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Abstract
Existing text-to-SQL benchmarks have largely
been constructed from web tables with human-
generated question-SQL pairs. LLMs typically
show strong results on these benchmarks, lead-
ing to a belief that LLMs are effective at text-to-
SQL tasks. However, how these results transfer
to enterprise settings is unclear because tables
in enterprise databases might differ substan-
tially from web tables in structure and content.
To address this gap, we introduce a new dataset
BEAVER, the first private enterprise text-to-
SQL benchmark. This dataset includes natural
language queries and SQL statements collected
from real query logs. Experimental results
show that off-the-shelf LLMs struggle with
this dataset. We identify three main reasons
for the poor performance: (1) enterprise table
schemas are more intricate than those found in
public datasets, making SQL generation inher-
ently more challenging; (2) business-oriented
queries tend to be more complex, often involv-
ing multi-table joins, aggregations, and nested
queries; (3) public LLMs cannot train on pri-
vate enterprise data warehouses that are not
publicly accessible, and therefore it is difficult
for the model to learn to solve (1) and (2). We
believe BEAVER will facilitate future research
in building text-to-SQL systems that perform
better in enterprise settings.

1 Introduction

LLMs have shown potential for solving text-to-
SQL tasks on existing datasets, such as Spider,
KaggleDBQA, and Bird (Li et al., 2024; Sen et al.,
2019; Yu et al., 2018; Lee et al., 2021). For ex-
ample, on Spider, GPT-4 can achieve an execution
accuracy above 85% (Gao et al., 2024). However,
these datasets focus on public tables and question-
SQL pairs written by crowd-sourced annotators. As
such, they do not represent real-world enterprise
settings for the following reasons.

First, enterprise databases, typically designed
for internal business use, often utilize more in-

tricate schemas than tables from public datasets.
Hence, understanding them may require database
or business-specific knowledge. Public LLMs are
mainly trained on public data. In contrast, enter-
prise data is private, which makes public LLMs
lack access to such knowledge. Recent work (Kand-
pal et al., 2023) has shown that LLMs do not per-
form well on data domains they have never seen
before. Consequently, public LLMs may not per-
form well on enterprise text-to-SQL tasks.

Second, questions posed to enterprise databases
are generally more complex than questions from
public datasets. Public datasets are usually small
and typically general-purpose. Questions from
these datasets are often collected from annotators
who are not enterprise users, database admins, or
business analysts from specific data domains. For
instance, the Spider dataset (Yu et al., 2018) was
annotated by 11 computer science undergraduates.
Therefore, the questions posed tend to be simple
and may only involve one or two tables. In contrast,
queries on enterprise databases typically involve
joins and aggregates over multiple tables.

Third, enterprise databases often contain a large
number of tables, rows, and columns. The scale of
enterprise tables makes selecting the relevant tables
for text-to-SQL even more challenging. These size
issues are often absent from the public databases
used for benchmarking text-to-SQL.

To study the above issues, we have curated a
dataset, called BEAVER, derived by anonymiz-
ing three real-world private data warehouses. SQL
statements were gathered from actual user query
logs and reports, and corresponding natural lan-
guage questions were formulated in collaboration
with experienced database administrators. Specifi-
cally, we benchmarked recent off-the-shelf LLMs
on BEAVER. These models achieved around 5%
end-to-end execution accuracy, demonstrating the
challenging nature of our dataset. This illustrates
that off-the-shelf LLMs trained on public datasets



Figure 1: End-to-end text-to-SQL task and intermediate
tasks.

are unable to generalize to the same text-to-SQL
tasks when presented with real data warehouse
data.

In summary, our contributions are as follows: (1)
We introduce BEAVER, the first private enterprise
text-to-SQL benchmark, for benchmarking text-to-
SQL models under enterprise settings. This dataset
includes tables from private and real enterprise data
warehouses, annotated question-SQL pairs, and an-
notations of column mapping, gold tables, and join
keys for each question. Existing LLM-powered
text-to-SQL systems are not trained on them. (2)
We evaluated LLM-based text-to-SQL approaches
on BEAVER and show their dramatically degraded
performance. Additionally, we introduced three in-
termediate tasks that can serve as better indicators
of end-to-end performance and highlight potential
areas for improvement, underscoring the value of
our benchmark for evaluation. (3) We provide an
extensive error analysis that reveals why enterprise
data and queries are challenging for LLMs. We
then propose steps to address these challenges, in-
forming future text-to-SQL systems that can per-
form better on enterprise data and queries.

2 Dataset

As described in Section 1, existing public datasets
do not reflect the high schema and query complex-
ity found in enterprise data warehouses. To address
this gap, we collected datasets from three enter-
prise data warehouses and annotated them with
real-world question-SQL pairs. We describe the
end-to-end text-to-SQL task and suggest intermedi-
ate tasks that can guide the end-to-end evaluation.
Then, we provide details on the datasets and anno-
tations.

2.1 Task Formulation

Following the standard problem setup of text-to-
SQL, the input to an LLM includes a natural lan-
guage question and a database of tables, and the
output is a SQL statement whose execution an-
swers the question. A database includes a set of
tables. Each table includes a schema (that describes
the names of and data types of each column) and
instances of each table column. Besides the end-
to-end text-to-SQL task, we defined three interme-
diate tasks that can aid in solving it, as shown in
Figure 1. While addressing the end-to-end task
does not strictly require solving these intermedi-
ate tasks, they serve as valuable indicators of final
performance and provide insights for potential im-
provements.

Intermediate Task 1: Table Retrieval. As dis-
cussed in Section 1, enterprise databases often con-
sist of a vast number of tables and columns, posing
a challenge in fitting all relevant information into an
LLM’s input prompt. To address this, models must
retrieve a relevant subset of connected tables (Chen
et al., 2024) from the entire database to generate an
accurate SQL statement. For instance, to answer
the user question shown in Figure 1, models need
to identify four relevant tables from a significantly
larger database. The input for this task includes a
natural language question and the database, while
the output is a set of relevant tables that can help
construct the correct SQL statement.

