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Abstract

Value-based algorithms are a cornerstone of off-policy reinforcement learning
due to their simplicity and training stability. However, their use has traditionally
been restricted to discrete action spaces, as they rely on estimating Q-values for
individual state-action pairs. In continuous action spaces, evaluating the Q-value
over the entire action space becomes computationally infeasible. To address
this, actor-critic methods are typically employed, where a critic is trained on
off-policy data to estimate Q-values, and an actor is trained to maximize the
critic’s output. Despite their popularity, these methods often suffer from instability
during training. In this work, we propose a purely value-based framework for
continuous control that revisits structural maximization of Q-functions, introducing
a set of key architectural and algorithmic choices to enable efficient and stable
learning. We evaluate the proposed actor-free Q-learning approach on a range
of standard simulation tasks, demonstrating performance and sample-efficiency
on par with state-of-the-art baselines, without the cost of learning a separate
actor. Particularly, in environments with constrained action spaces, where the
value functions are typically non-smooth, our method with structural maximization
outperforms traditional actor-critic methods with gradient-based maximization. We
have released our code at https://github.com/USC-Lira/Q3C.

1 Introduction

Reinforcement learning (RL) has been highly effective in many domains, ranging from robotics
to gaming and recommender systems [25, 29, 45, 1]. Value-based RL methods such as Deep Q-
Networks (DQNs) [34, 17] are widely used in discrete action spaces due to their simplicity, training
stability, and sample-efficiency. However, these methods require maximization over the action space,
which is feasible only in discrete action spaces, requiring alternative approaches for continuous
control.

In problems with continuous action spaces, policy-based methods are typically used, such as DDPG
[30], SAC [16], and TD3 [11]. These approaches employ an actor-critic architecture, where the actor
(policy) is updated based on feedback from the critic (Q-function) to select the optimal actions, and
both components are usually parameterized by neural networks. While powerful, actor-critic methods
often face instability due to the coupled training of actor and critic, hyperparameter sensitivity, and
predicting in high-dimensional action spaces. Moreover, gradient-based actor-critic methods struggle
when the action space is constrained, such as when actions require to be within specific safety bounds
[8, 24], because the gradient-ascending actor can only find locally optimal actions.

Can we develop an actor-free value-based algorithm that can efficiently select optimal actions in
continuous domains? In this work, we propose to extend the DQN framework to continuous action
spaces via a Q-function representation that is structurally maximizable. This has been explored for
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quadratic models of the Q-function [15], but that has limited representation capacity. In contrast,
our approach builds upon a prior technique that uses a set of “control-points” to anchor Q-function
approximation [5, 12], such that the maximum is at one of the control-points. This direction was
largely abandoned [51] due to poor benchmark performance and scalability in complex environments.
We revisit this direction with a series of critical design innovations that enable practical and effective
continuous Q-learning for the first time with function approximation of control-points.

We propose the Q3C algorithm, Q-learning for continuous control with control-points, where our
contributions include: (1) combining a structurally maximizable Q-function with deep learning to
find maxima easily in complex continuous action spaces; (2) an improved model architecture that
simplifies optimization by separating the complexity of control-point generation and value estimation;
and (3) algorithmic improvements that help make the algorithm robust across different environments
with various action spaces and reward scales. We evaluate our approach on a range of continuous
control Gymnasium tasks [50] where Q3C is on par with the performance of common deterministic
actor-critic methods. Particularly, in complex environments with constrained action spaces, where
gradient-based actor-critic methods struggle, Q3C consistently outperforms existing approaches. We
also conduct ablation studies to measure and visualize the impact of each design component in Q3C.

2 Related Work

Off-policy actor-critic methods are widely employed for tasks with continuous action spaces.
Among them, Deep Deterministic Policy Gradient (DDPG) [30] is particularly influential. As a deep
variant of the deterministic policy gradient algorithm [44], DDPG combines a Q-function estimator
with a deterministic actor that seeks to maximize the estimated Q-function. However, the interaction
between the actor network and the Q-function estimator often introduces instability, making DDPG
highly sensitive to hyperparameters and difficult to stabilize.

Various improvements to address these shortcomings have been proposed, including multi-step
returns [19], prioritized replay buffers [40], and distributional critics [6]. One notable extension,
Twin Delayed Deep Deterministic Policy Gradient (TD3) [11], introduces several key modifications,
such as delayed updates for the policy, target networks, and the use of clipped double Q-learning,
to significantly improve the stability and robustness of training, making TD3 one of the most
widely adopted algorithms for continuous control. However, TD3 often performs suboptimally in
environments with complex or non-convex Q-function landscapes. To address this, Jain et al. [24]
propose augmenting TD3 with a successive actor framework that trains multiple actors to explore
different modes of the Q-function. However, this approach introduces additional computational
overhead and inference-time latency. Furthermore, the expressiveness of the actor’s parameterization
may still be insufficient to capture complex optimal action distributions. Finally, Soft Actor-Critic
(SAC) [16] learns a stochastic policy that maximizes an entropy-regularized Q-function.

Evolutionary algorithms like simulated annealing [27], genetic algorithms [47], tabu search [14],
and cross-entropy methods (CEM) [9] are deployed for global optimization in RL but often suffer
from premature convergence at local optima in environments with complex Q-functions [20]. CEM
approaches such as QT-Opt [25, 28, 26], GRAC [43], CEM-RL [35], and Cross-Entropy Guided Poli-
cies [46] are relatively effective but additionally introduce a high computational workload, struggling
with high-dimensional action spaces as sampling becomes progressively more inefficient [53].

Value-based methods, as opposed to actor-critic methods, suffer from the challenge of finding the
maximal action in continuous domains. Prior work approach this problem via various optimization
techniques to minimize the Bellman residual [4], including mixed-integer programming [39], the
cross-entropy method [25], and gradient ascent [31]. While these approaches can be effective,
they often result in either suboptimal local maximization or are computationally impractical [24].
Another line of work discretizes the action space and performs Q-weighted averaging over discrete
actions [32]. Though effective in low-dimensional settings, this approach does not scale well to
high-dimensional tasks. Gu et al. [15], Wang et al. [52] propose a different approach by constructing
the state-action advantage function in quadratic form, allowing for analytical solutions to directly
obtain the Q-value maximum. However, this formulation restricts the Q-function’s expressivity to
be quadratic in action space, restricting its practical applicability. Amos et al. [2] make a similarly
limiting assumption that the Q-function is universally convex in actions and use a convex solver for
action selection. Most similar to our approach, Asadi et al. [3] proposed RBF-DQN, which learns
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Q-functions without an actor by using a deep network with a radial basis function (RBF) output layer,
enabling easy identification of the maximum action-value. However, standard RBF interpolation
does not guarantee that the maximum lies at a basis centroid. It has an implicit smoothing trade-off
between how expressive the Q-function can be in modeling various local optima and how close a
basis centroid is to the true maxima. In contrast, the control-point approximation framework of Q3C
alleviates this trade-off, being notably more adaptable to arbitrarily shaped Q-functions, including
those with multiple modes or non-convexities. Thus, Q3C exhibits the ability to find the accurate
maximizing action, which was the primary bottleneck of prior value-based methods.

