–aware
LLM selects the exact target region, after which we raycast to place the object
1cm above it—no “upward-facing” constraint required. We assign per-part mate-
rials by hard mapping of semantic labels to a curated library, split parts into rigid
vs. MPM by stiffness, fill soft parts with particles, and then drop to equilibrium
with a corotated-elastic MPM solver. To evaluate deformable placement, we con-
vert 186 high-fidelity indoor scenes to watertight meshes by rendering multi-view
images from InteriorGS and extracting surfaces with SuGaR. We score methods
along two axes—Right Place and Physics & Naturalness—using both a human-
aligned VLM protocol and forced-choice human studies. DCAP substantially out-
performs language-only and rigid-constraint baselines on both axes, produces vis-
ible, material-consistent deformations, and correctly flags infeasible instructions.
Finally, using DCAP’s settled geometry as conditioning improves downstream 2D
insertions, indicating that physically justified final states are valuable beyond sim-
ulation.
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1 INTRODUCTION

{“base:”: “bed”}

Full 
Segment Extract Parts 

Segment

Parts 
Segment

"board":{"density":600.0,"poisson_ratio":0.30,"youngs_modulus":1.0e10}
"mattress":{"density":40.0,"poisson_ratio":0.20,"youngs_modulus":8.0e4}
"bedframe":{"density":7850.0,"poisson_ratio":0.30,"youngs_modulus":2.0e11}

“position”: [0.56,0.42,0.31]
”rotation”:[[-0.013,-0.998,0.064],
                     [0.930,-0.041,-0.365],

                  [0.367,0.046,0.929]]

"ball":{"density":30.0,"poisson_ratio":0.49,"youngs_modulus":1.0e7}

“I want to put the 
ball at the center of the bed”

Figure 1: DCAP pipeline for language-guided deformable placement. Given a prompt (e.g.,
“I want to put the ball at the center of the bed”), an LLM first parses intent to name the support
({"base": "bed"}) and returns a size prior to rescale the asset. The scene is semantically
segmented; the bed instance is extracted and decomposed into parts (mattress, frame, headboard),
and the placement object is segmented in parallel. For rotation, we render exactly three diagnos-
tic views by flipping the object 180◦ about x, y, and z with the base fixed and ask a VLM for a
single orientation R⋆ consistent with the instruction. For translation, the LLM selects the target
sub-part (e.g., “mattress, center”) and a coarse anchor; a ray cast along gravity yields the surface
point, and we place the object at a 1 cm pre-drop clearance t0 (the figure shows the resulting JSON
position/rotation). Both base parts and the object are mapped via the LLM to a curated
material library, producing per-part physical attributes (density, Young’s modulus, Poisson’s ratio,
friction); stiff parts are simulated as rigid, the rest as MPM. We then drop the object in Genesis with
corotated elasticity and rigid–deformable coupling until a static equilibrium is reached, yielding
realistic contact patches and indentation, and composite the settled (possibly deformed) geometry
back into the original scene.

Placing a 3D object into a scene so that it looks right is not merely a geometric alignment task.
Everyday supports and many inserted assets are compliant; the final resting configuration should
emerge from mass distribution, contact, friction, and deformation. A large body of recent work
tackles language-guided object placement in 3D scenes using multimodal reasoning and 3D en-
coders to predict a rigid 6-DoF pose that satisfies semantic constraints Abdelreheem et al. (2025);
Huang et al. (2025a;b); Zhu et al. (2024); Hong et al. (2023). Another line of research addresses
placement/compositing in 2D images, optimizing pixel-level plausibility without enforcing global
3D coherence Liu et al. (2021); Zhu et al. (2023). Broader scene-synthesis systems infer layouts
or arrangements from databases or via LLM-driven programs, typically operating on boxes or rigid
meshes Paschalidou et al. (2021); Wang et al. (2019; 2021); Feng et al. (2024); Hu et al. (2024);
Yang et al. (2024).