Intermediate Task 2: Column Mapping. To
generate a correct SQL statement from a natural
language question, models need to identify infor-
mation referenced in the user question and deter-
mine which table columns contain this information.
As illustrated in Figure 1, models need to recog-
nize that retrieving details about “building street
address” requires accessing columns NUMBER, NAME,
and PURPOSE in table Building_Address. The in-
put for this task consists of a natural language ques-
tion, a set of tables, and a list of topic phrases
(e.g., “building street address”), while the output
is a mapping from each input topic phrase to the
corresponding table columns. As discussed in Sec-
tion 1, the complex schema of enterprise databases
makes this task more challenging than with public
datasets. Beyond mapping user-mentioned infor-
mation to table columns, mapping information to
specific table instances is also valuable. For exam-
ple, the phrase “material science and engineering



Figure 2: Domain distribution of our data warehouses.

department” corresponds to instance ‘Materials
Science and Eng’ in column DEPARTMENT_NAME
in table Organization. However, we do not in-
clude instance mapping as an intermediate task
due to the significant complexity of annotations
(detailed in Appendix A), which complicates the
quantitative evaluation of this task.

Intermediate Task 3: Join Key Detection. Fi-
nally, models must also understand how to link
multiple tables by identifying overlapping or se-
mantically related columns (i.e., join keys). As
illustrated in Figure 1, connecting information be-
tween tables Buildings_Address and Buildings
requires recognizing that column KEY serves as the
join key. The input for this task consists of a natu-
ral language question and a set of relevant tables,
while the output is the list of join keys necessary to
establish the connections between them.

2.2 Annotation

Databases. We collected table information di-
rectly from three private data warehouses, includ-
ing column names, column types, rows, and join
keys (if exist). The first data warehouse, called DW,
consists of 97 tables and 1530 columns from an ex-
isting Oracle data warehouse. The second, NW,
comprises 366 tables and 2708 columns spanning
five MySQL databases. The third, SP, contains
349 tables and 2717 columns from two MySQL
databases. The domain distribution of the three
data warehouses is summarized in Figure 2 (details
can be found in Appendix B).

SQL statements. To reflect the true complexity
of queries posed on enterprise databases, we first
collected real user query logs and reports from
source organizations. We then extracted SQL state-
ments from these real logs and reports.

Natural language questions. Four graduate stu-
dents and two professional database administrators
from the data warehouse support group collectively
constructed natural language questions for the col-
lected SQL statements. The students first collab-
oratively generated the natural language question
for the corresponding SQL statement. Then, they
passed these questions to the two database admin-
istrators for review of quality.

Intermediate tasks. Gold answers for all inter-
mediate tasks were annotated collectively by stu-
dents and database administrators, leveraging exist-
ing SQL parsers and tools. Gold tables required by
the SQL statement and join keys in the gold SQL
statement were first extracted using existing SQL
parsing packages1, and then manually checked. Re-
garding column mapping, for each topic phrase
(e.g., building names) mentioned in a user question,
mappings to relevant table columns were annotated
as a pair of (topic phrase, columns names). A full
annotation for an example question can be found
in Appendix C.

2.3 Statistics

Table 1 summarizes the dataset size, table statistics,
and query complexity of our dataset as well as two
popular datasets on public tables: Spider (Yu et al.,
2018) and Bird (Li et al., 2024). Similar to (Lan
et al., 2023; Li et al., 2024), we measure query com-
plexity along three dimensions: the average num-
ber of joins per query, which indicates the number
of tables that need to be joined to include suffi-
cient information to answer the user question; the
average number of aggregations per query, which
indicates the number of aggregation keywords such
as max, count, group by that appear in a SQL
statement; and the nesting depth which indicates
how deep sub-queries appear (e.g., SELECT ...
FROM (SELECT ...) has a nesting depth of two).
Compared to all existing datasets, BEAVER has
the largest number of tables per database and the
highest query complexity. Figure 3 visualizes the
query complexity across all datasets and complex-
ity dimensions.

1Packages used are sqlglot and sqlparse.

https://github.com/tobymao/sqlglot
https://github.com/andialbrecht/sqlparse


Table 1: Dataset size, table statistics, and query statistics of text-to-SQL datasets.

Dataset #Queries #DB Avg. #Table/DB Avg. #Cols/Table Avg. #Joins/query Avg. #Aggregation/query Avg. Nesting depth/query

Spider (Dev) 1034 20 4.05 5.44 0.506 0.854 1.09
Bird (Dev) 1534 11 6.82 10.6 0.918 0.663 1.09

BEAVER 261 8 102.0 8.57 3.77 2.49 1.98

Figure 3: The mean values for the number of joins,
aggregations, and nesting depth for Spider, Bird, and
BEAVER.

3 Benchmark

In this section, we outline the benchmarking setup
and evaluation metrics for the end-to-end and inter-
mediate tasks. We then evaluate recent retrievers
and LLMs on BEAVER and existing public text-to-
SQL datasets. We further analyze the results in re-
lation to the characteristics of enterprise databases
discussed in Section 1, aiming to identify directions
for improvement.

3.1 Experimental setup

Datasets. We evaluated our dataset separately on
each database. However, doing so for Spider and
Bird make them too simple compared with our
dataset. As seen in Table 1, the average number of
tables per database is significantly smaller on Spi-
der and Bird compared to BEAVER. Therefore, we
aggregated tables from all databases to construct a
centralized database, resulting in 81 tables for Spi-
der and 75 for Bird. This step ensures the table cor-
pus sizes of Spider and Bird are comparable with
our dataset (102.0 tables per database). For Spider
and Bird, we still track the original databases of
each table to evaluate SQL statements.