Our work builds on a less known but promising framework that approximates Q-values using control-
points, also referred to as wire-fitting interpolators [5, 12, 13]. While earlier studies included this
approach as a baseline, they reported poor or unstable performance [51, 31]. In this work, we revisit
this framework and propose several novel modifications that are crucial to stabilize learning, enabled
by advances in deep learning and reinforcement learning. We demonstrate that, with these critical
additions, control-point-based Q-function approximators become competitive with state-of-the-art
reinforcement learning algorithms in standard benchmarking environments and outperform them on
constrained action space environments.

3 Preliminaries

3.1 Q-Learning

We consider a Markov Decision Process (MDP), where at each time step t, an agent observes the
state st ∈ S and takes an action at ∈ A in the environment E . The agent receives a reward r(st, at),
and transitions to the next state st+1 ∈ S. The objective of the agent is to learn a deterministic policy
π : S → A that maximizes the cumulative return discounted by a factor of γ ∈ [0, 1) per time-step,
Rt =

∑∞
i=t γ

(i−t)r(si, ai). Q-learning [48, 33] solves this by defining the optimal action-value
function Q∗(s, a) as the maximum expected return achievable after taking action a at state s,

Q∗(s, a) = max
π

E [Rt | st = s, at = a, π] .

The greedy policy is optimal, π∗ = argmaxa∈AQ
∗(s, a), where Q∗ follows the Bellman equation,

Q∗(s, a) = Es′∼E

[
r + γmax

a′∈A
Q∗(s′, a′) | s, a

]
. (1)

Value iteration algorithms like Deep Q-Networks (DQN) [33] apply the Bellman equation as an
iterative update to train a function approximation Q with weights θ, called the Q-network,

LBellman(θ) = Es,a∼ρ

[(
r + γmax

a′∈A
Q(s′, a′; θ)−Q(s, a; θ)

)2
]
, (2)

where ρ(s, a) is the probability distribution over states and actions in the collected training data.

3.2 Maximization in Q-Learning

The two max operations involved in deriving the greedy policy from Eq. (1) and evaluating the next
state’s best Q-value in Eq. (2) are easily computable in discrete action spaces by evaluating the Q-
values of every action [33, 18, 34, 17]. However, they become infeasible in continuous action spaces.
To address this, the deterministic policy gradient algorithm [44, 30, 11] learns an “actor” policy
in addition to the “critic” Q-function. The actor is trained with gradient ascent of the Q-function
landscape, resulting in a greedy policy that finds locally optimal actions. Furthermore, the max in
Eq. (2) is avoided by replacing the max-Q formulation with the expected-Q of the actor [48, 44, 30].

However, the introduction of an additional actor brings several downsides: (i) additional hyperpa-
rameters for the actor network, making reproducibility a challenge due to interaction between the
learning of the actor and critic [21], (ii) computational overhead of increased training memory, and
(iii) actors trained with the policy-gradient can only find locally optimal actions [24].
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4 Q3C: Q-learning for Continuous Control with Control-points

We aim to simplify Q-learning in continuous action spaces by proposing a lightweight actor-free
approach that enables the maximization required in Equations (1) and (2). Our key insight is to
learn a structurally maximizable representation of the Q-network that alleviates the need for an actor.
Previously, Baird and Klopf [5] introduced wire-fitting, a general function approximation system that
uses a finite number of control-points for fitting the Q-function. This design reduces the problem of
finding the maximum over the entire action space to finding the maximum among the control-points.
However, the direct application of wire-fitting to deep neural networks has led to poor results [51, 31].
We identify the crucial challenges that have limited deep wire-fitting and propose our approach,
Q-learning for continuous control with control-points (Q3C), to address them.

4.1 Function Approximation Using Control-points

The wire-fitting framework [5] facilitates finding the maximum of a function f : U → R by
maintaining a set of N control-points Uc = {u1, . . . uN} and their corresponding f values Yc =
{y1 . . . yN}. The value f(u) is evaluated as inverse weighted interpolation smoothed with ci ≥ 0,

f(u) =

∑
i yiwi∑
i wi

, where wi =
1

|u− ui|2 + ci (ymax − yi)
. (3)

Control Points

Figure 1: Wire-fitting function. A Q-
function represented by an interpolation
of learnable control-points is structurally
maximized at one of the control-points.

As shown in Figure 1, this formulation guarantees that
the maximum of the function f is attained at one of the
control-points, ui ∈ Uc such that i = argmaxk yk.

The smoothing parameter in our formulation affects
the function’s value only at non-maximal control-points.
With small smoothing, the approximated function passes
through all control-points, whereas with a large smooth-
ing parameter, the function’s value may differ slightly
at some control-points. However, in all cases, it is still
guaranteed that the maximum of the function lies at a
control-point—an advantage in highly non-convex Q land-
scapes.

This function approximation is extended to model Q-
functions Q(s, a) with the goal of finding the maximiz-
ing action a for any given state s. Herein, the control-
points and their values are learned as functions of s:
Ac(s) = {â1(s), . . . âN (s)} and Qc(s) = {Q̂1(s), . . . Q̂N (s)}. These sets of functions Ac and
Qc are modeled with function approximations like neural networks, for example, a shared neural
network backbone with 2N scalar output heads for âi(s) and Q̂i(s).