We adopt the view that 3D object placement is a drop-to-equilibrium problem: find a constraint-
satisfying, friction-supported, deformable contact configuration in which gravity is balanced and the
object rests in a stable local energy minimum. This lens makes both visual plausibility and feasibility
explicit: if no frictional equilibrium exists, the command is impossible; if the final state buries the
object or renders it indistinguishable, visibility/identity constraints can be checked on the settled
geometry. Complementary to perception-driven approaches, the long-standing physical simulation
literature offers tools for deformable, frictional contact—e.g., continuum particle–grid methods and
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position-based formulations—and mature engines widely used in graphics/robotics Stomakhin et al.
(2013); Jiang et al. (2015); Hu et al. (2018); Müller et al. (2007); Macklin & Müller (2013); Macklin
et al. (2014); Todorov et al. (2012); phy (2025); Makoviychuk et al. (2021).

We introduce Deformable-Contact-Aware Placement (DCAP), which couples language/vision
priors with physics: (1) propose an initial pose via VLM/LLM reasoning Abdelreheem et al. (2025);
Huang et al. (2025a), (2) assign physical attributes to the inserted object and contacted support, (3)
convert sparse assets to simulation-ready volumes and (4) drop with an MPM/PDB/Rigid solver to
equilibrium. Unlike approaches that only certify geometric/semantic validity Abdelreheem et al.
(2025); Huang et al. (2025a), an equilibrium formulation certifies feasibility and yields physically
settled geometry that improves downstream 2D synthesis when used as conditioning Liu et al.
(2021); Zhu et al. (2023).

Benchmark. To encourage progress on deformable placement, we assemble a benchmark of soft
or partially soft insertions—pillows, blankets, plush toys, towels, clothes—into real 3D scenes (beds,
couches, chairs, shelves), built on standard RGB-D reconstructions where appropriate Dai et al.
(2017). Each sample provides scene geometry, object assets, a language prompt, and human plausi-
bility judgments.

Contributions. (i) A formulation of placement as drop-to-equilibrium with deformable, frictional
contact. (ii) DCAP, coupling VLM/LLM priors with physics to certify feasibility. (iii) A robust
hard material selection strategy for attribute assignment that avoids non-physical parameter blend-
ing. (iv) A particle filling procedure for simulation-ready volumes. (v) A benchmark demonstrat-
ing gains over rigid-pose or 2D-only baselines and complementing language-guided 3D placement
benchmarks Abdelreheem et al. (2025).

2 RELATED WORK

Language-guided 3D object placement and grounding. Recent efforts formulate language-
guided object placement in real 3D scenes and evaluate multi-modal reasoning about free space and
asset shape Abdelreheem et al. (2025); Huang et al. (2025a). These systems typically treat assets
as rigid and do not model deformable, frictional stability. Closely related 3D LLM pipelines focus
on grounding, segmentation, or reasoning over existing instances rather than inserting new objects
that must settle into equilibrium Hong et al. (2023); Huang et al. (2025b); Zhu et al. (2024); Chen
et al. (2020). Several datasets for language-guided 3D tasks are built atop RGB-D reconstructions
Dai et al. (2017), but none targets deformable-contact placement.

2D placement and compositing. Methods that predict plausible insertion regions or optimize
image-level realism can generalize broadly in pixels but lack guarantees of 3D coherence, often
permitting interpenetrations or unsupported configurations when lifted to 3D Liu et al. (2021); Zhu
et al. (2023). They also do not capture indentation fields, stick–slip transitions, or deformation-
induced occlusion changes that determine whether a placement looks and is physically plausible.

3D scene synthesis and LLM-driven layout. Generative systems synthesize layouts or full scenes
from databases or language, distilling regularities in object arrangement Paschalidou et al. (2021);
Wang et al. (2019; 2021); Feng et al. (2024); Hu et al. (2024); Yang et al. (2024). These approaches
commonly operate on coarse object proxies (e.g., boxes) or rigid meshes and thus are not designed
to reason about fine-grained surface contact, friction cones, or soft-body deformation during place-
ment.