Retrieval-augmented Generation (RAG).
Table Retrieval. As seen in Table 1, BEAVER con-
tains a large number of tables per database and a
large number of columns per table, which makes it
challenging to fit all this information into LLM’s in-
put prompt. A common method to enhance LLMs
with knowledge from a large external data source is
retrieval-augmented generation (Lewis et al., 2020).
Following this approach, instead of directly pro-
viding LLMs with the user question and the full
database schema for SQL generation, a dense re-
triever first selects the top-k tables based on the
semantic relatedness (cosine similarity between
embeddings) between the user question and the
table schema2. In particular, we considered three
recent embedding models for dense retrieval: UAE-
Large-V1 (Li and Li, 2023), Stella_en_400M_v53,
and GTE-large-en-v1.5 (Li et al., 2023).
SQL Generation. An SQL statement is generated
given a user question and schema of the top-k most
relevant tables. Additionally, we can provide the
gold annotations for the intermediate tasks defined
in Section 2.1 to test models’ ability to generate
SQL statements when provided with more hints.
We adopted 1-shot prompting and benchmarked on
multiple recent LLMs, including GPT-4o (Achiam
et al., 2023), Llama-3.1-Instruct (70B and 8B) (Tou-
vron et al., 2023), and Qwen-2.5-Instruct (72B and
Coder-32B) (Yang et al., 2024; Team, 2024). Tem-
perature (a random seed) was set to 0 to minimize
randomness. Detailed 1-shot prompts for SQL gen-
eration can be found in Appendix E.1.

Intermediate tasks. Intermediate tasks include
table retrieval, column mapping, and join key de-
tection. The experimental setup for table retrieval
has already been described above. For column
mapping and join key detection, we follow the task
definitions outlined in Section 2.1. Specifically,
we provide LLMs with natural language questions
and the corresponding gold tables. Additionally,
for column mapping, we provide the topic phrases
from the gold column mappings rather than having

2Table schema are serialized as space-separated strings of
table names and column names.

3https://huggingface.co/dunzhang/stella_en_400M_v5



LLMs generate them, ensuring a controlled and re-
producible evaluation. Detailed 1-shot prompts for
these tasks can be found in Appendix E.2. Since
the Spider and Bird datasets do not include gold
annotations for these intermediate tasks, we ran-
domly sampled 50 queries from each dataset and
manually annotated the gold column mappings and
join keys for comparison.

3.2 Evaluation metrics
Table retrieval. To evaluate table retrieval per-
formance, we use the standard metrics of precision,
recall, and F1 of the retrieved tables compared to
gold tables. However, these metrics may be insuf-
ficient. Since a SQL statement is unlikely to be
correctly generated without retrieving all gold ta-
bles, we also introduce perfect recall (PR), which
measures the percentage of questions with all gold
tables retrieved.

SQL generation. Following (Yu et al., 2018; Li
et al., 2024), we use execution accuracy to evaluate
the end-to-end performance. Execution accuracy
is defined as 1 if the predicted and gold SQL state-
ments produce the same results and 0 otherwise.

Column mapping and join key detection. To
evaluate the predicted and gold answers for these
two intermediate tasks, we use two metrics: exact
match and F1 score. The exact match score is 1 if
the predicted answer perfectly matches the gold an-
swer and 0 otherwise. However, since this criterion
may be too strict, we also incorporate the F1 score,
which is computed based on the precision and re-
call of matched units. For column mapping, each
(topic phrase, column names) pair is treated as a
basic comparison unit, while for join key detection,
each join key serves as the basic comparison unit.

3.3 Overall performance
Table retrieval performance. Table 2 shows the
performance on the intermediate task of table re-
trieval. We see that recall and perfect recall @
top-k on BEAVER are the lowest across all mod-
els and datasets. On average, recall @ top-10 is
44.9 points lower on BEAVER compared to Spider
and 42.8 points lower than Bird across all retriever
models. Similarly, perfect recall @ top-10 is, on
average, 82.0 points lower than Spider and 77.2
points lower than Bird. These results highlight the
significant challenge of accurately identifying the
relevant set of tables needed to answer a user query
in the context of an enterprise database.

Table 2: Table retrieval performance of all embedding
models. PR is the percentage of questions with all gold
tables retrieved.

Top-5 Top-10

P R F1 PR P R F1 PR

UAE-Large-V1

Spider 29.1 96.4 43.5 94.6 14.9 98.6 25.4 97.9
Bird 34.8 91.3 49.1 82.6 18.9 97.5 31.1 94.5

BEAVER 29.7 38.0 32.2 7.7 21.2 52.8 29.4 14.6

Stella_en_400M_v5

Spider 30.1 99.6 44.9 99.3 15.1 100 25.8 99.9
Bird 35.4 93.0 50.0 85.6 18.9 97.8 31.2 95.1

BEAVER 35.2 44.3 37.9 10.3 23.9 58.6 32.8 20.3

GTE-large-en-v1.5

Spider 29.0 96.6 43.3 94.1 14.9 99.0 25.5 98.1
Bird 33.2 87.8 47.0 76.7 18.5 96.0 30.5 91.7

BEAVER 29.2 36.7 31.3 9.2 21.0 51.5 28.9 14.9

Table 3: 1-shot column mapping performance. Results
are sampled on 50 queries from each dataset.

Spider Bird BEAVER

F1 Exact F1 Exact F1 Exact

GPT-4o 80.8 64.0 76.9 52.0 64.0 17.9
Qwen2.5-72B-It 79.8 62.0 85.8 70.0 68.9 18.5
Qwen2.5-32B-It 67.8 52.0 65.8 44.0 65.0 12.1
Llama3.1-70B-It 75.8 60.0 70.5 44.0 58.9 10.4
Llama3.1-8B-It 55.3 36.0 57.6 28.0 50.8 13.3

Column mapping performance. Table 3 shows
the performance of models on the intermediate task
of column mapping. On average, F1 on BEAVER is
10.4 points lower than Spider and 9.8 points lower
than Bird across all models. Similarly, the average
exact match score on BEAVER is 40.4 points lower
than Spider and 33.2 points lower than Bird. These
results highlight the difficulty of correctly identi-
fying the relevant columns in BEAVER, making
it significantly more challenging than both Spider
and Bird. The low exact match performance (up
to 19%) on BEAVER further suggests that while
models can correctly map some keywords, they
struggle to accurately map all relevant keywords
within a given question.

Join key detection performance Table 4
presents the performance of models on the interme-
diate task of join key detection. On average, the
exact match score on BEAVER is 23.8 points lower
than Spider and 38.8 points lower than Bird. These
results underscore the challenge of accurately iden-
tifying join keys in BEAVER, suggesting that this
task is significantly more difficult compared to both
Spider and Bird.



Table 4: 1-shot join key detection performance. Results
are sampled on 50 queries from each dataset.