Q(s, a)=

∑
i Q̂i(s)wi(s, a)∑

i wi(s, a)
, wherewi(s, a)=

1

|a−âi(s)|2+ci maxk
(
Q̂max−Q̂i(s)

) . (4)

This representation of the Q-function enables Q-learning in continuous action spaces with the ability
to find the maximal action via a direct maximization over scalars Q̂i(s),

argmax
a

Q(s, a) = âj where j = argmax
i
Q̂i. (5)

In Appendix B, we prove the following proposition that replacing a neural network Q-function with
wire-fitting interpolation in the Q-function preserves its universal approximation ability.
Proposition. Let A be a compact action set and s be a given state. For any continuous Q-function
Qs(a) := Q(s, a) and any ϵ > 0, there exists a finite set of control-points {â1, . . . , âN} ⊂ A with
corresponding values yi = Qs(ai) such that the wire-fitting interpolator

f(a) =

∑N
i=1 yi wi(a)∑N
i=1 wi(a)

, wi(a) =
1

|a− ai|+maxk(yk − yi)
, satisfies
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Control Point

Generator

Q Estimator

Wire-Fitting Interpolator

Figure 2: Q3C Architecture consists of 3 components: (i) a control-point generator estimates the
representative N control-point actions, (ii) a Q-estimator estimates the values of these N points, and
(iii) a wire-fitting interpolator estimates the inverse-distance weighted Q-value of the given action.

∥f −Qs∥∞ = sup
a∈A
|f(a)−Qs(a)| < ϵ.

Hence, the wire-fitting formulation can approximate any continuous Q(s, ·) arbitrarily well.

Extension to Deep Reinforcement Learning. Prior attempts on adapting the above wire-fitting
framework to deep neural networks struggled on high-dimensional continuous control [31]. This is in
line with prior works in deep RL [33, 30] that show the need for specialized stabilization techniques in
the RL algorithm and architecture. Therefore, we propose to (i) build on the exploration and function
approximation tools of the TD3 algorithm [11] which analogously learns deterministic policies for
continuous control, (ii) reduce optimization complexity of the control-point architecture (Section 4.2),
and (iii) improve the robustness of training across different environments (Section 4.3).

Building on TD3. We explore with Gaussian-noise added over the deterministic action selected by
greedy maximization. We augment the training with twin Q-networks to avoid overestimation and
target networks to make the learning targets stationary in Eq. (2). To encourage generalization, we
apply target policy smoothing to the maximizing action a′ ∈ A, obtained via Eq. (5).

4.2 Reducing Optimization Complexity of Control-points

While building on TD3 provides the basic framework for deep wire-fitting, the control-point archi-
tecture still suffers from two complexities of optimization: (1) a control-point’s Q-value Q̂i(s) is
learned without conditioning on its corresponding action âi(s) and must implicitly learn it in neural
weights, and (2) Q-function’s global expressivity with many control-points comes at the cost of local
learning inefficiency because the backpropagated gradient is spread over all the control-points.

Action-conditioned Q-value Generation. Independently predicting the Q-values Q̂i(s) from their
control-points âi(s) lets the network assign very different values to identical or near-identical actions,
destabilizing learning. We instead structure the control-point architecture into 2 stages: a control-
point generator gϕ(s) outputs N control-point actions âi(s), for which a separate Q-estimator obtains
the corresponding Q-values, Q̂i(s) = hψ(s, âi). The idea of evaluating various control-points with
the same Q-estimator is motivated from prior work on action representation generalization [22, 23],
and ensures consistency of Q-values and simplifies learning (see Figure 2).

Relevance-based Control-point Filtering. To enforce stricter locality than the soft weighting in
Eq. (3), we evaluate Q(s, a) only using the top k control-point weights wi(s, a) for the action a
discarding the remaining N − k. This hard filter removes spurious influence from distant points,
sharpens the local value landscape, and yields a simpler learning task. Empirically, choosing k ≪ N
consistently improves both training stability and final performance across benchmarks.
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Algorithm 1 Q3C

Initialize control-point generators gϕ1 , gϕ2 and Q estimators hψ1 , hψ2

Initialize target networks ψ′
i, ϕ

′
i ← ψi, ϕi

Initialize replay buffer
Define calc_q_value(s, a, ϕ, ψ)← following Eq. (4)
Define get_action(s)← Eq (5)
for t = 1 to T do

Select Action
Select action with exploration noise and observe reward r and new state s′.
Store transition tuple (s, a, r, s′) in replay buffer
Update
Sample mini-batch of N transitions (s, a, r, s′) from replay buffer
ã← get_action(s′)+ ϵ,where ϵ ∼ clip(N (0, σ̃),−δ,+δ)
Qi(s

′, ã)← calc_q_value(s′, ã, ϕ′i, ψ
′
i) for i = 1, 2

y ← r + γmini∈{1,2}Qi(s
′, ã)

Qi(s, a)← calc_q_value(s, a, ϕi, ψi) for i = 1, 2
LBellman(ϕi, ψi)← N−1

∑
(y −Qi(s, a))2, Lseperation(ϕi)← Eq. (6)

Calculate losses L(ϕi, ψi) = LBellman(ϕi, ψi) + Lseperation(ϕi) for i = 1, 2
Update parameters ϕi, ψi for i = 1, 2
if t mod d = 0 then

Update target networks:
ϕ′i ← τϕi + (1− τ)ϕ′i
ψ′
i ← τψi + (1− τ)ψ′

i
end if

end for

4.3 Robustness of Training across Different Tasks

The performance of the wire-fitting framework may still degrade when reward scales, action ranges,
or environment dynamics differ markedly across tasks. To be a robust algorithm, Q3C must (i)
maintain a diverse, well-spread set of control-points so the critic models a representative slice of the
action space in every state, and (ii) normalize the scales of the action distance and Q-value difference
despite varying reward magnitudes across states and tasks.

Control-point Diversity. While action-conditioned Q-value generation disentangles Q-values from
control-point generation, it does not ensure that control-points cover the action space. In practice,
we observe that control-points often cluster near the boundaries, limiting the expressiveness of the
learned Q-function (see Figure 6). While policies acting at extremes can perform well in certain
scenarios [42], more uniformly distributed control-points offer richer representations and improved
robustness when applying Q3C. To spread them out, we add a pairwise separation loss with ε≪ 1:

Lseparation(ϕ) =
1

N(N − 1)

∑
i ̸=j

1

∥âi(s)− âj(s)∥2 + ε
, whereN = # of control-points (6)

which is minimized when the points are uniformly dispersed. We add this loss to the Bellman loss in
Eq. (2) weighted by a hyperparameter, λ ∈ (0, 1].