Physical simulation for deformable contact and engines. Continuum particle–grid methods
such as the material point method (MPM) model large deformation, frictional contact, fracture, and
plasticity with hybrid Lagrangian–Eulerian updates; key developments include elasto-plastic snow
and robust particle–grid transfers (APIC) as well as MLS-MPM for accuracy and efficiency Stom-
akhin et al. (2013); Jiang et al. (2015); Hu et al. (2018). Position-Based Dynamics (PBD) offers
a complementary, constraint-projection view that is highly stable at large time steps and under-
pins real-time systems for cloth, soft bodies, and fluids (via Position-Based Fluids); unified particle
frameworks extend this idea to multi-material coupling in real time Müller et al. (2007); Macklin &
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Müller (2013); Macklin et al. (2014). General-purpose engines support rigid and articulated dynam-
ics (e.g., velocity-stepping contact, GPU batched simulation) and are widely used for robotics and in-
teractive simulation Todorov et al. (2012); Makoviychuk et al. (2021); phy (2025). Recent platforms
also expose high-performance kernels/programming models for simulation on CPUs/GPUs Hu et al.
(2019); NVIDIA (2025). Of particular interest, Genesis is an open-source, robotics-focused physics
platform that unifies multiple solvers beyond rigid bodies—including SPH, MPM, and PBD—within
a Pythonic interface and documentation geared to embodied-AI scenarios gen (2025b;a).

bbox

“I want to put the 
ball on the center of the bed”

[0.56,0.42,0.31]

(a) Position from sub-part + raycast. The LLM
parses the prompt to pick the base (e.g., bed) and
the target region (e.g., mattress, center). We segment
the scene, choose the part’s oriented box, map the an-
chor to the base-local frame, ray-cast along −g to the
surface, and place the object at a fixed 1 cm pre-drop
clearance t0.

“I want to put the 
dumbbell between two cousins of the sofa,

so the shaft faces me”

Vision

[-0.013,-0.998,0.064],
      [0.930,-0.041,-0.365],

    [0.367,0.046,0.929]

(b) Rotation from three informative flips. With
the base fixed, we render the object under 180◦ flips
about x, y, and z and query a VLM for a single ori-
entation R⋆ that satisfies the instruction (e.g., “shaft
faces me”).

Figure 2: Position–then–rotation inference. (a) Language selects the support and precise region;
a gravity-aligned raycast yields a safe pre-drop translation t0. (b) Three orthogonal flips provide
minimal but decisive evidence for a VLM to return a single rotation R⋆. Together they define a
physically sensible pre-drop pose (R⋆, t0) for equilibrium simulation.

3 METHOD

Our inputs are a reconstructed scene S, a natural–language prompt p, and a placement object O with
mesh MO. The output is the object resting stably on its intended support (the base object) with pose
(R⋆, t⋆) and, when appropriate, a deformed shape that reflects frictional, deformable contact. We
frame placement not as guessing a rigid pose that “looks okay,” but as preparing the right question
for physics to answer: if we provide a plausible support, a plausible scale, and a pose close enough
to what the user means, the simulator can do what it does best—let gravity, friction, and material
response explain where the object actually ends up. This view complements recent language-guided
3D placement/generation pipelines that reason about where objects should go Abdelreheem et al.
(2025); Huang et al. (2025a).

Finding the right support and the right size. We first ask a language model to say, in plain
terms, what the object is supposed to rest on (e.g., bed, sofa, shelf)—an operation aligned with
language-grounded 3D reasoning in prior work Abdelreheem et al. (2025); Huang et al. (2025a);
Hong et al. (2023); Zhu et al. (2024). This is not cosmetic: in real scenes the same geometry
can play very different roles, and only semantics reliably separates “support” from “distractor.” In
the same call, we also ask for a realistic real–world size for O given its category and the prompt.
This step matters because scale silently governs almost everything that follows: penetration toler-
ances, frictional regimes, indentation depth, and even whether a VLM later believes an orientation
is reasonable. We rescale MO by a single isotropic factor (median across axes, clamped) to avoid
toy–sized cups and sofa–sized cups alike. The scene is then segmented into labeled instances (stan-
dard in RGB-D reconstructions Dai et al. (2017)); we pick the base object by matching labels to the
extracted category. Language here does the thing geometry alone cannot do: it turns ambiguity into
intent. You can find an example in Figure 2(a).
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Orienting with the smallest possible evidence. Before dropping, we need a rotation that aligns
with what the user asked. Rather than flood a vision–language model with many similar views
(which we found can hurt reliability), we create exactly three diagnostic snapshots: keep the base
fixed, place the object above it, and flip the object by 180◦ about x, y, and z from its initial ori-
entation. These three “maximally different” flips are enough to expose symmetries and front/back
cues without contradicting each other. We feed these images, their flip annotations, and a lightly
refined prompt back to the VLM and ask for a single rotation R⋆∈SO(3) that satisfies the instruc-
tion (e.g., “face the bear toward the pillow”). This minimal-evidence protocol follows observations
that carefully-instructed VLMs can align with human preferences and make consistent comparative
judgments when the evidence is compact and unambiguous Wu et al. (2024); Hong et al. (2023);
Huang et al. (2025b). The philosophy is simple: give the model just enough to decide, then stop.
More views look thorough but often introduce near–duplicate evidence and confusion; fewer views
keep the signal clean. You can see the visualization in Figure 2(b).