Spider Bird BEAVER

F1 Exact F1 Exact F1 Exact

GPT-4o 62.7 58.8 88.3 80.0 76.4 46.7
Qwen2.5-72B-It 74.5 70.6 85.6 80.0 72.6 44.4
Qwen2.5-32B-It 70.6 70.6 81.0 75.0 66.4 38.5
Llama3.1-70B-It 51.0 47.1 89.5 82.5 68.6 38.5
Llama3.1-8B-It 60.8 52.9 63.3 57.5 44.5 13.0

Table 5: 1-shot end-to-end execution accuracy. Top-
10 tables from the best-performing retriever model
(Stella_en_400M_v5) were provided to the models.

Spider Bird BEAVER

GPT-4o 69.5 30.9 3.83
Qwen2.5-72B-It 69.9 28.6 4.21
Qwen2.5-32B-It 71.7 27.7 1.92
Llama3.1-70B-It 60.3 25.8 1.15
Llama3.1-8B-It 51.1 13.8 0

End-to-end execution accuracy. As shown in
Table 5, the end-to-end execution accuracy on
BEAVER is the lowest across all datasets and mod-
els, with an average of 2.22 across all models, com-
pared to 64.5 on Spider and 25.3 on Bird. This
underscores the challenging nature of BEAVER.
The low accuracy is likely influenced by poor per-
formance on the intermediate tasks, as these tasks
reflect models’ abilities to handle different sub-
components of a SQL statement.

3.4 Analysis

As discussed in Section 1, BEAVER differs from
public text-to-SQL datasets in three key aspects:
(1) larger database size, (2) higher schema com-
plexity, and (3) greater query complexity. In this
section, we analyze how each of these factors im-
pacts LLM performance. Additionally, we high-
light the benefits of incorporating gold answers for
the intermediate tasks, as summarized in Table 6.

Table 6: 1-shot execution accuracy on BEAVER when
gold answers for intermediate tasks are provided, across
different models. GT, M, and J refer to gold tables,
column mappings, and join keys, respectively.

GPT Qwen2.5-It Llama3.1-It

4o 72B Coder-32B 70B 8B

Base 3.83 4.21 1.92 1.15 0.0
Base + GT 7.28 6.13 4.21 5.36 0.77
Base + GT + M 8.43 6.90 8.05 2.30 2.68
Base + GT + M + J 10.3 8.05 7.66 5.75 4.21

Table 7: Number of correctly answered questions over
three buckets (0-4, 5-9, 9+) of each dimension of com-
plexity.

Average number 0-4 5-9 9+

Join

# total queries 192 47 14
# correct predictions 20 4 0

Aggregation

# total queries 205 41 7
# correct predictions 16 8 0

Nesting depth

# total queries 237 16 0
# correct predictions 22 2 0

Providing gold answers of each intermediate
task increases performance. As discussed in
Section 2.1, there are three intermediate tasks: table
retrieval, column mapping, and join key detection.
As shown in Table 6, averaging across all models,
providing gold tables boosts execution accuracy
by 113.8%. Incorporating gold column mappings
further improves accuracy by 19.4%, and supply-
ing gold join keys leads to an additional 26.8%
increase. These results demonstrate that the quality
of intermediate task outputs significantly impacts
overall performance, making them valuable indi-
cators for evaluation and key areas for improve-
ment. Retriever models may retrieve tables that
introduce noise (due to irrelevant tables) or lack
essential information (due to missing gold tables).
Consequently, the accuracy improvement when pro-
viding gold tables suggests that the large database
size increases the task’s difficulty. Furthermore,
supplying gold column mappings further enhances
performance, emphasizing that schema complex-
ity presents a significant challenge for models in
accurately performing column mapping.

Increased query complexity reduces perfor-
mance. To examine the impact of query complex-
ity on performance, Table 7 presents the number of
correctly predicted SQL statements from GPT-4o
when provided with gold tables, column mappings,
and join keys, across different levels of query com-
plexity (as defined in Section 2.3). The results indi-
cate a clear trend: as query complexity increases,
the number of correctly predicted SQL statements
decreases. This demonstrates that higher query
complexity negatively affects performance, mak-
ing it more challenging to generate accurate SQL
queries in our dataset.



Table 8: Common error types encountered in table re-
trieval and SQL generation tasks for retriever and LLM
models, respectively.

Error types % questions

Table retrieval (Stella_en_400M_v5)

Not retrieving sufficient information 89.1
Misses connecting tables 6.52

Cannot handle domain-specific information 4.38

SQL generation (GPT-4o)

Incorrect column mapping 59.1
Incorrect instance mapping 22.7

Unable to handle complex queries 27.3
Misses implicit assumptions 50.0

4 Error analysis

In the above, we provided an overview of the per-
formance of off-the-shelf LLMs on BEAVER, indi-
cating their limited capabilities of performing text-
to-SQL in a real-world enterprise setting. Here,
we discuss in detail the error sources during both
table retrieval and SQL generation phases by ex-
amining randomly sampled 50 questions from our
dataset. For table retrieval, we examined the per-
formance of the best-performing retriever model
(Stella_en_400M_v5). For SQL generation, we
inspected the performance of the best-performing
LLM (GPT-4o).

4.1 Table retrieval analysis

As seen in the top half of Table 8, the retriever
model made three major mistakes during table re-
trieval. Firstly, the retrieval model may not retrieve
the set of tables with sufficient information to an-
swer the user question. For instance, given the user
question “What is the name of the building and
fee of the shortest sessions?” and a table corpus
including the three tables shown in Figure 4, the
retriever model retrieved table SUBJECT_SESSION
to cover “shortest and longest sessions”, and ta-
ble SUBJECT_DETAIL to cover “fee”. However, the
model did not retrieve table BUILDINGS to cover
“name of the building”.

Secondly, the retrieval model can miss connect-
ing tables. This occurs when models retrieved
a set of tables that can cover information in the
user question, but they might not be connected
through join relationships, so other tables need to
be used to connect these tables. For instance, given
the user question “What is the building name that
accommodates the most students?” and a table
corpus including the three tables shown in Figure

5, the retriever model retrieved FCLT_BUILDING
and STUDENT_DIRECTORY to cover “building name”
and “students” respectively. However, these two ta-
bles can only be joined via FCLT_ROOMS, which was
not retrieved. This shows that models are not nec-
essarily aware of join relationships during retrieval,
which leads to information not being connected.