Scale-Aware Control-points and Q-values We normalize action spaces to [−1, 1] and use a tanh
nonlinearity in the control-point generator. In Eq. (4), while the action distances |a − âi(s)|2 are
bounded in [0, 1], the Q-value difference term ci · (ymax − yi) can vary widely between environments,
even with shared ci = c. We (i) rescale each state’s control-point values to Q̃i ∈ [0, 1] within the
weight term only, Q̃i = Q̂i−Q̂min

Q̂max−Q̂min
and (ii) anneal the smoothing factor ci exponentially. This prevents

large rewards from overwhelming spatial information and keeps learning robust across diverse tasks.
Combining all the aforementioned modifications, we present Q3C, a pure value-based reinforcement
learning algorithm for continuous control in Algorithm 1.
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Table 1: Standard Environments. Final performance on Classic Mujoco Environments shows that
Q3C is comparable to TD3 while outperforming other baselines (mean ± std).

Environment TD3 NAF Wire-Fitting RBF-DQN Q3C
Pendulum-v1 −144.64± 25.28 −252.36± 56.63 −351.52± 390.18 −143.88± 23.86 −159.53± 16.46
Swimmer-v4 300.70± 125.64 20.63± 12.62 313.63± 106.23 92.38± 44.97 316.40± 14.75
Hopper-v4 3113.41± 888.17 500.80± 240.93 1987.50± 1127.06 2189.37± 1093.13 3206.14± 407.23
BipedalWalker-v3 309.62± 10.94 −108.19± 34.76 70.01± 100.28 265.35± 74.38 290.11± 26.43
Walker2d-v4 4770.82± 560.16 2179.56± 1034.59 2462.30± 1095.41 781.58± 282.66 3977.39± 879.70
HalfCheetah-v4 9984.74± 1076.58 3531.50± 802.84 7546.23± 1234.31 6175.57± 3044.93 9468.66± 949.01
Ant-v4 5167.68± 673.44 −18.10± 0.30 1154.59± 420.92 1674.03± 964.60 3698.41± 1314.88

Figure 3: Standard Environments. Q3C is comparable in performance to TD3 and outperforms
other actor-free value-based baselines in most environments.

5 Experiments

We conduct experiments across a range of continuous control tasks and baselines. Our goal is to eval-
uate both performance in standard benchmark environments and robustness in settings with complex,
multimodal Q-functions. Further details about the environments can be found in Appendix E.

Environments. We evaluate our method on several tasks from the Gymnasium suite [50]. Specifically,
we use Pendulum, Swimmer, Hopper, Bipedal Walker, Walker2d, Half Cheetah, and Ant tasks to
cover a range of task difficulty. In all experiments, we use state-based observations and do not modify
the reward function of the tasks. In addition, similar to prior work [24, 39], we create restricted
versions of a subset of the environments, namely Inverted Pendulum, Hopper, and HalfCheetah. We
follow the same procedure as Jain et al. [24], where the action space is restricted by defining a set of
hyperspheres as the valid section of the space. The actions outside this space are defined as invalid
and have no effect on the environment. These restricted settings are designed to induce non-convex
Q-functions, where local maximization fails to find the optimal action.

Baselines. We primarily compare Q3C against deterministic RL algorithms, including both actor-
critic and value-based methods, as our approach results in a deterministic policy and follows TD3’s
exploration. Whenever possible, we use the official implementations from the stable-baselines3 [37]
and tuned hyperparameters from rlzoo3 [36] to ensure optimized baselines. We implement Q3C using
the same stable-baselines3 backbone to minimize implementation-level differences between methods.

Q3C (Ours): Q-learning for continuous control that learns a structurally maximizable Q-function via
a set of learned control-points with improved optimization and robustness for deep networks.

Wire-Fitting [12, 13]: Vanilla wire-fitting Q-function approximation without our contributions.

7



Table 2: Restricted Environments. Q3C outperforms TD3 and actor-free baselines (mean ± std).

Environment TD3 NAF Wire-Fitting RBF-DQN Q3C
InvertedPendulumBox 782.76± 348.92 909.72± 120.14 386.38± 307.57 862.02± 398.05 1000± 0
HalfCheetahBox 2276.70± 2036.59 4867.05± 1487.69 −2139.78± 4702.25 2238.38± 3227.31 4357.82± 1503.33
HopperBox 1406.83± 1162.72 461.54± 389.04 169.78± 812.22 1641.15± 796.76 1974.28± 1170.05

Figure 4: Restricted Environments. Q3C consistently outperforms TD3, RBF-DQN, and Wire-
Fitting in restricted environments and largely outperforms NAF. Q3C converges at a higher reward
with high stability while other algorithms are stuck at local optima.

TD3 [11]: A state-of-the-art actor-critic algorithm that improves stability in continuous control by
using double Q-learning, delayed policy updates, and target policy smoothing.

NAF [15]: A value-based algorithm for continuous action spaces that assumes the Q-function to a
quadratic form, allowing the optimal action to be computed analytically without an explicit actor.

RBF-DQN [3]: A deep Q-learning algorithm variant that uses radial basis functions to approximate
Q-functions in continuous action spaces.

Evaluation Scheme. We train 10 different random seeds for each algorithm. Throughout training, we
evaluate each method every 10000 steps by running 10 rollout episodes and report the average return.
The curves correspond to the mean, and the shaded region to one standard error across 10 trials.

5.1 Standard Environments

We present our quantitative results in Table 1 and learning curves in Figure 3. Q3C achieves
performance comparable to TD3 on most tasks, with the exception of Ant-v4, where it performs
suboptimally. Compared to the vanilla wire-fitting baseline, which lacks our proposed additions, Q3C
achieves substantial improvements across all benchmarks, highlighting the impact of its components.

Other value-based algorithms than Q3C struggle in most environments. NAF consistently under-
performs, likely due to its restrictive inductive bias that the Q-function is quadratic in the action
space, which does not hold for complex control problems. RBF-DQN similarly achieves suboptimal
performance, possibly because its function approximation cannot reliably recover the true maximizing
action without excessive smoothing. Furthermore, it requires a large number of centroids (∼ 100) to
achieve sufficient Q-function expressivity, limiting scalability to high-dimensional environments.

These results show that Q3C is a viable alternative to deterministic actor-critic methods in common
RL benchmarks and the state-of-the-art actor-free method for continuous action spaces.

5.2 Restricted Environments

Environments with restricted action spaces help evaluate robustness of Q3C to complex Q-value
landscapes [24]. These constraints induce sharp discontinuities in the Q-values of nearby actions,
because they result in significantly different outcomes and returns. As a consequence, the Q-
function becomes highly non-convex and difficult to optimize. Our experiments on restricted
environments presented in Figure 4 and Table 2 show that TD3 performs significantly worse in
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Table 3: Ablations of Q3C. Final performance comparison shows every component is necessary to
improve the converged performance of Q3C (mean ± std).