Deciding where, exactly, to aim the drop. Users rarely say “place the toy at (x, y).” They say “on
the mattress,” “near the headboard,” “left side.” We embrace that by further decomposing the cho-
sen base into semantic sub–parts (e.g., mattress, bed frame) and asking the language model to
pick which sub–part and roughly where on it to aim, in the spirit of language-to-geometry grounding
Abdelreheem et al. (2025); Huang et al. (2025a). We then turn that coarse anchor into geometry:
cast a ray straight down along gravity to the surface point xs and lift the object to a fixed clear-
ance, t0 = xs + 0.01 ĝ. The 1 cm rule is not arbitrary—it prevents starting in immediate, deep
interpenetration (which produces unstable impulses) while still being close enough that physics, not
ad-hoc heuristics, determines the final resting spot. Importantly, unlike approaches that constrain to
upward-facing patches Huang et al. (2025a), we do not force “face–up” surfaces: if the user wants
something precarious or tucked, the simulator can explore that; our job is to start close and let the
world push back.

Giving the simulator honest materials. Next we teach the simulator what the parts are made of,
for both the placement object and the base. We segment into parts, map each semantic label to a
discrete material from a curated library using an LLM, and attach density ρ, stiffness E, Poisson ratio
ν, and friction (µstat, µdyn). We make one pragmatic decision to keep the problem sized right: treat
parts with E > 1GPa as rigid and send everything else to an MPM solver—an efficient compromise
that reserves particle computation for where deformation is visually decisive. MPM has proven
effective for large-deformation contact with friction and plasticity Stomakhin et al. (2013); Jiang
et al. (2015); Hu et al. (2018), and our use here follows that tradition.

Filling soft parts so they behave like solids. MPM needs mass where the volume is. We voxelize
each soft part and fill it with particles at a spacing tied to the thinnest local dimension, ensuring thin
regions still have several particles through thickness. This avoids the classic “Swiss-cheese” failure
where sheets or edges have too few samples to carry stress. The result is a simulation–ready volume
where indentation, shear, and stick–slip can actually emerge Hu et al. (2018).

Letting physics choose the pose—and knowing when to stop. We now drop from (R⋆, t0) with
the base fixed or mounted, using gravity, no–penetration, and Coulomb friction, and we integrate
with a stable scheme that adapts the step size when deformations spike. We do not require “upward-
facing” patches or planar supports; if the request implies a tricky configuration (a toy on a sloped
lampshade), the solver is allowed to try and, crucially, to fail—no stable equilibrium becomes a
certificate that the command is infeasible. We decide convergence without rendering frames: in
physics engines, render-time is often the bottleneck, while solver-native diagnostics are cheap and
principled Todorov et al. (2012); Makoviychuk et al. (2021). We therefore watch the largest linear
and angular rigid-body speeds, the largest MPM particle speed, the drift of the overall center of mass,
and the change in the combined AABB; when all stay below small, scale-normalized thresholds for
several consecutive steps, we stop. This “render-free” test is both faster and more honest: it measures
physics, not pixels.

Returning a placement that explains itself. At equilibrium we extract the deformed state of the
object (and any soft parts of the base). For MPM we optionally reconstruct a surface mesh via an
iso–surface so downstream renderers and composers can use it directly. The final state is written
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back to the scene at (R⋆, t⋆). What we return is more than a pose: it is a physically justified
geometry with contact patches, indentations, and folds that can be seen and reused. If the user’s
request was impossible, we return that certificate, too—which competing pipelines that only predict
rigid poses typically cannot provide Abdelreheem et al. (2025); Huang et al. (2025a).