Lastly, retrieval models may not be able
to retrieve correct tables if domain-specific in-
formation is involved. For example, given
the user question “List the name of mailing
lists, and name of the faculty who teaches
in 2023 fall.” that requires information from
tables MOIRA_LIST, MOIRA_LIST_DETAIL, and
SUBJECT_OFFERED, the retriever model only re-
trieved the table SUBJECT_OFFERED, but was un-
able to retrieve the other two tables that are related
to “moira list”, potentially because it does not know
that “moira” is the name of the system used to man-
age mailing lists.

These behaviors suggest that existing retriever
models struggle to retrieve relevant tables for a user
question in the enterprise setting.

4.2 SQL generation analysis
As seen in the bottom half of Table 8, models made
four major mistakes in SQL generation. Firstly,
models can map topics mentioned in user ques-
tions to incorrect columns (i.e., incorrect column
mapping). For instance, given the user question
“What are the building names and building street
addresses for the computer science department?”,
GPT-4o mapped “building street address” to the
column BUILDING_ADDRESS. However, GPT-4o is
not aware that the same building can have multi-
ple addresses for different purposes (e.g., street,
mail, package), and thus failed to also map this
topic to the column ADDRESS_PURPOSE and in-
stance ‘STREET’. Column mapping also fails when
user questions are vague. For instance, when net-
work administrators pose questions like “Provide
information (including info on caches and secu-
rity groups) for the virtual machine with ID [id].”,
they would like to gather as much information
as possible to perform diagnosis and monitoring.
Therefore, the gold SQL statement is very com-
prehensive, whereas GPT-4o only predicted a few
columns. The full example can be found in Ap-
pendix D.1.

Secondly, models can map literals mentioned in
user questions to incorrect instances (i.e., incorrect
instance mapping). For example, given a user ques-



Figure 4: Schema of tables to illustrate retriever models did not retrieve sufficient information. A green tick
means the table was retrieved, and a red cross means the table was not retrieved. Green dotted lines represent join
relationships.

Figure 5: Schema of tables to illustrate retriever model did not retrieve connecting tables.

tion “What is the total fee for all virtual sessions?”,
GPT-4o associated the literal “virtual” with col-
umn SESSION_LOCATION and instance ‘Virtual’.
While the column mapping is correct, the instance
mapping is incorrect because SESSION_LOCATION
includes multiple instances that represent virtual
locations (e.g., ‘webinar’, ‘remote’, ‘online
via zoom’), so the model would need to associate
“virtual” with all these different instances or explore
a more efficient filter for virtual locations.

Thirdly, models can fail to derive the correct
SQL syntax when queries are complex. For in-
stance, given the user question “For each course,
list the cumulative number of courses held in
the same year or preceding years.”, the correct
approach is to partition courses by year, sort
courses by year, and restrict courses to those that
have the same year or before using the function
range between unbounded preceding and
current row. However, GPT-4o was not able
to use the window function in its prediction.

Finally, models cannot reflect implicit assump-
tions in SQL statements. For instance, when
users pose questions like “Provide information
about virtual machines with ID [id].”, by de-
fault, they only want to know the information
about active instances (i.e., not deleted). As such,
the gold SQL statement includes the predicate
instances.deleted = 0. However, GPT-4o was
not able to recover this implicit assumption (and
thus the predicate) in its SQL statement.

Overall, the error analysis highlights that re-
trieving relevant tables from a large corpus, per-
forming schema mapping (both column mapping
and instance mapping), and understanding com-
plex queries are big challenges for models to solve
enterprise-level text-to-SQL. Moreover, models
might also need to deal with ambiguity and im-
plicit assumptions in user questions.

5 Discussion

As discussed in Section 4, natural language ques-
tions posed by enterprise users may not explicitly
specify all required information and can include
implicit assumptions, although there exists an SQL
statement that corresponds to the user question. As
a result, the verbosity of questions varies depending
on users’ background knowledge, making schema
mapping more challenging (as shown in Section
3.3) and lowering performance on the end-to-end
task. In contrast, questions in public text-to-SQL
datasets tend to be highly verbose, explicitly men-
tioning every column needed in the SQL statement.
To address this challenge, we propose two pos-
sible solutions: (1) a human-in-the-loop iterative
approach, where models generate clarifying ques-
tions and refine their outputs based on continuous
human feedback, and (2) a comprehensive method
that identifies all possible schema mappings and
presents them to users for selection.

6 Conclusion

Text-to-SQL plays a crucial role in bridging nat-
ural language question answering with database
querying. While off-the-shelf LLMs appear to per-
form well on existing text-to-SQL benchmarks,
these benchmarks fail to capture the complexi-
ties of real-world enterprise environments. Unlike
public datasets, enterprise settings involve domain-
specific knowledge, a vast number of tables requir-
ing an intermediate retrieval step, and increased
schema and query complexity. Our findings demon-
strate that enterprise queries pose significant chal-
lenges for off-the-shelf models, particularly in table
retrieval and SQL generation. We aim for this work
to lay the groundwork for future research on large-
scale and complex text-to-SQL tasks.



7 Ethics

As mentioned in Section 2.2, we recruited four
graduate students and two professional database
administrators to perform the annotations. We en-
sure fair compensation for each person, considering
the minimum salary of the region these volunteers
are in. Because this dataset involves only factual
annotations, no subjective opinions or personal in-
formation were collected, and thus, it should pose
minimal risks to annotators and the general pub-
lic. All database contents and questions will be
anonymized according to rules set by the private
organizations before releasing them to the public.