Algorithm Hopper-v4 BipedalWalker-v3 Walker2d-v4 HalfCheetah-v4
Q3C 3206.14 ± 407.23 290.11 ± 26.43 3977.39 ± 879.70 9468.66 ± 949.01
Q3C - CondQ 2329.9 ± 610.1 286.0 ± 46.7 3614.3 ± 488.7 8385.9 ± 564.9
Q3C - Ranking 3036.5 ± 371.4 179.8 ± 187.3 3167.5 ± 1167.2 8960.9 ± 519.6
Q3C - Div 1921.1 ± 1117.9 -67.8 ± 119.6 3174.3 ± 1194.7 5282.7 ± 1116.2
Q3C - Norm 2915.3 ± 366.6 261.5 ± 83.4 2880.1 ± 1327.5 8745.5 ± 529.4
Wire-Fitting 1987.50 ± 1127.06 70.01 ± 100.28 2462.30 ± 1095.4 7546.23 ± 1234.31

Figure 5: Ablations of Q3C. Every component of Q3C is validated for importance. Individual Q3C
components complement each other and combined Q3C model visibly outperforms ablations.

restricted environments than in their unrestricted counterparts. This is expected since gradient-based
optimization of the policy can get stuck at local optima in highly non-convex Q-functions. In contrast,
Q3C consistently outperforms TD3 by avoiding restrictive policy parameterizations and instead
leveraging direct maximization over a learned Q-function.

Q3C similarly outperforms other value-based algorithms. The vanilla wire-fitting algorithm achieves
minimal to no performance in the restricted environments, highlighting the necessity of our additional
design components. RBF-DQN and NAF achieve moderate performance but are still suboptimal. This
is probably due to similar drawbacks to those outlined in Section 5.1 for standard environments, but
are exacerbated with the increased complexity of restricted environments. NAF performs marginally
better than Q3C in HalfCheetahBox-v4, suggesting that an approximation with a quadratic function
might be enough to sufficiently represent the Q-function in this environment.

Overall, these results highlight Q3C’s ability to handle discontinuities in the action space. We also
present extended comparisons against other popular RL algorithms in Appendix D.2.

6 Ablations

To understand the contribution of each component of our method, we conduct ablation experiments
by selectively removing one component at a time from Q3C. The ablated components include:

• Q3C without conditional Q-value generation (Q3C-CondQ)

• Q3C without control-point diversification (Q3C-Div)

• Q3C without ranking of relevant control-points (Q3C-Ranking)

• Q3C without normalization of Q-value differences in the wire-fitting kernel (Q3C-Norm)

We evaluate these variants on four environments—Hopper, BipedalWalker, Walker2d, and HalfChee-
tah—and report learning curves in Figure 5, and the corresponding final reward values in Table 3.
For reference we also include the vanilla wire-fitting approach in the plots. Further ablations on the
design choices can be found in Appendix C.

Across all tasks, full Q3C outperforms all ablated variants, highlighting the importance of each
component. While the impact of each feature varies by environment, removing any single component
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Figure 6: Learned Q-Function Visualizations of Key Q3C Component Ablations. Conditional
Q-Value Architecture and control-point Diversity Loss are Essential For Reasonable Q-Functions

generally results in performance and stability degradation. Notably, even the weakest ablated variants
outperform vanilla wire-fitting, demonstrating the effectiveness of our contributions.

One exception is the Q3C-Div variant: in certain environments, removing the control-point diver-
sification loss leads to a substantial performance drop. We attribute this to the underlying Q-value
landscapes of those environments, and the role of diversification in ensuring sufficient action space
coverage, which is essential for the other components—such as relevance filtering and Q-value
normalization—to operate effectively.

6.1 Visualizing the Effect of Q3C Components

As seen in Figure 6, without explicit constraints on control-points (left), the learned control-points
suffer from stacking, regression to corner action spaces, and noticeably minimal distribution (Sec-
tion 4.1). With the architectural modification to condition the Q-values on the control-points (center),
the control-points still stack towards the corners, but all control-points with the same action vector
now retain the same Q-value, which is a key improvement in consistency (Section 4.2). When extend-
ing this revised architecture with control-point diversity (Section 4.3), Q3C achieves both explicit
consistency across all control-points and a solid control-point distribution that prevents premature
collapsing at endpoints and encourages expressivity.

7 Conclusion

In this work, we introduced Q3C, an actor-free Q-Learning approach for off-policy reinforcement
learning in continuous action spaces. Our approach builds on the control-point function approximator,
augmented with several key architectural innovations, such as action-conditioned Q-value generation,
relevance-based control-point filtering, encouraging control-point diversity, and normalized scaling
for robustness. We demonstrated that these additions enable the function approximator to match or
exceed the performance of state-of-the-art online RL algorithms on standard benchmarks. Moreover,
in constrained environments where only a subset of the action space is admissible, Q3C achieves
robust performance while TD3’s gradient maximization often fails.

Limitations and Future Work. Q3C simply adopts TD3’s exploration scheme, and its sample
efficiency can lag behind other baselines in certain environments. More work on exploration strategies
could be promising, such as Boltzmann over the control-point values. As a hybrid between DQN-style
methods and actor-critic algorithms, Q3C offers flexibility to incorporate enhancements from both
paradigms. Future work could explore integrating sample-efficiency improvements such as n-step
returns [18], prioritized experience replay [40], or using batchnorm layers in the critic network
instead of target networks [7]. Additionally, adapting the control-point approximator to the offline
RL setting could be an exciting direction: due to its inherent constraints on Q-value interpolation, it
may offer natural mitigation against overestimation, a common challenge in offline learning. Finally,
we only employ Q3C on deterministic Q-learning, however, future work can investigate extending it
to stochastic policies where the control-point architecture models a soft-Q function like SAC.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Paper’s contributions and scope are summarized in detail in the abstract and
the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The authors explain the limitations of the proposed work at the end of the
paper, in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Supplementary.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the details required to reproduce the results are provided in the main paper
and the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The authors release their code with sufficient instructions reproduce the
experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details to understand and reproduce the results are
provided in the main paper and in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of the results presented in the paper provide information about the statistical
significance of the experiments with plots including standard deviation across runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The provides information about the type of compute workers CPU or GPU,
internal cluster used for running the experiments in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the supplementary.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors stated which version of the asset is used and cited the original
papers that produced the code package.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Impact Statement

This paper introduces a purely value-based reinforcement learning framework for continuous control,
aimed at improving both stability and tractability in complex action spaces. By avoiding restrictive
policy parameterizations and enabling direct action selection through a structured Q-function, our
method is particularly well-suited for tasks with constrained or safety-critical action spaces. While
our approach improves robustness and computational efficiency over existing baselines, it does
not explicitly account for fairness, interpretability, or real-world deployment risks. Care must
be taken when applying this method in safety-sensitive or high-stakes domains, where additional
mechanisms—such as constraint-aware training or human oversight—may be necessary to ensure
reliable and ethical deployment.