Figure 3: Distribution of Number of Deformable Materials per Scene

4 EXPERIMENTS

4.1 DATASET

As previewed in the introduction, evaluating deformable placement demands high-resolution, wa-
tertight meshes so that indentations, folds, and contact patches are visible and measurable. Popular
RGB-D reconstructions like ScanNet are invaluable for semantics and layout but their mesh quality
is often too coarse for fine-scale deformation studies Dai et al. (2017). By contrast, InteriorGS offers
visually rich, high-resolution indoor scenes, but in the form of 3D Gaussian Splatting rather than tri-
angle meshes Manycore Research (2025); Kerbl et al. (2023). To obtain meshes without sacrificing
appearance quality, we adopt SuGaR, which extracts accurate, editable meshes from trained 3DGS
Guédon & Lepetit (2024).

InteriorGS distributes trained 3DGS scenes rather than the original posed image streams, whereas
SuGaR’s pipeline expects a 3DGS model with calibrated views (or images+poses for its short
“vanilla 3DGS” warm-up). We therefore render multi-view images from each InteriorGS scene with
known camera poses (sampling views that cover navigable space and key furniture) and feed these
views and poses into SuGaR for surface-aligned mesh extraction. This yields watertight, simulation-
ready geometry while preserving the visual fidelity that motivated using InteriorGS in the first place
Manycore Research (2025); Guédon & Lepetit (2024); Kerbl et al. (2023). In total, we select 186
InteriorGS scenes and convert each to a 3D mesh suitable for deformable contact simulation.

To confirm that a deformable benchmark is warranted, we annotate per-scene material tags for com-
mon supports (beds, couches, chairs, shelves) and find that 98% of scenes contain at least one de-
formable support (e.g., mattress, cushion, blanket). Figure 3 reports the distribution of deformable
materials per scene, underscoring both the prevalence of compliant supports and the need for a
dataset that captures them at mesh fidelity.

4.2 EVALUATION METRIC AND BASELINES

Evaluating deformable placement hinges on two questions: is it in the right place? and does it obey
physics? Prior “remove-and-reinsert” protocols for rigid placement assume scenes already contain
valid instances that can serve as ground truth Huang et al. (2025a); in our deformable setting this
rarely holds, so we adopt complementary VLM-judged and human-judged protocols.

VLM-judged protocol. We follow the GPTEval3D recipe—“GPT-4V(ision) is a human-aligned eval-
uator for text-to-3D”—which shows that a carefully-instructed VLM can compare 3D results in ways
that track human preferences Wu et al. (2024). For each scene/prompt and method, we render a fixed
set of canonical views and ask the VLM to (i) score Right Place (support/sub-region/orientation
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Method Right Place ↑ P & N ↑ Composite (GM) ↑ VLM–Elo ↑

DCAP (ours) 8.61 ± 0.71† 8.94 ± 0.62† 8.77† 1732†

FirePlace* (reimpl.) 7.48 ± 0.89 6.27 ± 1.12 6.85 1568
LayoutGPT 6.91 ± 0.95 5.58 ± 1.10 6.21 1511
Holodeck 6.34 ± 1.01 5.01 ± 1.16 5.64 1483

Table 1: VLM-judged evaluation following the GPTEval3D recipe Wu et al. (2024): a few-shot
instructed VLM (GPT-4V) scores each result on a 1–10 scale for (i) Right Place and (ii) Physics
& Naturalness, plus pairwise comparisons aggregated into an Elo-style rating. Composite is the
geometric mean of the two 1–10 scores (higher is better). †: significantly better than the best baseline
by paired bootstrap, p<0.01. *FirePlace code was unavailable at submission time; we re-created
the paper’s prompt-and-constraint pipeline from its description. P & N represents for Physics &
Naturalness.

consistency) and (ii) Physics & Naturalness (staticity, plausible indentation, no obvious interpen-
etration or sliding) on a 1–10 scale with a few-shot rubric (details in Appendix). In addition to
absolute scores, we also run pairwise comparisons and aggregate them into Elo-style ratings (as in
GPTEval3D) to obtain a ranking that is robust to small prompt/view variations Wu et al. (2024); Elo
(1978).

Human-judged protocol. Our UI first shows the clean scene and the asset to set intent; after “con-
tinue,” two placements appear side-by-side for a forced-choice preference. We convert all pairwise
votes into global method scores using a Bradley–Terry model (MLE on paired comparisons), yield-
ing uncertainty-aware rankings and allowing significance tests across methods Bradley & Terry
(1952). We report per-axis win rates (Right Place vs. Physics & Naturalness) and an overall com-
posite.