8 Limitations

Privacy and legal considerations restricted our ac-
cess to private databases, limiting the diversity of
domains represented in our dataset. Furthermore,
in order to collect real SQL statements, we focused
on query logs and reports. However, interpreting
the intent of the SQL queries was difficult, making
the generation of precise natural language ques-
tions a slow process. We plan to continue expand
number of queries in our dataset in the future.
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A Complexity of instance mapping

Consider the user question “List the long building
names constructed before 1950 that have more than
100 employees and the built year and number of
employees.” which has a gold SQL statement of
SELECT * FROM (SELECT DISTINCT

a.BUILDING_NAME_LONG , a.year_built ,
COUNT(distinct
employee_directory.ID) OVER
(PARTITION BY a.BUILDING_NAME_LONG ,
a.year_built) as num_employees

FROM (SELECT * FROM (SELECT DISTINCT
FCLT_BUILDING_KEY ,
BUILDING_NAME_LONG , extract(year
FROM TO_DATE(date_built ,
'MM/DD/YYYY')) as year_built FROM
fclt_building_hist) WHERE
year_built < 1950) a JOIN
fclt_rooms ON
fclt_rooms.FCLT_BUILDING_KEY =
a.FCLT_BUILDING_KEY JOIN
employee_directory ON
employee_directory.OFFICE_LOCATION
= fclt_rooms.BUILDING_ROOM ) WHERE
num_employees > 100;

In this case, the literal “100 employees” should
be mapped to
COUNT(distinct employee_directory.ID)

OVER (PARTITION BY
a.BUILDING_NAME_LONG , a.year_built)
> 100

which involves one grouping and aggregation.
The literal “before 1950” should be mapped to

extract(year FROM TO_DATE(date_built ,
'MM/DD/YYYY')) < 1950

which involves one custom function call.
As seen above, compared to column mappings,

instance mapping is considerably more complex
and much harder to evaluate. Therefore, instance
mappings were not annotated.

B Domain distribution

Figure 6 include the detailed domain distribution
of each data warehouse.

C Annotations

C.1 Full annotation of an example question

{
"question": "What is the current

building key , building street
address , city , state , and postal
code of the history department?",

"sql": "SELECT DISTINCT
d.FCLT_BUILDING_KEY ,
e.BUILDING_STREET_ADDRESS , d.CITY ,
d.STATE , d.POSTAL_CODE FROM
FCLT_BUILDING_ADDRESS d JOIN
FCLT_ROOMS a ON a.FCLT_BUILDING_KEY
= d.FCLT_BUILDING_KEY JOIN
FCLT_ORG_DLC_KEY b ON
a.FCLT_ORGANIZATION_KEY =
b.FCLT_ORGANIZATION_KEY JOIN
MASTER_DEPT_HIERARCHY c ON
b.DLC_KEY = c.DLC_KEY JOIN
BUILDINGS e ON e.BUILDING_KEY =
d.FCLT_BUILDING_KEY WHERE
lower(c.DLC_NAME) =
lower('History ') AND
d.ADDRESS_PURPOSE = 'STREET ';",

"tables": [
"FCLT_BUILDING_ADDRESS",
"FCLT_ROOMS",
"FCLT_ORG_DLC_KEY",
"MASTER_DEPT_HIERARCHY",
"BUILDINGS"

],
"mapping": {

"building key": [
"FCLT_BUILDING_ADDRESS.FCLT_BUILDING_KEY"

],
"building street address": [

"BUILDINGS.BUILDING_STREET_ADDRESS",
"FCLT_BUILDING_ADDRESS.ADDRESS_PURPOSE"

],
"city": [

"FCLT_BUILDING_ADDRESS.CITY"
],
"state": [

"FCLT_BUILDING_ADDRESS.STATE"
],
"postal code": [

"FCLT_BUILDING_ADDRESS.POSTAL_CODE"
],
"history department": [

"MASTER_DEPT_HIERARCHY.DLC_NAME"
]

},
"join_keys": [

[
"FCLT_BUILDING_ADDRESS.FCLT_BUILDING_KEY",
"FCLT_ROOMS.FCLT_BUILDING_KEY"

],
[

"FCLT_ROOMS.FCLT_ORGANIZATION_KEY",
"FCLT_ORG_DLC_KEY.FCLT_ORGANIZATION_KEY"

],
[



Figure 6: Detailed domain distribution of the source
data warehouses.

"FCLT_ORG_DLC_KEY.DLC_KEY",
"MASTER_DEPT_HIERARCHY.DLC_KEY"

],
[

"FCLT_BUILDING_ADDRESS.FCLT_BUILDING_KEY",
"BUILDINGS.BUILDING_KEY"

]
]
}

C.2 Annotation interface
We show the interface annotators used for convert-
ing SQL statements to natural language questions
(Figure 7). Annotators receive the SQL statement
and a set of potential natural language (NL) ques-
tions (created by GPT). They have the option to
select one of the provided questions or compose
their own.

D Examples for error analysis

D.1 Column mapping for vague questions
For the user question “Provide information (in-
cluding info caches, and security groups) for these
VMs f5a08397-5aac-44b4-b359-f03ff6ce228a,
e7c1acd1-6a47-4a08-8601-5022d4d50aa7.”, the
gold and predicted SQL statements (by GPT-4o)
are shown in Table 9. The predicted SQL statement
only selects a few columns to return while the gold
SQL statement includes a lot more information.

E Prompts

E.1 1-shot prompt for SQL generation
We use the 1-shot prompt in Table 10 for end-to-
end SQL generation.

E.2 1-shot prompt for column mapping and
join key detection

We use the 1-shot prompt in Table 11 for column
mapping generation. We use the 1-shot prompt in
Table 12 for join key generation.



Table 9: Gold and predicted SQL statement for the vague user question.