B Proof for Proposition

We show that replacing a neural network Q-function with wire-fitting interpolation in the Q-function
preserves its universal approximation ability.
Proposition. Let A be a compact action set and s be a given state. For any continuous Q-function
Qs(a) := Q(s, a) and any ϵ > 0, there exists a finite set of control-points {â1, . . . , âN} ⊂ A with
corresponding values yi = Qs(ai) such that the wire-fitting interpolator

f(a) =

∑N
i=1 yi wi(a)∑N
i=1 wi(a)

, wi(a) =
1

|a− ai|+ cimaxk(yk − yi)
, satisfies

∥f −Qs∥∞ = sup
a∈A
|f(a)−Qs(a)| < ϵ.

Hence, the wire-fitting formulation can approximate any continuous Q(s, ·) arbitrarily well.

Proof. We prove this proposition by following the classical convergence analysis of inverse–distance
interpolation [10], which was adapted to the control–point formulation for reinforcement learning
by Baird and Klopf [5].

Uniform–continuity radius. Because A is compact and Qs is continuous, Qs is uniformly contin-
uous; hence there exists δ > 0 such that |Qs(a)−Qs(b)| < ϵ/2 whenever |a− b| < δ.

Control-point δ–net. Choose a finite δ–net {ai}Ni=1 ⊂ A, i.e. for every a ∈ A there is an index
i⋆(a) with |a− ai⋆ | < δ. Define the targets yi := Qs(ai) and the positive offsets ci > 0 (a constant
choice ci ≡ 1 suffices).

Interpolant as a convex combination. For each a ∈ A set

wi(a) =
1

|a− ai|+ ci∆i
, ∆i := max

k
(yk − yi), λi(a) :=

wi(a)∑
k wk(a)

.

Because all wi(a) > 0, the λi(a) form a partition of unity and the wire–fitting interpolant is
f(a) =

∑
i λi(a) yi.

Error decomposition. Write f(a)−Qs(a) = Enear + Efar, where

Enear =
∑

i: |a−ai|<δ

λi(a)
(
Qs(ai)−Qs(a)

)
,

Efar =
∑

i: |a−ai|≥δ

λi(a)
(
Qs(ai)−Qs(a)

)
.

Near indices. For the “near” set the uniform–continuity condition yields |Qs(ai)−Qs(a)| < ϵ/2;
hence |Enear| ≤ ϵ/2.

Far indices. Let R := maxAQs −minAQs and cmin := mini ci. For any j with |a− aj | ≥ δ,

wj(a)

wi⋆(a)
≤ 1 +

cminR

δ
=: θ.
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It follows that
∑
j:|a−aj |≥δ λj(a) ≤ θ

−1. Choosing δ < cminRϵ/(2R− ϵ) makes θ−1 < ϵ/(2R) so
that |Efar| < Rθ−1 < ϵ/2.

Uniform bound. Combining the two parts gives |f(a) − Qs(a)| < ϵ for every a ∈ A; hence
∥f −Qs∥∞ < ϵ.

C Implementation Details and Ablations for Q3C

C.1 Control-point Diversification Functions

In addition to the separation loss we defined in Eq. (6), we experiment with an alternative loss
formulation that explicitly encourages each control-point to maintain a minimum distance from its
nearest neighbor:

Lmin_N(ϕ) =
1

N

N∑
i=1

min
1≤j≤N
j ̸=i

∥xi − xj∥2

This variant is used for a subset of tasks—specifically, Hopper and BipedalWalker—where we
empirically observed improved performance. These similar objectives aim to enhance the expressivity
and robustness of the Q-function approximation by avoiding clustered or redundant control-points.

C.2 Smoothing Coefficient

We experimented with three primary methods of setting the smoothing parameter c: tuning the
constant value of smoothing as a hyperparameter, learning the smoothing coefficient, and scheduling
a decay for smoothing.

We find in Figure 7 that an exponentially decaying smoothing scheduler typically works better than
learning a smoothing parameter. Utilizing a scheduler induces a greater stability in the smoothing
parameter that allows the model to learn the Q-function and distribution of control-points more
effectively. The learning process becomes less susceptible to erratic shifts in the smoothing parameter.

Figure 7: Ablations of Q3C with different strategies for smoothing parameter: The method of
decaying smoothing is consistently more stable as justified in section C.2.

C.3 Learning Rate Schedulers

In traditional actor-critic architectures like TD3, there is often an in-built policy delay with the critic
being updated more frequently than the actor. However, since Q3C employs the same network to
serve as both actor and critic, our implicit policy is updated at the same rate as our critic. Thus, Q3C
is more sensitive to various learning schemes to stabilize training.

We tried six different learning rate schedulers: constant, linear decay, exponential decay, inverse
exponential decay, cosine decay, and one-cycle learning rate. For each scheduler except for the
constant learning schedule, we kept the maximum learning rate as the learning rate specified in the
hyperparameters and the minimum learning rate as 10% of the maximum learning rate.

Among these, we found that inverse exponential decay and cosine decay were the optimal learning
schedulers across all environments. For sake of consistency, we apply a delayed exponential decay
learning scheduler for all results with the final learning rate set to 10% of the initial learning rate.
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C.4 Control-points with K-Nearest Neighbors

We experimented across various control-point combinations of N (total # of control-points) and k
(top k rankings), and found that setting N = 20 and k = 10 consistently worked best for nearly all
environments. We utilize this setting as a starting point for hyperparameter tuning, as it balances
coverage and computational cost. We then progressively increase the value of N , keeping k relatively
constant, until learning is optimal. We employ N = 30 and k = 15 for Ant-v4, and N = 70
and k = 10 for Adroit environment. However, our algorithm is reasonably robust across different
control-point combinations, as shown in Figure 8.