Baselines. We evaluate against three representative lines: FirePlace, which refines LLM common-
sense with explicit surface constraints for rigid placement Huang et al. (2025a); LayoutGPT, which
plans scene layouts from language and can be adapted to place new assets Feng et al. (2024); and
Holodeck, a language-guided 3D environment generator that outputs object arrangements Yang et al.
(2024). At submission time we did not find an official FirePlace implementation; we re-created its
prompt-and-constraint pipeline from the paper’s description to the best of our ability (prompts in
Appendix). For LayoutGPT and Holodeck we use the authors’ public code/recipes and adapt their
outputs into our mesh scenes with identical assets, scales, and views for fairness.

4.3 GENESIS SIMULATION IMPLEMENTATION DETAILS

We use Genesis to couple rigid bodies with MPM deformables. The scene runs with a global step
∆t=2ms, 18 substeps, and standard gravity (−9.81m/s2), which stabilizes stiff/soft contact with-
out shrinking ∆t further. Rigid–deformable coupling is enabled. Friction is Coulomb with per-part
(µstat, µdyn) clamped to [0.05, 1.0] and µdyn ≤ µstat; for heavy–on–soft impacts we optionally
enable CPIC-like momentum exchange to improve sticking.

The MPM domain is the tight AABB of all soft parts padded by 10 cm. Particle spacing h is chosen
from the thinnest local thickness so there are at least 3–5 particles through thickness; grid cell size
follows h, and particle radius/mass follow h and the assigned density. Deformables use corotated
elasticity with E∈ [5×104, 5×109] Pa, ν < 0.49, and ρ∈ [30, 8000] kg/m3 (clamps avoid extreme,
unstable values). Rigid parts inherit ρ for mass but are simulated as rigid bodies.

Convergence is decided with solver-native signals only: maximum rigid linear speed, maximum
rigid angular speed, maximum MPM particle speed, center-of-mass drift, and change in the com-
bined AABB must all fall below scale-normalized thresholds for K consecutive steps (thresholds
as in Sec. 3). For figures we render boundaries at 1024×1024 with a 55◦ FOV; the camera is auto-
framed around the predicted contact region at a distance 1.5× the base-part OBB diagonal. We fix
seeds for language calls (when supported) and physics; default clearance is 1 cm.
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Method Overall (%) ↑ Right Place (%) ↑ Phys. & Nat. (%) ↑

DCAP (ours) 79.4 ± 2.1† 76.2 ± 2.4† 82.6 ± 2.0†

FirePlace* (reimpl.) 63.1 ± 2.7 61.5 ± 2.8 64.7 ± 2.6
LayoutGPT 58.3 ± 2.9 56.0 ± 3.0 60.5 ± 2.8
Holodeck 55.6 ± 3.1 54.2 ± 3.1 56.9 ± 3.0

Table 2: Human forced-choice (side-by-side). UI first shows the clean scene and asset, then
two placements. We report overall win rate and axis-specific wins with 95% bootstrap CIs across
scene–prompt pairs. Pairwise votes are aggregated via a Bradley–Terry model (full BT scores and
significance tests in Appendix). †: significantly better than the best baseline (paired bootstrap,
p<0.01). *FirePlace re-implemented per paper prompts.

Figure 4: The video for ball and dumbbell drop to equilibrium on bed and sofa

(a) FirePlace Placement Output (b) Our Drop-to-equilibrium Output

Figure 5: Visual comparision against baseline

4.4 QUALITATIVE AND QUANTITATIVE RESULTS

Qualitative. Figure 4 illustrates the core behavior our task cares about: objects settle under grav-
ity into frictional, deformable contact. A ball and a dumbbell both drop to rest on soft furnishings,
but the outcomes differ for the right physical reason: the blanket is very compliant while the sofa
cushion is relatively stiff. Consequently, the ball produces a deeper, nearly circular indentation on
the blanket, whereas the dumbbell yields a shallower, slightly elongated footprint aligned with its
handle on the sofa. This contrast reflects the load–compliance interplay (object weight and con-
tact geometry versus support stiffness) rather than “posed” geometry. Because the simulator—not a
renderer—determines the rest state, DCAP naturally accommodates non-planar and slightly sloped
supports without special cases. In Figure 7 we compare side-by-side with FirePlace Huang et al.
(2025a). Both methods respect the instruction semantics, but the difference is visible: DCAP pro-
duces material-consistent dents, folds, and stick–slip “nestling,” while rigid placements tend to float,
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interpenetrate, or sit unnaturally flat. Note also that identical prompts yield different deformation
magnitudes across objects and supports (e.g., ball vs. dumbbell; blanket vs. sofa), which is expected
under a physics-constrained formulation and difficult to mimic with purely geometric constraints.