Gold SQL statement

SELECT instances.created_at AS instances_created_at , instances.updated_at AS
instances_updated_at , instances.deleted_at AS instances_deleted_at ,
instances.deleted AS instances_deleted , instances.id AS instances_id ,
instances.user_id AS instances_user_id , instances.project_id AS
instances_project_id , instances.image_ref AS instances_image_ref ,
instances.kernel_id AS instances_kernel_id , instances.ramdisk_id AS
instances_ramdisk_id , instances.hostname AS instances_hostname ,
instances.launch_index AS instances_launch_index , instances.key_name AS
instances_key_name , instances.key_data AS instances_key_data ,
instances.power_state AS instances_power_state , instances.vm_state AS
instances_vm_state , instances.task_state AS instances_task_state ,
instances.memory_mb AS instances_memory_mb , instances.vcpus AS instances_vcpus ,

(...33 columns omitted ...)
instance_info_caches_1.created_at AS instance_info_caches_1_created_at ,

instance_info_caches_1.updated_at AS instance_info_caches_1_updated_at ,
instance_info_caches_1.deleted_at AS instance_info_caches_1_deleted_at ,
instance_info_caches_1.deleted AS instance_info_caches_1_deleted ,
instance_info_caches_1.id AS instance_info_caches_1_id ,
instance_info_caches_1.network_info AS instance_info_caches_1_network_info ,
instance_info_caches_1.instance_uuid AS instance_info_caches_1_instance_uuid ,
security_groups_1.created_at AS security_groups_1_created_at ,
security_groups_1.updated_at AS security_groups_1_updated_at ,
security_groups_1.deleted_at AS security_groups_1_deleted_at ,
security_groups_1.deleted AS security_groups_1_deleted , security_groups_1.id AS
security_groups_1_id , security_groups_1.name AS security_groups_1_name ,
security_groups_1.description AS security_groups_1_description ,
security_groups_1.user_id AS security_groups_1_user_id ,
security_groups_1.project_id AS security_groups_1_project_id

FROM
instances LEFT OUTER JOIN instance_info_caches AS instance_info_caches_1 ON

instance_info_caches_1.instance_uuid = instances.uuid LEFT OUTER JOIN
(security_group_instance_association AS security_group_instance_association_1
INNER JOIN security_groups AS security_groups_1 ON security_groups_1.id =
security_group_instance_association_1.security_group_id AND
security_group_instance_association_1.deleted = 0 AND security_groups_1.deleted
= 0) ON security_group_instance_association_1.instance_uuid = instances.uuid
AND instances.deleted = 0

WHERE instances.uuid IN ('f5a08397 -5aac -44b4 -b359 -f03ff6ce228a ',
'e7c1acd1 -6a47 -4a08 -8601 -5022 d4d50aa7 ')

Predicted SQL statement (GPT-4o)

SELECT instances.uuid AS instance_uuid , instances.display_name , instances.vm_state ,
instances.host , instance_info_caches.network_info , security_groups.name AS
security_group_name , security_groups.description AS security_group_description

FROM
instances

LEFT JOIN
instance_info_caches ON instances.uuid = instance_info_caches.instance_uuid

LEFT JOIN
security_group_instance_association ON instances.uuid =

security_group_instance_association.instance_uuid
LEFT JOIN

security_groups ON security_group_instance_association.security_group_id =
security_groups.id

WHERE
instances.uuid IN (

'f5a08397 -5aac -44b4-b359 -f03ff6ce228a ',
'e7c1acd1 -6a47 -4a08 -8601 -5022 d4d50aa7 '

)



Table 10: 1-shot prompt for SQL generation (content in parentheses is only available when gold column mappings
or gold join keys are provided).

You are given a list of tables, a user question, (a mapping from information mentioned in the user question to columns in the
provided tables, and join keys among the provided tables), your task is output a Oracle SQL statement that can be used to answer
the user question based on the provided tables. You need to ensure that syntax and functions used in your SQL statement are
appropriate for Oracle database. If you are unable to determine the SQL statement, output None. (You should use the provided
mapping to determine which columns and tables should be used in the SQL statement. You should use the provided join keys to
determine how to connect the tables in the SQL statement.)

CREATE TABLE fac_floor(
WAREHOUSE_LOAD_DATE DATE,
BUILDING_KEY VARCHAR2,
FLOOR VARCHAR2,
FLOOR_KEY VARCHAR2,
EXT_GROSS_AREA NUMBER,
ASSIGNABLE_AREA NUMBER,
NON_ASSIGNABLE_AREA NUMBER,
FLOOR_SORT_SEQUENCE VARCHAR2,
LEVEL_ID VARCHAR2,
BUILDING_WINGS_ID VARCHAR2,
ACCESS_LEVEL VARCHAR2

)

CREATE TABLE fac_building(
DATE_ACQUIRED VARCHAR2,
DATE_OCCUPIED VARCHAR2,
WAREHOUSE_LOAD_DATE DATE,
NUM_OF_ROOMS NUMBER,
FAC_BUILDING_KEY VARCHAR2,
BUILDING_NUMBER VARCHAR2,
PARENT_BUILDING_NUMBER VARCHAR2,
PARENT_BUILDING_NAME VARCHAR2,
PARENT_BUILDING_NAME_LONG VARCHAR2,
BUILDING_NAME_LONG VARCHAR2,
EXT_GROSS_AREA NUMBER,
ASSIGNABLE_AREA NUMBER,
NON_ASSIGNABLE_AREA NUMBER,
SITE VARCHAR2,
CAMPUS_SECTOR VARCHAR2,
ACCESS_LEVEL_CODE NUMBER,
ACCESS_LEVEL_NAME VARCHAR2,
BUILDING_TYPE VARCHAR2,
OWNERSHIP_TYPE VARCHAR2,
BUILDING_USE VARCHAR2,
OCCUPANCY_CLASS VARCHAR2,
BUILDING_HEIGHT VARCHAR2,
COST_CENTER_CODE VARCHAR2,
COST_COLLECTOR_KEY VARCHAR2,
LATITUDE_WGS NUMBER,
LONGITUDE_WGS NUMBER,
EASTING_X_SPCS NUMBER,
NORTHING_Y_SPCS NUMBER,
BUILDING_SORT VARCHAR2,
BUILDING_NAMED_FOR VARCHAR2,
BUILDING_NAME VARCHAR2,
DATE_BUILT VARCHAR2

)

User question: List name and floor of the building with the largest floor number?
(Mapping: “name” in the user question refers to column BUILDING_NAME in table fac_building | “floor” in the user question
refers to column FLOOR in table fac_floor)
(Join keys: Column BUILDING_KEY in table FAC_FLOOR joins with column FAC_BUILDING_KEY in table FAC_BUILDING)
SQL: SELECT DISTINCT B.BUILDING_NAME, A.FLOOR FROM FAC_FLOOR A JOIN FAC_BUILDING B ON
A.BUILDING_KEY = B.FAC_BUILDING_KEY JOIN (SELECT max(f) as highest_floor FROM (SELECT CASE WHEN
REGEXP_LIKE(FLOOR, ‘ˆ\d+$’) THEN TO_NUMBER(FLOOR) ELSE NULL END AS f FROM fac_floor)) ON (CASE
WHEN REGEXP_LIKE(A.FLOOR, ‘ˆ\d+$’) THEN TO_NUMBER(FLOOR) ELSE NULL END) = highest_floor;

{tables}
User question: {user question}
(Mapping: {mapping})
(Join keys: {join keys})
SQL:



Table 11: 1-shot prompt for column mappings.