As a general rule, increasing the number of control-points N allows for greater expressivity but
involves learning a more complex Q-function, which may slow down learning. Due to this tradeoff,
the optimal number of control-points N tends to scale more conservatively than a proportional
increase with action dimensionality (e.g., AdroitHandHammer-v1’s action space is 26-dim but only
requires 70 control-points). Increasing the value of k typically leads to a smoother and continuous
Q-function across the action space, whereas a smaller value of k allows for more granular and
piecewise control of the Q-function.

Additionally, the conditional Q architecture enables parallelization across control-points during
Q-value generation, ensuring that the parameter count does not scale linearly with N . This parallel
structure supports Q3C’s scalability to high-dimensional and non-convex Q-function landscapes.

Figure 8: Ablations of Q3C with different configurations for # of control-points (N), and top k
ranking. Different configurations are represented as N:k in the legend.

D Further Experiment Results

Figure 9: Success rate plot of
Q3C against TD3 and SAC on
High-dimensional environments.

In addition to ablations of the core method modifications, we have
provided extra results to demonstrate the effect of the specific
implementation details listed above.

D.1 Q3C’s
Performance in High-Dimensional Action Spaces

We have conducted preliminary experiments on Adroit Hand
Hammer environment [38] to evaluate Q3C’s performance in
high-dimensional action spaces (26-dim). As seen in Figure 9,
Q3C is able to match TD3, while surpassing SAC, which shows
that Q3C is able to scale its learning to high-dimensional action spaces.

D.2 Comparison Against SAC & PPO

In addition to the baselines reported in the main paper, we also compare Q3C with two widely used
algorithms, SAC and PPO [41, 16]. The results are shown in Figure 10 and Figure 11, alongside TD3.
PPO is an on-policy method and is therefore typically less sample-efficient than off-policy approaches.
SAC, on the other hand, employs a different exploration scheme based on soft Q-value maximization,
which differs fundamentally from the noise-based exploration used by the baselines in the main paper.
Because of these differences, SAC and PPO are not directly comparable for evaluating the specific
contribution of Q3C as a "structurally maximizable Q-function". We therefore do not expect, nor
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claim, that Q3C should outperform these methods across all settings. Nevertheless, Q3C achieves
competitive results in all standard environments and consistently matches or surpasses state-of-the-art
performance in the restricted environments.

Figure 10: Comparison against TD3, SAC, and PPO on Standard Environments.

Figure 11: Comparison against TD3, SAC, and PPO on Restricted Environments.

D.3 Wall-clock Time and Memory Footprint of Q3C

We conducted detailed comparisons of wall-clock time and memory usage between Q3C, SAC, PPO,
and TD3 on a subset of evaluation environments. Experiments were run with 5 random seeds each:
restricted environments on Tesla P100 GPUs and unrestricted environments on A100 GPUs. To ensure
fair comparisons, we defined a reward threshold for each environment (Hopper: 3000, BipedalWalker:
300, HalfCheetah: 9000, InvertedPendulumBox: 1000, HalfCheetahBox: 4000, HopperBox: 2000)
corresponding to what is generally considered optimal performance. We then recorded the wall-clock
time required by each algorithm to reach and stabilize around the threshold. Algorithms marked
as “N/A” did not reach or sustain the target reward within the full training duration. Results are
summarized in Table 4.

Table 4: Wall-clock time comparison of different algorithms across environments.
Algorithm Hopper BipedalWalker HalfCheetah InvertedPendulumBox HalfCheetahBox HopperBox

Q3C 58.3 min 44.6 min 61.5 min 12.43 min 4 hr 0.7 hr
TD3 32.9 min 45.6 min 39.2 min N/A N/A N/A
SAC 76.3 min 50.5 min 69.2 min 16.5 min 6.6 hr 1.3 hr
PPO N/A N/A N/A N/A 1.0 hr N/A
NAF N/A N/A N/A N/A 7.2 hr N/A
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Table 5: Comparison of PyTorch memory allocation across algorithms.
Algorithm PyTorch Allocated (MB)

Q3C 26.58
TD3 23.51
SAC 20.01
PPO 18.38

In HopperBox and InvertedPendulumBox environments, Q3C consistently achieves the target reward
in significantly less time than all baselines. For instance, in InvertedPendulumBox, it reaches optimal
performance in about 60% of the time required by SAC, while other baselines fail to converge.
In terms of memory usage, although Q3C utilizes a parallelized evaluation of Q-values of all the
control-points, the increase in memory footprint is marginal and does not hinder training.

From a runtime perspective, Q3C removes the actor network, which reduces computational overhead.
However, this advantage is partially offset by the additional cost introduced by the interpolation
mechanism. Since we have used a simple interpolation module, its overhead cancels out the time
savings from removing the actor. We consider this an engineering limitation rather than a conceptual
one: with better parallelization and optimized implementations, Q3C could realize significant runtime
advantages.

More importantly, from a memory perspective—particularly in large-scale settings—Q3C demon-
strates clear advantages over TD3. We analyzed memory usage across increasing network sizes while
ensuring that the critic parameter count remained equivalent between Q3C and TD3, isolating the
effect of the actor. As shown in Table 6, we observe increasing memory savings for Q3C as network
size scales.

Table 6: Parameter counts and memory usage of Q3C and TD3 across model scales.
Model scale* Q3C params TD3 params Q3C memory (MB) TD3 memory (MB) % Memory saved

Small 37M 52M 341 400 14.8%
Medium 135M 226M 707 1,057 33.1%
Large 538M 906M 2,245 3,675 38.9%
X-Large 1.57B 2.65B 6,212 10,348 40.0%

*Mapping of Layer Sizes: Small → 1,024 control-points, Medium → 2,048, Large → 4,096, X-Large → 7,000.

D.4 Augmenting Q3C with Cross-Q

Figure 12: Comparison of Q3C
with Q3C + Cross Q style modifi-
cations

While Q3C generally converges to competitive final performance,
we observe that it occasionally lags behind other baselines in
terms of sample efficiency. Recent work by Bhatt et al. [7] ad-
dresses this issue in actor-critic settings by removing the target
network and introducing batch normalization in the critic (and
optionally in the actor), resulting in improved sample efficiency.
Motivated by this, we also tried adopting a similar modification
into our framework. Specifically, we removed the target network
and applied batch normalization within the Q-value generation
network. We evaluated this variant on the Walker2d task. Our
preliminary results indicate that this approach improves sample
efficiency during the early stages of training; however, the final
performance remains comparable to the original Q3C. Improving
sample efficiency remains an important direction for future work.
We plan to further explore architectural and algorithmic modifi-
cations to Q3C that can accelerate learning while preserving the
stability and performance of the full model.
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E Environment Details

We test Q3C and our baselines across 7 Gymnasium environments [50, 49] and 4 custom restricted
environments [24]. The restricted environments are variations of their corresponding standard versions
where the action spaces are limited to a series of hyperspheres within the region to create complex
Q-function landscapes. The traditional control environments are described in Table 7 and Figure 13.