Quantitative. Tables 1 and 2 summarize results on our benchmark. Under the VLM-judged proto-
col (GPTEval3D-style), DCAP leads on both axes—Right Place and Physics & Naturalness—with
a strong composite score and the top Elo rating. Concretely, DCAP improves Right Place by +1.13
over the best baseline and Physics & Naturalness by +2.67 on a 10-point scale, yielding a +1.92
composite gain (Table 1; p<0.01 by paired bootstrap). Human forced-choice reaches the same con-
clusion: DCAP wins 79.4% of comparisons overall, including 76.2% on Right Place and 82.6% on
Physics & Naturalness, beating the next best method by +16.3 to +17.9 percentage points (Table 2;
95% CIs reported). In short, when judged by either humans or a human-aligned VLM, DCAP is
preferred not only for being in the right semantic region but also—critically—for looking physically
settled.

4.5 DOWNSTREAM 2D SYNTHESIS

DCAP returns a settled 3D state—pose plus deformed geometry—so we can render depth, sur-
face normals, occlusion mattes, and contact maps (pixels adjacent to the contact patch) as plug-in
conditioning for standard 2D insertion/synthesis pipelines (e.g., depth/normal-guided diffusion or
control-net–style compositing). This directly targets the three failure modes of 2D-only methods:
floating objects (no contact shadows), shading/foreshortening mismatches (wrong surface orienta-
tion), and interpenetration along seams. Although a full 2D study is beyond the scope of this paper,
the mechanism is straightforward: take DCAP’s final mesh, render the geometry cues once, and let
the 2D model synthesize pixels with correct occlusions and contact shading. We release these condi-
tioning maps with our scenes to facilitate future evaluation; the qualitative comparisons in Figs. 6–7
already illustrate the visual benefits that such conditioning is designed to amplify.

5 DISCUSSION AND LIMITATIONS

What DCAP buys us. Casting placement as drop-to-equilibrium turns “looks right” into a physics
test and yields outputs that explain themselves—poses come with contact patches, dents, and
(when no rest state exists) a feasibility certificate. The settled geometry provides reusable
depth/normal/occlusion/contact cues and makes minimal use of language: support name, size prior,
sub-part anchor, and a three-view rotation query.

Limits. (i) Language/segmentation errors can mis-aim the drop; symmetric objects still challenge
the VLM. (ii) Material assignment is discretized and the E>1GPa rigid/soft split is a pragmatic
speed heuristic. (iii) The physics model (isotropic corotated elasticity, Coulomb friction) omits
anisotropy, viscoelasticity, and cloth shells, underfitting some textiles. (iv) MPM cost remains the
bottleneck and thin structures are resolution-sensitive despite our “thin-aware” filling. (v) Dataset
and evaluation rely on meshes reconstructed from 3DGS and on VLM/human judgments rather than
a single canonical pose; the FirePlace baseline is a faithful re-implementation rather than official
code.

Outlook. Priorities include joint scale/material inference with differentiable physics, hybrid solvers
(MPM + cloth shells, anisotropy), faster equilibrium surrogates, and multi-object co-placement.

6 CONCLUSION

We revisited language-guided object placement for scenes where contact is deformable and fric-
tional. DCAP prepares physics with just enough semantic guidance (support, size, sub-part anchor,
three-view rotation), assigns discrete materials, and then lets gravity decide the final state. On a new
high-fidelity mesh benchmark derived from InteriorGS via SuGaR, DCAP consistently outperforms
language-only and rigid-constraint baselines in both “right place” and “physics & naturalness,” while
certifying infeasible instructions. Because DCAP outputs settled geometry, it also supplies strong
conditioning for downstream 2D synthesis. We hope this framing—pose by equilibrium, not by pix-
els—encourages broader use of visuo-physical priors in scene understanding and content creation.
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