You are given a list of tables, a user question, and a list of keywords extracted from the user question. Your task is to map each
keyword to the most relevant columns names from the given tables. The output should be a dictionary in JSON format, where
each key is a keyword and the corresponding value is a list of relevant table column names. The final output need to be enclosed
within <ans></ans> tags.

CREATE TABLE fac_floor(
WAREHOUSE_LOAD_DATE DATE,
BUILDING_KEY VARCHAR2,
FLOOR VARCHAR2,
FLOOR_KEY VARCHAR2,
EXT_GROSS_AREA NUMBER,
ASSIGNABLE_AREA NUMBER,
NON_ASSIGNABLE_AREA NUMBER,
FLOOR_SORT_SEQUENCE VARCHAR2,
LEVEL_ID VARCHAR2,
BUILDING_WINGS_ID VARCHAR2,
ACCESS_LEVEL VARCHAR2

)

CREATE TABLE fac_building(
DATE_ACQUIRED VARCHAR2,
DATE_OCCUPIED VARCHAR2,
WAREHOUSE_LOAD_DATE DATE,
NUM_OF_ROOMS NUMBER,
FAC_BUILDING_KEY VARCHAR2,
BUILDING_NUMBER VARCHAR2,
PARENT_BUILDING_NUMBER VARCHAR2,
PARENT_BUILDING_NAME VARCHAR2,
PARENT_BUILDING_NAME_LONG VARCHAR2,
BUILDING_NAME_LONG VARCHAR2,
EXT_GROSS_AREA NUMBER,
ASSIGNABLE_AREA NUMBER,
NON_ASSIGNABLE_AREA NUMBER,
SITE VARCHAR2,
CAMPUS_SECTOR VARCHAR2,
ACCESS_LEVEL_CODE NUMBER,
ACCESS_LEVEL_NAME VARCHAR2,
BUILDING_TYPE VARCHAR2,
OWNERSHIP_TYPE VARCHAR2,
BUILDING_USE VARCHAR2,
OCCUPANCY_CLASS VARCHAR2,
BUILDING_HEIGHT VARCHAR2,
COST_CENTER_CODE VARCHAR2,
COST_COLLECTOR_KEY VARCHAR2,
LATITUDE_WGS NUMBER,
LONGITUDE_WGS NUMBER,
EASTING_X_SPCS NUMBER,
NORTHING_Y_SPCS NUMBER,
BUILDING_SORT VARCHAR2,
BUILDING_NAMED_FOR VARCHAR2,
BUILDING_NAME VARCHAR2,
DATE_BUILT VARCHAR2

)

User question: List name and floor of the building with the largest floor number?
Keywords: name, floor
Mapping:<ans>{“name”: [“fac_building.BUILDING_NAME”], “floor”: [“fac_floor.FLOOR”]}</ans>

{tables}
User question: {user question}
Keywords: {keywords}
Mapping:



Table 12: 1-shot prompt for join key detection.

You are given a list of tables, and a user question. Your task is to identify which columns from different tables can be used for
joining. Each valid pair of joinable columns should be represented as a list. The output should be a list of lists in JSON format,
enclosed within <ans></ans> tags.

CREATE TABLE fac_floor(
WAREHOUSE_LOAD_DATE DATE,
BUILDING_KEY VARCHAR2,
FLOOR VARCHAR2,
FLOOR_KEY VARCHAR2,
EXT_GROSS_AREA NUMBER,
ASSIGNABLE_AREA NUMBER,
NON_ASSIGNABLE_AREA NUMBER,
FLOOR_SORT_SEQUENCE VARCHAR2,
LEVEL_ID VARCHAR2,
BUILDING_WINGS_ID VARCHAR2,
ACCESS_LEVEL VARCHAR2

)

CREATE TABLE fac_building(
DATE_ACQUIRED VARCHAR2,
DATE_OCCUPIED VARCHAR2,
WAREHOUSE_LOAD_DATE DATE,
NUM_OF_ROOMS NUMBER,
FAC_BUILDING_KEY VARCHAR2,
BUILDING_NUMBER VARCHAR2,
PARENT_BUILDING_NUMBER VARCHAR2,
PARENT_BUILDING_NAME VARCHAR2,
PARENT_BUILDING_NAME_LONG VARCHAR2,
BUILDING_NAME_LONG VARCHAR2,
EXT_GROSS_AREA NUMBER,
ASSIGNABLE_AREA NUMBER,
NON_ASSIGNABLE_AREA NUMBER,
SITE VARCHAR2,
CAMPUS_SECTOR VARCHAR2,
ACCESS_LEVEL_CODE NUMBER,
ACCESS_LEVEL_NAME VARCHAR2,
BUILDING_TYPE VARCHAR2,
OWNERSHIP_TYPE VARCHAR2,
BUILDING_USE VARCHAR2,
OCCUPANCY_CLASS VARCHAR2,
BUILDING_HEIGHT VARCHAR2,
COST_CENTER_CODE VARCHAR2,
COST_COLLECTOR_KEY VARCHAR2,
LATITUDE_WGS NUMBER,
LONGITUDE_WGS NUMBER,
EASTING_X_SPCS NUMBER,
NORTHING_Y_SPCS NUMBER,
BUILDING_SORT VARCHAR2,
BUILDING_NAMED_FOR VARCHAR2,
BUILDING_NAME VARCHAR2,
DATE_BUILT VARCHAR2

)

User question: List name and floor of the building with the largest floor number?
Join keys: <ans>[[“FAC_FLOOR.BUILDING_KEY”, “FAC_BUILDING.FAC_BUILDING_KEY”]]</ans>

{tables}
User question: {user question}
Join keys:



Figure 7: Interface for annotating natural language questions.
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