Hopper SwimmerPendulum Bipedal Walker

Walker2d HalfCheetah Ant

Figure 13: Visualizations of the testing environments.

Table 7: Environment Summaries with Observation and Action Spaces
Environment Summary Observation / Action Space
Pendulum-v1 A pendulum starts at a random angle and must be

swung up and balanced upright using torque.
3D obs / 1D cont act

Hopper-v4 A one-legged robot must learn to hop forward without
falling.

11D obs / 3D cont act

HalfCheetah-v4 A 2D bipedal robot with a flexible spine must learn to
run forward.

17D obs / 6D cont act

BipedalWalker-v4 A two-legged robot must learn to walk across rough
terrain.

24D obs / 4D cont act

Swimmer-v4 A 2D snake-like robot must swim forward in a viscous
fluid.

8D obs / 2D cont act

Walker2d-v4 A 2D robot with two legs must learn to walk forward
while keeping balance.

17D obs / 6D cont act

Ant-v4 A four-legged robot (quadruped) must learn to move
forward stably in 3D.

111D obs / 8D cont act

E.1 Restricted Environments

The restricted environments are derived directly from their standard MuJoCo counterparts. The
observation and action dimensions, environment goals, and transition dynamics remain identical
between the standard and restricted versions. The only modification lies in the admissible action
space. However, as demonstrated in Figure 14, this modification alone is sufficient to introduce
significant irregularities into the optimal Q-function.

Following prior work, the restricted action space is constructed as a union of hyperspheres embedded
in the original action space. The volume of these hyperspheres is scaled by a coefficient κ, which
determines the degree of restriction. A larger κ corresponds to larger hyperspheres and thus a less
constrained action space, while a smaller κ induces tighter restrictions by shrinking the valid regions.
For some environments, we lower the coefficient κ from the original implementation to achieve an
even more restricted action space, as detailed in Table 8.
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Table 8: Action Hypershere Volume Multiplier
InvertedPendulumBox HopperBox HalfCheetahBox Walker2dBox

Default κ 3.0 1.65 1.0 1.0
Q3C κ 3.0 1.25 0.25 0.25

Figure 14: The Learned Q-Functions for TD3 and Q3C are notably more complex and have more
local optima on the restricted version of InvertedPendulum as compared to the standard Mujoco
version.

F Implementation Details and Hyperparameters

F.1 Baselines

For TD3, SAC, and PPO we have used the official implementations from Stable-Baselines3* with
the optimized hyperparameters taken from RL Zoo*. For NAF and RBF-DQN, we have followed
the original publications and used the official codebase and hyperparameters, where available. If
the hyperparameters are not available, we performed our own hyperparameter tuning. While we
made a strong effort to identify competitive configurations, we acknowledge that better parameter
combinations may exist.

F.2 Q3C Hyperparameters

Q3C adopts its hyperparameters from its underlying implementation of TD3, but we tune certain
important hyperparameters such as learning rate and learning starts. Furthermore, we tune the
hyperparameters specific to Q3C such as the number of control-points, the number of nearest
neighbors k, separation loss weight, and initial smoothing value.

*https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3
*https://github.com/DLR-RM/rl-baselines3-zoo/tree/master/hyperparams
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F.2.1 Classic Environments

Table 9: Q3C Hyperparameters (Part 1 of 2)
Parameter Pendulum Hopper BipedalWalker Ant
Total timesteps 1e5 1e6 1e6 3e6
Discount factor (γ) 0.98 0.99 0.98 0.99
Batch size 64 256 256 256
Buffer size 2e5 1e5 2e5 5e5
Learning starts 1000 30000 10000 10000
Target network update (τ ) 0.005 0.005 0.005 0.005
Noise type Gaussian Gaussian Gaussian Gaussian
Noise std 0.1 0.1 0.1 0.1
Learning rate 1e-3 1e-3 3e-4 5e-4
Network dim [400,300] [400,300] [400,300] [400,300]
Target update interval 4 4 1 4
Gradient clipping 10.0 10.0 1.0 5.0
# of control-points 3 20 20 30
k 3 10 10 15
Separation loss weight 0.01 0.01 1.0 0.1
Initial smoothing value 0.1 0.01 0.001 0.001

Table 10: Q3C Hyperparameters (Part 2 of 2)
Parameter HalfCheetah Swimmer Walker2d
Total timesteps 1e6 1e6 1e6
Discount factor (γ) 0.99 0.9999 0.99
Batch size 256 256 256
Buffer size 1e5 5e4 1e5
Learning starts 30000 10000 10000
Target network update (τ ) 0.005 0.005 0.005
Noise type Gaussian Gaussian Gaussian
Noise std 0.1 0.1 0.1
Learning rate 1e-3 1e-3 1e-3
Network dim [400,300] [400,300] [400,300]
Target update interval 4 4 4
Gradient clipping 10.0 10.0 10.0
# of control-points 20 20 20
k 10 10 10
Separation loss weight 1.0 1.0 0.1
Initial smoothing value 0.01 0.1 1
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F.2.2 Restricted Environments

Table 11: Q3C Hyperparameters for Restricted Environments

Parameter InvertedPendulumBox HopperBox HalfCheetahBox
Total timesteps 1e6 2e6 3e6
Discount factor (γ) 0.99 0.99 0.99
Batch size 256 256 256
Buffer size 2e5 1e5 1e6
Learning starts 1000 30000 30000
Target network update (τ ) 0.005 0.005 0.005
Noise type Gaussian Gaussian Gaussian
Noise std 0.1 0.1 0.1
Learning rate 1e-3 1e-3 3e-4
Network dim [400,300] [400,300] [400,300]
Target update interval 4 4 4
Gradient clipping 10.0 10.0 10.0
# of control-points 3 20 30
k 3 10 10
Separation loss weight 0.01 0.1 1.0
Initial smoothing value 0.1* 1.0 0.000001*

*Smoothing value is fixed throughout training
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